Requests For Hints That Return No Hints

Dana Angluin*, Yale University

YALEU/DCS/RR-647
September 1988

*Supported by the National Science Foundation, IRI-8718975

Requests For Hints That Return No Hints

£ 3

Dana Angluin
Yale University

September 1988

Abstract

We describe a simple algorithm that learns an arbitrary propositional Horn sentence
in polynomial time using two types of queries: equivalence queries that return Horn
clauses as counter-examples, and “derivation queries” that take a Horn clause and return
one of the answers: “not implied”, “subsumed”, or “implied, but not subsumed”. This
improves the results in [1] in two respects: Arbitrary, rather than acyclic, propositional
Horn sentences are learned, and derivation queries return strictly less information than
request for hint queries. However, we argue that the algorithm of [1] is more reasonable
in a practical sense.

1 Introduction

We refer the reader to [1] for definitions concerning propositional Horn clauses and sentences.
We assume that there is a known set V of variables, and an unknown propositional Horn
sentence ¢, over V to be learned using two types of queries:

1. The input to an equivalence query is a propositional Horn sentence over V. The answer
is “yes” if ¢ is logically equivalent to ¢.. Otherwise, the answer is “no” and a Horn
clause C implied by ¢, but not by ¢ or vice versa. C is a counter-ezample.

2. The input to a derivation queryis a Horn clause C over V. If ¢, does not imply C, the
answer is “not implied”. If some clause of ¢, subsumes C, the answer is “subsumed”.
If no clause of ¢, subsumes C, but C is implied by ¢, then the answer is “implied, but
not subsumed”.

Thus, equivalence queries are as in [1], but derivation requests are essentially request for
hint queries that do not return a “hint” variable in the third case. The measure D(¢) of
how far ¢ is from ¢, is defined in [1]. The main result is:

Theorem 1 The learning algorithm NIHL takes as input a propositional Horn sentence $o
and uses equivalence queries and derivation requests to find a Horn sentence equivalent to
an unknown propositional Horn sentence ¢,. It runs in time bounded by a polynomial in the

sizes of ¢o and ¢, and the number of variables, |V|, and makes at most D(¢o)+1 equivalence
queries.

*Supported by NSF grant IRI-8718975

2 The algorithm NIHL

The algorithm NIHL is based directly on the algorithm IHL of [1]. It takes a Horn sentence
¢ over V as input.

The procedure NIHL(¢)

1. Make an equivalence query with ¢. If the reply is “yes”, output ¢ and halt. Otherwise,
the reply is a Horn clause C that is a counterexample.

2. If ¢ - C then let C’ be the clause returned by NFind-Incorrect(C), remove C' from o,
and go to step 1.

3. If ¢ 7 C then let C’ be the clause returned by NFind-Missing(C), set ¢ = ¢ A C', and
go to step 1.

NFind-Incorrect. The procedure NFind-Incorrect takes as input a Horn clause C that
is implied by ¢ and not by ¢. and returns a clause of ¢ that is not implied by ¢,. It runs
in time and number of derivation queries bounded by a polynomial in the size of ¢ and the
number of variables |V|. The method is to find a derivation of C from ¢ and then make
derivation queries to test each clause C’ of ¢ used in the derivation until one is found that is
not implied by ¢.. This is essentially the same as the Find-Incorrect procedure of [1], except
that the notion of a derivation must be expanded to include non-positive clauses.

NReduce. The subprocedure NReduce, takes as input a Horn clause C that is subsumed
by some clause of ¢, and not implied by ¢, and returns a clause of ¢« that is not implied by
¢. The running time and the number of derivation queries used by NReduce is bounded by
a polynomial in the size of its input clause. The method is a greedy search for a subset C’
of the clause C such that some clause of ¢, subsumes C’ but this is not true of any clause
obtained by dropping one literal from C’. Such a C” is actually a clause of @+, and is clearly
not implied by ¢.

NFind-Missing. The procedure NFind-Missing takes as input a Horn clause C that is
implied by ¢, but not by ¢, and returns a Horn clause C’ that is in ¢« but not implied by
¢. It runs in time and number of derivation queries bounded by a polynomial in the size of
¢ and the number of variables |V|.

NFind-Missing does a breadth-first search of the consequences of the antecedents of C
with respect to ¢, to find a Horn clause C’ that is subsumed by some clause of ¢« but is not
implied by ¢. It then returns NReduce(C’). This breadth-first search makes the algorithm
unwieldy in practice; it is now described in more detail.

If A is a set of variables, for each nonnegative integer i we define Zi(A) as follows.
Zo(A) = A. For each positive integer i + 1, let Z;11(A) be the set of all elements z in

(VU{L}) = (Zo(A)U...U Zi(A))

such that some clause of ¢, subsumes (Zo(A)U...U Z;(4A) — z).

If z is in Z;(A) then the shortest derivation of (A — z) from ¢, takes i steps. Since
V U {1} is finite, from some point on all the sets Z;(4) will be empty. The sets Z;(A4) can
be computed from A using derivation queries as follows. Assuming Zo(4),..., Zi(A) have
been computed, for each z in

(VU{Ll}) = (Zo(A)U...U Z;(A))
make a derivation request with the clause |
(Zo(A)U...U Zi(A) - z).

Then z is in Z;11(A) if and only if the reply is “subsumed”. This computation can be done
in time and number of derivation queries bounded by a polynomial in |V|.
As the sets Z;(A) are generated, NFind-Missing checks to see whether the clauses

C' = (Zo(A)U...UZ(A) - z)

that are derived in one step from ¢, are implied by ¢. Once such a C' is found that is not
implied by ¢, NReduce is called to reduce it to a clause in &+, which is then returned by
NFind-Missing.

Suppose NFind-Missingis called with a Horn clause C = (4 — z) such that ¢, - C and
¢/ C. (2 may be L or a variable.) If any value is returned, then C’ is a clause that is not
implied by ¢ and is subsumed by some clause of ¢,, by the definition of Zi+1(A), so by the
correctness of NReduce, the value returned will be a clause of ¢, that is not implied by ¢.

To see that the procedure must terminate, note that if for all nonnegative integers 1, if
every ¢ € Z;41 is such that

C = (ZO(A) u...u Zi(A) — 1‘)

is implied by ¢, then every clause with antecedents A implied by @« is also implied by ¢,
contrary to the input assumption that C = (A4 — z) is implied by ¢, but not by ¢. Hence an
appropriate ¢ and must be found. The running time and the number of derivation queries
is bounded by a polynomial in the size of ¢ and the number of variables V]

Proof of Theorem 1. To see that Theorem 1 is true, it suffices to note that each iteration
of the main loop reduces the value of D(¢) by at least one, and when D(¢) = 0, ¢ must be
logically equivalent to @.. Hence, termination with a correct output is guaranteed after at
most D(¢o) iterations of the loop, and at most D(¢o) + 1 equivalence queries. The bounds
on the time and number of derivation queries of the subprocedures NFind-Incorrect and
NFind-Missing establish the bounds in Theorem 1.

3 Why NIHL is more impractical than IHL

The chief difference between IHL and NIHL is in the procedure that takes a clause C implied
by ¢. but not by ¢ and returns a clause C’ of ¢, that is not implied by ¢. In the case of
IHL, if the teacher answers requests for hints using one derivation of C' from &+, the number
of queries will be bounded by the size of that derivation. In the case of NIHL, the queries
amount to uncontrolled forward-chaining from the antecedents A of C with respect to ¢,
which does not seem promising. Hence NIHL seems to be primarily of theoretical interest.

References

[1] D. Angluin. Learning propositional Horn sentences with hints. Technical Report, Yale
University, YALEU/DCS/RR-590, 1987.

