Yale University
Department of Computer Science

A Generalized Multigrid Theory in the Style of
Standard Iterative Methods

Craig C. Douglas

YALEU/DCS/TR-976
November 10, 1993

This work was supported in part by the Office of Naval Research (grant N00014-91-J-1576),
Yale University, and the Research Division of International Business Machines.




A Generalized Multigrid Theory in the Style of
Standard Iterative Methods

Craig C. Douglas*
July 5, 1993

Abstract

A basic error bound for multigrid methods is given in terms of residuals
on neighboring levels. The terms in this bound derive from the iterative
methods used as solvers on each level and the operators used to go from a
level to the next coarser level. This bound is correct whether the underlying
operator is symmetric or nonsymmetric, definite or indefinite, and singular
or nonsingular. We allow any iterative method as a smoother (or rougher)
in the multigrid cycle.

One of the advantages of this theory is that all of the parameters are avail-
able during execution of a computer program. Hence, adaptively changing
levels can be achieved with certainty of success. This is particularly impor-
tant for solving problems in which there is no known useful convergence anal-
ysis. Two problems arising in modeling combustion problems (flame sheets
and laminar diffusion flames with full chemistry) are discussed.

While this theory is quite general, it is not always the correct approach
when analyzing the convergence rate for a given problem. A discussion of
when this theory is useful and when it is hopelessly nonsharp is provided.

1 Introduction
In this paper, linear problems
Au+f=0, u,feM, AeL(M) (1)

are solved using a nested space multigrid iterative method. The operator (matrix)
A 1s typically the discretized (by finite elements, differences, or volumes) version
of a partial differential equation.
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Many multigrid papers begin by narrowing their scope just to problems which
are symmetric and positive definite, symmetric and indefinite, or nonsymmetric
and indefinite. In each case, these papers assume the problem is nonsingular, a
set of smoothers is defined, and one or more specific multigrid algorithms are
defined (e.g., a V, W, or F cycle). Finally, analysis is provided, usually in only
one particular norm. For excellent traditional multigrid theoretical treatments of
problems, see [1], [8], [17], and [21].

The analysis in this paper is correct whether the underlying operator is sym-
metric or nonsymmetric, definite or indefinite, and singular or nonsingular. Any
iterative method is allowed as a smoother or rougher in the multigrid cycle. Any
multigrid cycle is allowed, including adaptively chosen ones. Finally, the analysis
is not dependent on any specific norm. In fact, different norms can be used on
different levels (though doing this can produce misleading convergence rates).

The purpose of this paper is to provide a discussion on when to use the theo-
retical tool in [12] for analyzing nested space multilevel algorithms that are applied
to any problem with any set of properties. The approach is simple enough to im-
plement in computer programs without adding an excessive amount of overhead.
There are similar procedures, known as aggregation-disaggregation methods (see
[6]) when A is not derived from partial differential equations; the theory in this
paper applies directly to these methods.

The basic correction multigrid algorithm is defined in the traditional recursive
style in §2. This is then rephrased into a nonstandard form in §3. This leads to
the two flavors of analysis in §4, one quite simple (and rarely sharp) and the other
somewhat more complicated (and sharper). Examples and the practicality of this
analysis are given in §5.

The theory in §4 depends on three sets of parameters which are available
either dynamically or in advance. The basic convergence (divergence) result is not
stated in a “nice” closed form, as is usual in multigrid papers, but in terms of the
convergence rate of the next coarser level’s rate.

2 A standard multilevel formulation

Suppose that there is a set of solution spaces { M} }},_,, which approximate M=M;
in some sense, and that dim(M}) < dim(Mp41). In the partial differential equa-
tion case, the My, correspond to discrete problems on given grids (which are not
necessarily nested). Then the multigrid approximation to (1) requires solving a
sequence of problems of the form

Apur + fr =0,  ug, fv € My, Ay € L(My). (2)
That there exist mappings between the neighboring spaces is assumed:

Ry My > Mp_y and Pr_q: Mp_1 — My




as well as mappings
Qr : Mp —> My_1 such that Az_1 = QrArPr_1.

For partial differential equations, there are natural definitions of Q; depend-
ing on the discretization method and the grids. See [12] for a more complete
discussion of natural choices for Q.

Since for most applications, dim(My) < dim(Mp41), Qx cannot be inverted.
However, the theory in §4 uses Q;lh Thus, the interpretation of Q,:l must be
explained. For finite element methods commonly used in practice, M} represents
a refinement of Mj_; and

I on Mg_;,
Qr =
0 on My — Mj_y;

this is true for both the h-version and the p-version of the methods.

The same relation holds for refinements in the finite difference case. Hence,
Q,:l can be taken to be injection of My_; into My, in each of the cases described;
otherwise Q,:l should be taken as a pseudoinverse. Note that a Moore-Penrose
type pseudoinverse may not be the best choice; a Drazin type pseudoinverse may
be better.

For k > 1, assume there are iterative methods, represented by M; and Ny,
and possibly dependent upon the data (e.g., conjugate gradients), which are used
as smoothers (or roughers) on level k before and after, respectively, the residual
correction step (on level 1, note that there is never a residual correction step nor,
usually, a smoother Ny).

In the multigrid literature, the term smoother has become synonymous with
the direct or iterative methods M; and Nj. The term was used in [4] to de-
scribe the effect of one or more iterations of a relaxation method on each of the
components of the error vector. For many relaxation methods (e.g., SSUR and
Gauss-Seidel), the norm of each error component is reduced each iteration; hence,
the term smoother. For many other iterative methods (e.g., SSOR or conjugate
gradients), while the norm of the error vector is reduced each iteration, the norm
of some of the components of the error may grow each iteration; hence, the term
rougher. For some iterative methods (e.g., Bi-CGSTAB), the norm of the error
vector does not necessarily decrease each iteration, much less smooth all of the
error components. The term smoother in the traditional multigrid sense will be
used, even though it is technically wrong.

Standard multigrid analysis assumes the smoothers have the form

Bk(wi+1_w£)=fk +AkU)i, K;O’l""’ek’

where By, corresponds to some scaled iterative method on each level k (e.g., sym-
metric Gauss-Seidel or conjugate gradients). This frequently leads to an analysis




which assumes a fixed £; throughout the multigrid iterations. Neither assumption
is required in §4.

There are two principal variants of multigrid algorithms. One variant is com-
posed of correction schemes, which start on some level j and only use the coarser
levels k, k < j, for solving residual correction problems. The other variant is com-
posed of nested iteration schemes, which begin computation on level 1 and work
their way to some level j, using each level k, k < j, both to generate an initial guess
for level k+1 and for solving residual correction problems. Analysis of nested iter-
ation algorithms in the context of this paper can be found in [12]; more traditional
analyses can be found in [2], [7], [8], and [17].

In this paper, only correction schemes are considered. Define a k-level (stan-
dard) correction multigrid scheme by

ALGORITHM MG(k, {u}5_,, zk, fr)

(1) If k =1, then solve Ajz; = f; exactly or by smoothing

(2) If £ > 1, then repeat i = 1,-- -, ux:
(2a) Smoothing: z « M,E')(:ck, fr)
(2b) Residual Correction:

ok — ex+Prey MG(k — 1, {ue} 2], 0, Re(Arzi + fr))

(2¢) Smoothing: z — N (zz, fi)

(3) Return zj

This definition requires that 41 = 1. Steps (2a) and (2b) are sometimes referred to
as pre-smoothing and post-smoothing, respectively, in the literature.

Symmetric multigrid schemes assume that My = Ni. Nonsymmetric multi-
grid schemes usually assume that Ny = I, where I is the identity. However, it is
computationally more efficient to assume My = I since the residual on level k£ — 1
is fr—1 and does not need to be recomputed. Only rarely is the complete algorithm
analyzed.

The standard V and W cycles correspond to Algorithm MG(j, {1,---,1},-,)
and Algorithm MG(j, {1,2,---,2,1},,-), respectively (the definition of the W cy-
cle frequently causes confusion). The F cycle [5] corresponds to something “in
between” the V and W cycles.

3 A nonstandard multilevel formulation

In this section, a subtle change is made to Algorithm MG, which produces a
simplified analysis for multigrid methods.

To make the notation of this section consistent, a fake (extra) level j + 1 is
introduced. Define

Mijnt=M;,  PFp=Rin=Qjn=1,  Ajn=4




and the initial residual on level j + 1, zj41, by

Ajz$3 )+ =z

This transforms the problem on all computational levels to one of solving a residual
correction problem instead of the real problem on the finest grid and residual
correction problems on the coarser grids.

Associated with each level k is a norm || - ||, which can be arbitrary. The
norms can be different on each level, though the usefulness of this is unclear. For
simplicity, the subscript from the norm symbol will be dropped.

Define a k-level (nonstandard) correction multigrid scheme using parameters

2k41 (the residual on level k£ + 1 at some step) and :cgc_l) (the initial guess for
level k, which is normally 0, except at the finest level) by

ALGORITHM NSMG(k, 241, zi‘l))
(1) Initial residual: Riry12841 € My
(2) Pre-Smoothing: msco) = (1) (_1) such that
412 + Ragrons = 20 " e 1280 < A 12kl
() Lot 80 = 2, 50 = O 4 4 =
(4) Repeati=1,---,
(4a) Ifi> 1, then .
(4al) Residual: Ak:c )+Rk+1zk+1 9()
(4a2) Pre-Smoothing: () = M{Pz{~") such that
Ay, 3 + Rep412k41 = Z;(c ))
where

1291 < o169

(4b) Ifk > 1, then
(4bl)  Correction: vy (i) = P;_ 1:62)1, where
2 = NSMG(Ic -1,5,0)
and
Ap-1ED |+ Risl) = 20

(4c) Residual: Ay (:c(z) i)) + Rp412k41 = Hg)
(4d) Post-Smoothing: m( )=N (z)(:c(‘) + 'y(z)) such that
Akw( Dy Rpy12p41 = Z,(c ,
where

21 < D116

(5) Return o{**)




Algorithm MG was defined in §2 in an intentionally imprecise manner. Al-
gorithm NSMG is a precise, but nonstandard definition of Algorithm MG. The
first smoothing reduces the norm of the residual on level k by a factor involving
the norm of the residual on level k + 1, which is nonstandard. For subsequent
smoothings, this factor involves the norm of the residual on level k instead. The
parameters {y¢}, which determine how many iterations of the multilevel algorithm
to do on each level, can be considered either fixed or adaptively chosen during the
course of computation.

Standard multigrid theory analyzes the case when a certain number of smooth-
ing steps are used. This may be explicitly stated (e.g., [1]), or it may be phrased
as to require the choice of a constant number of smoothing iterations such that
some error reduction condition is satisfied (e.g., [7]). This is worst case analysis
and rarely models the behavior seen in practice. However, it allows the proof of
certain complexity results of optimal order.

The nonstandard formulation allows two interpretations of smoothing: first
as the standard form, and second as fixing the factors eg) and pgc') and letting the
number of smoothing steps vary per iteration.

4 Analysis

In this section, assume that {M}} is nested and analyze 2{) under minimal as-
sumptions. Two flavors of analysis are considered. The first is a trivial analysis
that should not be used when anything is really known about the problem. The
second is an affine space decomposition analysis that is somewhat sharper than
the first treatment.

The first result assumes only a simple property about each of the restrictions
Ry: there exists a constant, §; € IR, such that

(I — Q%' Re)ull < Sllull, u€ M. (3)

Since normally dim(Range(Q; ")) < dim(My), § > 1. In many cases it is possible
to choose norms for which 6; = 1 and which are meaningful for the underlying
elliptic problem.

The problem is to determine conditions for {pg), 55:)} in order to guarantee
convergence of Algorithm NSMG. The results do not depend directly on properties
of the Ay and f.

The basic theorem is as follows.

Theorem 1 Assume that zj41 is the residual on level j + 1> 2 and that the pro-
longation operators Py, 1 < k < j, are imbeddings and the inverse of the operator
restrictions Q,;l, 2<k<j+1, are embeddings:

Pe=ipg Myys 94 QF' Sipng M, (4)




Let

Hi . .
Egl) = egl)pgl) and E,(c"") = H (eg)pg) [5k + E;(cﬂ_kfl)]) , k>1.
i=1
Then,
19721l < Bzl

The proof of Theorem 1 is a double induction argument and can be found in [12].

Remark 1 In some instances, different restriction operators Rg) are used during
a multigrid cycle. Substituting 6,(:) for &x covers this case.

Remark 2 For the V cycle with e§~i) =¢; and pgi) =p;j, =1, k, the definition
of E',(cl), k > 1, simplifies to

k21 3
E,(cl) = Z (H fk—mpk—m) Or—e+p1 H €mPm -

£=1 \m=0 m=2

Remark 3 When adaptively choosing when to change levels, the error term for the
coarser level will be different each time a correction step is performed. Substituting

(%)
E,(c“k ) for E,(c"") covers this case.

Remark 4 For numerous problems, ép > 1 guarantees that Theorem 1 is not
sharp nor even realistic. See §5 for another interpretation of 6; that is compu-
tationally useful since for specific residual vectors u in (8), 6, can be much less
than 1.

Remark 5 Many papers have been written analyzing multigrid using a variational
point of view instead of an algebraic one. Rewrite (2) as

find uy € My, such that ak(uk,vk) + fk(vk) =0, Vo, €M;.
Then Theorem 1 can be rewritien in a variational form.

Now consider an affine space analysis. Each space M; is decomposed ap-
proximately into the parts which are corrected by the residual correction steps,
and the parts which are relatively unaffected. This theory is considerably more
complicated, but sharper than that in Theorem 1.

Each space M; is assumed to be decomposable into a smooth part S; and a
rough part 7;, e.g.,

M;=8;®T;, where T,=M;_y and 8;=Mj_;nM,;. (5)

So, §; contains the high frequency components and 7; contains the low frequency
ones. Note that other definitions for §; and 7; can be used.




Let 1 <k < j. Assume that vy € My. Let

velll = oxllle = llvels, I

and
<op > =< v >p = (|vel g |-

If v are wy are the res1duals before and after a post-smoothing iteration using
Ni, and ||Jwe|)® = = €2||vg||*, then there exist €x,s and e p such that

(6)

Similarly, if vy are wk are the remduals before and after a pre-smoothing iteration
using My, and ||wk“ = pk”ka then there exist px ss, pr,s7, pr,77, and pgrs
such that
— 2
el

llwell® = e slllvel|* + e p< ve >,

2
= /’%,ssm”k”l +P%,ST< vy >2  and

(M
_ 2
<wp>? = P%,Ts]””km + pi < vr >
As was noted at the end of §3, these parameters will probably only be bounded
with estimates of some form.
The result here requires more precise knowledge than (3), namely that for
any u € My, there exist constants 6z s and é;r € IR such that
_ 2 _ 2
(T = @5 ' Re)ulll” < 8 slllull’ and < (I — Q7 'Re)u>" < 6 p< u >2.
The problem is to determine conditions for {pk XY ek X} X,Y € {S,T}, in order
to guarantee convergence of Algorithm NSMG. As before the results do not depend
directly on properties of the Ay and f;.
A sharper convergence result than Theorem 1 is as follows.

Theorem 2 Assume that zj4q is the residual on level j +1> 2 and that Py,
1<k<j,and Q;', 2 <k <j+1, satisfy (4). Let

D
Eyss

ED = 1) =

sP1,5s = o

1
and EF;T 1,75 = Eg%:r =0.

Forl<k<yjy,let

E(I‘k 1) (Br-1) (4)

Icss—6 [(5 5+

k-1 ss) Pg,)ss + Ep ] ,5TPk ST]

El(cz?I‘S = eg:z_r (5 I(c”kl })T p z, st Elg“kl ’ir)s)Pk ss]

El(:)TT = fg)T (516 T+ Els:ukl_,;")’l’ sz,TT (”k1 ’ir)s)Pk ST] 5
and @ _ ) D) ) ()4 )

Eysr=¢is (5k s+ Ekﬂkf,fss) Prst + BT, fsT)/’g:)TT] :




Then,
@) <« TH ) ) ) :
p— 7 2 2 {3
195251 < [T max{E{Ys + BSYs, Bz + B}l @)
=1

The proof of (8) is a double induction argument and can be found in [12].

Remark 6 For a symmetric multilevel algorithm (see §2), all of the terms in
Theorem 2 exist. It is possible to to see that whenever an individual term is large,
there is another term multiplying it that is small.

Remark 7 For nonsymmetric multilevel algorithms, the expressions simplify since
some of the individual terms are either 0 or 1.

Remark 8 For simple enough the §; 7 ~ 0 and 6; 5 ~ 1.

Special care is required when using this theory since it is, in some sense,
too general. It is quite easy to calculate various terms in the two theorems using
incompatible norms, resulting in nonsensical results.

5 Examples

In this section, 6; is computed for several examples. The first is for Dirichlet prob-
lems on IR? with simple, but not entirely trivial meshes. While the estimates are
rather pessimistic, some advice is offered on practical uses of the simple theory in
§4. Next, an example is presented where Theorem 1 is sharp. Finally, two problems
arising in attempting to numerically simulate flames are examined.

Assume that for each k, k = 1,---,7, the spaces My has a bilinear hat
function basis over uniform squares of side length hj. This does not imply that
the domain Q is either rectangular or convex, just polygonal (possibly with holes)
with boundary segments either parallel to the axes or inclined 45° to the axes
(which requires appropriate modifications to some of the basis functions).

Set
and X

Dij = {(l+ 1).7+ 1)’(l+ 1:]_ 1)7(1" 1’.7+ l)a(l_ la]— 1)}

Let Rk(g)vij be the following weighted sum of v;; and its eight neighbors from
level k:

1 1 1
Ry = 1|%its Z vee + 7 Z Ukt
(k,£)€D;; (k,£)eD;;

We approximate 6,(39) = 6k(Rk(9)) using a piecewise bilinear hat function v on
level k£ — 1 which is centered at some point (i +1,j+ 1) on level k. Note that,




if vij = (—1)"*7, then Rivij =0 at any interior point of the (k — 1)-grid. Thus,
0 > 1; since Ry satisfies a maximum principal, it then follows that

1 = Qi Re@)ll oo < [0l

and that
6,29) =1.

Let Rk(s)’l)ij be the following weighted sum of v;; and its four neighbors from
level k:

1 1
5y, = = = 2:
o T = 2(1:4:).3D,,vl“3
B iy

Again, the same argument shows that, with respect to the £,
5,25) =1.

If there are boundary elements associated with the edges at 45° to the axes,
Rk(g) and Rk(s) can be mixed to form Ry.

Besides motivating the affine space analysis, the theory of this section can
actually be used in computer programs to adaptively change the parameter choices
on coarser levels k (u and the number of iterations in the smoothers). Consider
Laplace’s equation on the unit interval, two levels, a uniform mesh, a central dif-
ference discretization, linear interpolation and projection, and one Jacobi iteration
as the smoother. Sharp theory says that the convergence rate is bounded by 0.5.
In a strictly nonrigorous exercise, 5000 randomly chosen problems were generated.
In theory, 6%3) =1, where 6%3) is derived using a three point restriction operator
R,. However, for individual residual vectors v, the following was calculated:

(o) = n(I—ﬁ;“le)vu |

The following was observed.

Statistic o(v)

Minimum | 0.3444
Maximum | 0.9312
Average 0.7126

Further, there was a direct correlation between the size of the estimated §(v) and
the actual error reduction produced by one multigrid iteration.

Now consider the affine space analysis. Assume that only post smoothing is
performed; this causes many of the terms in Theorem 2 to be either 1 or 0. In this
case, Theorem 2 predicts that the convergence rate is bounded by 0.5, which is
sharp. Unfortunately, Theorem 2 predicts an overly pessimistic convergence rate
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when two post smoothing steps are used (c.f., [1] which gets the right bound in
both cases).

For some problems, multigrid with particular smoothers is known to be a
terrible method. For example, let ¢ > 5 in

—10%uzq — 109y, = fin (0,1)2,

v =0on 8(0,1)?

and choose a central difference discretization on a uniform mesh and Jacobi as
the smoother. Then the coarse grid corrections do not necessarily improve the
approximation to the solution. In this case, Theorem 1 actually is sharp. (The fix
to making multigrid work well for this problem is to use either a line relaxation or
a conjugate gradient method as the smoother or rougher.)

The examples given so far were not the of interest to the authors of [12]
when this theory was developed, however. Two problems which are currently being
studied arise in numerical simulation of flames. These are complicated nonlinear
coupled partial differential equations which are amenable to solution by multigrid
methods provided that the right solvers are used on each level. The first is a flame
sheet model (see [13]) while the second is a laminar, axisymmetric diffusion flame
model (see [16]).

In the flame sheet model, the chemical reactions are described with a single
one step irreversible reaction corresponding to infinitely fast conversion of reac-
tants into stable products. This reaction is assumed to be limited to a very thin
exothermic reaction zone located at the locus of stoichiometric mixing of fuel and
oxidizer, where temperature and products of combustion are maximized. To further
simplify the governing equations, one neglects thermal diffusion effects, assumes
constant heat capacities and Fick’s law for the ordinary mass diffusion velocities,
and takes all the Lewis numbers equal to unity. With these approximations, the
energy equation and the major species equations take on the same mathematical
form and by introducing Schvab-Zeldovich variables, one can derive a source free
convective-diffusive equation for a single conserved scalar. Although no informa-
tion can be recovered about minor or intermediate species in the flame sheet limit,
the temperature and the stable major species profiles in the system can be ob-
tained from the solution of the conserved scalar equation coupled to the flow field
equations. Further, the location of the physical spatially distributed reaction zone
and its temperature distribution can be adequately predicted by the flame sheet
model for many important fuel-oxidizer combinations and configurations. Since
being studied as a means of obtaining an approximate solution to use as an initial
iterate for a one dimensional detailed kinetics computation in [19], flame sheets
have been routinely employed to initialize multidimensional diffusion flames.

A schematic of the physical configuration is given in Figure 1 (though not
drawn to scale). It consists of an inner cylindrical fuel jet (radius Ry =0.2cm),
an outer co-flowing annular oxidizer jet (radius Ro =2.5cm) and a dead zone
extending to R4, =7.5cm. The inlet velocity profile of the fuel and oxidizer are
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a plug flow of 35cm/s. This yields a typical value for the Reynolds number of
550. Further, the flame length is approximately L; =3cm and the length of the
computational domain is set to L =30cm. Although the fuel and oxidizer reservoirs
are at room temperature (300°Kelvin), we need to assume, in the flame sheet
model, that the temperature already reaches the peak temperature value along the
inlet boundary at » = Ry. This peak temperature is estimated for a methane-air
configuration to be 2050°K. Hence, the inlet profile of the conserved scalar, S°(r), is
specified in such a way that the resulting temperature distribution blends the room
temperature reservoirs and the peak temperature by means of a narrow Gaussian
centered at R;. The narrowness of the Gaussian profile has a relevant influence
on the calculated flame length, so that its parameters have to be determined
appropriately.

A damped Newton multilevel solver is used (see [3] and [18]). Due to the
model used, nonstaggered grids can be used, though they are tensor product grids
with quite variable mesh spacings. The linear problems solved on each level are 36
point operators. We found that GMRES with a Gauss-Seidel preconditioner was a
very good solver for each level. The code uses a left preconditioned residual norm
to determine when the solutions are adequate. In calculating 6,(:) in this norm, we
found it to be in the interval [106,10%] frequently. This required that the ¢’s and
p’s be quite small in order to achieve convergence. However, 6,(:) & ||zk+1]| so that
this is not really an imposition. Even so, we saw speed ups of a factor of 10.5 on
an IBM RS6000-560 workstation over the unigrid solution approach (see [13]).

While 6,(;) was reduced dramatically by using a semi-coarsening approach,
the overall run time increased by 50% over the traditional multigrid approach.

We used a damped Newton multilevel approach instead of a full approxima-
tion scheme (see [20]) because experiments us to believe that in the full chemistry
case, FAS will be too expensive.

The second flame numerical simulation is of a laminar, axisymmetric, methane-
air diffusion flame using nonlinear damped Newton multigrid (see [16]). The phys-
ical configuration is based on an inner cylindrical fuel stream surrounded by a
coflowing oxidizer jet and the inlet velocities are high enough to produce a lifted
flame with a triple flame ring structure at its base. Computationally, we solve the
total mass, momentum, energy, and species conservation equations with complex
transport and finite rate chemistry submodels. The velocity field is predicted using
a vorticity-velocity formulation and the governing partial differential equations are
discretized on a nonstaggered grid. The numerical solution involves a pseudo tran-
sient process and a steady-state Newton iteration combined with nonlinear damped
Newton multigrid. Coarse grid information is used to provide initial starting es-
timates for the Newton iteration on the finest level and also to form correction
problems, thus yielding significant savings in the execution times.

The physical configuration consists of an inner methane-nitrogen jet (with
radius 0.2cm), an air coflow (with radius 2.5cm), and the computational domain
is [0,7.5] x [0,30] (all units are centimeters). The temperature and species mass
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fractions values for the surrounding air are the same as the ones for the dead zone.
This physical configuration was chosen because experimental data and a numerical
solution using primitive variables were already available for this problem.

Once again, a variable width tensor product set of grids was used. Due to the
high number of chemical species in the calculation, the discrete Jacobians were 270
point operators. In the left preconditioned norm, 6,(;) was frequently in the interval

[10%,101°)]. However, 6,(;) & ||zx+1]| so that this is not really an imposition. Still, a
factor of 9.7 speed up was achieved on a 57 x 73 fine grid over a unigrid approach.
In this example, 6,(:) was not reduced dramatically by using a semi-coarsening
approach.

6 Multiple coarse grid methods

In [12], the Theorems 1 and 2 are extended to a multiple coarse space model.
In this case, there are multiple §’s for each level, the quantity depending on the
number of coarse level correction problems that are associated with each level.
While the theorems of §4 may not be satisfactory for simple problems, the
multiple coarse space theory is for these problems. This style of analysis is much
more accurate due to the fact that we can show that the §’s can be quite small,
including being 0 for the case of the domain reduction method (see [9], [14], and

[15]).

7 Conclusions

It is possible to prove a convergence result for multigrid and aggregation-disaggregation
methods with minimal knowledge about the problem. By treating multigrid as a
simple iterative method, almost nothing needs to be known about the grids, solu-
tion spaces, linear systems of equations, iterative methods used as smoothers (or
roughers), restriction and prolongation operators, or the norms used on each level.

Being able to prove such a result is much easier than showing that it is
useful all of the time. In fact, this theory is normally not sharp enough to satisfy
theoreticians. It should be used in computational settings in which almost nothing
is known about the convergence rate a priori.

One of the advantages of this theory is that all of the parameters are available
during execution of a computer program. Hence, adaptively changing levels can
be achieved with certainty of success.

Code availability
A series of codes, Madpack (see [11] and its references), are available from MGNet

[10] which are compatible with the philosophy applied here and with the earlier
theory in [8].

13




Acknowledgments

I am indebted to Professor Jim Douglas, Jr., Alexandre Ern, and Professor Mitchell
Smooke for helpful discussions.

References

[1] R. E. Bank and C. C. Douglas. Sharp estimates for multigrid rates of con-
vergence with general smoothing and acceleration. SIAM J. Numer. Anal.,

22:617-633, 1985.

[2] R.E. Bank and T. Dupont. An optimal order process for solving elliptic finite
element equations. Math. Comp., 36:35-51, 1981.

[3] R. E. Bank and D. J. Rose. Analysis of a multilevel iterative method for
nonlinear finite element equations. Math. Comp., 39:453-465, 1982.

[4] A. Brandt. Multi-level adaptive solution to boundary—value problems. Math.
Comp., 31:333-390, 1977.

[6] A.Brandt. Guide to multigrid development. In W. Hackbusch and U. Trotten-
berg, editors, Multigrid Methods, pages 220-312. Springer—Verlag, New York,
1982.

[6] F. Chatelin and W. L. Miranker. Acceleration by aggregation of successive
approximation methods. Lin. Alg. Appl., 43:17-47, 1982.

[7] C. C. Douglas. Multi-grid algorithms for elliptic boundary-value problems.
PhD thesis, Yale University, May 1982. Also, Computer Science Department,
Yale University, Technical Report 223.

[8] C. C. Douglas. Multi-grid algorithms with applications to elliptic boundary—
value problems. SIAM J. Numer. Anal., 21:236-254, 1984.

[9] C. C. Douglas. A tupleware approach to domain decomposition methods.
Appl. Numer. Math., 8:353-373, 1991.

[10] C. C. Douglas. MGNet: a multigrid and domain decomposition network. ACM
SIGNUM Newsletter, 27:2-8, 1992.

[11] C. C. Douglas. Implementing abstract multigrid or multilevel methods. Tech-
nical Report YALEU/DCS/TR-952, Department of Computer Science, Yale
University, New Haven, 1993. To appear in the Proceedings of the Sixth
Copper Mountain Multigrid Conference, NASA, 1993.

[12] C. C. Douglas and J. Douglas. A unified convergence theory for abstract
multigrid or multilevel algorithms, serial and parallel. SIAM J. Numer. Anal.,
30:136-158, 1993.

14




[13] C. C. Douglas and A. Ern. Numerical solution of flame sheet problems with
and without multigrid methods. submitted to Advances in Comp. Math., 1993.
Also available as Yale University Department of Computer Science Report
YALEU/DCS/TR-955, New Haven, CT, 1993.

[14] C. C. Douglas and J. Mandel. A group theoretic approach to the domain
reduction method. Computing, 48:73-96, 1992.

[15] C. C. Douglas and W. L. Miranker. Constructive interference in parallel
algorithms. SIAM J. Numer. Anal., 25:376-398, 1988.

[16] A. Emn, C. C. Douglas, and M. D. Smooke. Numerical simulation
of laminar diffusion flames with multigrid methods. Technical Report
YALEU/DME/TR-xxx, Department of Mechanical Engineering, Yale Uni-
versity, New Haven, 1993. In preparation.

[17) W. Hackbusch. Multigrid Methods and Applications. Springer—Verlag, Berlin,
1985.

[18] W. Hackbusch and A. Reusken. Analysis of a damped nonlinear multilevel
method. Numer. Math., 55:225-246, 1989.

[19] D. E. Keyes and M. D. Smooke. Flame sheet starting estimates for counterflow
diffusion flame problems. J. Comput. Phys., 73:267-288, 1987.

[20] C. Liu, Z. Liu, and S. F. McCormick. Multigrid methods for numerical sim-
ulation of laminar diffusion flames. ATAA, 93-0236:1-11, 1993.

[21] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons,
Chichester, 1992.

15




dead zone

dead zone

Flame sheet physical configuration

.
.

Figure 1

16



