A random-permutations-based algorithm is presented for alignment of long paired-
end reads. An implementation of the algorithm is shown to process a million pairs
of 100 — 500bp-long reads in 3-10 minutes on a single CPU, correctly aligning more
reads than popular fast aligners, 5-100 times faster.
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1 Introduction

Read alignment is a common, computationally expensive, processing step in sequencing
procedures. The rapid increase in sequencing throughput makes this step one of the
bottlenecks in sequencing. The problem can be expected to become more significant be-
cause new sequencing machines produce longer reads while some existing fast alignment
software packages process long reads much more slowly.

Most traditional read alignment algorithms belong to two classes of algorithms:
prefix-tree-based algorithms and hash-tables-based algorithms. For surveys of algorithms
and software, see [I, 2]. We proposed a different approach, based on string-permutations,
in [8, 9]

In this manuscript, we present another permutations-based algorithm for read align-
ment, designed for paired-end long reads with mismatches. We present a prefix-tree
structure that accelerates the search in indexes, and a generalized “hit-counter” filter
which accelerates filtering. The algorithm can be extended to allow indels and to align
long single-end reads.

An implementation of the algorithm is shown to align considerably more reads than
existing fast alignment software packages at a considerably shorter time.

The organization of this manuscript: In section [2] we describe some properties of the
problem, permutations-based search algorithms and prefix-trees. Subsection[2.2]is a short
description of permutations-based algorithms that use lexicographically sorted libraries
of strings. In subsection we describe a simple prefix-tree data-structures used in the
algorithm, and briefly explain why it is not to be confused with the prefix-tree-based
approach to read alignment. The algorithm for fast alignment of long paired-end reads
is presented in subsection and then described more formally in subsection [3.2] Some
extensions of the algorithm are mentioned in subsection In section 4] we present an
implementation of the algorithm and experimental results. Finally, our conclusions are
presented in section [f]

2 Preliminaries

2.1 The read alignment problem

In the analysis of reads in DNA sequencing procedures, one is often confronted with the
following problem: one is presented with a read, which is a query string composed of
characters from the alphabet {A, C,G,T}. One also has a reference, which is a library
of reference strings. One’s goal is to find the string in the library which is similar to the
query string, with the smallest number of substitutions (smallest Hamming distance).
Typically, the library-strings are all the overlapping substrings of a long reference string,



so each string has an associated locus in the long reference string.

In the paired-end case, one is presented with two reads, Y1 and Y2, and is required
to propose good alignments for both, under the constraint that the loci of proposed
alignments for Y1 and Y2 must be within some distance from each other.

There are several extensions to the problem, where one uses different measures of
string similarity. In some cases, one considers an “edit distance”, allowing insertion and
deletions (indels). In this manuscript we will discuss the case of Hamming distance and
explain how the algorithm can be extended to the case of edit distance.

We use a two step framework for read alignment. The first step is a search step, in
which a search algorithm proposes a list of likely alignments according to some unrefined
specification. The second step is a refinement step, where the proposed alignments are
checked and scored according to a more detailed model which is appropriate for the
particular application. This framework is suitable for permutations-based aligners that
rapidly produce lists of candidates, but may not be a natural framework for other fast
search algorithms, some of which rely on scoring heuristics that allow them to stop
searching when high-score alignments are found. In this manuscript, we discuss a search
step which produces a small number of possible alignments using fast search and fast
filters. We do not discuss the next refinement step, which can use any standard scoring
approach to calculate scores for the small number of search results. In practice, little
refinement is necessary.

2.2 Permutations-based search

The permutations-based read-alignment search algorithm presented in [8, 0] uses lexi-
cographically sorted libraries of permuted substrings of the reference. To create these
libraries, we first create a library of all possible substrings of the reference. We then
generate a random permutation, which is a recipe for reordering the characters in each
of these strings. We apply this permutation to all the strings in the library, thereby
creating a library of permuted strings. We repeat this procedure several times, creating
multiple libraries of permuted strings. All the strings in each of the libraries are created
using the same permutation, but different permutations are used for different libraries.

It has been demonstrated that binary searches in lexicographically sorted lists of
randomly permuted strings can provide lists of likely alignments. This property is a result
of the high probability that at least some of the permutations “pushed” the mismatches
in the read to the end of the permuted read, leaving a long “error-free” prefix.

2.3 Prefix trees

A prefix-tree is a data structure that groups strings hierarchically, according to their
prefixes. The root of the tree, at level 0 contains all the strings. At level 1, the strings



divided into 4 sets: the set of strings that begin with A, the set of strings that begin
with C, the set of strings that begin with G and the set of strings that begin with 7.
At level 2, there are 16 sets: the level 1 set of strings that begin with A is divided into
4 sets that begin with AA, AC, AG and AT, etc.

The key property which we use is that prefix-trees provide a fast and simple way
of finding all strings that share the same prefix. To find a set that shares the first 3
characters of the string ACGT, we begin at the root, go to the level 1 set A, then to the
its subset AC' and then to its subset ACG, which contains all the strings in the library
which begin with ACG.

Traditionally, the prefix-tree approach to read alignment considers the original refer-
ence, uses more advanced structures, such FM-index, and takes advantage of additional
properties of prefix trees. The permutations-based approach uses permuted strings,
rather than the original reference, and does not depend on the prefix-tree data structure
or properties.

3 Algorithm

3.1 An informal description of the algorithm

Permutations-based read search algorithms create a library of all possible contiguous
substrings of length M of the reference string. These algorithms then use a permutation
to reorder the characters in each of the strings, creating a library of permuted strings.
All the strings in the library are permuted in the same way. This procedure in repeated
several times, each time with a different permutation scheme, producing several different
libraries. Ideally, there are several permutations, and the algorithms chooses a subset of
these permutations and their corresponding libraries for each search. The permutations-
based search algorithm proposed here, uses a prefix-tree data structure to organize each
library of strings.

In the case we discuss in this manuscript, we are given the paired-end reads Y1 and
Y2, and we would like to find appropriate mappings of these pairs to loci in the reference
that are no more than G characters apart. We assume that the reads are of length M
(the algorithm can be extended beyond uniform length).

When we are given the read Y1, we use the first permutation to create a permuted
version of Y'1. This is the same permutation used to create the first library of permuted
strings, so we can now use the prefix-tree data-structure to find a small bin that contains
a small list of candidate loci in the reference. If we are “lucky”, the permuted version of
Y1 does not contain a mismatch in the prefix, so the correct alignment is found in the
set we reached in the tree search. We repeat the procedure several times, to obtain a
high probability of being “lucky” in at least some of the iterations.



At this point, we do not attempt to check the quality of the mapping using any
refined score. Instead, we store a list of the locations that were proposed as candidates,
and count the number of “hits” that each of these locations had.

We then repeat the same procedure for Y2, again, only storing a list of candidates
and a “hit-count”.

The idea behind storing lists of candidates and hit counts, is that the correct mapping
for each string is very likely to have several hits, whereas many of the incorrect candidates
are likely to have only a single hit. Storing the number of hits, allows us to filter out the
unlikely candidates and focus our attention on a considerably smaller list of candidates
for which the number of hits exceeded some threshold.

We now have a shortlist of candidate mappings for Y1 and candidate mappings for
Y2. We look for candidates for Y1 and Y2 which are up to G apart in the reference.
This produces a very short list of possible mappings for Y1 and Y2. We report the valid
candidates.

3.2 A more formal description of the algorithm

3.2.1 Search and filter:

We randomly choose J permutations: {U;}. For each permutation U; and the corre-
sponding library of permuted reference strings Lib;, we create a prefix-tree Tree;. This
indexing procedure is done in advance. We denote the nodes of the tree by T'ree;[node_id|,
the list of strings in a node by T'ree;[node_id].candidates, and 4 children of each node
by T'ree;[node_id].child[A], Tree;[node_id].child[C], Tree;[node_id].child[G],
Tree;[node_id).child[T]. There is no need to store all the libraries of strings, because we
can generate them from the reference when we need them.

This indexing is done in advance. We then use the mapping algorithm, which gener-
ates multiple lists of candidates, one list for each permutation, and filters them to create
a very short list of “good” candidates. The procedure for generating a list of candidates
for each permutation using the trees created in advance, is described after the main
algorithm.

In the following description of the main algorithm, HitCountl counts the hits for
string Y1 in each locus and HitCount2 counts the hits for string Y2 in each locus.
Hit1OverT H is used to indicate whether there have been more than Hit1T hreshold hits
for Y1 within G reference positions. BothOverT H is used to label areas where there are
good candidates for mapping for both reads. The hit-counters and “flag” arrays may be
implemented using modified array structures that simplify the initialization and queries.

Algorithm 1



Map (Y1,Y2):

Initialize HitCountl to 0
Initialize HitCount2 to 0
Initialize HitlOverTH to FALSE
Initialize BothOverTH to FALSE

Randomly select J permutations {U;} of the
available indexed permutations.

For each permutation
Propose candidate mappings for Y1 in T'ree;
For each candidate
Increment HitCountl|cand]
If HitCountl[cand] > Hit1Threshold
Hit1OverTh[cand — G..cand + G| = TRUE
End If
End For
End For

Randomly select J permutations {U;} of the
available indexed permutations.

For each permutation
Propose candidate mappings for Y2 in T'ree;
For each candidate
Increment HitCount2[cand]
If HitCount2|[cand] > Hit2T hreshold
BothOverT H|[cand — G..cand + G| = TRUE
End If
End For
End For

Make a short list of candidates for Y1 and Y2 in positions where
BothOverTH is TRUE.

Report valid candidates.



3.2.2 Creating lists of candidates:

The procedure for generating a list of candidates for the string Y using a permutation U;
and its corresponding T'ree; begins with generating YU =U ;(Y), the permuted version
of Y. We then navigate T'ree; from the root down. We stop traversing down the tree
when we reach depth Ly, or find a node that contains fewer than K strings. The
permuted strings in the node where we stop have the same prefix as Y9 So all of these
permuted strings have the first character Y9)[0], the second character Y'U)[1] etc.

The lists created for each of the permutations are used in the main mapping function,
described above.

Algorithm 2
ProposeCandidates (Y ,U;,Tree;) :

YO =1;(Y)
Set node = root
For [ =0 to Ly, — 1
If |Treejlnode].candidates| < K
break
End If
node = Tree;[node].child[Y V[l]]
End For

Return (T'reej[node].candidates)

3.3 Extensions

The possible problem of storing a large number of indexes for different permutations is
discussed in [§].

Basic permutations-based algorithms are designed to overcome mismatches. There
are extensions that allow indels. One of the ways to extend this algorithm to allow a
small number of indels in a single long read, or in pairs of reads, is to divide reads into
several segments and permute each segment separately, using the pigeonhole principle to
guarantee segments with no indels. Some of the other extensions have been demonstrated
in [8, 9.



4 Implementation and results

We implemented the proposed algorithm in C. No SSE extensions are used. This version
allows mismatches, but does not allow indels.

We used several software packages as benchmarks: BWA [4], BWASW [5], Bowtie2
[3] and CUSHAW?2 [6]. Several sets of parameters were tested for each software package.
Where possible, we used modes that penalize or do not allow indels. All experiments were
done in single thread mode. BWASW does not support paired-end alignment, therefore,
each read was aligned separately. CUSHAW?2 was used in “have ssse3 = 0” mode, due
to technical limitations of the servers. CUSHAW?2 may be significantly faster when used
on systems that support SSE4 extensions in addition to the SSE2 extensions that it used
in our experiments. Our implementation does not use processor extensions.

We used wgsim [7] to generate paired-end reads of various lengths and mismatch
rates.

The experiments were performed on nodes with (2) E5620 CPUs and 48GB RAM.
This implementation has also been tested on a $500 — 600 desktop computer with similar
results (but slightly longer search time, as expected).

BWA requires about 2.8GB of RAM, BWASW requires 4.7GB, Bowtie2 requires
3.2GB and CUSHAW?2 requires 3.7GB. Our implementation requires about 15GB of
RAM for a human reference genome. It can also use more memory to increase the speed
(not shown here). The algorithm can also be adapted to use less than 8GB RAM.

In order to have a single uniform definition that can be applied to all the software
packages and their various modes, we considered a correct mapping of one of the reads
to be sufficient and we also allowed some range around the correct locus.

The results are presented in figure [I}

The quality of the results of our implementation depends mostly on the number of
search iterations (the parameter J). A very small number of iterations (as low as 5) is
often enough to obtain the great majority of correct alignments with very high accuracy.
A larger number of iterations (10-15) provides increased sensitivity at the expense of
speed. A larger number of iterations (20 — 30 and up to 40) is required in order to obtain
very high sensitivity in the presence of a large number of mismatches.

The fact that most reads are accurately mapped in very few iterations indicates that
stopping heuristics can accelerate the implementation even more, while retaining a high
level of accuracy.
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Figure 1: Search times and number of reads mapped correctly
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5 Conclusions

An algorithm for alignment of paired-end reads to a reference genome has been con-
structed. The algorithm is based on the permutations-based approach and a filter which
reduces the number of incorrect candidates.

An implementation of the algorithm has been presented. Experiments conducted
with this implementation suggest that it is faster, and aligns more reads than popular
and recent fast alignment software packages. These properties of the implementation are
maintained for higher mismatch rates and relatively long reads.

The underlying algorithm allows alignment of paired-end reads in the presence of
multiple mismatches and can be extended to allow alignment of long single-end reads
and paired-end reads in the presence of indels.

The “hit-counter” filters, and generalizations like the one described here, use ma-
nipulation of lists of candidates in order to reduce the number of direct examination of
candidates. This manipulation of lists is much “cheaper” than manipulating the strings
associated with each candidate. The same ideas can be used in other related algorithms,
such as hash-tables based algorithms.
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