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We consider a Galerkin-Finite Element approximation
to a-general linear elliptic boundary value problem
which may be nonselfadjoint or indefinite. We

show how to precondition the equations so that the
resulting systems of linear algebraic equations
lead to iteration procedures whose iterative
convergence ratés are independent of the number of
unknowns in the solution.

1.  INTRODUCTION.

In recent years, the application of iterative methods to
preconditioned Tinear systems has been extremely successful in a variety
of complex physical applications [3,16]. Many articles are available
in the literature which report on the favorable performance of such
methods [3,6,10,12].

The two aspects of a resulting algorithm consist of the
preconditioner and the underlying iterative method [1.8,12]. Various
jterative methods, the most papular being the conjugate gradient (CG) and
certain normal forms qf the CG method, have been considered extensively
both from a theoretical and an experimental viewpoint (see [10] and the
references therein). It has been demonstrated that, in general,
iterative é1gorithms with the same FheoreticaT convergence rates



converge, in practice, at about the same rate]. The question of choosing
an appropriate preconditioner is much more difficult. The - .
preconditioner must in some way be similar to the inverse of the system
which is being solved. Consequently, the evaluation of the
preconditioner usually requires the solution of a system of equations and
so if the method is to result in an improvement of computational
efficiency, the preconditioner must have some property which makes it
easier to solve than the original system. The iterative convergence

rate of the algorithm is extremely sensitive to the choice of
preconditioner. Indeed, the choice of a more anpronriate

preconditioner may reduce the number of iterations by an order of
magnitude or more in a given problem.

In this paper we illustrate some techniques for analysing
preconditioned iterative methods for nonsymmetric problems. We will
discuss the problem of choosing an appropriate preconditionef and study
two different iterative algorithms. Typical finite element
discretization of an elliptic boundary value problem leads to a matrix
problem

(1.1) Mc = d.

where M is the "stiffness" matrix associated with the discretization
and is nonsingular and c¢ and d are vectors. We seek a
preconditioner M;1 such that M] is symmetric positive definite,

(M])-] js easier to compute than (M)‘K and (M])'] Yapproximates

in some sense" (M)". System (1.1) can of course be replaced by the
equivalent system
t =1 -1
Mo 1

The matrix M'= Mt‘M;] M{1 M is symmetric positive definite and the .

first algorithm is defined by applying the conjugate gradient method
to (1.2). Alternatively, (1.1) is equivalent to the problem
T ut y-1 1

IS BV, B
(1.3)  Mp' MMM = M MU M d

(1.2) M

) The number of iterations to reach a desired accuracy may vary by at most
a factor of five [6,10].




The matrix M" = M;1 Mt M{] M although not usually symmetric, is a

symmetric operator with respect to the inner product defined by
<<W,V>> = (M] W) V. -

The CG method can be applied to (1.3) in the <<e,->> inner product

and leads to Algorithm II of Section 2. Our analysis suggests that the
preconditioned iterative method based on (1.3) is more robust than that
based on (1.2) since results for (1.2) require additional hypotheses. In
fact, we have not been able to obtain results for the scheme based on
(1.2) unless the elements used in the methods are of "quasi-uniform"
size.

We shall present two general theorems which can be used to derive
certain discrete stability estimates. Such estimates lead to bounds on
the iterative convergence rates of algorithms for finding the solution of
matrix equations resulting from the finite element discretization of
elliptic boundary value problems which may be nonsymmetric and/or
7ndef1n1te We show how these general resu1ts can be applied in a
finite element approximation to the Poincare prub1em Both strategies
depend upon a priori stability estimates for the continuous problem and
use the approximation properties of the discretization to derive the
stability estimate for the matrix problems.

The f1rst theorem leads to a strategy which uses a positive def1n1te
symmetric problem as a preconditioner for a more compl1pated
nonsymmetric and/or indefinite problem. The problem of the efficient
solution of positive definite problems, although not completely solved,
has been extensively researched. For example, matrices corresponding
to positive definite symmetric problems often have certain diagonal
dominance properties which imply that various sparse matrix packages
[9,11] can be used for their solution. Also, there are "fast solver"
algorithms available for certain elliptic problems on a variety of
domains [5,14,15]. Our analytical results guarantee that the iterative
convergence rate for our algorithms is independent of the number of
unknowns in the system. Thus the cost of convergence to a given
accuracy grows linearly with the size of the problem.

The first strategy is applicable to, for example, problems where
the differential operator A can be decomposed into a symmetric positive
definite operatof L and a compact (but not small) perturbationv B. The



operators A, L, and B are approximated by discrete operators Ah’
Lh’ and Bh derived by finite elements. The discrete approximation
to the solution u of the original problem is defined as the solution

of

(1.4) (Lh +B )U = F.»

h)
Problem (1.4) can be replaced by the equivalent problem

-1

= L,

(1.5) 'L;] (L, +8 F L

h h

We derive the appropriate stability estimates for (1.5) which guarantee
that the CG method applied, with respect to <<-,+>>, to (1.3) converges
at a rate independent of the number of unknowns in the discretization. In
addition, the stability results yield immediately estimates for the
discretization error u-U.

We give a second theorem which, under additional hypotheses,
provides another stability estimate. This estimate, under a further
‘restriction, can be used to show that the CG method applied to (1.2)
converges to the solution of (1.2) at a rate which is independent of the
number of unknowns in the discretization.

An outline of the remainder of the paper is as follows. In Section 4
we describe two conjugate gradient algorithms for matrix problems.
Section 3 gives some preliminaries and notation to be used in the paper.
In Section 4 we state the type of estimates needed to guarantee rapid
convergence for some iterative methods for solving nonsymmetric and/or
indefinite problems. Two theorems used to derive the stability estimates
are given in Section 5. In Section 6 we apply the theorems to a finite
element approximation of a general elliptic boundary value problem.
Finally in Section 7 we apply a stability estimate to bound the
discretization error.

2. CONJUGATE GRADIENT ALGORITHMS.

We describe the algorithms which result from applying the conjugate
gradient method to the preconditioned systems (1.2). and (1.3). In either
case we assume that we are given an initial approximation < to the
solution ¢ of (1.1) and the iterative algorithm produces a sequence of




iterates ¢ for i > 0. We stop the iterative procedure when the
residual error d-Mc becomes sufficiently small. We note that applying
the conjugate gradient method to preconditioned systems as

illustrated in the following algorithms is not-novel however we include

the details for completeness.
Applying the conjugate gradient method to (1.2) gives the following
algorithm: o

ALGORITHM I. M' = M® M;’ M;‘ M

S S e R
(1) Define s = Py M M.l M1 (d Hco).

(2) For 1>0 define

r.°p,.
1 p‘l

e =™ ""'"p'iTo P

Cie1 TG T Py

= - .
Fiep =T T MRy
5. = (M ?‘1.+])° pi

i (M py)epy
Pis1 = Tie1 = 81 P4
Applying the conjugate gradient method in the <<e,>> inner

product to (1.3) gives the following algorithm:
[T E— ‘] t ‘1
. ALGORITHM II. M" = M1 M M] M.

i = = =T gt -Ir
(1) Define ro = Pg M] M M (d-McU).

(2) For i >0 define

,“"1'?) ° Py
% 7 TP T (M p;)

141 T 4 T % Py

Pl T M0y



Oy e (0 py)
(M,o)o(M"p) ..

Pis1 = Ti+1 "By Py - .

3. PRELIMINARIES AND NOTATION.

Throughout this paper we shall be concerned with solving boundary
value problems on a bounded domain Q contained in R~ with
boundary T . To state our stability estimates, we shall make use of
various spaces of functions defined on Q . The space LZ(Q) is the
collection of square integrable functions on Q ; that is,a function f(x)

defined for (x,y) in @ is in L%(q) if

[ Flx,y)? dxdy < =
Q -

The LZ(Q) inner product is defined by

(f,g) = f f(x g(x,y)dxdy for f,gc¢ LZ(Q).

We shall also use the Sobolev space H](Q). Loosely, a function f is

in H](ﬂ) if f, %5- and %5 are all in LZ(Q). Thus for

functions in H](ﬂ), we can define the Dirichlet form by

af 3g, 3f 3¢

We shall also denote the Lz(r) inner product by

<f,g> = [ fg ds .
T

For any positive integer r, the Saobolev space of L (Q)-functions
whose: rth order partial derivatives belong to L (n) will be denoted by
H ().

We also let C and C; for 1 >0 denote positive constants. The
values of C and C1 may be different in different places however C
and c1 shall always be independent of the mesh parameter h defining



the approximation method. Thus C and Ci will always be independent
of the number of.unknowns in the discretization. «

To define the approximation of later sections we shall need a
collection of finite element approximation suRQspaces {Sh}, 0<h<1,
contained in H](Q). Typically, finite element approximation subspaces
are defined by partitioning the domain Q@ into subregions of size h and
defining Sh to be the set of functions which are continuous on Q and
piecewise polynomial when restricted to the subregions (see [4,7,17]
for details). For example, one could partition Q 1into triangles
of size h and define Sh to be the functions which are continuous
on © and linear on each of the triangles. Alternatively, Q could
be partitioned into rectangles and Sh could be defined to be the
functions which are continuous on Q and bilinear on each of the
rectangles.

4. ESTIMATES FOR THE CONJUGATE GRADIENT METHOD.

Our analysis of iterative algorithms for preconditioned systems is
based on stability estimates for the continuous or nondiscrete problem
and the error estimates between the continuous solutions and their
discrete approximations. To study the properties of the solutions of
boundary value problems in partial differential equations, it is
natural to consider operators in their basis free representations since
complete sets of basis functions are usually too complex to be of much
practical value. Consequently, it is natural to think 6f the process
of solving for the discrete solution of the finite element equations as a
basis free operator on the finite element subspace Sh of H'(Q) . We
represent differential and solution operators by the notation A, B,

L, or T whereas their discrete counterparts shall be respectively
denoted A, B» L, and Tp.

The CG method can be applied to find the solution X of the problem

(4.7) Lh X=Y
where Lh is a symmetric positive definite operator with respect to some

~inner product (cf. [13]). The CG algorithm requires an initial.guess X, and
produces an approximation Xn to X after n iterative steps. It is



wall known that

A-1\"
(4.2) X=Xl <2 <—/i:+%> X=Xl

where Yy 1is the condition number for Lh and is defined to be the
ratio of the largest eigenvalue of Lh to the smallest. We note that
if Lh satisfies the inequality

2 .
(4.3) Co “NHH < Ly Ws W)y < CT“”“H for all We S,

--where (-,-)H denotes the H-inner product, then the condition
number vy is bounded by C1/C0. Thus estimates of the type (4.3)
in conjunction with (4.2) lead to convergence estimates for the CG
method applied to (4.1). '

The problem of finding the finite element solution in the examples
of later sections can be reduced to solving for the solution X of a
nonsingular operator equation :

(4.4) A X =Y

where Ah is a nonsymmetric and/or nonpositive operator on Sh. We
shall first precondition the system, multiply by the adjoint and
then apply the CG method in the appropriate inner product.
" We assume that we have a symmetric positive definite operator

Th defined on Sh for a preconditioner. The types of preconditioners
for which we can get analytic results will be described in later sections.

We note that problem (4.4) can be replaced by the problem of
finding X in S satisfying

T. A X = A¥ Th T. Y

(4.5) A* T .

h h 'h h h
where A; 2is the LZ(Q)- adjoint of Ah‘ The CG method with respect
to the L%(Q) inner product can be used to solve (4.5). The
convergence rate of the resulting algorithm is bounded by (4.2) in
the LZ(Q) norm where Y is bounded by C]/C0 for any C0 and

(:.l satisfying ‘



2 N 12 ‘ 2
) Oll ”LZ(Q) - “ h'h hLZ(Q) - ']“ “LZ(Q) or a € h

~ .

In certain applications, estimate §4.6) can be used to derive bounds on
the iterative convergence rate of A]gorithm I.-
Alternatively, problem (4.4) is also equivalent to the problem

of finding X 1in Sh satisfying

* = *
(4.7) Th Ah Th Ah X Th Ah Th Y .

The operator B =T, A; T Ah is symmetric positive definite in the
;1 W, V). Applying the CG method to the solution of
(4.7) in this inner product gives an algorithm which converges at a rate
described by (4.2) where Yy §_C1/C0 for any C0 and C1 satisfying

inner product (T

-1

(4.8) C h

TODWH) < (T, AW, A

-1
h Ay W) 5-C1(Th‘ W,W) for all We Sy, -

o! h

In applications, estimate (4.8) is used to derive iterative convergence
rates for Algorithm II.

5. STABILITY THEOREM.

~ In this section we give general results which can be used to derive
estimates of the form (4.6) and (4.8).

Theorem 1. Let R be a continuous operator and Rh He its discrete
approximation. Assume that the following stability and error estimates
hold: ’

for all 8 e Sh.

(5.1) ] < c{||[(I+R,) © + |6 }
901 gy = SR Bl gy = Wl 200
For any € >0 there exists C'E such that

1
5.2 C I+R + f 1 H (Q).
(5.2) “¢“L2(Q) L [t )¢uL2(9) Eu¢”Hl(g) or all ¢ € H'(Q)

10
5.3 R-R < Ch for all H'(Q).
(5.3) I h)¢|lL2 @ = u¢uH1(m or all ¢ ¢ H (Q)



Then there exists h0>- 0 such that for h < hO

(5.4) [lenH](Q) < C“(HR*‘)GHH](Q) for a‘1'1 8esS, .

Remark 1.. Estimate (5.4) combined with

(5.5) [{(I+Rh)e“HT(Q) < cueuH](Q) forall €S,

guarantees a uniform (independent of h) iterative convergence rate for
the CG iteration for the solution of

*

(I+Rh) (I+Rn)U = F

where * denotes the adjoint with respect to the H](Q) inner

oroduct. In our finite element applications, I+Rh = ThAh and

00{191121 < (T,;] 8,8) < Clllellzf forall ees "
H (@) H(Q) v

Thus (5.4) and (5.5) will imply (4.8) for the particular examples of

the next section.

1 1 2
h and Th

be their corresponding discrete approximations. Assume that the following

Theorem 2. Llet T and T2 be continuous operators and T

three estimates hold:

| 1 2 1 ' 2
(5.6)  CyllT u"Lz(g)'i T uﬂLZ(Q) < GliT uHLZ(Q) for all  u e L°(Q).

R 2 2
(5.7)  J(T°-Tp) u“LZ(Q) < Ch HU“LZ(Q) for all  u e L°(Q) .

5.8) ()T v < ché|u for all Ue S
(5.8) : "Lz(n)’ I "Lz(m or a e Sy

for i =1,2. Then

<Cful?,  forall ves

2 2,-14-1 ..,2
(5.9) c.llu o< ITE(T) T
ol ”:.2(9) < LT, "LZ(Q (@)

) h




Remark 2. Estimate (5.8) is an inverse property for the operator T;
and in applications is derived from the hypothesis that the mesh
elements are of “"quasi uniform" size. Estimate (5.9) coincides with

-1 -
- 1 -
(4.6) when Ah = (Th> . 3

Remark 3. The proofs of the above two theorems are simple and
consequently will not be included.

6. THE POINCARE PROBLEM.

To illustrate our approach we consider a finite element
approximation of the Poincaré problem in this section. We consider the
following model problem:

-Au + du Ku=f in Q
aX
(6.1)
ou au Lo -
an.+ B 5 + Yu AO on T
32 82
where A = ——§-+ R -and T are respectively the normal and
X oy

tangential directions along T. For simplicity we have considered
constant coefficients in defining the differential equation as well as
the boundary condition. Our results and iterative algorithms extend to
variable coefficient problems without any comp]ications.' We also assume
that the solution of (6.1) exists and is unique.

The finite element approximation to (6.1) can then be defined by the
Galerkin technique. Multiplying (6.1) by an arbitrary function ¢ and
integrating by parts shows that the solution u satisfies

(6.2) D(u.0) + (2Lo) + K(u,0) + B 22 + yu.9> = (Fr0) .

The finite element approximation U to u is then defined to be the
function U in Sh which satisfies

(6.3) D(U,8) +-(%%,e) + K(U,8) + <B %%-+ yU,8> = (f,8) for all 8eS,.



Equation (6.3) can be used to derive a system of equations of the form
(1.1) defining the discrete solution U, i.e., using a basis -for Sh’
(6.3) gives N equations for the N unknowns defining- U in that
basis. " -

To describe iterative methods for the solution of (6.3) and/or
the corresponding matrix system, we shall need to use some operator
notation. First, we consider the Neumann problem

w-Aawz="Ff in Q

(6.4)

'a—n'=0 on T

Given a function f in LZ(Q), the solution w of (6.4) is in HZ(Q)
if as we shall assume, T is sufficiently smooth. We denote the

solution operator T as the map which takes f to Tf =zw. T is a
bounded map of LZ(Q) into HZ(

(6.4) is the function” W in S, satisfying

Q). The finite element approximation to

(6.5) D(W,8) + (W,8) = (f,8) for all 8 e Sh

The discrete solution operator Th can then be defined as the map which
takes f to Th f = W. Th is a map from LZ(Q) onto Sh and the
following convergence estimate is well known (cf. [2]):

(6.6 (T, -T)f < Ch|f
) Ty, “H1(S‘2)- l lng(m

In a similar manner, we can define solution operators for the following
variational problems:

D(X,0) + (X,0) = (3£,8) + (k=1)(z,4)

and

<g ‘g"';)' + Yw,¢$>

D(w,0) + (v,0)

We define the solution operators Rliz X and Rzm = ¢y. The corresponding



finite element approximations are given by the solutions X and Y in

Sh satisfying

D(X,8) + (X,8) = (%§36) + (K-{)(Z,e) for“all 6 ¢ S,

and

o(Y,8) + (Y.8)

<R g%-+ yws8> for all 6 € Sh s

respectively. The discrete solution operators are then defined by

R; z= X and Ri w =Y and the following convergence estimates hold:
(6.7) IR -RNzl| , < cnlz]l
Lo (Q) H' ()
and
2 2
(6.8) [{(Rh - R7)w]| 5 . 2 Chlwl] 1 .
L7(Q) H' (@)

In terms of operators, problem (6.1) is equivalent to

T Ryu=TAu=TF.

(I +R
The existence and uniqueness properties of solutions of {6.1) can be used
to show that for any € > 0 there is a constant Ce such that

(6.9) 6 < ¢ [[(1+R'+R?)0 + €0
Il 2, <% | Iz, Wl 2,

The discrete estimate

1,92
(6.10) ueu!ﬂ(m _<.c{|l(1+Rh+Rh)enH](m + |8l ] } for all @ € S,

2(q)

is immediate from the definition of R; . Problem (6.3) can be stated
in terms of operators as

1

(I+Rh

2 = =
+ Rh)U = ThAh U Th f.



Applying Theorem 1 we get the following stability estimate:

2 2 2 '
(6.11) COHWHH](Q) < T A whH](Q) < C1(IWllH]'Q 'for all Wes,.

The second inequality in (6.11) can be easily derived from the definitions.
The constants CO and C] in (6.10) are independent of the mesh
size h. Now it is easy to check that

-1

(6.12) (Th

W,V) = D(W,V) + (W,V) for all W,Ve:Sh .
Comparing (6.12), (6.11), (4.7) and (4.8) implies that the CG method
applied to

* = %*
(6.13) ThAh ThAh u. ThAh Th f
converges with a reduction per iteration which can be bounded
independently of the number of unknowns.
Let M and M1 respectively denote the "stiffness" matrices
corresponding to (6.3) and (6.5) in a given basis 8 = {ﬁi}?=1

for Sh. If the coefficients of a function W in Sh in terms of the
basis 8 are represented by the vector c¢ then

1t
M

1

t

d=M M Mc

gives the coefficients of Th A; ThAh W in terms of 8. Consequently,
the sequence of vectors ¢ generated by Algorithm II gives the
coefficients of the sequence of functions generated by the CG method
applied to (6.13). Thus the iterative convergence estimates for
the CG method applied to (6.13) imply iterative convergence rates for
Algorithm II.

The above procedure is an example of an iterative convergence
analysis in H](Q). We also note that if T,_ is another discrete

h
operator on Sh which is spectrally equivalent to Th in the sense that

41
(6.14)  ColTy WW) < (T, WH) < (T W,W) for all WesS,



then T, can be replaced by T; in (6.11). ) .
We next consider an iterative analysis in L7(Q) based on

Theorem 2. Let T]: LZ(Q) - H2(9)~ denote the so]ﬁtion dperator

for problem (6.1) with g =0, i.e., T f=u. The solution operator T

satisfies an estimate of the form

1

1 5 1
(6.15) C, T 1| < |ITfl <C, T .
= 2 = i i
0 L2(a) RO L2(a)
We have restricted to the case of B =0 since (6.15) is well known in
that case. Assume that both T] and T can be approximated in the same
finite element subspaces and Tet Tl and_ Th denote the corresponding

discrete solution operators. The following convergence estimates are well
known for a wide class of finite element applications [27]:

(6.16) (1l - the < Chl|f
iTh “LZ(Q) <ol ”LZ(S’Z)

We finally assume that the inverse properties

- (6.17) (tHy e < ch™? |8 , 8¢S, ,
- el 2 gy = Pl * = 0

are also satisfied. Estimates of the type (6.17) can usually be
derived from inverse assumptions for the subspaces. Applying Theorem 2
gives that

o1yl
(6.18) Co””“l_‘zm < Ty () wan(m < n:]uwul_2 for all We S

) () n

Estimate (6.18) guarantees that the CG method applied in LZ(Q) for the
solution of

(6.19) A; ThThAh X = A; ThTh f

where Ah = (TJ)'] , will converge to the solution X at a rate which

is independent of the number of unknowns in Sh’ The resulting algorithm
does not however correspond to Algorithm I. To guarantee rapid iterative



convergence rates for Algorithm I we must make additional assumptions.
Again we use the basis 8 for Sh . If We Sh we denote by Cw the
coefficients of W 1in the basis 8. We require that

(6.20) CA(C,,  C\) < (W,W) < C.(C,-C
0'"W W — LZ(Q)—T T °W

Estimate (6.20) states that the Gram or mass matrix is "equivalent"
to the coordinate inner product. Combining (6.19) and (6.20) implies

w) for a}] We Sh .

2 -1 2 L
(6.21) Co le [T < Imp M c” < gel
for all N dimensional vectors c. Estimate (6.21) is finally an

estimate which can be applied to guarantee uniform iterative convergence
rates for Algorithm I.

7. AN ESTIMATE FOR THE DISCRETIZATION ERROR.

In order to estimate the discretization error u-U with u and U
defined by (6.2) and (6.3) respectively, we introduce the Hl(Q)-
projection Ph onto Sh’ It is defined for ve!i](Q) by

(7.1) D(P, v,8) + (Ph v,8) = D(v,8) + (v,8), forall ©6¢ Sh .

h

It is well known that Ph satisfies
-1
(7.2) J1-P OV, < ]
) H'(Q)

for ve Hr(Q) and some r > 1 which depends on the choice of
5, (cf. [2,71). In view of (7.2) to estimate u-U we need only consider

Phu-U . Hence we apply (5.4) to obtain

|lPhu-U “H](Q)i C"(I+Rh)(Phu-U)[lH1(m,

. < 2 e 1 1 52 2
with Rh Rh + Rh . From the definitions of R, Rh’ R™ and Rh we

see that

(I+Rh)(Phu-U) = Ph(R]+R2)(Ph-I)u .



Hence

P, u-U < clp, (R1+R%) (P, -1)u]
TR XL IR

from which it follows immediately that

(7.3) {’-P -y ! ch(I-P )ul
i"p 4 hH1(Q)f' fi( h UHH](Q)

Thus using (7.2) we obtain the estimate for the discretization error,

Hy-U| < ch™ T
liu [‘H](Q) - nu“Hr(Q)
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