Requests For Hints That Return No Hints

Dana Angluin*, Yale University YALEU/DCS/RR-647 September 1988

Requests For Hints That Return No Hints

Dana Angluin * Yale University

September 1988

Abstract

We describe a simple algorithm that learns an arbitrary propositional Horn sentence in polynomial time using two types of queries: equivalence queries that return Horn clauses as counter-examples, and "derivation queries" that take a Horn clause and return one of the answers: "not implied", "subsumed", or "implied, but not subsumed". This improves the results in [1] in two respects: Arbitrary, rather than acyclic, propositional Horn sentences are learned, and derivation queries return strictly less information than request for hint queries. However, we argue that the algorithm of [1] is more reasonable in a practical sense.

1 Introduction

We refer the reader to [1] for definitions concerning propositional Horn clauses and sentences. We assume that there is a known set V of variables, and an unknown propositional Horn sentence ϕ_* over V to be learned using two types of queries:

- 1. The input to an equivalence query is a propositional Horn sentence over V. The answer is "yes" if ϕ is logically equivalent to ϕ_* . Otherwise, the answer is "no" and a Horn clause C implied by ϕ_* but not by ϕ or vice versa. C is a counter-example.
- 2. The input to a derivation query is a Horn clause C over V. If ϕ_* does not imply C, the answer is "not implied". If some clause of ϕ_* subsumes C, the answer is "subsumed". If no clause of ϕ_* subsumes C, but C is implied by ϕ , then the answer is "implied, but not subsumed".

Thus, equivalence queries are as in [1], but derivation requests are essentially request for hint queries that do not return a "hint" variable in the third case. The measure $D(\phi)$ of how far ϕ is from ϕ_* is defined in [1]. The main result is:

Theorem 1 The learning algorithm NIHL takes as input a propositional Horn sentence ϕ_0 and uses equivalence queries and derivation requests to find a Horn sentence equivalent to an unknown propositional Horn sentence ϕ_* . It runs in time bounded by a polynomial in the sizes of ϕ_0 and ϕ_* and the number of variables, |V|, and makes at most $D(\phi_0)+1$ equivalence queries.

^{*}Supported by NSF grant IRI-8718975

2 The algorithm NIHL

The algorithm NIHL is based directly on the algorithm IHL of [1]. It takes a Horn sentence ϕ over V as input.

The procedure $NIHL(\phi)$

- 1. Make an equivalence query with ϕ . If the reply is "yes", output ϕ and halt. Otherwise, the reply is a Horn clause C that is a counterexample.
- 2. If $\phi \vdash C$ then let C' be the clause returned by NFind-Incorrect(C), remove C' from ϕ , and go to step 1.
- 3. If $\phi \not\vdash C$ then let C' be the clause returned by NFind-Missing(C), set $\phi = \phi \land C'$, and go to step 1.

NFind-Incorrect. The procedure *NFind-Incorrect* takes as input a Horn clause C that is implied by ϕ and not by ϕ_* and returns a clause of ϕ that is not implied by ϕ_* . It runs in time and number of derivation queries bounded by a polynomial in the size of ϕ and the number of variables |V|. The method is to find a derivation of C from ϕ and then make derivation queries to test each clause C' of ϕ used in the derivation until one is found that is not implied by ϕ_* . This is essentially the same as the *Find-Incorrect* procedure of [1], except that the notion of a derivation must be expanded to include non-positive clauses.

NReduce. The subprocedure NReduce, takes as input a Horn clause C that is subsumed by some clause of ϕ_* and not implied by ϕ , and returns a clause of ϕ_* that is not implied by ϕ . The running time and the number of derivation queries used by NReduce is bounded by a polynomial in the size of its input clause. The method is a greedy search for a subset C' of the clause C such that some clause of ϕ_* subsumes C' but this is not true of any clause obtained by dropping one literal from C'. Such a C' is actually a clause of ϕ_* , and is clearly not implied by ϕ .

NFind-Missing. The procedure *NFind-Missing* takes as input a Horn clause C that is implied by ϕ_* but not by ϕ , and returns a Horn clause C' that is in ϕ_* but not implied by ϕ . It runs in time and number of derivation queries bounded by a polynomial in the size of ϕ and the number of variables |V|.

NFind-Missing does a breadth-first search of the consequences of the antecedents of C with respect to ϕ_* to find a Horn clause C' that is subsumed by some clause of ϕ_* but is not implied by ϕ . It then returns NReduce(C'). This breadth-first search makes the algorithm unwieldy in practice; it is now described in more detail.

If A is a set of variables, for each nonnegative integer i we define $Z_i(A)$ as follows. $Z_0(A) = A$. For each positive integer i + 1, let $Z_{i+1}(A)$ be the set of all elements x in

$$(V \cup \{\bot\}) - (Z_0(A) \cup \ldots \cup Z_i(A))$$

such that some clause of ϕ_* subsumes $(Z_0(A) \cup \ldots \cup Z_i(A) \to x)$.

If x is in $Z_i(A)$ then the shortest derivation of $(A \to x)$ from ϕ_* takes i steps. Since $V \cup \{\bot\}$ is finite, from some point on all the sets $Z_i(A)$ will be empty. The sets $Z_i(A)$ can be computed from A using derivation queries as follows. Assuming $Z_0(A), \ldots, Z_i(A)$ have been computed, for each x in

$$(V \cup \{\bot\}) - (Z_0(A) \cup \ldots \cup Z_i(A))$$

make a derivation request with the clause

$$(Z_0(A) \cup \ldots \cup Z_i(A) \to x).$$

Then x is in $Z_{i+1}(A)$ if and only if the reply is "subsumed". This computation can be done in time and number of derivation queries bounded by a polynomial in |V|.

As the sets $Z_i(A)$ are generated, NFind-Missing checks to see whether the clauses

$$C' = (Z_0(A) \cup \ldots \cup Z_i(A) \to x)$$

that are derived in one step from ϕ_* are implied by ϕ . Once such a C' is found that is not implied by ϕ , NReduce is called to reduce it to a clause in ϕ_* , which is then returned by NFind-Missing.

Suppose NFind-Missing is called with a Horn clause $C = (A \to z)$ such that $\phi_* \vdash C$ and $\phi \not\vdash C$. (z may be \bot or a variable.) If any value is returned, then C' is a clause that is not implied by ϕ and is subsumed by some clause of ϕ_* , by the definition of $Z_{i+1}(A)$, so by the correctness of NReduce, the value returned will be a clause of ϕ_* that is not implied by ϕ .

To see that the procedure must terminate, note that if for all nonnegative integers i, if every $x \in Z_{i+1}$ is such that

$$C' = (Z_0(A) \cup \ldots \cup Z_i(A) \to x)$$

is implied by ϕ , then every clause with antecedents A implied by ϕ_* is also implied by ϕ , contrary to the input assumption that $C = (A \to z)$ is implied by ϕ_* but not by ϕ . Hence an appropriate i and x must be found. The running time and the number of derivation queries is bounded by a polynomial in the size of ϕ and the number of variables |V|.

Proof of Theorem 1. To see that Theorem 1 is true, it suffices to note that each iteration of the main loop reduces the value of $D(\phi)$ by at least one, and when $D(\phi) = 0$, ϕ must be logically equivalent to ϕ_* . Hence, termination with a correct output is guaranteed after at most $D(\phi_0)$ iterations of the loop, and at most $D(\phi_0) + 1$ equivalence queries. The bounds on the time and number of derivation queries of the subprocedures *NFind-Incorrect* and *NFind-Missing* establish the bounds in Theorem 1.

3 Why NIHL is more impractical than IHL

The chief difference between IHL and NIHL is in the procedure that takes a clause C implied by ϕ_* but not by ϕ and returns a clause C' of ϕ_* that is not implied by ϕ . In the case of IHL, if the teacher answers requests for hints using one derivation of C from ϕ_* , the number of queries will be bounded by the size of that derivation. In the case of NIHL, the queries amount to uncontrolled forward-chaining from the antecedents A of C with respect to ϕ_* , which does not seem promising. Hence NIHL seems to be primarily of theoretical interest.

References

[1] D. Angluin. Learning propositional Horn sentences with hints. Technical Report, Yale University, YALEU/DCS/RR-590, 1987.