Yale University
Department of Computer Science

Highly Parallel Banded Systems Solvers

S. Lennart Johnsson

YALEU/DCS/TR-581
August 1987




Highly Parallel Banded Systems Solvers:

S.Lennart Johnsson?
Departments of Computer Science
and Electrical Engineering
Yale University
New Haven, CT 06520

Abstract

We present algorithms for the solution of banded systems of equations on parallel
architectures, in particular ensemble architectures, i.e., architectures that have a large
number of processing elements. Each processor has its own local storage. The band is
considered dense. Concurrent elimination of a single variable yields a linear speed-up for
ensembles configured as tori, or Boolean cubes, if N > m, with a maximum ensemble
size of m(m + R) (or 2m(m + R)) processors for a banded system of N equations,
bandwidth 2m + 1 and R right hand sides. The minimum attainable computational
- complexity is of order O(N). Concurrent elimination of multiple variables as well as
concurrent elimination of each such variable yields a minimum complexity of O(m +
mlog, ) for a total of (2m + R)N ensemble nodes. To attain this complexity the
ensemble should be configured as clusters, each in the form of a torus of dimension m
by 2m + R, or a Boolean cube of appropriate dimension. Furthermore, corresponding
processors in different clusters are assumed to be interconnected to form a binary tree,
shuffle-exchange, perfect shuffle, or Boolean cube network. The number of clusters
should be of order O(-g—) for minimum computational complexity.

1 Introduction

Banded systems of equations occur in a variety of applications, in particular where the
finite element technique is used. Both direct and iterative methods are used for the
solution of such systems. With the emergence of parallel architectures it is important
to find algorithms that can make effective use of such architectures. It is also impor-
tant that they are portable in the sense that good performance is obtained on both
coarse and fine grain architectures; as well as shared memory, and distributed memory
architectures. We have devised concurrent algorithms for banded systems of equations
feasible for a wide range of architectures. In this paper, we present the algorithms and
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an analysis of their computational complexity. A report on the implementation of one
of the algorithms on coarse grain, shared memory architectures like the Alliant FX/8
and the Sequent Balance 21000, is given in [3]. Experiences from the implementation
on a data parallel computer such as the Connection Machine will be reported elsewhere.

Due to the characteristics of silicon technologies and Very Large Scale Integration
(VLSI) systems of medium scale parallelism are common, and data parallel architec-
tures are emerging. The data movement capability is the most important factor in
designing a high performance architecture. A high storage bandwidth is accomplished
by multiported (interleaved) storage. A high total data bandwidth is accomplished
by interconnecting the processors in a network. The network load can be reduced by
dividing the storage among the processing nodes, and exploiting the locality of data
interaction present in most problems.

The focus in this paper is on the data and control structures that yield a good load
balance, and allow for the exploitation of locality. Complexity estimates are derived
for network topologies in the form of tori. Such networks can be embedded in Boolean
cubes, which also have additional communication capabilitites. We comment on the
consequences of this capability. We also consider systems in which clusters in the form
of tori and Boolean cubes are interconnected to form binary trees, shuffle-exchange,
perfect shuffle, or Boolean cube networks.

Algorithms presented here are elimination methods. We present three classes of
concurrent algorithms for the solution of banded systems of linear equations. One class
exploits for concurrency, the independence of the data set for the elimination of a single
variable from the system of equations. Another exploits the independence of the data
sets for the elimination of different variables; and the third is a combination of the two.

Independence of the data sets for the elimination of a single variable as well as
different variables is apparent in the graph model of elimination [20]. An N x N matrix
can be represented by a graph of N vertices with a directed edge between a pair of
vertices for each nonzero matrix element. The graph can be considered as undirected
for a symmetric matrix. In this case, the elimination of a variable from the set of
equations corresponds to the elimination of a vertex from the graph. In the asymmetric
case, the factorization transforms the original graph to an acyclic graph. Because of
this analogy we refer to the elimination of a single variable from the set of equations as
vertez elimination.

Systolic algorithms for banded systems [19,10,17] maximally exploit the indepen-
dence of operations in the elimination of a single vertex. Such algorithms are derived
for mesh configured architectures. Data movement in these and similar algorithms for
Householder reflections [9], and Given’s rotations [6,1,7,15] is not minimal. Algorithms
with considerably reduced data movement, but the same degree of concurrency and




processor utilization are described below. The algorithms cover different combinations
of the number of processors and problem sizes. Algorithms for coarse grained architec-
tures can be obtained by the folding of computations from space into time. This folding
can be automated, which gives rise to an opportunity to optimize the granularity of
operations, pipelining and vectorization.

Algorithms derived from systolic algorithms have a speed-up that is linear in the
number of nodes, including communication. For a system of dimension N, bandwidth
2m + 1, and R right hand sides, the maximum number of processors is m(m + R), or
2m(m + R) with the elimination proceeding concurrently from the first and last rows
towards the middle [4]. The third class of algorithms yields algorithms of minimum
complexity O(m +mlog, X) for an N x N system of bandwidth 2m + 1. The maximum
number of nodes for the second class of algorithms is (2m + R)N.

Algorithms are analyzed with respect to communication and arithmetic complexities.
Since all complexity terms tend to be of the same order in a highly concurrent (data
parallel) architecture, the complexity expressions are quite detailed.

1.1 Preliminaries

The system of equations is AX =Y, where A is an N x N, symmetric, irreducible
matrix such that |a;;| = 0 for [ — j| > m. Y is an N x R matrix. It is convenient to
store the matrix and the right hand side in an array of m + 1 + R columns and N rows.
The dimensionality of the array data structure and the topology of the architecture is
the same. In the case of a Boolean cube configured architecture a two-dimensional array
can be embedded by the use of a two-dimensional binary-reflected Gray code [21,8]. An
array of size 2F x 2! can be embedded in a (k+1)-cube preserving adjacency by separately
encoding the row and column indices in k and [ bits, respectively.

When the matrix size exceeds the number of nodes in the ensemble, several matrix
elements must be identified with the same node. Two natural schemes for the identifi-
cation of elements are consecutive, and cyclic identification [8]. In consecutive storage,
block matrices are assigned to nodes. For a symmetric banded system stored in an
array of N rows and m + 1 + R columns, array element (3, ) is stored in node (p, q),

where p = [—:}?_—J mod2F and ¢ = Lﬁ—] for algorithms exploiting the independence

of operations for the elimination of a smgle variable. In cyclic storage, array elements
(¢,5) are identified with node (p, q), if p = imod2*, and ¢ = jmod2!. The number of
processors in the column direction is 2/ < m+1+ R and in the row direction 2F < m+1.
The number of clusters is limited to P < [X]. The two storage schemes are illustrated
in Figure 1. For the concurrent elimination of multiple vertices we assume that there
are K, = 2% nodes in each cluster and that there are P clusters. The rows are divided
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Figure 1: Consecutive and cyclic storage of a banded matrix.

into sets of % equations.

There is an apparent difference in granularity suggested by the two storage forms.
However, optimum use of the architecture may require that in the consecutive storage
scheme parts of block matrices be communicated in the same communication action
instead of the whole block matrix (in order to increase concurrency). Conversely, in the
cyclic storage scheme it may be desirable to combine several matrix elements for each
communication action in order to reduce the adverse effect of communications overhead.
If there is an overhead in performing arithmetic operations, the same arguments apply.
Optimization yields the same result in computations in which all elements participate
in the same manner in all the steps of the computation, i.e., in wniform computations
like matrix multiplication.

In describing and analyzing equation solvers based on direct methods, it is convenient
to introduce the concepts of operational windows and computational windows [10]. We
define an operational window to be the set of operations associated with the elimination
of a single vertex. A computational window is defined by the set of operations per-
formed concurrently in the case of zero communication time. Operations defined by an
operational window are divided into disjoint sets by the computational windows (which
completely cover it), Figure 2. The Figure shows 2 successive operational windows for
pivoting on the digonal.

Computational windows for a given operational window are processed one at a time
by a processing plane (or cluster) in the case of zero communication time, Figure 4.
Computational and operational windows are not fixed with respect to processor or stor-
age addresses, contrary to the familiar systolic algorithms. Data and control structures
for a few mappings of computational windows into time for a single cluster are analyzed
in [10]. The mapping of the operational windows into time is equivalent to establishing
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Figure 2: An operational window and corresponding computational windows for the
elimination of a vertex by Gaussian elimination and with pivoting on the diagonal.
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Figure 3: Operational windows for the concurrent elimination of multiple vertices.
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Figure 4: A processing plane and computational windows.
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the pivoting order.

Arithmetic complexity is easily estimated by counting the number of sequential
arithmetic operations per computational window, the number of computational windows
per operational window, and the maximum number of operational windows processed in
sequence by any cluster for the entire computation. In general, the number of arithmetic
and communication operations per computational window will vary from window to
window. Also, the number of computational windows per operational window will vary.

Complete processing of one computational window before the processing of another
window is initiated, corresponds to zero communication time, or no computations in
any processor if there is communication somewhere in the system. In a message passing
system such a state can only be attained through special efforts. In a MIMD (Multiple
Instruction Multiple Data) type architecture [5] computations proceed at the rate data
is available, much as in a dataflow system. As a processor has performed the compu-
tations for one computational window it moves to the next at a rate determined by its
processing capability, and the availability of data needed for the computations. In a
SIMD (Single Instruction Multiple Data) type architecture different processors perform
the same action on the same or different computational windows.

In the following, K, denotes the number of processors in each of P clusters, PK, =
P, t, the time to perform any one of the arithmetic operations addition, subtraction
or multiplication and ¢; the time to perform a division. The time to communicate
an operand between a pair of processors is denoted t.. Overhead in communication is
ignored here. This assumption is approximately true for some architectures, such as the
Connection Machine, but not for the current breed of hypercubes.




2 Concurrent Elimination of a Single Vertex

Algorithms described in this section yield a linear speed-up for up to m(m + R) pro-
cessors, or 2m(m + R) processors for 2-way Gaussian elimination, [4]. An analogous
algorithm for Cholesky’s method is described in [12]. Similar algorithms can be devised
for Householder’s reflections [9], or Given’s rotations [6,1,7,15].

2.1 Gaussian Elimination on a Torus

The problem of solving a banded system of equations on a data parallel architecture
configured as a torus, or a Boolean cube, is similar to the solution of band matrix
problems by systolic algorithms [19,6,1,7,9,15,17]. The exception is that the data for the
entire problem, or a large portion of it, is stored in the primary storage. Optimization
of the granularity of operations to reduce overhead in arithmetic and communication,
possibly at the expense of reduced concurrency, is omitted here. We carry out the
discussion and analysis of the algorithms in the context of cyclic storage, since it tends
to enforce a greater insight into the control and data structures of the algorithms.

A systolic algorithm for cyclicly stored matrices is given in [10]. In systolic al-
gorithms, the entire concatenated matrix AY is shifted one step for each operational
window during factorization as well as backsubstitution. During factorization and for-
ward elimination, outer products of a row vector of m + R + 1 elements and column
vectors of m elements are formed. Regardless of the value of N, m(m+ R+ 1) elements
are updated for each operational window. Updating the proper elements of A = LU
in-place results in reduced data movement. In-place algorithms are dual to common
systolic algorithms in that the operational window is moving over the data (the proces-
sor addresses) instead of the operational window being fixed (with respect to processor
addresses), and the data passing through it.

A backsubstitution algorithm dual to the one in [19] can only use an m x R torus,
which for R < /K. results in poor processor utilization. For small values of R, inner-
products are accumulated in-space instead of in-place. The speed-up is of order O(mR)
for mR < vK,, v € [1/2,1], and of order O(K_) for mR > vK.. Hence, for R = 1 and
m < K, the speed-up is proportional to m.

In the in-place algorithm for factorization and forward elimination, the pivot row
is broadcasted to the other m rows of the operational window; and the pivot column
broadcasted to the other m + R columns. Optimal algorithms for this operation on
Boolean cubes are described in [18]. Some of them are identical to mesh algorithms.
With pivoting on the diagonal the pipelining of communications and arithmetic opera-
tions is straightforward. Partial pivoting considerably reduces concurrency. Essentially




one dimension of a 2-dimensional array is lost from a concurrency point of view [10].
The running time increases by a factor of order 2%,

For an in-place algorithm, the number of elements that need to be transferred be-
tween a given pair of processors for each of the first N — m operational windows is
the same for the cyclic and consecutive storage schemes (and equal to [m—\")—ﬂ—i—]) For
each of the first N — m operational windows the maximum time for arithmetic for any
processor is the same for both consecutive and cyclic storage. The same property also

holds for backsubstitution. We formulate this observation as a lemma.

Lemma 1 The mazimum number of arithmetic operations performed by any processor,
and the mazimum number of data elements that need to be communicated between a
processor and its neighboring processors for the factorization, forward elimination, and
backsubstitution of the first N — m equations are the same for consecutive and cyclic
storage.

The preservation of computational and communication balance is illustrated in Fig-
ure 5. As the operational window is moved one row and column in the forward phase,
the first matrix row of each of the top computational windows is no longer actively par-
ticipating in the computations. However, a new matrix row at the bottom of the new
operational window is included, as is a new column at its right edge, except for the last
m operational windows. In the cyclic storage scheme this matrix row is stored either
in the processor row storing the most recently used pivot row (if m + 1mody/K, = 0),
or stored in a processor row previously inactive during the execution of the last row of
computational windows of the preceding operational window. The situation for the new
column is similar. In the consecutive storage scheme the new row is either stored in the
same processor row as the last block row of the previous operational window or in the
processor row storing the pivot row of that operational window.

The solution of a banded system of equations is divided into two major parts:
1. The factorization, forward elimination, and backsubstitution on the first N — m
equations; and
2. The solution of a dense system of m equations.
The algorithm proposed for the first part yields 100% processor utilization, an initi-
ation phase excepted. However, it is not as efficient for the second part as the proposed

dense matrix algorithms. For a matrix of narrow bandwidth, m < N, this difference is
of no major concern. However, it is the dominating complexity term for m ~ N.
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Figure 5: The effect of shifting the operational window 1 step on the balance of com-
putations.



The first Computation Complexity
Factorization and (N —m){2t. +ta+ ([’ﬁi'—l] — D)maz(2t4,tc,tq)+
N-m Forward solve +(( l_m&l‘i&l 1) [73‘—] + )maz(2t,,t:)}—
—maz(2ta,t.) + 2(JIT - 2)t +tg+ 2,
equations | Backward solve, (N — m)a+ BVK, + const for |' N/ ] [7—] =1
many R.H.S. (N = m)(a =+ B) + 7V/K. + const for [ =1 fv—-] ~ 7'9—
few R.H.S. (N —m)(aBE + M) +6VK, + const for [ £-] ~ 7= [T~
Backward solve aN + BR + const, |—7_c-lR < 7K.
aNI'("R mR > K,
The last Factorization m(2t. +tq) + \/——[7—-]([ | + Dymaz(2ts,1c)/2
and forward +\/I—{:|'7-='|(|' 7=+ [ F1-1/2)
m solve maz(2ts,te,tq) + \/T(:[V—]([VR-] - 1)(3[7—] +2[ =1 — 1)ta/3
Backward solve [ F] - DIz 1(GVE: — 1)maz(2ta, t.)
many R.H.S. +2(VK, — 1)t + 2t,
equations | Backward solve (7R + sVK:— R)t.
few R.H.S. +EJ = maz(ta + VEc(ta +te), ([ =] — 5)R(ta + maz(ta, tc)))

Table 1: The complexity of solving a banded system of bandwidth 2m + 1 and order N.

2.1.1 The Complexity of Solving the First N-m Equations

For the following analysis we assume the cyclic storage scheme, that communication
and computation can take place concurrently for each node; and that the ensemble
topology is that of a torus, formed by a /K, x v/K_ mesh with end-around connections.
We consider Gaussian elimination without partial pivoting, and the computation of
the product form of the inverse of the lower triangular matrix L (A = LU, L™ =
LNLyn-y...Ly) in-place. U = LyLy_;...L A, where only column j of L; has nonzero
elements, except for the diagonal elements. The nonzero off diagonal elements are
obtained from the elements of column j of L;_;...L;A. The matrix L7'Y is also
computed in-place, i.e., it replaces Y.

For the factorization broadcasting of successive pivot rows and columns can be
pipelined, if partial pivoting is unnecessary. Alternatively, each broadcasting can be
completed before any other operation. The first alternative is natural for systems syn-
chronized by message passing. The other is natural for data parallel architectures. We
summarize the complexity estimates in Table 1.

For factorization and forward elimination there are a total of [Z32] |‘—'|\}—_i;—'| com-
putational windows for each operational window. The time for processor (1,1) to com-
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Figure 6: The utilization of the processors in row 0 during the first /K, operational
windows.

plete the computations on the first column of computational windows is ([—L] -
1)max(2ta,t.,ta) + 2t. + t4 + 2t,; and the time for the completion of the compu-
tations on the first operational window is ([%] — )maz(2t,,t.,ts) + ([%l]
1) [—"‘—] max(2ts,t.) + 2t. +tq+ 2t,. The last term can be overlapped with communica-
tion for the next operational window. For the computations on an operational window
to be complete an additional propagation time of 2(v/K, — 2)t,. is needed.

Figure 6 shows the active periods of processors in row 0 of the torus during the
elimination of the subdiagonal elements in columns 0 — (/K — 1). Figure 7 shows in a
stylized form, the interleaving of operations on 3 stripes of width /K, (the maximum
degree of interleaving). Interleaving of the forward elimination on the right hand sides
can be performed similarly.

The application of L; is illustrated in Figure 8.

Remark 1. If N —m < m, and R < m then there exist an optimum size of the
mesh that is less than the matrix bandwidth, ,/K.,,, = O(m?*?).

Remark 2. The arithmetic complexity of a square torus for factorization and
forward elimination is identical to the complexity of a torus based on a mesh congruent

to the operational window, if (m + 1)mod/K, = (m + 1 + R)mody/K, = 0. However,
a square mesh minimizes the propagation tlme

Remark 3. Any matrix multiplication algorithm can be used for rank-1 updates.
We choose an algorithm that has the same data flow as the algorithm for factoring the

11




Figure 7: Interleaving of the elimination on 3 stripes of width /K..

Figure 8: Storage and application of L;.
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Complexity Speed-up Comment
Fact. and forw. elim. | O(K,) K
first N — m eqns.
Backsubstitution O(mR) [ \/?Tc-l =[7]=1
first N —m eqns. | O(RVK,) f){%] =1, [7] = 7
many RHS OK.) |7l ~F [l ~ 7
few RHS O(mR) m < vy5%
O(K.) m > v, v €[1/2,1]
Fact. and forw. elim. | O(K,) VK. <m,R
last m eqns.
Backsubstitution | O(RV/K.) [ h/%-l =1
many RHS O(K.) [m] ~ \/%
few RHS O(K.) m > K

Table 2: Speed-up for the solution of a banded system of bandwidth 2m + 1 and order
N.

diagonal block, for ease of pipelining. The matrix multiplication algorithm is described
in some detail in [8] (algorithm MMTS3).

Backsubstitution consists of the computation ¥ « Y — U(x,¢)X (g, *). For the first
N — m equations, U(*, q) is effectively an m x 1 vector, X(g,*) a 1 x R vector, and Y
an m X R matrix. Recurrence can be based on outer products, or R inner products of
a 1 x m vector U(g,*) and m x 1 subvectors X(g,*) — X (g + m, *).

In dual systolic algorithms, the matrix Y is stationary and U and X are commu-
nicated. Inner products are accumulated in-place. Elements of U are communicated
along processor rows, and z-values along columns. The data flow can be made identical
to the flow in the matrix multiplication algorithm by Cannon [2]. However, it is also
possible to send the columns of U to the first column of Y, and then broadcast them
from there. The elements of U and X are multiplied on their path towards the last
processor column and final row respectively, and added to the local value of Y. Com-
putations of successive rows and columns are skewed with respect to each other. The
algorithm yields a speed-up proportional to the number of nodes in the ensemble for
R> /K, i.e., for a large number of right hand sides.

For few right hand sides a skewing operation is performed on the right hand sides
such that row ¢ is rotated g processor columns in the direction of increasing column
index, ¢ = imod\/K.. The computation of a new set of z-values is accomplished by
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Figure 9: Wavefronts for backsubstitution with accumulation of inner products in-space.

distributing known z-values along processor column, and accumulating inner products
along processor rows in-space [11]. The matrices U and Y are stationary. The dis-
tribution of z-values can be pipelined. For each right hand side one inner product is
computed for each z-component, regardless of m. The computation of inner products
for different right hand sides can be pipelined. The algorithm yields a speed-up of order
m for m < yK./R, and of order K, for m > yK./R, v € [1/2,1].

Figure 9 illustrates the wavefronts associated with a single right hand side. The
wavefronts in different block matrices are delayed with respect to each other. For
7== < VK all wavefronts for a column of block matrices are issued from the processor
in the lower right hand corner before a new set is to be issued for the next z-value
computed by the processor.

For the solution of the last m dense matrix equation the algorithm described in [11]
can be used. This factorization algorithm has a data movement similar to the algorithm
described above for the elimination of the first N —m vertices. The factors are computed
in-place. Gauss-Jordan elimination is performed on the diagonal blocks.

2.2 Summary

Exploiting the independence of operations in the elimination of a single vertex yields
a linear speed-up that is proportional to the number of processors. For a symmetric
matrix Cholesky’s method can be used instead of Gaussian elimination, with the same
savings in storage as in the sequential case; and with a reduction in time complexity
that also is comparable to the savings in the sequential case for [ 7| > 1[12]. For
[ \/—-| = 1 there is no reduction in time.

Linear speed-up is limited to ensembles of at most m(m + R) nodes for Gaussian
elimination (2m(m + R) for 2-way elimination) and m(m/2 + R) nodes for Cholesky’s
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method. This constraint is fundamental to the method. For m of order O(N) the
speed-up may be satisfactory, however, for m < N the degree of concurrency is low.
In this case, exploiting the independence in the elimination of different vertices is the
main source of concurrency.

3 Concurrent Elimination of Multiple Vertices

3.1 Preliminaries

For systems with ¥ < 1, (i.e., matrices with narrow bands) the main source of con-
currency is the independence of operations for the elimination of different vertices.
Whereas, for § ~ 1 the main source of concurrency is in the operations required for the
elimination of a single vertex. The order of the minimum complexity obtained through
combining the two forms of concurrent elimination is O(m +mlog, &). This complexity
is an improvement by a factor of m? compared to exploiting only the independence
of operations in the elimination of different vertices, and an improvement by a factor

of Wi—ml—ojzzm/_m) compared to exploiting only the independence of the operations in the

elimination of a single vertex. The latter improvement is of order —~ for ¥ <1, and

log, N
of order O(1) for F~L

The system of equations is partitioned into a block tridiagonal system of P partitions,
P<L [%] . A cluster of K, processors is assigned to each partition. Corresponding pro-
cessors of different clusters are connected to form binary trees, perfect shuffle networks,

or Boolean cubes. Each processor is assumed to have sufficient storage (O(N %&))-

The solution of the banded system is carried out in three phases [16]. In phase 1,
the system is transformed from a banded system into a system that can be solved in
two phases; the first of which (Phase 2) is the solution of a block tridiagonal system
of order mP. The third phase is backsubstitution on the remaining equations. In
phases 1 and 3, a cluster of processors is employed for each partition, whereas, the
number of clusters used in phase 2 depends on the method choosen for the solution of
the block tridiagonal system. Each partition in phases 1 and 3 concurrently performs
the computations associated with the elimination of a single vertex. Computations in
different partitions take place concurrently. The number of vertices being eliminated
concurrently is equal to the number of clusters.

Algorithms that concurrently eliminate multiple vertices do not use a perfect elimi-
nation order. They require more arithmetic operations than the elimination of vertices
in the normal order because of fill-in, Figure 3. Arithmetic and communication com-
plexities for the degenerate case with clusters of a single processor is analyzed in [16].
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Here we treat the general case, and discuss the partitioning of a given set of processors
into clusters with the goal of minimizing the estimated complexity. Note, that if P = %
then phases 1 and 3 vanish.

?

Phase 1 of the algorithm [16] consists of 3 steps.

Ao Bo Xo Yo
Ci A1 By X1 Yy
Cg A2 B2 X2 1/2

Cp_1 Apox Xpy Yp_4

The diagonal blocks are matrices of bandwidth m. The blocks are of the form

E;, 0 0 F, 0 Gi H;
L A‘iu Eiz L — 0 0 -F;'z R 0 G‘iz L ‘Hi2
Az - E;s B1 - 0 0 Es Ct - 0 C;z3 K - Hza
0 0 A, E, B;,, 0 F, 0 G, H;,

Let ¢ = %. The matrices E;;, F};,Gy;,j = {1,3,4},¢ = {0,1,..., P — 1} are m X m
matrices and E;,, F},,G;,,¢ = {0,1,..., P— 1} are ¢ — 3m X m matrices, ¢ > 3m. For the
right hand side we introduce the matrices H;;, which for j = {1, 3,4}, = {0,1,...,P—1}
are m X R matrices, and H;,,¢ = {0,1,..., P — 1} are ¢ — 3m x R matrices.

Initially Eil = E;, =0, E, = Ay, By = Ay Fij =0,5 = {1’273’4}7
G, = Ci,, Gij =0, = {2,3,4}> and H;; = {Yii—l)q+17'--, Y(i—l)q+m}T,
Hi2 = {Y’(i—l)q+m+17-", Y.(i—l)q+q—2m}T) Hia = {Yv(i—l)q+q-—2m+1a"-a Y’(i—l)q+q—m}T7 Hz'4 =
{Yicn)gg=mt1s -, Yig} T, ¢ = {0,1,..., P — 1}.

Step 1
Diagonalize the blocks A;,, by premultiplying each partition by

A7l o
0o I

16

The computations are



E;, E; G, G, H; H;,
E; — A:l: E; G,‘2 — A;} G,'2 H; — A;: H;z
E; E; G, Gia H; Hia

The inverse of A,'I} is, in general, not computed explicitly. Instead, the factored form
Ay, =L; Uy, or A;, = L;,, LT is used.

t11
Step 2

11 111

Eliminate the upper triangular matrix A;,, by premultiplying each partition by

0 0 0
0 -4, I,

The computations are: E;, «— —A;, E;,+E;,,G;, «— —A;,,G;,, and H;, «— —A;, H; +
H;,,:={0,1,..,P -1}

Step 3

Eliminate the lower triangular matrices B;,, by multiplying the first m rows of
partition ¢ + 1 by —B,,, and adding the product to the last m rows of partition 7,7 =
{0,1,.., P — 2}. This step requires interpartition communication. A block of g rows of
the premultiplying matrix is of the form

I 0 0 0 0
0 I —B;,, 0 O,

The computations are: E;, «— —B;,, G(iy1),, F}, «— —Bi,, Flit1),, and Hy, < —B;,, H(i1),,
i ={0,1,...,P —2}

At this point the form of partition ¢ and 7 + 1 of the banded matrix is

[ G, E, 0 0 \
G, I E, 0 0
G, E;, 0 0
G, E; 0 F,
0 GGy,  Egyy, 0 0
0 G(i+1)2 I E(i+1)2 0 0
0 G(i+1)3 .E(,‘_'_l)3 0 0
\ 0 G(i+1)4 E(z‘+1)4 0 F(z'+1)4/
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The last m equations from each partition together form a block tridiagonal system
of equations of order mP.

Phase 2, the solution of the block tridiagonal system of order m P requires intercluster
communication. The major operations are:

e Diagonalization of the diagonal blocks of the reduced block tridiagonal system;
e Matrix-matrix multiplication and addition; and

e Matrix-vector (or matrix-matrix) multiplication (backsubstitution).

Phase 3 is local to a cluster and consists of matrix-vector (or matrix-matrix) multi-
plication and addition (backsubstitution).

In exploiting the symmetry of the banded system, Cholesky’s method can be used
to factor A;} and the computations proceed according to steps 1 - 3. In using Gauss-
Jordan elimination of the computation and application of L;! and the elimination of
A;,, is performed in a forward elimination step; and the application of U;-! and the
elimination of B;,, in a backward elimination step. Computations in these steps are
local to a cluster, except for the elimination of B;,,. Each cluster is assigned a banded
system of ¢ equations, each with R right hand sides. For a nonsymmetric matrix the
number of nonzero diagonals is 2m+1. For a symmetric matrix it suffices to store m +1
nonzero diagonals. The matrix is of order ¢ X ¢ + 2m in the nonsymmetric case. We
first consider Gauss-Jordan elimination.

3.2 Phase 1. Transformation of the Banded System into a
“Separable” System

3.2.1 Concurrent Gauss-Jordan Elimination in Clusters

Transformation of the banded system to a system that is solvable in two additional
phases can be performed by Gauss-Jordan elimination, concurrently performed in all
clusters. We briefly outline the computations and give a complexity estimate. The
rows and columns are labeled ig + j with ¢ = {0,1,..., P — 1}, and j = {0,1,...,¢ — 1}.
The elimination of subdiagonal elements in columns ig + j,5 = {0,1,...,P — 1} and
J=10,1,...,¢—m—1} is performed in a forward elimination phase, concurrently for all
%, and for each ¢ sequentially for j (pivoting on the diagonal in each partition). Rows
with the same value of 7 are assigned to the same cluster. In the elimination of the
subdiagonal elements in column iq + j, row iq + j is communicated to the processors
storing rows iq + j + k,k = {1,2,...,m}. No interpartition communication is required
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Figure 10: The locations of nonzero elements in a partition during steps 1 - 3.

since j +k < g¢—1. The elimination of the superdiagonal elements in columns iq+ j,7 =
{0,1,...,P —1} and j = {0,1,...,¢ — m — 1} is performed in order of decreasing values
of j, concurrently for all i. For this elimination row iq + j is communicated to the
processors storing rows iq + j — k,k = {1,2,...,m}. Hence, communication between
adjacent partitions is required for the elimination operations on columns with j < m.
The elimination of B;,, requires communication of m(2m+ R) elements, if the elimination
of B;,, is performed in cluster i. By performing the elimination operations in cluster
i +1,m(3/2m + R) elements need to be communicated.

After the forward elimination phase, the blocks ((i+1)g+k,ig+j),k,j € {0,1,..,q—
1} x{g—m,...,q—1} are filled-in for all ¢ = {0, 1,.., P—2}. Similarly, after the backward
elimination phase the blocks (ig + k,iq + j),k,5 € {0,1,..,¢ — 1} x {g—m,....,q — 1}
are filled-in for all 7 = {0,1,..,P — 1}, and so are the blocks (ig + k,ig + j), k €
{-m,-m+1,..,-1}, je{g—-m,...,q¢—1}fori = {1,2,...,P — 1} (caused by the
elimination of B;,,). The locations of the nonzero elements in partition 3, initially, after
the elimination of the subdiagonal elements, and after the elimination of superdiagonal
elements are shown in Figure 10.

For each cluster we assume that the rows and columns are stored cyclicly, and employ
the algorithms for the elimination of a single vertex. Computation and application of
the factors L{JH-, J =1{0,1,..,¢ — m — 1} in partition ¢ for P > 1 differ from the case
P =1 only in that there is fill-in, and there are additional computational windows
for each operational window. The complexity increases accordingly. The backward
elimination is carried out similarly to the forward elimination, except that the direction
of communication for rows and columns may be reversed (but need not be) compared to
the forward elimination step. Also, in the last m steps of the backward phase processor
row 0 of cluster : communicates the pivot row to processor row \/K, — 1 of cluster i — 1

instead of the row /K, — 1 of the same cluster.

The time for diagonalizing the diagonal blocks A;,, and eliminating A;,, and B;,,
through Gauss-Jordan elimination, requires a time of approximately 2(% —m){2t,+t4+
([ZE2] — 1)maz(2ta, te,ta) + (( [2mptR] — D[ZE] + 1)maz(2t,,t.)} — 2maz(2ty, t.) +
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4(vVK,. — 2)t. + 2(t4 + 2t,) on P clusters, each in the form of a torus of /K, x VK.
processors.

The communication bandwidth for intercluster and intracluster communication is
assumed to be the same. In the above estimate, no pipelining between the forward and
backward elimination phases is assumed. This assumption only affects the propagation
term (4(v/K. — 2)), which is of lower order for few partitions, narrow bands, and small
tori. However, for a maximally concurrent implementation the propagation time may
be the dominating term. For [%1 = 1 the complexity estimate becomes 2(¥ —
m)(2tc+ta+maz(2t,,t.)) +4y/K, + const, which is 0 for P = ¥ (the maximum number
of partitions). For [ =] ~ %~ the high order terms are (% — m)m22EE 4 g /K.
The speed-up is of order O(Ky,).

3.3 Phase 2. Solution of the (Reduced) Block Tridiagonal Sys-
tem

Two candidate methods for the solution of the reduced block tridiagonal system are:
two-way block Gaussian elimination (2BGE), and block cyclic reduction (BCR). 2BGE
is only of interest on intercluster connections forming linear arrays; while BCR is par-
ticularly interesting on intercluster connections forming binary trees, shuffle-exchange
or perfect shuffle networks, and Boolean cubes. However, as shown in [16] BCR may be
of a lower total complexity than 2BGE even on a linear array.

The solution of the block tridiagonal system proceeds in three steps:

e Diagonalization of the diagonal blocks (multiplication of a block row by the inverse
of the diagonal block);

e Elimination of off diagonal blocks (one block per block row for 2BGE, 2 per block
row for BCR); and

e Computations of unknowns through backsubstitution.
We discuss each of these three steps separately. For simplicity, we assume that

P = 2 — 1. 2BGE proceeds in [g_] elimination and backsubstitution steps, BCR in
p — 1 elimination and backsubstitution steps.

3.3.1 Multiplication of a Block Row by the Inverse of the Diagonal Block

In both 2BGE and BCR the elimination of an off-diagonal block is accomplished through
a linear combination of two rows. This elimination can be carried out by first multiplying
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Configuration Algorithm Ensemble size

BCR 2BGE
Linear array m(a + ﬁrzj}g:]) m(e + Bl5=1)
Perfect shuffle m(a+ B[ 5==1) m(a+ B[5=p=1) m =K,
Boolean cube m(a+ B[55=1) ma+ Bl5e=1)
Binary tree m(a+1+ﬁrw])

Linear array m(ﬂ-lﬁ-'-"-Ml + "%';E + v) + const (ﬂw + —j’k- + v) + const

Perfect shuffle m(ﬂ(&-'_"-&?’2 + Z‘%LZ + v) + const m(ﬂlg;é%n + j:m £ 4 ) + const [\/'%:'] ~ ‘/';rc
Boolean cube m(miw',;}é——%l + -’-"—5;;‘— +v) + const | m o + —ﬁ: +9)+const | [ \/1;.;] ~ \/?C'

Binary tree m(m + Vi + 7) + const

Table 3: The complexity of multiplying a block row by the inverse of the diagonal block.

the block row used to eliminate an off-diagonal block by the inverse of its diagonal block,
E . Then, the resulting row is multiplied by the block matrix to be eliminated, and the
two rows are added. There is one block row per cluster. In 2BGE the off-diagonal blocks
of the pivot row are (F;, H;,) for the first half of the block rows (and (G;, H;,) for the
second half), and in BCR (G;, F;, H;,). Computation of the inverse of the diagonal block
and multiplication of the off-diagonal blocks thereby can be accomplished using Gauss-
Jordan elimination. The speed-up is proportional to the number of processing elements
in a cluster, m > /K, [11]. Computations for a block row can be shared between two
adjacent clusters at the extra expense of communicating the diagonal block between
the two clusters. Then, the number of columns of the off diagonal blocks treated by a
cluster is 2(m + R) for 2BGE and (m + +R) for BCR. Intracluster communication can
take place concurrently with the computations. From [11], we derive the complexity
estimates in Table 3 for 2BGE and BCR:

An algorithm for the shuffle-exchange network can be obtained from the binary tree
algorithm by embedding the tree in the shuffle-exchange network (see e.g. [14]).

3.3.2 Block Forward Elimination/Reduction

The elimination of an off diagonal block requires the multiplication of a block row by a
matrix, followed by the addition of two block rows. The multiplication can take place in
the cluster that stores the block row; the cluster that stores the block to be eliminated;
or it may be distributed among several clusters. For 2BGE we choose to perform the
multiplication in the two adjacent clusters sharing the computations of step 1 of phase 2.
For BCR a block row is multiplied by 2 m x m matrices, one for each off diagonal element
to be eliminated. We choose to perform the multiplication of one complete block row by
an m X m matrix concurrently in distinct clusters with intercluster connections forming
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perfect shuffle networks or Boolean cubes. For BCR on a binary tree of clusters we
instead choose to perform the multiplication in the processor that stores the elements
to be eliminated, in order to allow for effective pipelining. Communication complexity
would otherwise be O(log3 P) [14]. For BCR on a linear array we choose to perform the
multiplication in two clusters; one storing the block row in which elimination is to take
place, and one cluster adjacent to that cluster. Hence, the number of columns of the
multiplier is (m + R)/2 for 2BGE and (2m + R) for BCR on a linear array, and perfect
shuffle and Boolean cube networks. For the binary tree the number of columns of the
multiplier is the same, but the multiplicand has 2m columns instead of m columns.

Communication of a block row prior to the multiplication is between clusters. For
2BGE the communication is between clusters storing partitions ¢ and 7 + 1 in step ¢
of the elimination process. In BCR, the communication is between clusters assigned
partitions that differ in index by 2f, ¢ = {0,1,...,log, P — 2}. The amount of data
transferred between corresponding processors in clusters is f\/—’”ﬁ]z prior to multiplica-

tion and l——\/%-l [;”jl—g] after multiplication using 2BGE. In BCR on a perfect shuffle or

Boolean cube network l_\/_f-’%f] f%] elements are communicated prior to multiplica-

tion and f%] [2—"‘1'(%] afterwards. For BCR on a binary tree [\/LIT] [2\”/%{‘] elements
are communicated prior to multiplication.

For matrix multiplication we employ any one of the algorithms described in [11]. The
speed-up is proportional to the number of processors in a cluster. For BCR on ensem-
bles with intercluster connections as binary trees, the matrix multiplication algorithms
yield the result directly. For the other cases it is necessary to perform an additional
matrix addition, for 2BGE of [ 75| % [é’—’j"—%] matrices, and for BCR on perfect shuffle

and Boolean cube networks of [Z=] x [%‘—Ig] matrices. Assuming that intercluster
communication occurs concurrentmith computations the complexity estimates are as
follows:

For [2=] = 1 the highest order term is [%?;] VK. for 2BGE, and [Mm’i] VK, for
BCR on a linear array, perfect shuffle and Boolean cube networks, and 2[2—"‘\/7"—'?-—"3] VK.
for BCR on a binary tree. For [T =~ 7% and f%] ~ \/LK—C the highest order
terms become m2ﬂ2Ij;TR for 2BGE, mz% for BCR on a linear array, perfect shuffle and
Boolean cube networks, and 2m2% for BCR on a binary tree of clusters.

3.3.3 Backsubstitution

Backsubstitution using 2BGE requires the communication of f;&"ﬁ] [\/—%—] z-values be-
tween a pair of processors in different clusters prior to the computation of a matrix-
vector product; and the communication of [\—/—%——] matrix-vector products to complete
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the computation of a set of m new z-values. For BCR [ %] [\/—?{——:] z-values and fch]
matrix-vector products are communicated for the computation of each set of m z-values.

Matrix-vector products can be computed by accumulating inner products in-place,
or in-space. Such matrix multiplication algorithms are described in [11]. In-place algo-
rithms are feasible for [%1 ~ \/_}1%’ and in-space algorithms are suitable for R < /K.

Using any of the matrix multiplication algorithms in [16], the following complexity es-
timates can be derived for the high order terms:

For [—%1 = 1 the estimate is ([%] Vv K.) for 2BGE and BCR on a linear array,
perfect shuffle and Boolean cube networks, and 2( ['\/L%:'I Vv K.) for BCR on a binary
trfe. For [2=] & %= and | 7RK—C'| R~ TII% the estimates are Z";{—zc[\/%—c] Vv K. for 2BGE,
% [7%] VK. for BCR on a linear array, perfect shuffle and Boolean cube networks, and

2}}12 f\/—%—] VK. for BCR on intercluster connections forming binary trees.

3.3.4 Summary of Complexity Estimates for Phase 2.

Adding the complexity estimates above we arrive at the estimates:

The solution of a block tridiagonal system with blocks of size m x m, R right hand
sides, and P block rows can be solved on P clusters with intercluster connections forming
linear arrays, binary trees, perfect shuffle and Boolean cube networks and intracluster
connections forming tori or Boolean cubes in a time that is approximately

2BGE on a linear array:

(m(mPEERE 4 2B 4 )+ e1)(P — 1)/2 + m(m2n3tR2 4 miBl2y | o,

BCR on a linear array:

(m(m—Ltmk'tz"‘3R + % + v) + c1)(log, P — 1) + mﬂ_,—'{*':E(P — 1) + m(mImLEER2 ?{tR 2 4
%) +c2

BCR on perfect shuffle or Boolean cube networks:

(m(m M8 4 2R 4 ) + 1)(logy P — 1) + m(mIMER2 | miBl2) 4 o,

BCR on a binary tree:

(m(mP R 4 208l 4 ) 4 i) (log, P — 1) 4 m(mZREHBL2 | miR2y 4 o)
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3.4 Phase 3. Solving for the Remaining (% — m)R Variables

On completion of phase 2 m z-values are known per cluster. From these z-values the
remaining % — m z-values within each cluster can be computed. The z-values can be
obtained using either an in-place or an in-space algorithm for the accumulation of inner
products. The highest order terms are:

(=mitm[ B /K, for 2BGE and BCR.

3.5 The Complexity of Concurrent Elimination of Multiple
Vertices

The highest order terms in the complexity estimates for fast banded systems solver for a
(£ -m)m(2m+3R) +

c

linear array using 2BGE for the (reduced) block tridiagonal system is
m? (13m/3+7}1§/2)(P—1)
ik, y

Clearly, the speed-up is linear in K., and the complexity is min-
imized for /K, = m, the maximum size of a square torus for which the efficiency
(speed-up/(number of processor)) is of order O(1) for the operations of highest com-
plexity. If the number of processors in the two dimensions can be chosen independently,
then a rectangular torus of size m x m + R yields the lowest complexity. It is also
readily seen that if PK, = P, = const, the minimum complexity is attained when K, is
maximized. From the expression for the total complexity it is also apparent that there

exists an optimum value for P, and that this optimum is of order 0(\/_%_) regardless of

K. (neglecting lower order terms). Indeed, P,,; ~ a:\/-—ﬁj where « is a small multiple of
the ratio of the arithmetic and communication bandwidths.

If instead of block Gaussian elimination, block cyclic reduction is used to solve
the reduced system on a linear array the highest order terms are (¥ — m)mg%al +

m?(log, P— 1)04—"‘1{&0"15”—}32 +m(P— l)g%fl, where the last term is entirely due to commu-
nication. As in the previous case the speed-up is linear in K, and maximizing the cluster
size minimizes complexity. The optimum number of partitions is of order 0(\/Jv ), as in
the case of clusters of size 1 [16].

For intercluster connections forming perfect shuffle and Boolean cube networks, the
highest order terms in the complexity estimate are (% — m)mzﬂf}"fﬂ + m?(log, P —

1)1@?;33, and the speed-up is linear in K,.. This is also true for intercluster con-

nections forming binary trees, since the total complexity in this case is of the form
(% - m)m2%f’Ri + m?(log, P — 1)391"%2. The number of clusters that minimizes the

complexity is of order O(g—), as is the case of clusters of size 1.

We summarize the above results in a few theorems.
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Theorem 1 Ezploiting for concurrency the independence of operations (operands) in
the elimination of a single vertez yields a speed-up linear in the number of processors
for elimination methods on tori and Boolean cubes with a matriz embedding technique
preserving prozimity, if N > m. Otherwise, there exist an optimum, |/K, of order

O(m?/3).

Copt ?

Theorem 2 Let sets of vertices form complete subgraphs, and let such a subgraph rep-
resent a node in a quotient graph. If the nodes in the quotient graph are linearly con-
nected, then ezploiting the independence of operations (operands) in the elimination of
vertices belonging to different nodes in the quotient graph yields a speed-up sublinear in
the number of processors.

The reason for stating theorem 2 for graphs forming paths, is that such graphs cor-
respond to block tridiagonal matrices. Concurrency in vertex elimination on arbitrary
sparse matrices is investigated in [13]. The reduced speed-up in the concurrent elimi-
nation of multiple vertices is due to the fact that a progressively decreasing number of
vertices (nodes in the quotient graph) remains to be eliminated.

Corollary 1. The minimization of the complexity of the fast banded system solver
with respect to cluster size and number of clusters can be made independent of each
other for elimination methods on ensembles in the form of sets of clusters with intra-
cluster connections forming a torus or Boolean cube, and a matrix embedding technique
preserving proximity. The complexity of solving a banded system of bandwidth 2m + 1
is minimized for clusters of size m x m for tori with an equal number of processors
in both dimensions. With a different number of processors in the two dimensions the
complexity is minimized for tori of size m x (2m + R).

Theorem 3 The optimum number of clusters depends on the form of intercluster con-
nection and 18 of order O(\/:nﬁ) if Gaussian elimination is used for the solution of the
reduced block tridiagonal system, of order O(\/N), if block cyclic reduction is used for

the reduced system on a linear array, and of order O(%), if block cyclic reduction is
used on perfect shuffle, Boolean cube, or binary tree networks.

This result concurs with the result in [16], as should be expected from Corollary 1.

Corollary 2. For a sufficiently large number of clusters block cyclic reduction is of lower
computational complexity than Gaussian elimination. The crossover point increases
with the cluster size K. and decreases with the bandwidth.
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4 Summary

The algorithms that exploit for concurrency, the independence of operations required
for the elimination of a single variable, yield a speed-up proportional to the number of
processing elements configured as tori and Boolean cubes. The arithmetic and commu-
nication complexity is of order O(N ml"y"{'cﬁ) for a matrix of bandwidth 2m + 1 and size
N, and the number of processors equal to K., K. < m(m + R).

We have also presented and analyzed a fast banded system solver with a mini-
mum complexity of O(m + mlogz(]—n\z-)). Particularly, this solver is efficient on processor
networks consisting of clusters with intracluster connections forming tori or Boolean
cubes, and intercluster connections forming binary trees, shuffle-exchange, perfect shuf-
fle or Boolean cube networks. Complexity for P clusters and K, processors per cluster
is O(NmZEE + m?log, P24R). For a linear array, there is a term linear in P due to
commumcatmn Moreover, 1f block Gaussian elimination is used instead of block cyclic
reduction then the logarithmic term is replaced by a term linear in P. The Boolean cube
and perfect shuffle networks offer an improvement over the binary tree by a constant
factor; and the binary tree is in turn more efficient than the shuffle-exchange network
by a constant factor [14].
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