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Abstract

This paper presents a simple, robust, gradient-based, approach to computing optical
flow in the presence of noise and motion discontinuities.” We begin with the standard
gradient-based method of Horn and Schunck which corresponds to a least-squares esti-
mate of the optical flow. Such estimates are susceptible to outliers which do not conform
the statistical assumptions of the approach; for ezample, measurements at motion dis-
continuities. The result is that the least-squares solution has the undesirable property
of smoothing the flow field across motion boundaries. Robust statistics can be used to
address this problem. By reformulating the optical flow equation in terms of robust
estimation, the problems of image noise and over-smoothing are reduced. The refor-
mulation is straightforward, and results in a remarkable improvement in the estimated
flow, particularly at motion discontinuities. The flow field is recovered using a simple,
deterministic, relazation scheme which is described in sufficient detail to allow it to be
easily implemented.
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1 Introduction

This paper presents a simple and elegant solution to the problem of robustly recovering
optical flow in the presence of noise and motion discontinuities. The standard optical flow
equation is reformulated in a straightforward way to make it robust in a formal sense. The
resulting robust gradient equation is less sensitive to noise and smoothing across motion
discontinuities. The flow field is recovered using a simple iterative relaxation scheme.

The standard Horn and Schunck [11] formulation of optical flow is ubiquitous in motion
analysis. The formulation represents a least squares estimate of the flow field. Such esti-
mates are commonly known to be sensitive to measurements that do not conform to the
statistical assumptions of the model. In a neighborhood about a motion discontinuity, the
local differences in flow across the boundary can be viewed as statistical outliers that corrupt
the least squares solution, resulting in smoothing of the flow field across the discontinuity.
The least-squares formulation is also sensitive to errors in the intensity constraint equation
resulting from occlusion, disocclusion, shadows, and specular reflections.

The problem is one of fitting a model to data when we know that the data may contain
outliers which differ statistically from the model assumptions. We make the simple observa-
tion that the field of robust statistics has developed techniques which address this problem.
By recasting the least-squares formulation of optical flow in the robust statistics framework,
the recovery of optical flow is made less sensitive to gross violations of the intensity constraint
equation and smoothing across motion boundaries.

The least-squares formulation results in a convex objective function which is easy to min-
imize. The robust gradient formulation, however, generally results in a non-convex objective
function. A Graduated Non-Convexity (GNC) algorithm [6] is presented for recovering the
optical flow. Experimental results on real and synthetic image sequences are very promis-
ing. The robust gradient approach does an excellent job of preserving motion discontinuities
while reducing the effects of image noise.

1.1 Previous Work

While qualitative estimates of optical flow may be sufficient for a number of problems like
obstacle detection, and coarse motion segmentation, many uses of optical flow require robust
estimates; for example structure from motion. The lack of robustness has been seen as a
major weakness of optical flow [1].

A number of approaches have been developed to recover discontinuous optical flow with-
out over-smoothing. The most notable techniques are the Markov random field (MRF)
formulations [4, 15, 17]. These approaches represent discontinuities either explicitly with
the use of a “line process” or by using weak continuity constraints [6, 7]. These approaches
achieve good results but typically rely on expensive stochastic minimization procedures. In
a similar vein, there have been attempts to incorporate ideas like weak continuity in analog
devices [9, 14]. Another approach uses statistics about the flow in a neighborhood to control
the smoothing process [21].

The robust gradient approach is similar in spirit to the work of Black and Anandan
[4, 5], in that both approaches take a familiar formulation of optical flow and reformulate it
to account for motion discontinuities. The approach here, however, is conceptually simpler,




easier to motivate from the standpoint of robust statistics, achieves better results, and is more
efficient. The efficiency gain is due to the fact that with the robust gradient formulation
the objective function is differentiable; a fact that can be exploited when minimizing the
function. :

There are many similarities between the proposed approach and the work of Blake and
Zisserman on image reconstruction [6]. The motivations however are quite different. Here
we have taken a well known least-squares optimization problem and reformulated it using
robust statistics. The resulting approach to dealing with spatial discontinuities turns out to
be closely related to the notion of weak continuity. Blake and Zisserman however, ignore the
possibility of outliers in the data measurements and concentrate on spatial discontinuities.

Finally, Schunck [20] proposed the idea of using robust statistics in his work on constraint
line clustering, but avoided the direct robust formulation presented here. He does, however
suggest that “further experiments should be conducted to compare robust estimates with
constraint line clustering,” ([20], p. 1018). In the case of constraint line clustering, the data
error and over-smoothing problems are treated separately. Our approach has the advantage
of being very straightforward in that is brings robust statistics to bear, in a uniform way, on
the problems of data errors and motion discontinuities.

In the next section, we review the standard Horn and Schunck formulation of optical
flow. In section 3 we introduce robust statistics. In section 4 we then reformulate the optical
flow equation using robust statistics. Section 5 examines presents an iterative minimization
technique for recovering the optical flow. We then describe experimental results with real
and synthetic image sequences and compare the results with other approaches.

2 The Least Squares Formulation

This section reviews the standard least-squares formulation of the optical flow problem [10,
11]. Let I(z,y,t) be the image intensity® at a point (z,y) at time t. The standard intensity
constancy assumption is written as follows:

I(z,y,t) = I(z + ubt,y + vét,t + 6t), (1)

where u = [u, v]7 is the horizontal and vertical image velocity at a point and 6t is small.
By Taylor series expansion of the right hand side of (1) we have:

I(z,y,t) = I(z,y,t) + Lyubt + I,vét + I;6t + ¢, (2)

where I, I,, and I, are the first partial derivatives of the brightness I with respect to z, y,
and ¢ respectively, and where € contains the higher-order terms. Simplifying and dividing
through by 6t then taking the limit as ¢ — 0 we obtain the standard optical flow constraint
equation:

Lu+Ip+1,=VITu+I,=0. _ (3)

We refer to (3) as a data conservation assumption [4]. The equation is valid only for small
displacements (ie. less than a pixel). Larger motions can be dealt using a hierarchical,
coarse-to-fine, strategy [2].

11n fact, we always work with a Laplacian filtered version of the image.
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It is well known that the recovery of optical flow is ill-posed [3, 18]. To recover the flow
we regularize the ill-posed problem with the introduction of a smoothness constraint. Take
as a measure of smoothness the square of the velocity field gradient:

ul +ul + v+l (4)

We wish to find the optical flow field which minimizes the combined intensity and smoothness
€rror:

E(u) = //)\(VITU + 1)+ (uk+ uz + 2 4 vz)d:vdy, (5)

where A controls the relative importance of the two terms.
For an image of size n x n pixels we define a grid of sites:

S = {51,582, ,8p2 | Vw0 < i(sy),](s0) <n—1},

where (i(s), j(s)) denotes the pixel coordinates of site s. Equation 5 is then easily discretized
as:

E(w) = ST, + 1)+ 5 3 (0 = ua) (= )] 6)

SES neg,

where G, represents the set of north, south, east, west neighbors of s in the grid.
This formulation admits a simple iterative relaxation scheme for determining the optical
flow:
W) = gn - Io(I-uf + 1,08 + It)’ (7)
14+ X2+ 12)
v(n+1) I IU(II{L? + Iyl_)? + It)
s s 1+ AI2+12)

(8)

<

where @ and o are local averages of u and v. The problem with this scheme however, is that
to reduce the effects of noise one must oversmooth the flow field. Remaining faithful to the
image measurements on the other hand results in a noisy flow field. What is needed is a way
to ignore noisy measurements and at the same time prevent smoothing across discontinuities.

3 Robust Statistics

Robust statistics addresses the problem of fitting a model u to data, d = {do, ds,...,ds}, in
cases where the data differs statistically from the model assumptions [8, 12]. For example,
we may assume that measurement errors can be characterized by a Gaussian distribution.
We may also know, however, that this assumption is only approximate; that there will be
errors which do not fit the Gaussian assumptions and for which we have no statistical model.
The robustness of a statistical estimator then refers to its insensitivity to deviations from
the assumed statistical model. These deviations are called outliers.




Figure 1: Fitting a straight line. a) Least-squares fit. ) Robust fit.

Assume that the error in the a data set d is normally distributed about the “true” model
u with standard deviation 0. Then the probability of the data set is given by:

P = H{exp[—p(dSaus’US)]}v (9)
s€S
where the estimator p is:
_ (ds —u,)?
p(dmusvas) = %, . (10)

Maximizing P is equivalent to minimizing the negative of its logarithm, which is equivalent
to finding the u which minimizes:

min Zp(ds,us,as) (11)
u SES

For the case where P is Gaussian and p is quadratic, this is the standard least squares error.
The function p is called an M-estimator since it corresponds to the Mazimum-likelithood
estimate.

3.1 Problems With the Least Squares Approach

This standard approach is not without its problems. = When the noise is, in fact, not
Gaussian, the solution is skewed from the “true” solution. Figure 1 shows an example of
fitting a line to data in the presence of outliers. Figure a shows how the least-squares fit is
skewed in the direction of the outliers. The fit recovered in figure b is robust in the sense
that it rejects the outliers and recovers a “better” fit to the majority of the data.

The problem with the least-squares solution is that the outliers contribute “too much”
to the overall solution. Figure 2a shows a Gaussian probability distribution. The tails of the
distribution drop off quickly and hence, outlying points have low probability of occurring.
Consequently, when they do occur they are assigned a high weight by the quadratic estimator
2b. The influence 1 of measurements is determined by the derivative of the estimator [8].
In the least-squares case, the influence of data points increases linearly and without bound
(figure 2¢).
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Figure 2: Least Squares Estimation. a) Gaussian probability distribution, 5) Quadratic
error measure (negative logarithm of the probability distribution), ¢) Influence function
(derivative of the error measure).

¢
Figure 3: Robust Estimator (Lorentzian). a) Probability distribution, b) Error measure
(negative logarithm of the probability distribution), ¢) Influence function (derivative of the
error measure).




To construct a robust estimator, we need to be more forgiving about outlying measure-
ments. Figure 3a shows the Lorentzian distribution [19]:

Prob(ds — us,05) ~ ———1————— (12)

2

L+ (552)
Notice that the tails of this distribution decrease more gradually than the Gaussian. Once
again, the appropriate estimator is defined as the negative logarithm of the probability

distribution:
1 /d; — us ?
p(ds —us,05) = log (1 +5 ( - ) ) . (13)

~ S

The estimator is shown in figure 3b. Unlike the quadratic estimator, the robust estima-
tor has a saturating property; as the measurement errors increase, the contribution of the
measurements approaches a constant. This can be seen by examining the influence function:

2(ds — us)
202 + (ds — u,)?’

P(ds — us,05) = (14)
which is shown in figure 3¢c. As the error increases, the influence of the measurements
approaches zero.

4 A Robust Formulation of Optical Flow

As we saw in the previous section, least-squares solutions are sensitive to outliers. Where
do outliers affect the determination of optical flow? First, the intensity constraint equation
(3) can be violated in a number of commonly occurring situations. For example, it will be
violated at motion boundaries where occlusion or disocclusion takes place. Also, in cases
of specular reflection or shadow boundaries, the prediction of the constraint equation does
not correspond to the motion of the physical surfaces. In these cases it may be desirable
to “ignore” the intensity constraint if doing so produces a “better” interpretation of the
scene. With the least-squares approach the optimal estimate will be skewed towards these
anomalous measurements.

To reduce the effects of noise in the recovered flow field, the relative importance of the
smoothness constraint can be increased. This, however, results in over-smoothing at motion
boundaries. Take, for example the motion boundary in figure 4. When trying to determine
the flow at a point (i, 5) we examine the flow at neighboring points to the north, south, east
and west. The flow vectors at the points (z,7 + 1), (: —1,7), and (¢, — 1) are all consistent
with the central point, and we can expect the differences between these neighboring points
to be captured quite well by a Gaussian distribution.

The point ( + 1, 7), however, belongs to a different surface. The flow here is inconsistent
with the other flow vectors, and hence can be viewed as a statistical outlier. Employing
a least squares smoothness constraint will force the flow at (,7) away from its true value.
What we would like to do is recognize that (i 41, j) does not belong to the true distribution
and ignore it. '




Figure 4: Smoothing across a flow discontinuity.

By reformulating the motion equation using the robust statistical techniques of the pre-
vious section, we can achieve a more robust computation of optical flow in the presence of
erroneous image measurements and motion discontinuities. The least-squares form of the
optical flow equation (6) can be reformulated as:

E(u,v) = Z[Ap(]xus + Ivs + I,01) + Z p(us — un,02) + Z p(vs — v, 02)]. (15)
sES negs neG,

When p is the quadratic error measure, this is the least-squares optical flow equation (6). For
the robust formulation, we simply replace the quadratic error measure by the more robust
Lorentzian M-estimator. We explore the implications of this reformulation in the remainder
of this and the following section.

4.1 Discontinuities and Parameter Estimation

We would like to be able to set thresholds 7; and 7, that determine what data and smoothness
errors are considered outliers. To do so we need to determine the appropriate values for o,
and o,. These values determine the point at which measurements are considered outliers.
This is taken to be point where the influence of the measurements begins to decrease; that
is where the derivative of the influence function:

p 0P  2(20% —2?)

922 = 9 - 20Tt 2l (16)

equals zero. This occurs when:
z=+V20. (17)

So to define an outlier threshold 7, we set o = 7/v/2.

For example, in the case of the smoothness constraint, if a difference of 0.05 pixels is
considered a discontinuity then o, = 0.0353553. This threshold could presumably be set on
the basis of psychophysical evidence. Motion discontinuities can be trivially recovered from
the computed flow field by examining where this threshold is exceeded.

For the data term we make a conservative estimate of the variance in the intensity error
for the optimal flow field. We do this by computing the intensity error VI Ty 4 I, in the case
where the flow is zero everywhere; ie. the error is simply J;. We then compute the variance
of this initial error and take that as the value of o;.




4.2 Convexity

The least squares formulation of optic flow is relatively straightforward to solve since the
objective function is convex. The robust formulation, however, may not be convex. This
occurs since, if the data and smoothness terms disagree, we can minimize for either one and
treat the other as an outlier.

Formally, the objective function is convex when the Hessian matriz:

9’E  9’E
du?  Oudv
H= (18)
#E  o°E
Svlu dv?

is positive definite [6]. This condition is met if and only if both eigenvalues of the matrix H
are positive. This gives us a simple test for convexity. It is easy to show that E is convex
when:

meafgxl(VITus +1) < V20,=m, and (19)
max rnré%)sdus —-u,| < V20, = 1,. (20)

This corresponds to the case where there are no data or spatial outliers. In this range, the
influence function % is roughly linear and the error function p is roughly quadratic. On the
other hand, F is non-convex when:

n“légxl(VITus + 1) > V20, =1, and (21)
max max lus —u,| > 202 = Ty. (22)

Finally, when one term is above the outlier threshold and the other is below, the function
may or may not be convex. The minimization of this objective function is the topic of the
following section. V

4.3 Modeling Outliers

The robust statistical formulation of the problem seems a natural evolution for the standard
least squares formulation. Yet, a robust formulation makes no explicit assumptions about the
statistical nature of the outliers. In motion estimation, however, the outliers correspond to
physically meaningful events and hence will not be simply uncorrelated noise. The question
arises: Can we do better by explicitly modeling the statistics of the outliers?

For example, a contaminated Gaussian model [23] provides another model of the expected
data errors:

1—e¢ (dy — u,)? € ((@-uy)
dlu) = - S L2 23
p(ds|u) ,—%aleXp< 557 )+ By <P 507 (23)

where 0; << o, and ¢ << 1.0. This model assumes that measurements are typically
governed by a Gaussian distribution with small variance, but occasionally are characterized
by a Gaussian with a large variance. The negative logarithm of this distribution gives the
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Figure 5: Other estimators. a) Contaminated Gaussian estimator. b) Truncated quadratic
estimator.

estimator in figure 5a. This estimator does not have the saturating property that we require
to reject outliers and hence be robust.

To model discontinuities, the notion of weak continuity can be employed [4, 6, 7]. Here,
discontinuities are modeled by binary valued “line processes” () in the objective function:

E(ds7us’ l) = (1 - l)/\2(ds - us)2 + ala (24)

where o and A are constant, and, where I = 0 if there is no discontinuity and ! = 1 if
there is. Blake and Zisserman [6] showed that the line processes can be eliminated from
the objective function by first minimizing over it, resulting in an objective function which is
solely a function p of the actual variables under consideration:

E*(dsy us) = pa,/\(ds - us)7 Wherea (25)
_ Nz? if |z] < Va/A,
pan(z) = { « otherwise. (26)

The resulting truncated quadratic estimator (figure 5b) is similar to our Lorentzian M-
estimator. The truncated quadratic has an advantage in that it is motivated by a model of
discontinuities. Unfortunately, it is not smooth, which makes it less appealing for our pur-
poses. Certainly, the relationship between weak continuity constraints and robust statistics
deserves further study.

5 Minimization

The robust formulation of the optical flow equation is straightforward. However, as was
shown in the previous section, the resulting objective function may be non-convex. The
situation, however, is not without hope. There are a number of minimization techniques
which can be brought to bear on the problem. First we will describe a local optimization
technique which rapidly converges to a local minimum. We then consider a number of global
optimization strategies.




5.1 Simultaneous Over-Relaxation

Simultaneous Over-Relaxation (SOR) belongs to a family of relaxation techniques which
include Jacobi’s method and the Gauss-Seidel method [19, 22, 24]. We compute the first
partial derivatives of the robust flow equation (15):

JF

— = S ALY(VITug + I, 00) + Y $(us — un, 02)),s (27)
Us SES nEGs

oF

50 = SN (VITu, + Iy o1) + D 9(vs — vn, 02)]- (28)
Us s€S n€gs

Then the iterative update equations for minimizing E at step n 4 1 are simply [6]:

1 0F
(n+1) o, (n) _
uy uy wT(us) R (29)
1 OE
(nt1) _— ,0) _, 30
v Ve uT(vs) v’ (30)

where w is an overrelazation parameter which is used to overcorrect the estimate of u(t) at
stage n + 1.
The terms T'(u,) and T(v,) are upper bounds on the second partial derivatives of E:

2

T(u,) > %{f—, Vs € S, (31)
. 25

T(vs) > %—v]-f-, Vs € 8. (32)

The second derivative is maximized when both the data and smoothness errors are zero
everywhere, which implies:

MZ2 4

T(us) = = +5§’ (33)
M2 4

T(v,) = =%+ =. (34)
a1 02

When 0 < w < 2 the method can be shown to converge [24] and when w = 1 the method
is equivalent to the more familiar Gauss-Seidel method. To achieve the fastest convergence,
the optimal value of w should be chosen. While determining the optimal w is difficult in' the
case of a non-linear problem, we can get a rough approximation by computing the optimal
value for the linear Jacobi version of the problem. The optimal w is then defined in terms
of the largest eigenvalue (pmayx) of the Jacobi iteration matrix which can be shown to be:

Pmax = COS Th, (35)
1
ho= (n+1) (36)
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for an n x n problem [22]. The optimal overcorrection is then:

2(1 -V 1- lu‘r2nax)' (37)

2
Hmax

Wopt =

For example, a 128 x 128 image would have an overcorrection of we,; = 1.95209, and a 64 x 64
image would have w,,; = 1.90645. In practice, this approximation works well and for an n xn
problem acceptable convergence is reached within only n iterations.

The algorithm can be implemented sequentially, but is inherently parallel. When updat-
ing a site, its four neighbors must remain fixed. A parallel algorithm is achieved by dividing
the grid into black and white sites in a chessboard pattern, and updating first the black and
then the white sites.

Faster convergence can be achieved using Chebyshev acceleration [19]. Here the value of
w is updated after each half-iteration (ie. after updating all the white, or all the black, sites)
using the following scheme:

WO = 1,
w(1/2) = 1/(1 - uxznax/Q)’
w("+1/2) = 1/(1 -Ni]axw(n)/4)’ n= 1/2’ 1""’w’
w(°°) - Wopt-

5.2 Global Minimization

We now turn to the problem of finding a globally optimal solution when the function is non-
convex. Two general approaches are considered; graduated non-convexity, and stochastic
relaxation.

5.2.1 Graduated Non-Convexity

Graduated Non-Convezity (GNC) was proposed by Blake and Zisserman [6] as a deterministic
minimization strategy for non-convex functions. The general idea is to take the non-convex
objective function and construct a convex approximation. This approximation is then readily
minimized; using, for example, the SOR technique above. Successively better approximations
of the true objective function are then constructed and minimized starting from the solution
of the previous approximation. For a given objective function the challenge is to construct
the sequence of approximations.

Given the Lorentzian as the robust estimator there is a natural sequence of approxima-
tions. In the previous section, it was noted that E is convex if the outlier thresholds 7
and 7, are set to be greater than maximum data and smoothness errors. Assume that the
motion in the scene is constrained to be less than some constant; for example, by using a
hierarchical approach [2]. Then we choose 7, to be twice the largest allowable motion. The
maximum data error can be conservatively estimated from the images. First assume that
the flow is zero everywhere, so VI Tu + I, = I,. Now we take as our estimate 7 = max |[;|.

The minimization can begin with this convex approximation and the resulting coarse flow
field approximation will contain no flow discontinuities..In this sense it will be very much
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Figure 6: Graduated Non-Convexity. p(z,0) and ¥(z,0) plotted for thresholds 7 €
{16,8,4,2,1}. a) Error measure p(z,0). b) Influence function ¢ (z,0).

like the least-squares flow estimate. Discontinuities can be gradually added by lowering the
thresholds 7, and 7, and repeating the minimization. Figure 6 shows the error function
(figure 6a) and the influence function (figure 6b) for various values of 7. In practice, a two

stage minimization works well. First the coarse convex approximation is used, followed by
the original objective function.

5.2.2 Stochastic Minimization

Stochastic approaches provide another way of minimizing a non-convex objective function.
They have been used by a number of authors for computing optic flow with non-convex
objective functions [4, 15, 17]. The approach taken is to construct a probability distribution
IT over the space of displacements using a Gibbs distribution:

H(u) = Z e BT, (38)
where Z is the normalizing constant:

7 = Z e—E(u)/T’ (39)
u

and where T is a temperature constant at time ¢ which serves to sharpen (or flatten) the
distribution.

The minimum of E can then be found using simulated annealing [13]. This is done by
choosing values of u according to the distribution II with logarithmicly decreasing temper-
atures. As the temperature is lowered, the probability distribution I becomes concentrated
about the minimum while the stochastic nature of the process prevents the estimate from
getting trapped in local minima. The result is that at high temperatures the sampling pro-
cess freely chooses values of u, but as the temperature is lowered, the minimum is chosen
with increasing probability. In the limit, this process converges to the correct solution when
a logarithmic cooling schedule is used.

Simulated annealing is expensive in practice. While it is useful for a global exploration of
the energy landscape, it does not exploit the fact that the local minima of E can be explored

12
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Figure 7: Random Noise Sequence. a ) One of the random noise images in the sequence.
b, c) Least-squares solution; horizontal and vertical components of the flow. d) Motion
discontinuities where the smoothness constraint is violated. e, ) Robust gradient solution;
horizontal and vertical components of the flow.

more in a directed fashion. A more efficient procedure would exploit the differentiable
nature of E to perform a directed gradient search (like the SOR algorithm) of local minima,
while occasionally making large jumps to avoid getting trapped in a local minimum. Such
a procedure is similar to the large-step Markov chain approach. to solving the Traveling
Salesman Problem [16].

6 Experimental Results

The robust gradient technique is implemented using the GNC algorithm of the previous sec-
tion. The current Connection Machine implementation fully exploits the parallelism inherent
in the formulation. The algorithm, however, is easy to implement and the previous section
should provide sufficient detail to implement a serial version.

The algorithm is compared with a standard implementation of the Horn and Schunck
least-squares solution. It is not surprising that the robust version performs better, but it is
surprising that such a simple reformulation results in such radical improvements.

All experiments were performed using 200 iterations? of each algorithm even though 200
iterations are not typically necessary in the case of SOR. The only parameters which need

2 An iteration is taken to mean the updating of every site in the flow field.
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Figure 8: Horizontal Displacement. The horizontal component of motion is plotted to
illustrate the over-smoothing of the least-squares solution (@), and the sharp discontinuity
which is preserved by the robust gradient technique (b).

to be empirically determined are 7, and ). These were chosen, and remained unchanged for
all the experiments: 7, = 0.05, A = 10 for the robust gradient approach, and X = 50 for the
least-squares approach. All other parameters were determined as specified in the previous
section.

6.1 Synthetic Sequence

The first experiment explores an easy case with no noise. The synthetic sequence contains
two highly textured surfaces, one which is stationary and one which is translating to the
left (figure 7a). The horizontal and vertical components of the computed flow are shown
with the magnitude flow coded by intensity, where black indicates motion to the left and
up and, similarly, white indicates motion to the right and down. Figures 7b and c show
the flow computed with the least squares formulation. Notice how the horizontal flow is
smoothed across the motion boundary. The robust gradient technique does not suffer from
over-smoothing (figure 7e,f). Motion Jiscontinuities can be detected (figure 7d) by examining
where the smoothness assumption is violated (ie. when the absolute difference in neighboring
flow vectors is greater than 7).

This example illustrates how, even when no noise is present, the least-squares approach
can perform badly by smoothing across discontinuities. The contrast between the approaches
is vividly observable in figure 8. Plotting the horizontal component of the flow field graphi-
cally shows the behavior of the two algorithms at motion boundaries.

Figure 9 shows the convergence behavior of the two algorithms. The faster convergence
of the robust gradient algorithm is due to the use of over-relaxation. This was not used in the
least-squares case. The least-squares approach, however, does not approach the error of the
robust gradient technique. This is a result of over-smoothing error at the motion boundary.

The effects of noise are explored in figures 10 and 11. The figures show the effects of
adding 5 percent uniform noise to the second image in the sequence. The discontinuity is
still clearly preserved by the robust approach (figure 10¢). With the standard smoothness
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Figure 9: Convergence. Root mean squared error is plotted as a function of iterations for
the standard Horn and Schunck scheme and the robust gradient scheme using simultaneous
over-relaxation on the random dot sequence shown in figure 7. Notice that for an image of
size 128 x 128 that SOR, with Chebyshev acceleration, converges in less than 128 iterations.

a b c d
Figure 10: Random Noise Sequence. Computed flow in the case where 5 percent uniform
noise is added to the second image. a, b) Horizontal and vertical least-squares flow. ¢, d)
Horizontal and vertical robust flow.

constraint there is a tradeoff between smoothing the noise and over-smoothing the motion
boundaries. The robust gradient approach allows us to smooth the data and preserve the
discontinuities (figure 11b).

6.2 The Pepsi Sequence

Figure 12 shows the flow computed for a real image sequence. The sequence contains a Pepsi
can (figure 12a) in front of a textured background. The camera is translating to the right,
resulting in the can being displaced approximately one pixel to the left in each frame and the
“background being displaced by approximately a third of a pixel between frames. Figures 125
and 12¢ are the results of applying the least-squares algorithm. The flow is clearly smoothed
across the motion boundary.

Figures 12 d, e, and f show the results of the incremental stochastic minimization al-
gorithm of Black and Anandan [4]. The results are obtained by incrementally processing
the 10 image sequence. Figure e shows that the algorithm does not smooth across motion
boundaries and figure d shows that the motion boundaries are classified as occluding (white)
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Figure 11: Horizontal Displacement (Noise added). The horizontal component of
motion is plotted for the case where 5 percent uniform noise is added to the second image.
a) The least-squares solution; smoothing to reduce noise, smooths the motion boundary. b)
The robust gradient approach smoothes the data while preserving the discontinuity.

or disoccluding (black).

The results of the robust gradient approach are shown if figures 12 g, h, and i. From figure
hit is clear that the approach does an excellent job at preserving sharp motion discontinuities.
The results appear better than the Black and Anandan results in that the motion boundaries
correspond more closely to the surface boundary of the can. We believe that the poorer
definition in the Black and Anandan results is due to the use of correlation, instead of
spatial and temporal gradients, in the formulation of the data conservation constraint. This
‘s due to the fact that correlation windows typically cover larger areas of the image and are
hence more likely to be corrupted by multiple motions. Figure g shows the locations where
the smoothness constraint is violated (ie. the motion discontinuity is greater than 7).

The least-squares and robust gradient solutions can be compared by examining the plots
in figure 13. Here, the magnitude of the flow vectors is plotted. The sharp discontinuity
present in the robust solution (figure b) is lacking in the least-squares estimate (figure a).

6.3 The Tree Sequence

Finally, we consider a more complex example with many discontinuities. The first image in
the SRI tree sequence is seen in figure 14a.  As expected, the least-squares flow estimate
(figures b and c) shows a good deal of over-smoothing. The robust flow, shown in figures
¢ and f exhibits sharp motion boundaries, yet still recovers the smoothly varying flow of
the ground plane. Figure d shows the motion discontinuities where the outlier threshold
is exceeded for the smoothness constraint. The results are noisier than in the Pepsi can
example. This may in part be due the resolution of the images; the original images were
smoothed and subsampled to be 116 x 128 pixels.
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Figure 12: The Pepsi Sequence. a) The first intensity image. b, ¢) Horn and Schunck
optical flow. d, e, f) Black and Anandan motion discontinuities and optical flow at the end
of a 10 image sequence. g, h, i) Robust gradient results: flow discontinuities and optical

flow.

6.4 Commentary

The idea proposed is a very simple one: take a least-squares problem and make it robust.
Despite this simplicity, the experimental results indicate that the improvement in the flow
field, particularly at discontinuities, is substantial. With the robust approach, the flow field
can be smoothed without loosing the motion boundaries.

The only apparent drawback is the non-convex nature of the objective function. But good
algorithms exist to cope with this minimization problem and our experiments indicate that,
with SOR, we achieve faster convergence than standard Horn and Schunck implementation.
Consequently, current applications of optic flow which rely on gradient based approaches,
can be readily updated to incorporate this new robust scheme. The result will be more
robust flow estimates as well as information about motion discontinuities.
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Figure 13: Pepsi flow magnitude. The magnituded of the flow vectots is plotted for a)
the least-squares solution, b) the robust gradient solution.

7 Conclusion

We have presented a simple, robust, reformulation of the familiar least-squares optical flow
equation of Horn and Schunck. The robust formulation takes into motion discontinuities
and errors in the intensity constraint. A graduated non-convexity algorithm is presented for
recovering the optical flow. The results are exciting. The new robust gradient formulation 1s
less sensitive to image noise and does not smooth across motion discontinuities. In addition,
the technique is easy to implement and the paper presents all the details necessary for such
an implementation.

The robust gradient technique is currently being extended in a number of directions.
First, to cope with motions larger than a single pixel, a hierarchical coarse-to-fine scheme is
required [2]. Second, the minimization scheme presented can be made incremental by using
the incremental minimization framework of Black and Anandan [4, 5]. This will improve
performance by allowing the minimization to take place over the length of an image sequence.
Additionally, alternative minimization schemes are being explored; particularly the idea of
large-step Markov chains [16].
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