Abstract

We present a new method for computing simple turning points of nonlinear equations of the form
G(u,\) = 0 which is based on applying Newton’s method to the characterization d\(¢)/do = O,
where o is a pscudo-arclength parameter used in a continuation method for following the solution
paths. The method is quadratically convergent and needs only one starting point on the solution
path. Second derivatives of G (oi- difference approximations of them) have to be computed but the
method is relatively insensitive to their values and they also give rise to a more accurate second order
predictor in the continuation method. We present a chord-Newton variant for improving the
~ efficiency of the algorithm which reqmres only one factorization of a Jacobian matrix. We also
present a damped-Newton variant for improving the robustness and the global convergence of the
algorithm. Results of extensive numerical experiments on two standard nonlinear elliptic problems of
Simpson’s [24] show that the mew algorithm compares favourably with the best of the existing

methods in terms of efficiency and robustness.

Newton-Like Pseudo-Arclength Methods
for Computing Simple Turning Points

Tony F. Chan!

April, 1982
Technical Report #233

1Computer Science Department, Yale University, Box 2158, Yale Station, New Haven,
CT 06520. The author’s work was supported by Department of Energy Contract DE-
ACO2-81ER10996.

xxiil

Table of Contents

1 Introduction . . . e e e e

2 Pseudo-Arclength Contmuatlon e e e e
3Newtonon XM(o)=0

4 Implementation. . . . e e e e e e e e e e

4.1 Second Order Predlctor ..
4.2 Block Elimination and Deflation Techmques
4.3 Difference Approximations for 2nd Derivatives.

.....

......

.....

.....

o e .

o« .

5 Variants e e e e e e e e e e e e e e e e e e e
5.1 Chord-Newton Varlant e e e e e e e e
5.2 Damped-Newton Variant e e e

6 Work and Storage.

7 Numerical Experiments

8 Conclusions. . . . « v v v v v v 0 v e .

......

......

......

1. Introduction
Many problems in computational physics can be formulated as nonlinear eigenvalue problems of
the form:
G(u,\) = 0, (1)
where u € B (a real Banach space), A € R, and G is a continuously differentiable operator mapping B
x R into B. Usually, u represents the solution to the physical problem (e.g. flow field, structural
displacement) and X is related to a physical parameter (e.g. Reynold’s number, load on a structure).
Often, one is interested in the dependence of the solution u(\) on the parameter X, i.e. in tracing the
solution branches [u(\), \] of (1). When the operator G is nonlinear in u and X, this is usually
accomplished numerically by some version of Newton’s method applied to (1) for a fixed value of X,
which makes use of the Jacobian matrix G (u,A). However, the solution branches often possess very
interesting but complicated nonlinear bifurcation behaviours, among which are existence of multiple
solutions and singular points (where G (u,\) is singular) known as turning points (where the
solution branch bends back on itself) and b: furcation points (where two or more solution branches
cross.) Straightforward application of Newton’s method to (1) encounters difficulties near these
singular points. To overcome these difficulties, some kind of path following continuation
method [2, 10, 14, 18] is usually employed. These continuation methods are designed to trace past

turning points and can be modified to switch branches at bifurcation points.

In many applications, in addition to tracing the solution branches, one is also interested in locating
the singular points themselves, because they are often related to the stability of the solution. Due to
their special physical significance, many algorithms have been proposed for determining these
singular points accurately. In this paper, we shall only deal with the determination of simple
turning points, which can be characterized as points on the solution curve where

G, is singular, and (2)
G, ¢ Range(G). (3)
For an excellent survey of existing methods for computing turning points, we refer the reader to the
report by Melhem and Rheinboldt [13] in which they compared the performances of algorithms
proposed by Abbott [1], Moore and Spence [15], Seydel [23], Paumier [16], Ponisch and
Schwetlick [17], Rheinboldt [19, 20], Schwetlick [22] and Simpson [24]. These methods can be

classified into two general classes. The first consists of local iterative algorithms based on an inflated

system consisting of (1) augmented by a characterization similar to (2), constructed so that the
turning point is a unique and tsolated solution of the inflated system. The other class of algorithms
consists of methods based on a path tracing continuation method by successively using it to compute
points on the solution curve that approach the turning point. These algorithms can further be
categorized by whether one or more points on the solution curve are needed as initial guess and
whether second derivatives of G are needed. In Table 1-1, we tabulated the properties of the best
methods as found by Melhem and Rheinboldt, judged by an overall measure of excellency in terms of
a combination of efficiency, robustness and generality. For the purpose of comparison, we have

included the method that we are proposing in this paper.

Table 1-1: Properties of Some Methods for Computing Turning Points

Initial Rate of Needs 2nd Class of Characterization
Points Convergence Derivative? Method of Turning Point

Abbott 1 2 yes/no I &(s) =0

Moore & 1 2 yes/no I Gw=0,wz0
Spence

Ponisch & 1 2 yes/no I &(s) =0
Schwetlick

Rheinboldt 2 1.618 no o A(s) = 0
Schwet!lick 2 1.618 no c A(7) = extremum
Chan 1 2 yes/no c M) =0
Notation: I : Inflated System, C : Continuation,

s is the arclength parameter, 7 and o are arclength-like parameters,
"yes/no" means that the basic method requires second derivatives
of G but difference approximations are also used by the authors.

As can be seen from the table, the method that we are proposing is quadratically convergent,
needs only one initial guess on the solution curve, and is based on an underlying continuation method

for branch tracing. Methods based on continuation have certain desirable properties. First, they can

build upon the curve tracing capabilities that are already in the continuation procedure. For
example, very often the same linear equation solver can be used without having to refactor any
Jacobian matrix. Second, they naturally provide more details of the solution curve around the
turning points. Lastly, as we shall demonstrate later, requiring the iterates to lie on the solution
curve tends to make the algorithms more robust than methods based on using augmented systems.
The property of requiring only one initial point is also desirable because most continuation methods
have to be slowed down near turning points and it may be relatively expensive to obtain two points
on the solution curve where .)\ changes sign, as is needed by some methods. We shall review briefly

the formulation of typical continuation methods in Section 2.

Many of the methods in Table 1-1 uses the characterization .)‘(s) = 0 for turning points. Our
method is based on an alternative characterization of simple turning points, namely, that
Mo) = dX\(o)/do =0 (4)
where o is the pseudo-arclength parameter used in the continuation method. This characterization
has been suggested by Keller [11] although he only considered secant methods and no numerical
results were given. Our method is based on applying Newton's method to (4). We show in Section
3 that the second derivatives [u"(c), A\"(¢)] can be computed rather inexpensively if the second
derivatives of G are available. We note that none of the methods based on continuation cited in [13]
is quadratically convergent. This is obviously because the authors tried to avoid computing second
derivatives, which in some applications are very difficult to obtain. However, since a function
evaluation in these methods involves an inner Newton iteration which could be costly, we believe
that in many applications where the second derivatives (or approximations of them) are available,
the use of a method with a faster convergence rate may be benefitial. As we shall show in Section
4.1, the availability of second derivatives also leads to a much more accurate predictor in the
underlying continuation method, which in turn improves the efficiency of the overall algorithm.
Another desirable property for an algorithm is that of requiring only a solver for G| (rather than a
matrix derived from G) since such a solver may already be available in the application discipline
and it can also exploit special solution techniques (e.g. fast elliptic solvers). We show in Section
4.2 how this can be arranged in our algorithm. In Section 5, we present a chord-Newton variant for
improving the efficiency and a damped-Newton variant for improving the robustness and global

convergence of the basic algorithm. In Section 6, we discuss briefly the work and storage

requirements of the new algorithm, which are comparable to most of the existing methods. Extensive
numerical experiments have been performed on applying the algorithm and its variants to two
standard nonlinear elliptic problems of Simpson’s [24] and the results are presented in Section 7.
They demonstrate that the new algorithm is both efficient and robust and compares favourably with

the best of the existing methods on these two problems.

2. Pseudo-Arclength Continuation
In this section, we review the essential features of some common path-following continuation

methods.

The key idea is to parametrize the solutions [u(¢),\(¢)] in terms of a new parameter o that
approximates the arclength parameter s, instead of parametrizing u()\) in terms of the natural
parameter . This is usually achieved by augmenting the equation (1) by an auxillary equation that
approximates the arclength condition:

RGN + M =1, (5)
to give an in flated system with unknowns u(o) and Mo):
G(u(o),Me)) =0,
N(u(o),\o),0) = 0. ()
Instead of solving for u()\) for a given value of X, we solve for u(o) and \(o) for a given value of o.
Newton's method and its variants are usually used to solve (6), in which case we need to solve linear

systems with the following inflated matrix:

M= I ¢P)

The auxillary function N is constructed so that the matrix M is nonsingular on the solution branch,
even near or at turning points. Thus, Newton’s method encounters no difficulties with this inflated

system and quadratic convergence is achievable.

Another major component of a continuation method is the computation of the unit tangent

[u(s)\(s)] to the solution curve at a point [u\] on the solution curve, which can be computed

relatively inexpensively from its definition:
> + NP =1, (8)

by solving only one linear system with G . The system (8) determines [:1,)\] up to an directional
orientation, which can be fixed by some convention. The tangent is usually used in a first order

predictor to obtain an initial guess for the Newton iteration applied to the system (6).

We summarize the essential features in the following general algorithm:

Algorithm PACug,\,0,u(0),A(0)]
Pseudo-Arclength Continuation : Given [u0’>‘0] on the solution curve, and a step length o,

computes the new solution [u(c),\(o)] satisfying (6).
1. Compute the unit tangent [;10,.)\0] at [ug,\g] by (8).
2. Compute the predicted solution [up,)\p] given by :
up =1, + 0110,
Ny =N+ ONy (9)
3. Use [up,)\p] as initial guess in a Newton-like iteration for solving the system (6) to obtain

[u(e),\(o)].

A few typical N’s that have been used in the literature are:
1. N (u)o) = ﬁg‘(u - up) + .)\0()\ - \) - o (introduced by Keller [10]),
2. N2(u,)\,a) = e;r(y - ¥) - 0, where y = (u,)\)T, e, is the i-th unit vector and the index i is
chosen so that the matrix M is as well-conditioned as possible (introduced by Abbott [1],
Kubicek [12] and Rheinboldt [18]).

3. Newton on M(c) =0
We shall consider only simple turning points where the nullity of G is one. Consider the situation

where we have an approximation [u0’)‘0] to a turning point [u,,\,]. The method that we are
proposing works by estimating the step length o to use in applying one step of the pseudo-arclength
continuation procedure PAC[uo,)\o,a,u(a),k(a)] so that u(c) = u, and Ao) = A\,. The basis for
estimating o is derived from the following characterization of simple turning points:

Definition 1: Define \(¢) = d\(¢)/do and u'(¢) = du(o)/do.

Theorem 2: Assume N _(0) % 0. Then M(o) = 0 i f and only if [u(0),\(0)] = [us,\4].

Proof: First note, by differentiating (8) by o, that [u'(¢),\(c)] satisfies :

G, () Gy (o)) (u'(o) 0
()|
! -

N,(@) N, (o) M (o) N, (o)]
where the coefficient matrix in (10) is nonsingular by construction. Thus [u'(¢),\(0)] is
well-de fined even near or at a turning point. Now first assume \(o) = 0. The second
equation in (10) implies that N u' = -N_ £ 0. Thus u' is nontrivial. The first equation in
(10) reduces to G u' = 0. Since u' is nontrivial, G| must be singular. Next assume that

[u(0),\(¢)] = [us,\s]. Then by (2) G (o) is singular. If (o) 7 0, then the first equation in
(10) implies that G,(o) € Range(G (0)), which contradicts (3).

We note that both N, and N, satisfy the hypothesis of Theorem 2.

Theorem 2 provides a basis for estimating the step length o because it reduces the problem to one
of finding a root of A(¢) = 0. Our method is based on applying Newton’s method for doing this, for
which we need to compute A(¢). It is not surprising that this requires computing the second
derivatives of G. By differentiating (10) with respect to o, we obtain the following system for

computing [u"(¢),\"(0)):

G (0) G,(o)] [u"(0) (G (o)(o)u'(e) + 2 G, (o)ul(0)N (o) + Gy, ()N(0)N ()
= (11)
N, (e) Ny(o)[{N(o) (N (o) (o)u'(e) + 2 N, (o)ul(e)N(0) + Ny, (0)N(0)N(0))

- N (o)
TT

We note that the systems governing [u',\'] and [u",\"] have identical coefficient matrices, which are
almost exactly the same as that used in the last step of the Newton iteration in the pseudo-arclength
procedure. Thus, the same factorization of these matrices can be used to compute [u',\] and [u",\"]

and they can be obtained essentially free.

We outline the basic version of our method in algorithmic form:

Algorithm NTP[ug,)j;uss)]
Newton’s Method for Locating Turning Points: Starting with an initial guess [u),A;] on the

solution curve, computes an approximation [us,\] to a turning point.
Initialize o = 0.
Loop until convergence:
1. Compute [u!(0),\(0)] and [u"(0),*(o)] by (10) and (11).
2. Compute the change in the step length o = - \(o)/\"(0).
3. Update the new step length 0 < o + éo.
4. Call PAC[uj,\g,0,u(0),\(0)].

5. Set u, & u(0), Ay &= No).

Under mild conditions on the smoothness of G, it is not difficult to prove that if [uy,\,] is close
enough to a turning point [us,\s], Algorithm NTP produces iterates [u(c),\(0)] that converge

quadratically to [us,\s]. We shall not pursue this analysis here.

We note that [u,\'] is not equal to the unit tangent [:1,3‘] but is a scaled version of it. As can be
seen from Table 1-1, the characterization .>\(s) = 0 for turning points have been used by many
authors but Keller [11] seems to be the only one who has considered the use of the pseudo-arclength
parameter o of a continuation procedure, together with the characterization M(¢) = 0, in the context
of an algorithm for finding turning points. A system similar to (11) has been derived by Ponisch and

Schwetlick [17] but their method is not based on a continuaticn procedure.

4. Implementation
In this section, we discuss some of the implementation details for Algorithm NTP. We address
three issues: the construction of a more accurate predictor, algorithms for solving linear systems with

the inflated matrix of the form (7), and the use of difference approximations for second derivatives.

4.1. Second Order Predictor
Instead of the first order predictor used in Step (2) of Algorithm PAC, which is called by Step (4)

of Algorithm NTP, the availability of second derivatives allow the use of the following more accurate
predictor: :

u, = u(o) + (bo)u'(o) + (bo)*u"(0)/2 ,

A, = Mo) + (6)N(0) + (60)°\"(0)/2 . (12)
This new predictor is more accurate for two reasons. First, the current approximation [u(o),M0)] to
the turning point is used instead of [uo,)\O], and second, it has second order accuracy. Note that this
more accurate predictor is essentially free, since all the quantities in (12) have already been
computed in Algorithm NTP before the call to Algorithm PAC. Its higher accuracy greatly reduces
the cost of the inner Newton iteration in Step (4) of Algorithm PAC.

4.2. Block Elimination and Deflation Techniques

All the linear systems that arise in our algorithm are of the form:

X

+ — +
"

+ — +
]

+ — 4+

+
| (13)
+

=
+ — 4+
<

where the n by n matrix A may become singular near a turning point but the vectors b and c are
chosen so that M remains nonsingular and well-conditioned. The algorithm that we have chosen to

use for solving the linear systems of the form (13) is the following block-elimination algorithm :

Algorithm BE: [5, 10

(1) Solve Av =D, ’ (14)

Aw=T (15)
(2) Compute y=(g- cTw)/(d- cTv). (18)
(3) Compute x=W-yV. (17)

The work consists mainly of one factorization of A and two backsolves with the LU factors of A. If
there are many right hand sides with the same matrix M, then the factorization of A and the vector
v need only be computed once, and the work reduces to only one backsolve for each right hand side,
which makes Algorithm BE extremely attractive in such cases. These situations arise in the chord-
Newton variant of Algorithm NTP (see Section 5.1). Note also that only a solver for A is needed,
and therefore any special structures (e.g. sparsity, bandedness, special data structures) in A can be
exploited and special solvers for A can be used (e.g. fast direct solvers, multi-grid solvers). However,
as we have shown in [3], Algorithm BE maybe unstable numericclly when A is nearly singular, as is
the case in the present application. The main source of instability is in Step (1) of Algorithm BE
where the vectors v and w are computed inaccurately when A is nearly singular. In [3], we proposed
using implicit deflation techniques developed in [4, 25] to compute accurate representations for the
solutions v and w. These deflation techniques can be viewed as working in subspaces orthogonal to
approximate null vectors of A and are ¢mplicit in the sense that they only involve solving systems
with A. We then use these deflated decompositions of v and w to obtain a stable variant of the BE
algorithm, which we called Algorithm DBE. The only overhead involved for performing the
deflation in this algorithm is the computation of two approximate left and right null vectors for
A. These can be obtained either by an inverse power method or by a technique based on the
existence of a small pivot in the LU-factorization of A [6]. In any case, the extra work amounts to
only a few backsolves, which is usually negligible in comparison with the work involved in computing
the factorization. We refer the details of Algorithm DBE to [3], where we also presented a backward

error analysis that shows that it is numerically stable.

We have assumed that direct elimination methods are used for solving the linear systems that

10

arise. For the use of iterative methods, which might be more attractive for large and sparse

problems, we refer the reader to [7]. For another method for solving the inflated systems, see [21].

4.3. Difference Approximations for 2nd Derivatives
In the context of algorithms for computing turning points, for any method to achieve quadratic
convergence, second derivatives of G are required in general. Unfortunately, in many applications,
second derivatives are difficult to compute or not available at all. For this reason, many algorithms
avoid using second derivatives explicitly. In the specific context of using the characterization N(o) =
0 for locating turning points, there are at least three ways to achieve this. The first is to use a
secant-like method for finding a zero of \(c), as is the case in the methods of Keller [11] and
Rheinboldt [19, 20]. However, the convergence rate will then not be quadratic. In order to retain
quadratic convergence, at least approzimately, we choose to work with a Newton-like method similar
to Algorithm NTP. Within this context, there are at least two ways to avoid second derivatives.
The first is to use a difference approximation for \(c), by evaluating \(o) at two adjacent points.
This is essentially the approach taken by the method of Abbott in Table 1-1. Note that each
evaluation of M(¢) may be rather costly as it involves solving a few systems with the inflated matrix
M. The last approach, which is the one we have adopted in this paper, is to use a difference
approximation for computing the second derivatives of G. Note that these appear only on the right
hand side of (11) rather than in the coefficient matrix, as is the case in the method of Moore and
Spence [15]. We believe that this property of the algorithm leads to better numerical stability. For
the numerical experiments in this paper, we have used a simple centered difference approximation.
For example, G,,(0) is approximated by:
Gy, (o) =~ (Gy(u(o),Mo)+e) - G, (u(o),\o)-¢)) / 2¢. (18)

In practice, one can use better techniques; see for example [9].

5. Variants
In this section, we present variants of the basic Algorithm NTP designed to improve its efficiency

and robustness.

11

5.1. Chord-Newton Variant

With direct methods for solving the linear systems, the most expensive part of the computation is
usually in factoring the Jacobian matrix G,. Therefore, one can save a great deal of computation by
reusing the factors of a nearby matrix. There are two Newton iterations involved in Algorithm
NTP, both of which allow chord-Newton variants. For the outer Newton iteration, it does not pay
to use the chord-Newton variant because the coefficient matrix governing [u"(¢),A\"(0)] in (11) is the
same as the one governing [u(c),\(o)] in (10). Thus, the second derivatives [u"(0),\"(¢)] can be
computed very inexpensively by performing only one back-substitution. For the snner iteration in
Algorithm PAC, however, one can obtain a chord-Newton variant by using the same LU-factors of a
Jacobian matrix G in all the Newton steps, for example, by using the LU-factors of the matrix G

used in computing A\'(¢) and A\"(¢) in the Step (1) of Algorithm NTP.

We note that with Algorithm DBE, G, can be updated in M(o) in each step of the chord-Newton
iteration without incurring a factorization of G, which in general gives a better approximation for
M(c) than if an old copy of G,, say G,(0), were used. However, if we choose not to update G,, then
the vector v in Algorithm DBE can be computed once for all and each solve with M then involves
only one, rather than two, solve with G . Therefore, if G, does not change very much around the
turning point, it might be more efficient not to update G, at every step in the chord-Newton

iteration. This is the strategy that we have used in our numerical experiments.

The above chord-Newton variant requires one factorization of G per outer iteration step. This is
similar to the treatment of the chord version of Rheinboldt’s method. However, if the initial guess
[“0’)‘0] is close enough to the turning point, one can reduce the work further. We can factor G once
only at the initial guess [uo,)\o] and reuse these factors of G (u,)\,) in all subsequent iteration steps,
both outer and inner. However, for the convergence of the outer iteration, we have to ensure that
the function values in the outer iteration, i.e. \/(o), are evaluated accurately. Since the system (10)
governing [u/(c),\(0)] is linear, we can use the following iterative improvement algorithm for doing

this:

12

Starting with an initial guess for t{¢), iterate until convergence:

, t(0) < t(0) + M(0)! (r(0) - M(0) t{0)), (19)

G, (0) G,(0)

M) = ()
Nu(O') N)(a) ’
Gu(a) Gx("))

M(o) = (
NSo) Nyo)/ ,

ro) = (0,-N,(@))T,

and

(o) = (w0} , Mo)).

A similar algorithm can be applied to the [u"(¢0),\"(¢)] system (11) as well. Moreover, since the
second derivatives [u"(c),\"(¢)] are available from the last outer Newton iteration, one can use a first
order predictor for [u'(o),\(¢)] in (19), similar to the one used in (12). Furthermore, although we
haven't pursued it here, the iteration (19) can also be accelerated, for example, by a conjugate
gradient type method. No predictor for [u",\"] is available, however, unless one stores previous

values and uses extrapolation.

5.2. Damped-Newton Variant
It is well-known that Newton's method is only locally convergent. In the context of Algorithm
NTP, if the initial guess [“0’)‘0] is far away from a turning point, then the step 6o generated at Step
(2) of Algorithm NTP may be so large that either there is no solution for [u(¢),\(¢)] or the inner
Newton iteration in Algorithm PAC fails to converge. To improve the robustness of the algorithm,
we consider the use of a damped-Newton variant. Since our algorithm is based on a continuation
method, this can be arranged naturally by replacing Step (3) and (4) of Algorithm NTP by :
3", If the previous 6o, say 6ap, was damped and |éo| > |6ap| then
bo < sign(éo) |6ap|
4. Repeat until convergence:
410 <0 + bo.
4.2 Call PAC[ug,),0,u(0),\o)].
4.3 If no convergence in PAC, then o < b0 [7.

13

Here ~ is a scalar damping factor (we used v = 2). To reduce the work wasted in the damped
steps, we declare that Algorithm PAC has fasled if either the number of iterations exceeds a
maximum (we used a value of 5) or if the norm of the residuals ||G|| is not less than that at the
previous iteration. This is similar to the treatment in [18, 19]. Since the methods are based on a
continuation procedure, it can be shown [18] that the loop in Step (4’) above will terminate with a
nonzero step length 6. For methods based on inflated systems, no natural damped-Newton variant

exists.

6. Work and Storage

In Table 6-1, we summarize the work and storage requircraents of Algorithms NTP and and its
chord variant, assuming that a direct factorization-solve method is used for solving the linear
systems. The storage for the damped-Newton version is the same as that for the non-damped
version. Its work is more difficult to estimate since it depends on exactly how the damped steps are

taken. We have therefore not included it in the table.

Table 8-1: Work and Storage Per Step

m—————— e ——————— tommm e +
| | Work / Step | Storage |
l l | |
| T tom—————— tommm e to—m e e ettt R D +
| I | I EVALUATIONS | L |

| Algor. | Factors | Solves | Function | Jacobian | 2nd deriv | Factors | Vectors |
4 tmmm—————— e tm— 4mmmm tmmm——————— tom fm———————— +
| True | | | | I I I !
| Newton | N+1 | N+2 | N+1 | N+1 | 1 | 1 | 9 |
I l | l | | | ! |
to——————— e ettt 4-——————- tommmm to—mm———— e Fmm————— e R et to—————— +
| Chord | | | l | | l |
| Newton | O (D* IN+TI | N+1 | N=+1 | 1 1 1 10 |
| | | | | | | | l
tmm—————— tmm pm—————— e tommmm fmm——————— e o to—————— - +
Notation:

N : number of iterations in Algorithm PAC.
I : number of iterative improvement iterations for computing [u',N\] and [u" \"].
*For the chord version, no factorization is needed after the first iteration.

14

Storage are needed for the vectors: u, éu (in the inner Newton iteration), Gy, N, G, u’, u” and the
two approximate null vectors. For the chord version, one more vector is needed to store the old G,
or v. We have ignored the work involved in computing the approximate null vectors needed for
deflation in Algorithm DBE since they have to be computed only once per factorization and the work

is thus negligible in comparison to the factorization cost for G, .

We note that the storage is comparable to those of methods of similar type surveyed in [13], except
that a few more vectors are required. The work is also similar, except that for the chord version, no
other author seems to have used the potentially more efficient iterative improvement algorithm (19)

for computing [u',\'] and [u",\"] with only one factorization of G

For a general, dense n by n problem, the work required for evaluating the second derivatives of G
in our algorithm is O(n3). However, for many problems with sparsity (e.g. see Section 7), the work is

usually much less.

7. Numerical Experiments

We have performed extensive experiments on applying our algorithm and its variants to the

following nonliear elliptic eigenvalue problem [13, 15, 24]:
G(u,\) = Au + F(u,\) =0, (20)
on the unit square with zero Dirichlet boundary conditions. Following previous authors, we use a
fourth-order finite difference discretization of (20) on a uniform mesh of size h = 1/m, which results
in a system of n = (m-1)° nonlinear equations. Two choices for the function F have been considered:
F,=Xe", (21)
Fy =X (1+ (u+u?/2)/(1+4%/100)). (22)

For m = 8, the turning points that we are interested in are given in Table 7-1.

Table 7-1: Turning Points for m = 8

tr et ——————————- e — - ——— +
| F | \ | u(0.5,0.5) |
et —————— e ————————— +
| F, | 6.807504 | 1.391598 |
e —————— e, ————————— +
| F, | 7.980356 | 2.272364 |
et —————————— o —————————————— e = +

15

All computations have been performed on a DEC-20, with 27-bit mantissas, corresponding to a
relative machine precision of about .4 x 10°%. The matrices corresponding to G, are banded and are
factored and solved by the LINPACK routines SGBCO and SGBSL [8]. The work for the
factorization is O(m?), for the solve is O(m?) and for the evaluation of second derivatives is O(m?).
Thus, for problems of this kind (generally differential equations with a local stencil), the cost of

evaluating second derivatives is smaller than the cost of the solve phase.

We use the pseudo-arclength function N, in all our computations. We note that N, is linear in all

its arguments and hence all its second derivatives vanish and N (o) and N, (o) are constants.

For the convergence of the Newton iteration in Algorithm PAC, we use the criteria: ||G|| < 107
and ||N|| < 10®, which is adequate for the scale of our problems. For the iterative improvement
algorithm (19), we stop if the relative change in the iterate is less than 10, For the difference
approximations of second derivatives, we use a value of ¢ = 10* in (18). For computing the
approximate null vectors needed in Algorithm DBE, we always use 3 steps of inverse iteration, the
details of which can be found in [3]. The damped version is always used. We shall use the switch

/FD to denote the use of difference approximations of second derivatives.

Following Melhem and Rheinboldt [13], we considered two starting points for F,: Ay = 7.96754
and A\, = 7.94617 . We also considered two other starting points: X\; = 7.5 and \, = 7.0. All are

on the lower branch of the solution curve.

We first tested the Newton version. In Tables 7-2, 7-3 and 7-4, we tabulate the results of
applying Algorithm NTP to F,, starting from X\, A, and X, respectively. In Table 7-5, we tabulate

the results for F', starting from A\ = 6.8 on the lower branch.

The notation is as follows:
e I : Number of outer Newton iteration.

e I1 : Number of iterative improvement iterations in computing X', chord version only.
e 12 : Number of iterative improvement iterations in computing A", chord version only.
e D : Number of damped-Newton steps.

e N : Number of inner Newton iteration in Algorithm PAC.

For comparison, we have included in the tables the values of A(s), which are not needed in the

algorithm.

I N

—
N

.9E-01
.BE-04
.8E-08

w N
|
w o

4 7E-01
.TE-02
.9E-03
.B5E-07

W0 N =
|
—

4 8E-01
.2E-01
.1E-02
.0E-05
.2E-08

oW N -
[0 o]

4 5E-01
.5E-01
.9E-02
.1E-04
.6E-07

s W0N -
]
N

16

Table 7-2: Results for F,, initial guess A\, = 7.96754, true Newton

1\ 12 bo D N A u(0.5,0.5) A

0 -3.3E+00 0 8.8E-02 O 1 7.9803556E+00 2.2727977E+00 -6.2E-04
0 -3.3E+00 0 -2.0E-04 O O 7.9803557E+00 2.2723642E+00 3.6E-08
0 -3.3E+00 0 1.2E-08 O O 7.9803557E+00 2.2723642E+00 -1.4E-07
Table 7-3: Results for F,, initial guess A, = 7.94617, true Newton
1\ 12 bo- D N A u(0.5,0.5) Y

0 -2.8E+00 0 1.6E-01 0 1 7.9791579E+00 2.3324510E+00 -8.2E-02
0 -4.0E+00 O -2.4E-02 0 1 7.9803553E+00 2.2735657E+00 -1.7E-03
0 -3.8E+00 O -5.1E-04 O O 7.9803558E+00 2.2723647E+00 -7.5E-07
0 -3.8E+00 0 -2.2E-07 O O 7.9803558E+00 2.2723642E+00 -1.6E-07

Table 7-4: Results for F,, initial guess Ay = 7.5, true Newton

I1 N 12 é D N A 4(0.5,0.5) \

0 -1.9E-01 0 2.6E+00 0 3 7.8877703E+00 2.8753642E+00 -4.9E-01
0 -2.1E-01 0 -1.1E+00 O 2 7.9699776E+00 2.1055603E+00 2.6E-01
0 -3.2E-01 0 2.6E-01 0 1 7.9803556E+00 2.2724285E+00 -9.2E-05
0 -3.2E-01 0 -9.4E-05 O O 7.9803556E+00 2.2723643E+00 -1.6E-07
0 -3.2E-01 O -1.6E-07 0 O 7.9803556E+00 2.2723642E+00 9.3E-10

Table 7-5: Results for F,, initial guess A = 6.8, true Newton

I1 A\ 12 bo D N A u(0.5,0.5) A

0 -1.1E+01 0 4.1E-02 0 2 6.8062598E+00 1.4189429E+00 -1.9E-01
0 -2.7E+01 0 -9.2E-03 0 1 6.8074830E+00 1.3951085E+00 -2.6E-02
0 -2.1E+01 0 -1.4E-083 0 0 6.8075035E+00 1.3916595E+00 -4 .5E-04
0 -2.0E+01 0 -2.5E-05 0 0 6.8075035E+00 1.3915978E+00 -3.3E-07
0 -2.0E+01 0 -1.86-08 0 0 6.8075035E+00 1.3915977E+00 -1.3E-07

We observe from these results that :

17

e The computed turning points are accurate to within machine precision.

e The convergence is guadratic.

e The number of inner Newton iterations decreases rapidly as the turning point is
approached. In fact, as the turning point is approached, the predictor is often so good

that no Newton iteration is needed to satisfy the convergence criteria.

e No damped-Newton step is taken.
When compared to the methods surveyed in [13], our method seems to be more efficient. For
example, for the cases corresponding to Tables 7-2 and 7-3, all of the methods in [13] took 4

iterations or more, whereas our method has converged after 2 and 3 iterations respectively.

Next, we tested the chord version on F,, with difference approximations for second derivatives,

which is the most efficient and most general version. The results are presented in Table 7-6 and 7-7.

Table 7-8: Results for F,, initial guess)‘0 = 7.96754, chord/FD

.

I A I1 M\ 12 bo D N A u(0.5,0.5) A

1 2.9E-01 0 -3.3E+00 O 8.8E-02 O 1 7.9803587E+00 2.2727739E+00 -
.2E-04 2 -3.3E+00 3 -1.9E-04 O O 7.9803588E+00 2.2723626E+00 -
3 -3.3E-07 1 -3.3E+00 2 -9.9E-08 0 O 7.9803588E+00 2.2723624E+00 -9.1E-08

N
|
(o]

Table 7-7: Results for F2, initial guess)‘1 = 7.94617, chord/FD

I A I1° A\ 12 bo D N A u(0.5,0.5) by
1 4.7e-01 0 -2.8E+00 O 1.6E-01 0 5 7.9791640E+00 2.3324056E+00 -
2 -9.7E-02 6 -4.0E+00 6 -2.4E-02 0 1 7.9803528E+00 2.2735747E+00 -
3 -2.0E-03 4 -3.8E+00 5 -5.1E-04 0 O 7.9803533E+00 2.2723666E+00 -
4 -7.2E-07 1 -3.8E+00 3 -1.9E-07 0O O 7.9803533E+00 2.2723661E+00 -7.0E-07

These results show that the outer iteration is very similar to the results of the basic algorithm. The
inner iteration took a little more iterations because of the chord-Newton strategy, but due to the
more accurate predictor, the number of inner iterations also decreases rapidly as the turning point is
approached. As expected, both the inner Newton iterations and the iterative improvement took more

iterations when the starting guess ()\1) is farther away from the turning point. But the total number

18

of solves is still reasonably small considering only one factorization was performed. Note also that
the number of iterative improvement iterations is less for [u',\"] (which have a better initial guess

from a first order predictor) than for [u",\"].

To test the robustness of the damped version, we applied the true-Newton version on F,, starting
at A\, =7.0. The results are given in Table 7-8. Notice that the starting point is quite far away
from the turning point and, as a consequence, many damped-Newton steps had to be taken in the
beginning. As the turning point is approached, however, no damping is needed and quadratic

convergence is regained.

Table 7-8: Results for F,, initial guess A\, = 7.0, true Newton

I N I M\ 12 bo D N A u(0.5,0.5) A

1 9.86-01 0 -3.3E-02 0 9.3E-01 5 3 7.8777199E+00 1.7912264E+00 7.1E-01
2 8.4E-01 0 -7.5E-01 0 1.2E-01 3 2 7.9665943E+00 2.0815067E+00 3.0E-01
3 6.1E-01 0 -5.9E+00 0 2.5E-02 2 2 7.9790850E+00 2.2123320E+00 9.0E-02
4 3.0E-01 0 -2.6E+01 0 1.2E-02 0 2 7.9794920E+00 2.3233010E+00 -7.0E-02
5 -4.9E-01 0 -2.0E+02 0 -2.56-03 0 1 7.9802267E+00 2.2919466E+00 -2.8E-02
6 -1.56-01 0 -9.7E+01 0 -1.56-03 0 1 7.9803523E+00 2.2755943E+00 -4.6E-03
7 -2.26-02 0 -7.1E+01 0 -3.1E-04 0 O 7.9803558E+00 2.2724587E+00 -1.4E-04
8 -6.4E-04 0 -6.7E+01 0 -9.6E-06 0 O 7.9803558E+00 2.2723642E+00 -1.6E-07

The next test we did was designed to show the effectiveness of the more accurate second order
predictor. We repeated exactly the case corresponding to Table 7-4, except that the first order
predictor was used instead. The result are presented in Table 7-9. They are very similar to the
results in Table 7-4, except as expected, the number of inner Newton iterations does not decrease as
the turning point is approached. Comparing the two tables shows the dramatic increase in efficiency

made possible by the more accurate predictor.

The last test we performed was designed to test the effect of the deflation techniques used in
Algorithm DBE, by running some tests using Algorithm BE instead. Without going into details, we
shall just report that Algorithm BE is fairly reliable in practice, producing results that are practically
the same as if Algorithm DBE had been used. A plausible explanation for the unexpected reliability
of Algorithm BE is that it only fails when G is very singular, at which point the accuracy is usually

high enough that the iterations can be terminated. The only kind of problems that we have

19

Table 7-9: Results for F,, initial guess A, = 7.5, true Newton, 1st order predictor

I N I1 M\ 12 bo D N A u(0.5,0.5) A

1 4.86-01 0 -1.9E-01 0 2.6E+00 O 4 7.8877699E+00 2.8753644E+00 -4 .9E-01
2 -2.2E-01 0 -2.1E-01 O -1.1E+00 O 4 7.9699775E+00 2.1055603E+00 2.6E-01
3 8.1E-02 0 -3.2E-01 O 2.6E-01 O 4 7.9803549E+00 2.2724289E+00 -9.2E-05
4 -3.0E-05 0 -3.2E-01 O -9.4E-05 0O 4 7.9803550E+00 2.2723647E+00 -1.6E-07
5 -5.2E-08 0 -3.2E-01 O -1.6E-07 O 4 7.9803548E+00 2.2723647E+00 3.6E-08

encountered with Algorithm BE is when an iterate happens to be very close to the turning point,
then ||G|| can actually sncrease in the inner Newton iteration, causing a damped-Newton step to be
taken. On the other hand, we have had no problem with Algorithm DBE at all, and we believe that

it is to be preferred because of its higher reliability and minimal extra cost.

8. Conclusions

We have presented and tested a new algorithm for computing simple turning points of nonlinear
equations. It possesses quadratic convergence, which, together with the more accurate second order
predictor, makes it extremely fast when applied close to a turning point. We have also demonstrated
that, through the use of a chord-Newton variant, the efficiency can be increased dramatically in such
cases. On the other hand, when started far away from a turning point, its use of a natural
damped-Newton strategy makes it reasonably reliable and robust. The use of the block-elimination
algorithm with fmplicit deflation makes it possible to exploit special structures and solvers for the
problem. Although second derivatives of G are required, the experimental results show that
di fference approrimations for them can be used safely. Although more tests on different and larger
problems are needed to more completely validate the new algorithm, our limited experimental results
show rather convincingly that it is both efficient and reliable and compares favourably with the best

of the existing methods.

[1]

[2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

20

References

J.P. Abbott.
An Efficient Algorithm for the Determination of Certain Bifurcation Points.
Journal of Computational end Applied Mathematics 4 :19 - 27, 1978.

E. Allgower and K. Georg.

Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to
Systems of Equations.

SIAM Review 22(1):28 - 85, 1980.

T.F. Chan.

De flation Techniques and Block-Elimination Algorithms for Solving Bordered Singular
Systems.

Technical Report 226, Yale Computer Science Department, New Haven, CT06520, 1982.

T.F. Chan.
De flated Decomposition of Solutions of Nearly Singular Systems.
Technical Report 225, Yale Computer Science Department, New Haven, CT06520, 1982.

T.F. Chan and H.B. Keller.

Arclength Continuation and Multi-Grid Techniques for Nonlinear Eigenvalue Problems.
1982.

to appear in SIAM J. Sci. Stat. Comp., June, 1982.

T.F. Chan.
On the Existence and Computation of LU-factorizations with Small Pivots.
Technical Report 227, Yale Computer Science Department, New Haven, CT06520, 1982.

T.F. Chan and Y. Saad.

Iterative Methods for Solving Bordered Systems.
1982.

in preparation.

J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart.
LINPACK User’s Guide.
SIAM, Philadelphia, 1979.

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright.

A Procedure for Computing Forward-Ds fference Intervals for Numerical Optimization.

Technical Report SOL 81-25, Systems Optimization Lab., Dept. of Operations Research,
Stanford University, Stanford, 1981.

H.B.Keller.

Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems.

In P. Rabinowitz (editor), Applications of Bi furcation Theory, pages 359-384. Academic
Press, New York, 1977.

21

[11] H.B. Keller.
Global Homotopies and Newton Methods.
In Carl de Boor and Gene Golub (editor), Recent Advances in Numerical Analysis, pages
73-94. Academic Press, New York, 1978.

[12] M. Kubicek.
Dependence of Solution of Nonlinear Systems on a Parameter.
ACM-TOMS 2:98-107, 1976.

[13] R.G. Melhem and W.C. Rheinboldt.
A Comparison of Methods for Determining Turning Points of Nonlinear Equations.
Technical Report ICMA-82-32, Institute for Computational Mathematics and Applications,
Department of Mathematics and Statistics, University of Pittsburg, Pittsburg, 1982.

[14] H.D. Mittelmann and H. Weber.
Numerical Methods for Bifurcation Problems - A Survey and Classification.
In H.D. Mittelmann and H. Weber (editors), Bi furcation Problems and their Numerical
Solution, pages 1-45. Workshop on Bifurcation Problems and their Numerical Solution,
January 15-17, Birkhauser, Dortmund, 1980.

[15] G. Moore and A. Spence.
The Calculation of Turning Points of Nonlinear Equations.
SIAM J. Numer. Anal. 17:567-576, 1980.

[16] J.C. Paumier.
Une Methode Numerique pour ke Calcul des Points de Retournement. Application a un
Probleme aux Limites Non-lineaire.
Numer. Math. 37:433-444, 1981.

[17] G. Ponisch and H. Schwetlick.
Computing Turning Points of Curves Implicitly Defined by by Nonlinear Equations Depending
on a Parameter.
Computing 26:107-121, 1981.

[18] W.C. Rheinboldt.
Solution Fields of Nonlinear Equations and Continuation Methods.
SIAM J. Numer. Anal. 17:221-237, 1980.

[19] W.C. Rheinboldt and J.V.Burkardt.
A Program for a Locally-Parametrized Continuation Process.
Technical Report ICMA-81-30, Institute for Computational Mathematics and Applications,
Department of Mathematics and Statistics, University of Pittsburg, Pittsburg, 1981.

[20] W.C. Rheinboldt.
Computation of Critical Boundaries on Equilibrium \fani folds.
Technical Report ICMA-81-20, Institute for Computational Mathematics and Applications,
Department of Mathematics and Statistics, University of Pittsburg, Pittsburg, 1980.

[21]

[22]

[23]

24]

[25]

22

W.C. Rheinboldt.
Numerical Analysis of Continuation Methods for Nonlinear Structural Problems.
Computers and Structures 13:103-113, 1981.

H. Schwetlick.

Effective Methods for Computing Turning Points of Curves Implicitly Defined by
Nonlinear Equations.

Technical Report 46, Martin Luther Univ., Halle Wittenberg, Sektion Mathem., , 1981.

R. Seydel.
Numerical Computation of Branch Points in Nonlinear Equations.
Numer. Math. 33:339-352, 1979.

R.B. Simpson. :

A Method for the Numerical Determxnatlon of Bifurcation States of Nonlinear Systems of
Equations.

SIAM J. Numer. Anal. 12(3):439-451, 1975.

G.W. Stewart.
On the Implicit Deflation of Nearly Singular Systems of Linear Equations.
SIAM J. Sei. Stat. Comp. 2(2):136-140, 1981.

