Yale University
Department of Computer Science

Tight Bounds for the Sequence Transmission Problem

Da-Wei Wang Lenore D. Zuck

YALEU/DCS/TR-705
May 1989

This work was supported in part by the National Science Foundation under gran
CCR-8405478.

Tight Bounds for the Sequence Transmission
Problem

Da-Wei Wang Lenore D. Zuck

Abstract

We investigate the problem of transmitting sequences over unre-
liable channels where both the data items and the message alphabet
have finite domains. We show tight bounds on the number of different
sequences that can be transmitted (as a function of size of the message
alphabet) when the channel can (1) reorder and duplicate messages
and (2) reorder and delete messages. All of our results are derived
using formal reasoning about knowledge.

1 Introduction

One of the simplest and most basic problems of distributed computing is
for one process, the sender, to reliably communicate a sequence of data
items zo,21,... to another process, the receiver. We call this the sequence
transmission problem (STP). Solving STP with a perfect channel—one that
preserves message order and delivers each message within a known amount
of time—is trivial: the sender simply sends each z; in turn. The receiver
passively waits for each message and processes it when it arrives.

Real channels are not perfect. They may delay messages for arbitrary
amounts of time, they may deliver messages out of order, and they may lose,
duplicate, or corrupt messages. The data link layer ([BSW69,Car,Zim80])
in a standard protocol model attempts to solve STP under a particular set
of assumptions about the underlying physical link layer (channel). Other
common communication protocols such as virtual circuits, file transfer, and
electronic mail are often built on top of this layer since the protocol designer

This work was supported in part by the National Science Foundation under gran
CCR-8405478.

does not then have to be concerned about the faultiness of the physical
channel. i

Solutions to STP date back to the early work on communications proto-
cols (cf. [BSW69,5te76,AUY79,AUWYS82]). Much of this early work was
concerned with optimizing the number of states or the number of mes-
sages under various assumptions about the channel; for example, [AUY79,
AUWY82] assume synchronous channels in which the loss of a message can
be detected by the recipient at the next time step.

More recently, Lynch, Mansour, and Fekete [LMF88] considered asyn-
chronous channels such as those we consider here. They proved that there
is no “bounded-headers” data link layer protocol when the physical link
can delete and reorder messages. Translated into our framework, this says
roughly that there is no solution to STP using a finite message alphabet
where reads and writes alternate (i.e., the sender reads a data element only
after the receiver has written the previous one) and which satisfy a “bound-
edness” condition which we call here weak boundedness. Weak boundedness
says that there is a number & such that, no matter what has happened until
the receiver has learnt the i*! data element, it is possible that the (i+1)th
data item is communicated to the receiver using at most k messages.

In [AFWZ89] the problem is considered under the assumption that the
message alphabet is finite and channels can reorder messages. It is shown
there that if, in addition, the channel can duplicate messages then there is
no solution to STP, even if the sender’s protocol can depend non-uniformly
on the data sequence (e.g., if the sender “knows” the entire input sequence
in advance). For channels that can reorder and delete (but not duplicate)
messages, a solution to STP is described which has the (undesirable) prop-
erty that the number of steps it takes the receiver to “learn” the next data
item depends on the past behavior of the channel.!

[AFWZ89] also consider restricted versions of STP, X'-STP, where there
is a set X’ of possible input sequences which does not necessarily include all
the sequences over the domain.

The above impossibility results imply that there are no practical solu-
tions to X-STP when X' is uncountable. However, very often we wish to
solve A-STP only for finite sequences, thus, A’ is always countable. In this
paper we address this question and consider X-STP with countable X where
message alphabets are finite and channels can reorder messages.

!The protocol does not satisfy the “boundedness” assumption of [LMF88] and therefore
does not contradict their impossibility result.

We first show that if, in addition, the channel can duplicate messages,
then there is no solution to A-STP if there are more than a(m) sequences
in &', where m denotes size of the sender’s message alphabet and

o1
a(m) = m!z-k—'.
k=0 ™

(As we show below, a(m) is the number of sequences over a domain of size
m that contain no repetitions.) This result holds even for the non-uniform
case. We also show a solution to A-STP(dup) (i.e., X-STP with reorderings
and duplications) in which A”’s size is exactly a(m).

We then turn to A'-STP(del), i.e., X-STP with reorderings and deletions.
We define boundedness and show that, just as in the case of X-STP(dup),
there is no bounded solution to X-STP(del) if |X| > a(m). A similar proto-
col to the one used in the reordering-duplication case solves X-STP(del) for
|X| = a(m), so that this bound is also tight. Both impossibility results hold
for the cases where the sender’s protocol is allowed to depend non-uniformly
on the input sequence.

We next discuss the definition of boundedness. For example, we show
that for some countable X’ there is a weakly bounded solution to X-STP(del).
However, this solution is not bounded in any intuitive sense. In fact, it does
not satisfy boundedness the way we define it.

We note that all the results reported here are derived using the knowledge
viewpoint (for discussion and references, see [Hal87]). We consider this to
be another demonstration of the power of reasoning about knowledge to
analyze problems in distributed systems.

The paper is organized as follows: In Section 2 we present our formal
framework and a formal statement of the problem. In Section 3 we discuss
X-STP(dup) and show a tight bound on |X| as a function of the size of
the sender’s alphabet. In section 4 we show similar results about bounded
solution to A'-STP(del). In Section 5 we elaborate on boundedness and study
some alternative definitions. We conclude in Section 6 with suggestions for
future research.

2 Formal Model

2.1 Requirements of the Sequence Transmission Problem

In the X'-sequence transmission problem (X -STP) there are two processors,
the sender and the receiver, which communicate over a bidirectional commu-

3

nication link (the channel). There is an input tape with a (possibly infinite)
sequence X, taken from a set X" of allowable sequences over some finite do-
main D. The sender § reads the data items of X and tries to transmit them
to the receiver R. R must write these data items onto an output tape Y.
We require that the following conditions hold for all X € A’:

Safety: At any time, Y is a prefix of X.

Liveness: If the channel satisfies appropriate fairness conditions, then ev-
ery data element in the sequence X is eventually written by R.

We consider here both channels that can reorder and delete messages,
and channels that can reorder and duplicate messages. We term X-STP
with channels of first type X-STP(del), and X-STP with channels of the
second type—X&'-STP(dup).

Given X, a uniform solution to X-STP is a pair of protocols (Ps, Pr)
(for S and R respectively) such that for every X € X, (Ps, Pr) started on
input X satisfies safety and liveness. A non-uniform solution to X-STP is a
family Uxex(Ps,x, Pr) of protocols such that for every X € X, (Ps,x, Pr)
satisfies safety and liveness.?

We restrict attention to non-probabilistic systems; since our correctness
criteria are essentially deterministic (that is, we require every run to be
correct), we lose no generality by this restriction.

The impossibility results reported here apply to non-uniform solutions
to X-STP where the number of distinct messages each of the processors can
send is finite.

2.2 Modeling X-STP Systems

We follow [HF88,HZ87] and model a distributed system as a set of runs,
denoted by R, each of which is an infinite sequence of global states, taken
from some set G of global states. There is a set Go C G of initial global states,
and we assume that the first global state in every run is in Gg. We restrict
attention in this paper to distributed systems that solve X’ -STP(dup) and X-
STP(del). A global state in such a system is a tuple of the form (sE,$s,SR),
where sg denotes the local state of the environment, and sg (resp. sg)
denotes the local state of S (resp. R). Every environment state encodes the

2Note that in this case the input tape is superfluous since we do not require our
protocols to be finite state, and hence Pg x can have all of X built into its code.

input sequence X (to be read by §), the output sequence Y (as written by
R), and a list of which messages the environment can deliver.

A system is usually specified by a triple of protocols (algorithms), one for
the sender, one for the receiver, and one for the environment (which in our
case describes the possible behaviors of the channel). The system consists of
all runs that are consistent with the protocols. The processor protocols are
usually given explicitly, while the environment protocol is usually implicit.

We denote the (finite) set of message that that S (resp. R) can send by
M5 (resp. MB),

Let 7 = 7(0),7(1),... be in R. We denote the input sequence of r by
X". If X7 is finite, i.e., X" = 2, 23,..., 2k, then we define its length, | X7|,
to be k + 1. If X" is infinite, then we define |X"| = w. If X" is empty then
we define its length to be 1. For every t > 0, we refer to the pair (r,t) as
a point. We sometimes abuse notation and write (r,t) € R to denote that
r € R and t > 0. We say that a run » = +/(0),7'(1),... in R, eztends the
point (r,?), if for every t' < t, #(t') = #'(¢'). Note that if 7 extends (r,1)
then r extends (/,t) and that +' extends (r,0); since we assume that the
input sequence appears in every global state, it follows that X™ = X™'.

When we say that a message is sent (resp. delivered, received) at a
point (7,t), we mean that the message is sent (resp. delivered, received) in
the transition leading from (r,t). For sake of simplicity, we assume that
messages cannot be delivered in the same step they are sent. Thus, for
example, since messages cannot be created by the channel, it follows that if
a process receives a message at (r,t) then this message must have been sent
at (r,t’) for some t' < t. We also assume that at each point the channel can
deliver to a process no more than one message.?

If R is a system that solves X-STP(dup), then with every point (r, t) €
R, we associate the vector, dlvrbleg(r,t), (resp. dlvrbles(r,t)) that stores,
for every p € M5 (resp. u € MR), whether p was sent before (), i.e.,

' 1 pis sent to R at (7,t') for some t/ < ¢
dlvrblep(r,t){u] = { 0 otherwise 1)

Similarly, if R solves A-STP(del), then with every point (r,t) € R, we

associate the vector, dlvrbler(r,t), (resp. dlvrbleg(r,t)) that stores, for every

p € M5 (resp. p € MR), the number of copies of p that were sent and not
delivered by (r,1), i.e.,

3 All of our results hold without these assumptions.

dlvrblep(r,t)[u] = |{t/ <t:pissentto R at (r,t')}| —
[{t' < t: p is delivered to R at (r,t')}|.

Given two points (r,t) and (+/,t') such that r(t) = (sg,ss,sr) and
7'(t") = (sg,5%,5R), and a process p € {S, R}, we say that p cannot tell
apart (r,t) and (r',t'), and denote it by (r,t) ~, (', '), if s, = Spe

We want our system to be “sensible”; in particular, we assume that
(a) R does not know the input sequence at the beginning of a run, (b) the
environment can arbitrarily delay messages and cannot discriminate between
deliverable messages, and (c) if the system solves X-STP(dup) then the
environment cannot delete messages.

To capture (a) we assume that in all the initial states of the system
R’s local state is the same. To capture (b) we require that for every point
(i) there exists an extension where no message is delivered, and that (ii)
for every deliverable message there is an extension where the message is
delivered. To capture (c) we require that if R solves X-STP(dup) then for
every point (r,t) in R there is a later point (r,t') where every message that
was sent before (7,t) is delivered before (r,¢'). Formally we require:

Property 1

a. If both (sE,ss,sr) and (s§, s, sR) are in Go, then sg = sf.
b. For every (r,t) € R and p € {R, S} the following hold:

.

i. There ezists some t' that extends (r,t) such that no message is
deliverd to p at (1',1).

ii. For every u € MP such that dlvrbles(r,t)[u] > 0, there exists a run
Ty that eztends (r,t) such that p is delivered to p at (1,,t), where

p= {S’ R} - {P}

c. IfR solves X-STP(dup), then for every point (r,t), processorp € {R, S},
and message u € MP there ezxists some t' > t such that

[{t" < t': p receives u at (r, ")V ={t"<t:psendspu at (r, ")},

where p = {S, R} — {p}.

2.3 Assigning Knowledge to Processors

We assume some set ® of basic facts about the system, which includes
(x; = d) forevery i > 1 and d € D. We also assume an evaluation 7: G — 2%
such that for every g € G, 7(g) includes all the basic facts that are true in
g- We assume that 7 is reasonable, so that, for example, if the i*! element
of ¢g’s input sequence is 0, then (x; = 0) € n(g), and for no d # 0, is
(x; = d) € 7(g). We define a satisfiability relation |= between sets of runs,
points and basic facts such that (R,r,t) = p iff p € n(r(t)).*

The set of facts is the closure of the set of basic facts under the Boolean
operators and the knowledge operator K, for p € {5,R}. We extend the
satisfiability relation to the set of facts in the natural way, viz. the semantics
of = for a Boolean combination of facts is the usual, and for knowledge
operators, we define

(R,7t) = Kp¢ iff (R,7',t) = ¢ for all (+',t') € R such that
(r',t) ~p (1,1).

We use K,(x;) as an abbreviation for

V Kp(xi = d),
deD

read “p knows the value of the i*h input item”.

The knowledge of a process depends, of course, on its local state; the
more information stored in the local state of a process, the more it knows.
If each processes stores (in its local state) its complete history, including the
sequence of messages it has sent and received, then we say that the system
has a complete history interpretation (see [HM84]). In all the impossibility
proofs here we assume a complete history interpretation. Note that we are
losing no generality in doing so.

Under the complete history interpretation, it is easy to see that K Rr(x;) is
stable, that is, if (R,,t) = Kp(x;) then for every t' > ¢, (R, 7, 1) E Kr(x:).

2.4 Formal Properties

Our safety requirements now translate to:

*The left hand side of the satisfiability relation should also include the evaluation
function x; we, however, fix = and omit explicit mention of it.

Safety: For every r € R and t > 0, (R,7,t) = (Y7 is a prefix of X™). (We
assume that “Y" is a prefix of X"” is a basic fact.)

The liveness requirement is more difficult to formulate as we require
liveness only under “appropriate fairness conditions”. We therefore assume
that there is some set 7 C R of fair runs. The only property we require
from F is:

Property 2 For every point (r,t) € R there ezists a run v’ € F that extends

(r,2).

This property guarantees that any prefix of a run can be extended to a
fair run. It is satisfied by any notion of fairness that we are aware of, and it
is the only property of fairness that we need for our impossibility results.

Let F be the set of fair runs in R. We are now in a position to define
F-liveness, that is, liveness relative to F:

F-Liveness: For every r € F and 4,1 < ¢ < |XT7|, there exists some t > 0
such that (R,r,t) = (|[Y"| > i). (We assume that “|Y"| > ¢” is a basic
fact.)

Recall that, under the complete history interpretation, Kg(x;) is stable
for every i. We can therefore define, for every run r € F and every i < | X7,
the first time in r where R knows the values of the first ¢ data elements of
X7, and denote it by ¢]. If no such time exists, we define t7 to be co. That
is, t] is the minimal ¢ such that:

Romt) E A Kn(x;)

i=1

if for some t > 0, (R,7,t) | /\j=1 KRr(x;j), or oo otherwise. Note that for
every 7 € F, t] < oo for every i,1 < i< |X7|.

Although we mentioned before that our results are derived using knowl-
edge arguments, we shall hardly mention knowledge from now on. However,
as we shall see, the t;’s we’ve just defined play a major role in our proofs,
and these t;’s are defined in terms of knowledge. The ¢;’s capture when R
“learns” the *! data item, assuming it has learnt the previous i — 1 data
items. The obvious intuitive definition seems to be “R learns the it data
item when it receives a message containing that data item”. This, however,
is not well defined since it is possible that no particular message contains

8

this information. An alternative definition might be “R learns the it! data
item just before it writes it”. But here again, it is possible to design proto-
cols where R writes the i*! data item well after R has learnt it. For example,
S can send R a single message which informs R the values of several data
items, and there is no way R can write them at the same step. We therefore
feel that the right definition of the ¢;’s is in terms of knowlege.

3 X-STP(dup)

In this section we show that X-STP(dup) is unsolvable if |X¥| > a(|M5]).
Intuitively, in X-STP(dup), at every step the channel can deliver a copy of
any message that had been sent in the past.

Fix a set & of sequences and a system R that solves X-STP(dup). Let
m be |[M5|. It seems quite easy to see that |¥]| < a(m): Once S sends some
message p, the channel can deliver to R an unbounded number of copies
of u. Hence, § could gain nothing by sending more than one copy of each
message. The number of sequences over M¥ that contain no repetitions is

= (m b m!k! i
k! = —_— = m!
Z(k) lgk!(m-—k)! mg

k=0

=

= a(m)

o>~

4]
.

and the result follows.

It is not clear how to formalize the intuition above, since R may be able
to tell apart points in which it has received the same message sequences,
for example, by the time (on R’s local clock) that the messages are received
or by the sequence of messages R itself has sent. Hence, a straightforward
formalization of the intituition is bound to fail. We therefore take another
approach, namely, we show that if |¥| > a(m) then some run violates the
safety property. To this end, we assume that |¥| > a(m) and take a(m)+ 1
runs whose input sequences are mutually distinct. We then proceed, by
induction, to show that for all £ = 0,...,m there are “enough” (a(m—£)+1)
points whose input sequences are mutually distinct and that R cannot tell
apart, such that before each of them S has sent every message from some set
of £ messages. We call such a set points and set of messages a dup-decisive
tuple. When £ = m, we obtain two points with different input sequences
that R cannot tell apart and by which § has sent every message in M5, It
is now easy to show that at least one of these points has an extension which
violates the safety propery.

We start with a formal definitions of dup-decisive tuples

9

Definition 1 A dup-decisive tuple I' is a tuple (R',t, M) where R' C F,
t>0, M C M5 and for every run r € R, the following all hold:

1. For every p € M, dlvrbleg(r,t)[u] = 1.
2. For every r' € R', (r,t) ~r (r',t) and if ' # r then X" £ X',

That is, a dup-decisive tuple consists of a set of points, belonging to fair
runs, that R cannot tell apart whose input sequences are mutually distinct,
such that before each of these points S has sent all the messages in M.

The following lemma is the main lemma in this section. It says that if
there is a dup-decisive tuple T’ = (R/, ¢, M) with |R/| > 2, then for every run
7 € R’ whose input sequence is not a prefix of all the others, some message
not in M is delivered to R at or after the #*! step.

Lemma 1 Let T = (R',t,M) be a dup-decisive tuple with |R'| > 2. Let
T € R’ be such that for some r' € R!, X" is not a prefiz of X"'. Then there
ezists a message p € M that is delivered to R at (r,t') for some t' > t.

Proof: Assume, by way of contradiction, that at every point (r,t’), t' > t,
every message that is delivered to R is in M. It follows from Property 1
that for every run ' € R/, there exists a run r, that extends (+',t) such
that for all points (r¢,t'), ' > 0, (v.,t') ~gr (r,t'). Since r is fair, it follows
that for every ¢ < |X"|, tf < oo. Thus, for every ' € R’, i < |X"|, and
d € D, (R,r,t]) E Kr(x; = d) implies that (R,7.,t7) = Kgr(x; = d), and
therefore that (R,r’,t) |z (x; = d). Consequently, X is a prefix of X™ for
all 7' € R’, contradicting our assumption. |

Lemma 1 implies that if (R',t, M) is a dup-decisive tuple such that
|R/| > 2, then we can take a run 7 € R’ (whose input sequence is not a
prefix of all the others), and find the minimal ¢ > ¢ such that some message
p & M is delivered to R at (r,t'). Since every message that is delivered to
R before (r,t) is in M and was therefore sent in each of R’’s runs before
the #*® point, we can find, for each run + € R', an extensions ” of the (r,t)
points such that R cannot tell apart (/,t') and (r”,t'). This implies that
there exists a dup-decisive tuple (R”,#, M) such that the runs in R” are all
extensions of the *! points of R"’s runs and for at least one run (namely r)
in R”, some message not in M is sent before the (#')*® point.

We can repeat the same construction to derive a dup-decisive tuple
(R™,t", M) such that the runs in R" are all extensions of the #*! point

10

of R"”s runs and for at least two run in R”, some message not in M is sent
before the (t")'h step.

The construction can be repeated (|R’| -1 times) until some dup-decisive
tuple (R*,t*, M) is obtained where in all but possibly one run r € R*, at
some step before t*, some message not in M is sent to R.

This leads us to:

Corollary 1 LetT = (R',t, M) be a dup-decisive tuple with |R'| > 2. Then
there ezists a dup-decisive tuple T' = (R",1', M) such that the following all
hold:

1L [R"|=|R| and t' > t.

2. For every r € R' there exists a run r' € R” such that ' extends (r,t).

3. [{r € R": dlvrbler(r,t')[u] = 1 for some p ¢ M}| = |R'| - 1.

Lemma 2 If |X| > a(m) then for all £ < m there erists a dup-decisive
tuple Ty = (Re, e, My) such that |Ry| = a(m — £) + 1 and | M| = L.

Proof: The proof is by induction on £. For the base case we let Rg be
any set of a(m) + 1 runs whose input sequences are mutually distinct, let
o be 0, and let My the empty set. For the inductive step, assume that
Ty = (Re,te, My) is defined for some £ < m. From Corollary 1 it now follows
that there exists a dup-decisive tuple

7 = (Re,tz, M)
such that the following all hold:
L. |R;| = |Re| and ¢} > t,.
2. For every r € R, there exists a run 7' € R} such that '’ extends (r,1,).
3. |{r € R} : dlvrblep(r,t;)[u] = 1 for some p & M;}| > a(m — £).

Let R} denote the set of runs in R} that satisfy (3). For every run r in
Ry, there exists some message p, ¢ M, such that dlvrblep(r,t3)[u,] = 1. It
thus follows that for some u € MS — My, for at least

Ry | a(m—1)
m—-—£~ m-—/{

> a(m — (£+ 1))

11

runs 7 € Ry, iy = p. Let Ryyq be a set of a(m — (£+ 1)) + 1 of those runs.
We can now define

Ter1 = (Req1, 17, Me U {1}),
which completes the inductive step. |

Corollary 2
|X] £ a(m).

Proof: Assume to the contrary that |X'| > a(m). From Lemma 2 it follows

that there exists a dup-decisive tuple (R’,t, MS) where |R'| = a(0)+1 = 2.

It thus follows from Lemma 1 that there exists a run r € R’ such that

some message p & M5 is delivered to R at (r,t') for some ¢ > t, which is

obviously a contradiction. |
We therefore have:

Theorem 1 Let X’ be a set of seuquences and let R be a system that solves
X-STP(dup) where |[MS| = m. Then

|X] < a(m).

We are naturally led to ask whether the bound of Theorem 1 can be
improved. We conclude this section by showing how the intuitive arguments
at the beginning of this section lead to a solution of X-STP(dup) where
|X'| = @(m), and thus establish that the above bound is tight.

Assume D = {d,,...,d,} and let X be the set of sequences over D that
have no repetitions of data items. Consider now the following protocol where
M5 ={dy,...,dn} = ME. § sends the data items in sequence and waits for
the appropriate acknowledgements for each. R awaits the arrival of some new
message (i.e., one different than any of the previously received messages); it
then writes the new data item and sends the appropriate acknowledgement
to §. Hence, reordering is dealt with by simply allowing the processors to
ignore previously received messages. Note that the protocol is finite state.

It is easy to see that the system generated by the protocol satisfies the
safety property. To see that it satisfies the liveness property, we define a
fair run to be any run in which every message that is sent is eventually
delivered. Since we require (in Property 1, part c) that in every run every
message that is sent is eventually delivered, it follows that every run is fair.
It is now easy to see that the system satisfies the liveness propery as well.

12

This gives an example of one particular set X’ of sequences for which
there is a protocol such that |X'| = a(m) which solves X-STP(dup). One
can show that, given a set &', in order to solve X-STP(dup) it is necessary
to map every input sequence X € &’ to a message sequence u(X) over M s
such that u(X) has no repetitions and for every X;,X, in X, u(X;) is a
prefix of u(X;) only when X; is a prefix of X;. When |X| < m! one can
always find such a mapping; if the sequences in X’ are such that some are
prefix of the others, then one can do better, but no better than |X| = a(m).

4 X-STP(del)

In this section we study &-STP(del). Intuitively, in A’-STP(del), at every
step the channel can deliver a copy of any message that was sent and was not
delivered in the past. In order to model this, the environment stores, in its
local state, how many copies of each message were sent and not yet delivered.
It then arbitrarily delivers available copies of messages (and updates their
count).

In [AFWZ89] an “unbounded” solution to X'-STP(del) is given; roughly
speaking, a solution is unbounded if the number of steps it takes R to learn
a new data item depends on the history of the run. A solution to X-STP
is f-bounded, where f is some function, if for every run r and i < |X7|, if
t > t{_; then then there exists a run r; that extends (r,t) such that"

1 < t+ £(5).

Moreover, we want 7; not to depend on any long lost message, so we also
require that the channel does not deliver any message that was sent prior
to (r,t) at any (r¢,t'), t < t' < ¢*. Formally:

Definition 2 Let f:N — N be some function. A system R that solves X -
STP(del) is f-bounded, or simply bounded, if for every runr € R, t > 0,
and i < |X"|, ifi=1, orifi > 0 and t > t7_,, then there ezists a run r,
that extends (r,t) such that the following all hold:

1. 7 < t+ f(5).

2. The only messages delivered in r; between t and t]* are messages that
were sent i that interval, i.e., for every t', t <t' < t7* and p € {S, R},
dlvrbley(r¢,t') > dlvrbley(rs,t) (where > is defined in the obvious
way).

13

We say that R is unbounded if it is not f-bounded for every function f.

Our goal is to show that there are no bounded solutions to X-STP(del)
if |X| > a(m), where m = | M| is defined as before. While in the previous
section the intuitive justification of the similar result is straightforward, here,
we think, the result is rather suprising.

Fix a set A" of sequences, a function f:N — N, and f-bounded system
R that solves X-STP(del). Let m = |M5|. The proof that |X| > a(m) is
similar to the corresponding proof in Section 4. There are, however, several
differences, some due to the difference in the channel behavior and some
due to the boundedness assumption. To prove Theorem 1 we defined dup-
decisive tuples which consist of a set R’ of fair runs whose input sequences
are mutually disjoint, some ¢ > 0 such that R cannot tell apart the t*® points
of the runs in R’, and a set of messages M C M% such that each message
in M is sent before every (r,t), r € R’. We then claimed, in Lemma 1, that
in all but possibly one run in R’, some message not in M is delivered to R.
The proof relied heavily on the fact that in the duplication case a message
that was sent can be delivered arbitrarily many times. In the deletion case a
message can only be delivered if it was sent more times than it was delivered,
so the similar claim cannot hold in the deletion case. However, if we add to
the definition of dup-decisive tuples some counter n and require that each
message in M is sent at least n times more than it is delivered before every
(r,t), r € R/, then if we choose n and the runs in R’ carefully, a similar
claim should hold. We therefore define del-decisive tuples as follows:

Definition 3 A del-decisive tuple T is a tuple (R',t, M,n), where R' C
Ft>0, M CMS n>0, and for every run r € R/, the following all hold:

1. For all p € M, dlvrbleg(r,t)[u] > n.
2. For every r' € R/, (r,t) ~g (r',t) and if v’ # r then XT # X*'.

In order to derive a lemma similar to Lemma 1, we have to choose some
¢ 2 0 such that we are guaranteed that for all but possibly one run r € R’ ,
in some fair extension of 7, some message not in M is delivered to R within
at most ¢ steps after t. We derive ¢ from the the boundedness assumption:
If B is such that all the (finitely many) runs in R’ can be uniquely identified
by their S-prefix, ¢ can be defined as Eiﬂﬂ f(?). That is, if we consider only
“efficient” extensions of the ! points in R”’s runs, namely, extensions in
which R learns the i*" data item within f (%) steps, then the boundedness
assumption guarantees that for all but possibly one of the run in R’, within
¢ steps some message not in M is delivered to R.

14

an extension of r”’ of ' such that R cannot tell apart (+/,¢') and (+",?).
This implies that there exists a del-decisive tuple (R”,t', M,n — ¢) such
that the runs in R” are all extensions of the #*® points of R"’s and for at
least one run (namely ') in R”, some message u ¢ M is sent more times
than it is delivered by the (#')" step, i.e., for some r € R” and u ¢ M,
dlvrblep(r,t")[u] > 1.

If n > 2¢ we can repeat the same construction to derive a del-decisive
tuple (R",t", M,n — 2¢) such that the runs in R"” are all extensions of the
t*h point of R”’s runs, and for one r € R", Y ugm dlvrbler(r,t")[u] > 2.
Alternatively, we can derive a del-decisive tuple (R",t"”, M,n — 2¢) such
that the runs in R" are all extensions of the t* point of R’’s runs, and for
at least two run in r € R”, for some pu ¢ M, dlvrbleg(r,t")[p] > 1.

If n > n'(|R'|-1) for some n' > 0, then the construction can be repeated,
n/(|R'| —1) times, until some del-decisive tuple (R*,t*, M,n—n'(|R'|—-1)c) is
obtained where in all but possibly one run r € R*, 3=, ¢ps dlvrbler(r,t")[p] >
n'.

This leads us to the deletion equivalent of Corollary 1:

Corollary 3 Let(R',t, M,n) is del-decisive tuplewhere |R’| > 2 and U,er/ C
X'. Then, for every n’ > 0, if n > n'c(|R’| — 1), then there erists a del-
decisive tuple (R",t',M,n — n'¢(|R'| — 1)) such that the following all hold:

1 |R"|=|R/| and t' > t.
2. For every r € R' there exists a run v’ € R" such that v eztends (r,t).
3. For |R'| —=1 runsr € R",

> divrbleg(r, t')[u] > n',
wgM

that is, by (r,t") there are at least n' copies of messages not in M that
are sent and not delivered to R.

Our goal is obviously to show that if |X| > a(m), then the channel can
obtain at least ¢ copies of every message in M¥, and thus derive that there
must be runs that violate the safety property. To this end, we define a
sequence {6;}/%,, such that §; is the number of copies that suffices for the
channel to obtain of each of ¢ messages in order to be able to obtain biv1
copies of each of 7 + 1 messages. The §; are defined recursively, where

bm =c

16

To define 3, we first fix some subset X’ of X’ whose size is min(|X’|, a(m)+
1) and define B be the minimal i such that every sequences in X’ can be
uniquely identified by its i*P prefix.

We next define the “efficient extensions” above, termed here S-extensions.
A (-eztension of a point (r,t) is an extension of (r,t) in which R is guaran-
teed to learn all the first 3, data items within at most ¢ = z:?;l f(2) steps
after ¢t without having received any message that was sent prior to (n,t),
where 3, = min(g, |X"| — 1). Formally:

Definition 4 Let (7,t) € R and let 8, = min(B,|X"| — 1). We say that a
run r’ € R is a B-extension of (r,t) if the following all hold:

1. v’ eztends (r,t).
2.t <t+ Y0, (i)
3. Forallt, t<t < t"r, dlvrbleg(r’,t') > dlvrbleg(r,t').

Note that every point (7,t) € R has some (-extension.

The following lemma is similar to Lemma 1. It shows that if there is a
del-decisive tuple (R’,t, M,n) such that n > ¢ and all the input sequences
to the runs R’ are in A”, then, for every run r € R’ whose input sequence is
not a prefix to all the others, in every 3-extension 7’ of (r,t), some message
not in M is delivered within ¢ steps after t.

Lemma 3 LetT = (R',t, M,n) be a del-decisive tuple with |R'| > 2, n > ¢,
and U,er' X" C X', Let r € R’ be such that for some ' € R, X" is not
a prefic of X'. Then, in every (3-extension r' of (r,t), there ezists some
K & M such that p is delivered to R at some (v',t'), t <t' <t +c.

Proof: The proof is similar to the proof of Lemma 1 and left to the reader.
|

Lemma 3 implies that if (R’,¢, M,n > c) is a del-decisive tuple such that
|R'| > 2 and the input sequences of all of R’’s runs are in X”, then for every
run 7 € R’ whose input sequence is not a prefix of all the others, in all of r’s
f-extensions some message not in M is delivered to R before the (¢ + c)t®
step. We can therefore take some (-extension 7’ of (r,t) and find the first
(r',¢') in ', ¢’ > ¢, at which some message u ¢ M is delivered to R.

Since ¢ < t + ¢, and since every message delivered between (7',t) and
(r',t') is in M and was therefore sent at least n times more that it was
delivered in by each (+',t), ' € R/, we can find, for each run ' € R/,

15

and for every £ < m,
0¢ = 8p41(1 + ¢(m —)a(m — £)).
We are now ready to prove the equivalent of Lemma 2.

Lemma 4 If |X’| > a(m) then for all £ = 0,...,m, there ezists a del-
decisive tuple Ty = (Ry, 1y, My, 8¢) such that |Re| = a(m—£)+1 and | M,| = ¢.

Proof: The proof is by induction on £. The base case is trivial. For the
inductive step, assume that I'y = (Ry, t¢, My, 8¢) (£ < m) is defined. While
in the duplication case all we have to do at this point is to show that every
run in R, can be extended so that some new message (not in M,) is sent,
here we want to find extensions in which 8,4, copies of some new message
are sent.

Let ny = 6¢41(m — £), so that

8g—bp41 = bppa(m —ca(m —£) = npe(|Re — 1).
It follows now from Corollary 3 that there exists a del-decisive tuple
T = (R 7, Mey bp41)
such that the following all hold:
1. |R7| = |Re| and t; > t,.
2. For every 7 € Ry there exists a run 1’ € R} such that 7’ extends (r,1,).

3. For a(m — £) runs r € R},

> dlvrbleg(r,t;)[u] > nq.
wgEM,

Let R} denote the set of runs in R} that satisfy (3). For every run r in
RY, by (7,1*) there are at least n, copies of message not in M, that were
sent and not delivered. Since |[M% — M| = (m — £), if follows that for every
run 7 € R, there exists some p, € M such that

dlvrbleg(r,t})[pr] > —— = 6441.

Ny
m— £

17

It thus follows that for some u € MS — My, for at least

Ril o a(m-20)

ey I >a(m—(£+1))

runs r € Ry, pir = pt. Let Rpyq be a set of a(m — (£+ 1)) + 1 of these runs.
We define

Tep1 = (Regr, 15, Me U {1}, 6041).
|

We therefore have:
Corollary 4 |X| < a(m).

Proof: Assume to the contrary that |X| > a(m). From Lemma 4 it follows

that there exists a del-decisive tuple (R/,t, M5, ¢c) where |R'| = 2. It thus

follows from Lemma 3 that there exists a run 7 € R’ such that for some

B-extention 7' of (,t), some message p & M? is delivered at (r',t') for some

t’ > t, which is a contradiction. |
Corollary 4 implies:

Theorem 2 Let X' be a set of seuquences and let R be a bounded system
that solves X-STP(del) where |M5| = m. Then

|¥] < a(m).

We conclude this section by pointing out that the solution to X-STP(dup)
with |X'| = a(m) described at the end of Section 3 can easily be modified to
give a bounded solution to X'-STP(del) with |X| = a(m), so that a(m) is a
tight bound on the size of X'.

5 More About Boundedness

In [LMF88] it is shown that there are no “k-bounded Data Link Layer
Protocols that use finitely many headers”. Translated into our formalism,
this roughly means that there are no uniform ‘k-bounded’ solutions to D“-
STP(del) if the processors’ message alphabets are finite, where k is some
constant function. The boundedness requirement in [LMF88] is however
different than the boundedness presented here; we call it here weak bound-
edness. Intuitively, while in a bounded system every point has a bounded

18

extension, in a weakly bounded system only the (¢I)* points of runs have
bounded extensions.

The results of [AFWZ89] show that X-STP(del) is solvable, though the
solution in not bounded in the sense of [LMF88]. It is also conjectured there
that X-STP has no weakly-bounded solutions if X’ is uncountable.

Boundedness is an attempt to measure a protocol in terms of how fast it
recovers from faults, so that an unbounded protocol is one that never fully
recovers. Our motivation in strengthening the [LMF88,AFWZ89] definition
of boundedness is that weak boundedness allows for some impractical solu-
tions to A-STP(del). For example, it allows protocols that include runs r
where a single fault occurs, say right after 7, and yet there is no bound on
¢y, for any extesion ' of (r,#! + 1) which depends only on .

For example, let X’ be the set of all finite sequences over D (so that X is
a countable set) and consider the following protocol: § transmits the data
items in sequence and R writes and acknowledges them using a Alternating
Bit protocol (ABP), until one of the processors fails to receive a message in
time. (We are assuming here some global clock and known message delivery
times.) This processor then starts to execute the [AFWZ89] protocol, using a
different message alphabet than that used in the initial part of the execution.
In the [AFWZ89] protocol, S reads the whole input sequence and transmits
the data items in reverse order. Thus, after having learnt some prefix of
the sequence, R starts to learn some of its suffix. If the old lost message is
delivered, the processors resume execution of the original protocol. Thus,
the processors alternate between executions of the ABP where R learns the
prefix of the sequence, and executions of the [AFWZ89] protocol where R
learns the suffix of the sequence, until S sends a special message indicating
to R that the prefix and the suffix learnt consist of the whole sequence.

To see why this protocol is k-bounded, note that new %;’s can be obtained
only during an execution of the ABP or by the delivery of the special message
indicating the end of the execution. In the former case, k-boundedness is
obvious; in the latter, when ¢; is obtained, so are all the t;’s for every j > 1.
Hence, if only one fault occurs in‘a run, it takes an unbounded number of
steps to reach the next ¢;. (In fact, the number of steps it takes depends on
the length of the input sequence, and is thus not a function of i.)

This protocol, though weakly-bounded, clearly has runs that never fully
recover from faults. However, it does not satisfy our boundedness require-
ment. For example, since we cannot bound an execution of the [AFWZ89)
protocol, we cannot find a function that bounds the number of steps it can
take R to learn the next data item from a point in which the processors are

19

executing the [AFWZ89] protocol.

To justify requirement 2 of Definition 2 we argue that without it, bound-
edness would allow for protocols whose recovery depends on some long lost
message. For example, consider a variant of the previous protocol where (1)
the [AFWZ89] protocol is used with the elements transmitted in order and
(2) the ABP is resumed only at some #;. (We ignore here details of how
the processors coordinate which data element they are communicating to
one another.) To see why this protocol is bounded if we ignore the second
requirement of the definition, note that there always exists an extension of
a run where the old lost message from the last ABP part is retrieved. How-
ever, a protocol whose recovery depends on a delivery of a long lost message
seems odd. In fact, this delivery by itself seems faulty, and relying on it
contradicts the essence of recovery from faults.

6 Conclusions and Further Work

The impossibility results reported here show that we can neither solve X-
STP(dup) nor obtain a practical solution to X-STP(del) if |X| > a(m).
These results have strong implications for the design of communication pro-
tocols.

All the impossibility results here are derived by using the knowledge
viewpoint. We believe that the techniques used here could be applied to
derive bounds for a large variety of communication protocols.

Although we cannot solve X-STP if |X| > a(m), it is conceivable that
we sometimes can be satisfied with “solutions” to X-STP with |X| > a(m)
that, although having the possibility of failure, present an acceptably low
probability of failure. It would be interesting to see how allowing a small
chance of error would affect our results. We remark that the whole frame-
work would have to change, for no infinite sequence could then be received
correctly with any non-zero probability. Moreover, the framework used here
does not include probabilistic elements. It would be interesting to see how
the models for probabilistic knowledge proposed in [FZ88,HT89] can deal
with the probabilistic X’-STP.

As shown in Section 5, boundedness can be defined in several ways,
each giving rise to different possibility /impossibility results. It would be
interesting to search for the ‘right’ definition of boundedness. For example,
we can add to boundedness a limit on the amount of information R learns
in between consecutive t;’s.

20

Acknowledgements

We would like to thank Dana Angluin, Joe Halpern, Mike Fischer, and Neil
Immerman for their helpful and stimulating discussions—particularly Dana
for her help in obtaining solutions to X-STP(dup) and X-STP(del) with
|X| = a(m), Mike for his many helpful comments and healthy criticism, and
Joe for his extremely careful proof-reading.

References

[AFWZ89]

[AUWYS2]

[AUY79]

[BSW69]

[Car]
[FZ88]

[Hal87]

[HF$8]

[HMS84]

H. Attiya, M. J. Fischer, D. Wang, and L. D. Zuck, Reliable
communication using unreliable channels, Manuscript, 1989.

A. V. Aho, J. D. Ullman, A. D. Wyner, and M. Yannakakis,
Bounds on the size and transmission rate of communication
protocols, Comp. & Maths. with Appls. 8:3, 1982, pp. 205-214.
This is a later version of [AUY79).

A. V. Aho, J. D. Ullman, and M. Yannakakis, Modeling com-
munication protocols by automata, Proc. 20th IEEE Symp. on
Foundations of Computer Science, 1979, pp. 267-273.

K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, A note
on reliable full-duplex transmission over half-duplex links, Com-
munications of the ACM 12, 1969, pp. 260-261.

D. E. Carlson, Bit-oriented data link control, Plenum New York.

M. J. Fischer and L. D. Zuck, Reasoning about uncertainty in
fault-tolerant disctributed systems, Formal Techniques in Real-

Time and Fault-Tolerant Systems, LNCS 831, 1988, pp. 142-
158.

J. Y. Halpern, Using reasoning about knowledge to analyze dis-
tributed systems, Annual Review of Computer Science, Vol. 2,
Annual Reviews Inc., 1987.

J. Y. Halpern and R. Fagin, Modelling Knowledge and Action
in Distributed Systems, Technical Report, IBM, RJ6303, 1988.

J. Y. Halpern and Y. Moses, Knowledge and common knowl-
edge in a distributed environment, Proc. 8rd ACM Symp. on

21

[HT89]

[HZ87]

[LMF88]

[Ste76]

[Zim80]

Principles of Distributed Computing, 1984, pp. 50-61. A re-
vised version appears as IBM Research Report RJ 4421, Aug.,
1987.

Joseph Y. Halpern and Mark R. Tuttle, Probabilistic knowl-
edge and the power of the adversary, Proc. 8th ACM Symp. on
Principles of Distributed Computing, 1989.

J. Y. Halpern and L. D. Zuck, A little knowledge goes a long
way: simple knowledge-based derviations and correctness proofs
for a family of protocols, Proc. 6th ACM Symp. on Principles
of Distributed Computing, 1987, pp. 269-280.

N. A. Lynch, Y. Mansour, and A. Fekete, Data link layer: two
impossibility reasults, Proc. 7th ACM Symp. on Principles of
Distributed Computing, 1988, pp. 149-170.

M. V. Stenning, A data transfer protocol, Comput. Networks 1,
1976, pp. 99-110.

Zimmermann, Osi reference model—the iso model for architec-
ture for open systems interconnection, IEEE Transactions on
Communications COM-28, 1980.

22

