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Abstract.  Generic communication primitives can be used for many algorithms on Boolean
cubes. Here we focus on expressing such primitives and algorithms for matrix multiplication in
terms of shared memory type programming primitives. All processors share the same global ad-
dress space. The communication primitives realize nearest-neighbor communication and global
operations such as broadcasting from one processor to a set of processors, the reverse operation
of plus-reduction, and matrix transposition (dimension permutation). We consider both the case
where communication is restricted to one processor port at a time and the case of concurrent
communication on all processor ports. The communication algorithms are provably optimal
within a factor of two. We describe both constant storage algorithms and algorithms with re-
duced communication time but with a storage need proportional to the number of processors
and the matrix sizes (for a one-dimensional partitioning of the matrices). The choice of the
described matrix multiplication algorithms depends on machine size relative to the matrix sizes,
the matrix shapes, and the architectural parameters of the machine.

1 Introduction

Making good use of the locality that exists in many computations is a necessity in high per-
formance computation and current technologies. The communications bandwidth at the chip
boundary is one to two orders of magnitude less than the on-chip communications capability in
submicron MOS technologies. Similarly, the on-board communications capabilities are an order
of magnitude higher than the bandwidth at the board edge. The communications characteristics
of current technologies suggest multiprocessor architectures in which processors with their own
storage modules are interconnected by a network of some type. Currently, the dominating inter-
connection networks are two-dimensional meshes, n-dimensional Boolean cubes, and butterfly
networks. In a mesh of two or more dimensions, and Boolean n-cubes, there is also a locality in
the network. For instance, in a Boolean cube there are (";) nodes at distance [ from any node.
The number of local references per remote reference for optimum use of the locality of reference
for many computations scales as a%(%)%, or alog %, where o is a constant, § is the number
of variables per object (assuming that all objects require the same number of variables), and
d is the dimensionality of the data structure. The range of values for 8 is typically 1 - 1000.
Examples of computations of the former type, are many matrix operations and relaxation. Sort-
ing and Fast Fourier Transform computations have the latter behavior [7]. The significance of
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Function Local Storage
32k 1M 32M 1G

Min. 1k
Matrix multiplication | 3 10 50 300 1600 10000
3-D relaxation, 8 = 8 % 0.8 % 8 35§ %ﬁ
FFT 1 10 16 225 29 35

Table 1: The number of local references per remote reference as a function of local storage.

locality is illustrated in Table 1. For a chip, the reduction in bandwidth requirement at the chip
boundary is one to two orders of magnitude for optimum use of locality of reference, and at the
board level the reduction is up to three orders of magnitude.

In order to take full advantage of locality in an architecture with a network like a Boolean
n-cube, it is important to map the data into the storage of the individual processors such that
not only are a majority of the references local, but also when references are made to the storage
of other processors the communication time is minimized. Clearly, it is desirable to minimize
contention in the network. If all communication between processors is at unit distance, then
there will be no contention. For some computations there exist algorithms and data allocation
schemes such that the computation only implies nearest neighbor communication, even though
the complete computation requires global communication. For communication of large data
volumes in networks with multiple paths between source and destination it is also of interest to
make efficient use of this capability.

For architectures with the storage distributed among the processors it is of considerable
interest to find generic global communication primitives that allow algorithms to be expressed
concisely, yet have efficient implementations. The generic communication primitives can be
viewed as part of the architecture, and implemented efficiently as part of the communication
system. The programmer does not need to know about the topological properties of the network.
Examples of generic global communication primitives are:

e Pairwise exchange;
e Rotation;
¢ Copy/Reduction;

e Permutation.

A global copy/reduction can be implemented using either of the first two primitives.

In this paper we focus on expressing generic communication primitives in programming prim-
itives for a shared address space. Optimal routing and scheduling disciplines for the implementa-
tion of the primitives on Boolean n-cubes are given in [11,10,5] for two different communication
capabilities of Boolean cube configured multiprocessors, namely communication on one port at a
time for each processor, or all ports concurrently for every processor. The computation we have
selected for illustration of a global programming model for distributed memory multiprocessors




is the multiplication of two matrices by algorithms of arithmetic complexity O(PQR) for a Px Q
matrix and a @ X R matrix. In [9] we showed how the choice of algorithm with respect to to-
tal execution time (arithmetic and communication) depends on the shapes of the matrices and
the architectural parameters, such as arithmetic and communication speeds, communications
overhead, and the number of processors relative to the matrix sizes.

The outline of the paper is as follows. In the next section we introduce the notation used
throughout the paper, define the address map, and give a brief overview of the algorithms
described in the paper. Section 3 introduces the generic communication primitives encapsulating
the network features. In section 4, which is the main section of this paper, we show examples
of algorithms based on emulating linear arrays or two-dimensional arrays in the Boolean cube.
Algorithms making use of the unique properties of the Boolean cube network are also seen here.
Our conclusions are summarized in Section 5.

2 Preliminaries

We consider the matrix operation A «— CxD, where all matrices are dense, C a P X Q matrix, D a
@ X R matrix, and A a Px R matrix. Some of the parallel algorithms for the matrix multiplication
that we consider are based on the emulation of a one dimensional array of processors. Others are
based on the emulation of a two-dimensional array, some on the emulation of three dimensional
arrays, and some are recursive in nature making direct use of the Boolean cube topology. For the
emulation of two-dimensional meshes, the dimensions of the Boolean n-cube of 2" = N nodes
are factored into two groups such that n; dimensions are used for the encoding of row addresses,
and ny = n — n; dimensions are used for the encoding of column addresses. The number of
processors in a column is N3 = 2™ and the number of processors in a row is Ny = 272, A three
dimensional partitioning of the cube is made such that N = N x N x N} (2™ x 2"2 x 2"). It is
well known that a lattice of lower dimensionality than n can be emulated preserving proximity
on a Boolean n-cube, see for instance [8].

The matrices C and D, and the product matrix A are assumed to be distributed among all
the processors in the same manner, except in the three-dimensional case. We assume P = 2P,
Q =27 and R = 2". The row and column indices of the matrices require p + ¢ bits for C, g + r
bits for D, and p + r bits for A. We further assume that the address field is partitioned as
follows:

(row address|column address).

For algorithms based on the emulation of a linear array, the rows, or columns, are assigned

to processors either cyclicly, or consecutively [8]. The address map is easily defined in terms of
the address dimensions as follows:

Cyclic Row : (row address |column address),
™
Consecutive Row : (row address|column address),
™
Cyclic Column : (row address|column address),
™D




| Part. | Storage | Encoding | Processor address |

consec. | binary (Jg—1Jq—2 - - -Jg—n)
column Gray (G(jg=17g—2 - - - Jg—n))
cyclic binary (Jn—1Jn—2---Jo)
Gray (G(Jn-1Jn-2---Jo))
binary (Tp—19p=2 - - - Tp—n,
consec. Jg—1Jq=2 « - - Jg—n3)
Gray (G(tp=1tp=2 - - - Tp—ny )|
2-dim. G(jq_qu_g .. 'jq—nz))
binary (tng—1%ng—2---%0
CyCliC jnz—ljnz—? .- .70)
Gray (G(ing=1%ny—2 - - -20)|]|
G(Jny=1Jny2 - - - Jo))

Table 2: Various ways of assigning matrix elements into processors.

Consecutive Column : (row address| column address),
™
where rp denotes real processor addresses. The remaining dimensions of the address field define

local memory addresses. For algorithms based on the emulation of a two-dimensional array the
address map for consecutive partitioning of both rows and columns is

Consecutive Row [Column : (row address| column address).
N—— N e’
™ ™

For the emulation of lattices the real processors addresses are encoded in a Gray code.
Initially, an element of C and D is assigned to only one processor. Table 2 summarizes the
address maps for one- or two-dimensional partitionings, consecutive or cyclic storage [8], and
binary or Gray code encoding [12,8]. In the two-dimensional partitioning, each column (row) is
assigned to Ny (NN;) different processors. The row partitioning is obtained by replacing (7, q) by

(%, p). By replacing (%, ,p, ¢) by (4,k,q,7) or (i,k,p,r), the processor assignment for the matrix
element dji (of D) or a;; (of A) is obtained.

For an algorithm based on a three-dimensional array, matrix C is partitioned as N} block
columns and matrix D is partitioned into N block rows. Each block column of C' and each
block row of D are further partitioned into Nj x N} blocks. The resulting matrix A can be
partitioned into a form of N{2% x N42"~% blocks, where z is an integer, 0 < z < n4, with the
same communication complexity. The address maps for the matrices C and D are

C : (row address| col umn address
(\,./ IW )’
Ny Ny N,

D : (row, gddress| col umn address).
S ~—~
N; N N;




If the matrices C' and D are initially assigned to an Nj X N, processor array, then some
communications in the form of dimension permutations [5] are required to rearrange the data
allocation for a matrix multiplication in which all three nested loops in a matrix multiplication
algorithm (expressed in a conventional language) are parallelized. This communication has a
data communication time that is of lower order than that for the matrix multiplication, except
if there are very few elements per processor.

In matrix multiplication each element of C' in column j interacts with every element of D
in row j, and every element of D in row j interacts with every element of C in column j.
This communication need is apparent, if the multiplication is expressed as a sequence of rank-1
updates. All-to-all broadcasting, or copy, is required in the subspaces defined by the column
dimensions for rows of C, and in the subspaces defined by the row dimensions for the columns of
D. Reduction is required for the inner products. The broadcasting operation can be performed
as a sequence of rotations, which yields a linear time, constant storage algorithm. It can also be
performed as a sequence of exchange operations in the different dimensions of the cube. For an
exchange sequence in the form of a binary-reflected Gray code, a linear time, constant storage
algorithm, is again obtained. For a one-dimensional partitioning of the matrices, the former is
a one-dimensional version of Cannon’s algorithm [1], and the latter a one-dimensional version
of Dekel’s algorithm [4]. By combining a doubling algorithm with the exchange algorithm, n
and ny communication steps suffice for all-to-all broadcasting. However, the storage requirement
per processor (buffer size) doubles for every step. These two techniques can be combined [9].
In the two- and three-dimensional cases it is necessary to align the operands C and D in order
to make full use of the processing capability. The address map defined above does not provide
the necessary alignment. The alignment can be based on rotations, or more general, but still
restricted permutations, such as dimension permutations. Matrix transposition is a particular
form of dimension permutation that is used in some of the algorithms described in Section 4.

In the case that communication can take place concurrently on several ports of every pro-
cessor the algorithms should be constructed to take advantage of this fact. We describe several
such algorithms. One frequently used technique to create several concurrent communication
operations for each processor, is to generate several communication sequences by performing the
communication for different sequences in the same order of cube dimensions, cyclicly, but with
different starting dimensions.

In the following, all algorithms are described in a Crystal-like notation [2,3]. Each instruc-
tion is defined as a function. By interpreting the first one, two, or three parameters as processor
identifier(s) in the one-, two-, or three-dimensional partitioning cases, parallel codes for the
algorithms are obtained. The communications are specified assuming a global address space.
The processor indices are part of the global address. For a naive implementation of the com-
munications, for instance by using a noncombining router, and without using multiple paths
between pairs of processors, efficiency may be lost due to poor scheduling (collisions), or poor
path selection (non-minimum path lengths, single paths). We expand the communication prim-
itives (specification) into a sequence of nearest-neighbor communications, also described in the
Crystal-like notation. Execution of the communication code replaces the high-level commu-
nication specification. The communication primitives we use are all-to-all broadcasting on a
(sub)cube, all-to-all reduction (in a divide-and-conquer manner) [11], and matrix transposition
(dimension permutation).




In the Crystal-like codes each function of [ parameters may be optionally followed by an
expression “ over domain; X domainy X --- X domain;”, where domain; is the domain of the
ith parameter. [z,y], y > @, denotes the set of integers {z,z + 1,...,y}, and [z,y) denotes
{z,z+1,...,y— 1}. The statements enclosed between < and >> form a conditional statement.
For example,

< condy — resulty,
condy — resulty,
else — results >,

reads as “if cond; then result;, else if conds, then result,, else results”. \+-[f(5)*g9(4)|0< j < ]
denotes Z}”;(}(f(j) *g(7)). We use ¢(¢,7),0<i< P,0< j <@, to denote the matrix element
at the ¢th row and jth column of C. d(j,k) and a(i,k) are similarly defined. For matrices
distributed over a set of processors, in our case a Boolean cube, it is more convenient to identify
a matrix element by a processor address, and the relative indices of the local submatrix. lc,
ld and la are used to denote the local submatrices of C, D, and A, respectively. The suffixes
brd, row, col, txp and red in the following, are used to denote broadcasting, broadcasting along
row, broadcasting along column, transposition and reduction, respectively. We use a and &
to distinguish between binary encoding and Gray code encoding of the processor id (pid), i.e.,
a = pid and G(&) = pid or & = G~1(pid) = G~!(a), where G is the binary-reflected Gray code
encoding function. For instance, if pid = (100) then o = 4 and & = 7. Note, that for a Gray
code encoding of column blocks, the jth block column is in processor pid = G(j) = G(&). Some
primitive functions used in the paper are defined below.

/* nbr(a, i) is the neighbor pid of processor « along cube dimension i. */
nbr(a,i) = a ® 2¢,
/* Shuffle (cyclic left-shift) u steps of t. */
sh(u,t) over [0:n) x [0: N) = (t mod 2"%)2% + | 77k ],
/* Unshuffle (cyclic right-shift) u steps of t. */
ush(u,t) over [0:n) X [0: N) = sh(n — u,t)
/* G(t) is the binary-reflected Gray code of ¢. */
Gt)=to 5],
/* G~ is the inverse function of G. */
G l(t)=<t=0-0,
else —t®GI(£])>,

/* T(t) is the index of the tth transition bit in the Gray code

= the number of trailing 1’s of ¢. */
T(t)=<tmod2=0-0,

else — 1+T(%])>.

In the arithmetic and communication complexity expressions presented, we denote the com-
munication packet size by B, the communication start-up time with 7, the time for the transmis-
sion of an element by ¢, and the time for an arithmetic operation by #,. For the communication
system we consider one-port communication, where communication can take place on only one

port at a time, and n-port communication, for all ports on each processor can be used concur-
rently.




Model | Algorithm | Element transfers | min start-ups
one-port SBT (N-1)M n
n-port nRSBT LN;:IM n

Table 3: Communication complexity of all-to-all broadcasting on an n-cube with M elements
per processor initially.

Model | Algorithm | Element transfers | min start-ups
one-port SBT LN—_N!M n
n-port nRSBT N; ]}, M n

Table 4: Communication complexity of all-to-all reduction on an n-cube with M elements per
processor initially.

3 Communication primitives

The communication routines we use for matrix multiplication on the Boolean cube are all-to-
all broadcasting, all-to-all reduction and matrix transposition. All-to-all broadcasting and the
reversed operation all-to-all reduction are described in detail in [11,13]. Matrix transposition
with one-dimensional partitioning has the same communication pattern as all-to-all personalized
communication [11], also known as a complete ezchange [13]. With a two-dimensional square
partitioning into v/N x /N blocks, optimal algorithms are described in [10,13]. For the transpo-
sition of a matrix partitioned into Ny X N, blocks, one can combine the one-dimensional matrix
transposition algorithm with the algorithm for the transposition of a two-dimensionally square-
partitioned matrix. The communication complexities of various algorithms are summarized in
Tables 3, 4 and 5. Note, that the complexity of the all-to-all reduction is the same as that of
all-to-all broadcasting, if the number of elements per processor before the reduction is the same
as the number of elements per processor after the broadcasting.

Model | Algorithm | Element transfers | min start-ups
one-port SBT et n
n-port nRSBT 424— n

Table 5: Communication complexity of all-to-all personalized communication with M elements

per processor initially.




3.1 One-dimensional Matrix Partitionings

All-to-all broadcasting in a linear array can be performed by rotation, or an exchange sequence.
Such broadcasting algorithms are described directly in the multiplication algorithms presented
in the next section. Two broadcasting algorithms using a doubling technique to reduce the
number of communication steps from N to n are presented. All-to-all broadcasting based on
N translated Spanning Binomial Trees (SBT’s) [11] with one-port communication is defined as
follows:

/* SBT broadcasting. */
/* Row direction, one-port, binary encoding. */
lebrdl(a,i,j',t) over [0: N)x [0: P)x [0: Qt%) x[0:n]=
Lt=0-=lca,i,j),
0<j <2718 — lebrdi(a,i, 5!t — 1),
/* Get from (¢ — 1)th nbr and append. */
else — lcbrdl(nbr(o,t—1),i,j — 2t—1%,t —-1)>,
/* Order the N blocks by pid. */
lebrd(a,i,j)over [0: N)x [0: P)x [0: Q) = lebrdl(a,i,j ® a]%,n).

Within the if-clause the first statement is the initial condition, the second statement defines
the left half of the P x 2‘% local submatrix as the local submatrix of the previous iteration, and
the third statement defines the right half of the local submatrix as the local submatrix of the
previous iteration of the neighbor processor along cube dimension ¢ — 1. All communications
implied are nearest neighbor. Since the number of block columns doubles for each iteration
(described by t), the domain of the parameter j' grows exponentially from —]%— initially to Q
at the end. The last function orders the N blocks by processor id. The “1” in the function
name “lc_brdl” is introduced as an internal function for convenience. It describes the n nearest-
neighbor communication steps in sequence and has a parameter ¢ denoting the iteration. lc_brd
is the broadcasting primitive and differs from the result of the internal function by a permutation
of the N column blocks to the right order. In the function lc_brdl the blocks received from a
neighbor processor are appended to the end. A 1 appended to a function name in the following
also denotes an internal function differing from the external function in a way similar to the
above case.

For Gray code encoding, « is replaced by &, nbr(a,t — 1) is replaced by nbr(G(&),t — 1) and
lc brd is redefined as:

/* Order the N blocks by G=1(pid). */ .
lebrd(é,i,j) over [0: N)x [0: P) x [0: Q) = lcbrdl(é, 1, (G( L%_l) ® &)JQ\, + j mod %, n).

The converse operation to broadcasting is reduction. For an all-to-all reduction, different
parts of the matrix are reduced to different processors. An all-to-all reduction algorithm for a
Spanning Binomial Tree routing and one-port communication is




/* SBT reduction. */
/* Between columns, one-port, binary encoding. */
laredl(a,i,k',t) over [0: N)x [0: P)x [0: &) x [0:n] =
L t=0-la(a,i, k'),
/* Procs. in subcube 0 get sums of two left half submatrices. */
|gn=r] mod 2 = 0 — la_redl(a,i,k',t — 1) + la_redl(nbr(a,n —t),i,k',t — 1),
/* Procs. in subcube 1 get sums of two right half submatrices. * /
else — laredl(a,i, k'+ &,1 1)+ la_redl(nbr(a n—t),i,k+ &t -1)>,
lared(c,i, k') over [0: N) x [0: P) x [0 : &) = la_red1(a,i, k', n).

The second statement of the if-clause defines the reduction for the processors in subcube
0 (with respect to cube dimension n — t). It sums up the left half of the local submatrix and
the left half of the (n — t)th neighbor processor’s local submatrix. The third statement of the
if-clause defines the reduction for the processors in subcube 1. It sums up the two corresponding
right half submatrices.

With n-port communication, all-to-all broadcasting based on N distinct translations of n
Rotated Spanning Binomial Trees (nRSBT), Spanning Balanced n-Trees (SBnT) and n Edge-
disjoint Spanning Binomial Trees (nRESBT) [11] are all optimal within constant factors. Transla-
tion of a directed graph rooted at node 0 to a new root s is defined by an exclusive-or operation
on all node addresses with the address of node s. Rotation of a graph is defined by the same
rotation of the dimensions of the address field for all nodes in the graph [11]. The algorithm for
nRSBT broadcasting is

/* nRSBT broadcasting. */
/* Row direction, n-port, binary encoding. */
le brdl(o,u,,j',t) over [0:N)x[0:n)x[0:E)yx[0:202)x [0:2] =
Lt=0-le(a,ut +z,J’),
0<j <2t IQ — lebrdl(e,u,t, 5t — 1),
else — lc_brdl(nbr(a (u+1t —1) mod n),u,,j — 2= IQ ,t—1)>,
lebrd(a,i,j)over [0: N)x[0: P)x [0: Q) =
lebrdi(a, |B],i mod £, (ush(| ], | ]) @ @)§ + j mod €,n).

The local submatrix P X % initially is partitioned into n block rows identified by the pa-
rameter u, 0 < u < n. The function lc_brdl has similar structure and meaning as in the SBT
broadcasting. The changes from nbr(e,t — 1) in SBT to nbr(a, (u+t — 1) mod n) in nRSBT is
because the uth block row communicates along the sequence of cube dimensions u, (u+1) mod n,
(u+2)modn, ..., (u—1)mod n. In the function lcbrd, the n block columns in block row
u = |2 need to be shuffled u steps, i.e., block column z = [3 | gets data from block column
ush(u,z). The shuffle operation is an unshufﬂe operation v1ewed from the receiver’s point of
view. An nRSBT algorithm for all-to-all reduction and n-port communication is included in
appendix A.

Matrix transposition for a one-dimensionally partitioned matrix can also be performed by
communication algorithms based on Spanning Binomial Tree routing. An algorithm for one-port
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communication is

/* SBT transpose. */
/* Column partitioning, one-port, binary encoding. */
letzpl(a,i',j,t)over [0: N)x [0: &) x[o0: 2”]%) x[0:n]=
Lt=0—le(a,?,7),
/* Processors in subcube 0 w.r.t. cube dimension n —t. */
lsn=] mod2=10—
X0<j< 2t’1% — letapl(a,t,j,t — 1)
else — letzpl(nbr(a,n—1),i,j— 2t‘1%,t —-1)>,
/* Processors in subcube 1 w.r.t. cube dimension n —¢. */
else —
<0<j< 2t_1]%— — letzpl(nbr(a,n —t),i + %,j,t -1)
else — letzpl(a,d + —é—’;,j - 2”"1%,11 —-1)>>,
letzp(a,i,j) over [0: N) x [0: &) x [0: Q) = lctzpl(a, i, j,n).

The goal of the algorithm is to change processor a from storing the ath block column to
storing the ath block row. The shape of the local submatrix is §Bf X %—VQ before iteration ¢t. After
iteration ¢, the local submatrix of processor a is the upper (lower) half of the local submatrix
of the previous iteration abutted in the column direction with the upper (lower) half of the
submatrix of the (n — t)th neighbor processor’s of the previous iteration, if the processor is in
subcube 0 (1) with respect to cube dimension n — ¢; the former submatrix is put on the left
(right) of the latter submatrix if the processor is in subcube 0 (1). Therefore, after each iteration,
the number of rows is halved and the number of columns is doubled of the local submatrix. An
nRSBT algorithm for n-port communication is included in appendix A.

3.2 Two-dimensional Matrix Partitionings

All-to-all broadcasting based on the SBT and nRSBT routings within a column or row subcube
are the same as in the one-dimensional case, see appendix A.

Transposing a P X @ matrix partitioned into Ny X N3 blocks, implies that the processor
that holds block (7,7), 0 < 4 < Ny, 0 < j < N2, will hold block (j,%) after the transposition.
For convenience, we assume that the shape of the submatrix defined by a block changes from
—11—\?1— X ]% to N% X 1—% (instead of changing to a —]% X N% submatrix). The transposition can
be decomposed into two phases. In the first phase, there are 2I"2=71| gubcubes, such that each
subcube executes a transposition of min(Ny, N2)Xmin(Ny, N3) blocks. In the second phase, there
are 2n~2min(n1,m2) subcubes, such that each subcube executes a one-dimensional transposition.
The communication complexity is derived in [9]. The algorithm for one-port communication is
given below.

/* SBT transpose algorithm for an N; X N, block matrix. */
f(t) over [0: n] =

10




L t< 2min(n1,n2) — 1,
ny > ng — 2t——2min(n1,n2)’
else — 22min(n1 n2)—t >,
letzpl(ag, agz,i,5',t) over [0: N1) X [0: N2) x [0: f(t)N%) x[0: ﬁﬂ) x[0:n]=
Lt=0—le(oy,0,7,7),
t < 2min(ny,n2) —
/* two-dimensional transpose. */
<L LG_lf‘fﬂiTJ mod 2 = |_2,,—2‘_”fm-rj mod 2 —
L tmod 2 =1 — letzpl(nbr(ay,ny — [t/2]), 02,7, 5',t — 1) >,
else —
< tmod 2 = 0 — letzpl(aq, nbr(ag, ng — [t/2]),¢,5,t — 1) >>,
/* one-dimensional transpose. */
n < ng —
L s22 LZ”-‘J mod 2 =0 —
L0 <2t "1-9— — letzpl(aq, 02,7, 5, t — 1),
else — lc_ta:pl(al,nbr(ag, — 1), 4,4’ —2t'1 Q ,t—1) >,
else —
<0<y <2 "12 — lc_tmpl(al,nbr(a2,n —t),7 + 2n1+t, it —1),
else — lc_txpl(al,a2,z + 2n1+tn] —ot'-1 Q ,T—1)>>,

else —
< W']‘T_f mod2=0—
<0< <2/ E Slctapl(ay,ag, i, §,t — 1),
else — lc.twpl(nbr(al, — 1), 9,1 —2¢ 'IAL;I,j',t -1)>,
else —
L 0<Li <2t —1£ - lc_txpl(nbr(al, - t),ag, i+ = 2n2+t ,t—1),
else — lc_ta:pl(al,a2, i — ot'-1 2—,1295,, —1)>>>

where t' = ¢ — 2 min(nq, n2),
letzp(ay, ag,i',5") over [0: N1) x [0: N3) x [0 : N%) x[0: J—VQI) = letepl(oq, az,?,j',n).

The algorithm used for the two-dimensional transpose part is called SPT (Single Path Trans-
pose algorithm) described in [10], in which a matrix to be transposed is partitioned into a 2 x 2
block matrix and exchange is performed between the upper right submatrix and the lower left
submatrix. This procedure is applied to the 4 submatrices recursively and concurrently.

The reason the function f(t) defined above appears complicated is that the shape of local
submatrix is preserved in the two-dimensional transpose phase, but is changed in the one-
dimensional transpose phase, as described before. In the second if-clause of lctzpl above,
we loglca.lly partition the cube into 4 subcubes with respect to cube dimensions n; — [ 1 and

— [%], called subcube 00, 01, 10 and 11. Subcubes 01 and 10 serve as intermediate nodes
and get submatrices from subcube 00 and 11, respectively, for odd ¢. Subcubes 00 and 11 get
submatrices from intermediate nodes for even t. The one-dimensional transpose part is similar
to the codes described before, except that the role of « is replaced by a; or az and the processor
id is identified by (o, a3).
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With n-port communication, one can either run the n-port version for the two phases sepa-
rately, or pipeline the two phases. However, by treating the transposition as a stable dimension
permutation [5,6] and employing one of those algorithms in [5,6], a communication complexity
lower than that of the above algorithm can be obtained. The dimension permutation algorithm
is based on the fact that the two phases can be reversed, or mixed, preserving the permutation.

4 Matrix multiplication

4.1 One-dimensional partitioning

We consider column partitioning. For row partitioning, similar algorithms can be derived.

e Algorithm A(-,1,1). Compute A in-place by broadcasting C from every processor that
has elements of C to every processor that has elements of D. Processor & = PID(j)
computes CD(x, [[—ﬁ—TJ) for all j mapped to a, where PID is the allocation function as

N

described in Table 2.

e Algorithm A(-,1,2). Compute A by transposing C and broadcasting CT from every
processor that has elements of C.T to every processor that has elements of D. Processor
a = PID(j) computes CD(x, [rﬁTJ) for all j mapped to a.

N

e Algorithm A(-,1,3). Compute A by transposing C, broadcasting D from every processor
that has elements of D to every processor that has elements of CT and transposing AZ.
Processor a = PID(j) computes C( Lf—}iﬂ’ *)D.

N

e Algorithm A(-,1,4). Compute A in-space by transposing D and reduction of partial
inner products of A.

The algorithms are identified by A(number of ports used concurrently, number of loops par-
allelized, algorithm identifier). Algorithm A(-,1,2) is clearly inferior to algorithm .A(-,1,1) with
respect to communication complexity. It is not further considered for the one-dimensional parti-
tioning, however, it will be considered for the two-dimensional partitioning. For row partitioning
the roles of C' and D are interchanged. Figure 1 characterizes the basic algorithms. The corre-
sponding algorithms for row partitioning are also included for comparison. The two subscripts
denote the ordinal number of block rows and block columns. The superscript denotes the ordi-
nal number of the partial inner product result. The number in the square brackets (eg. [R] in
A(-,1,1)) is the number of processors that minimizes the arithmetic time for each algorithm.

A complete matrix multiplication algorithm based on rotations of the matrix C is given
below:

/* A Rotation Algorithm A(1,1,1). */
/* Column partitioning, Gray code encoding. */
le(é,1,5',t) over [0: N)x [0: P)x [0: ]%) X[0:N)=
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Figure 1: Notation summary of algorithms for one-dimensional partitioning.

<t=0-c(5,a% + 5",
else — le((@+ 1) mod N,¢,j5',t— 1) >,
ld(&,5,k") over [0: N)x [0: Q) x [0: &) = d(j,a& + k'),
la(&,i,k',t) over [0: N)x [0: P)x [0: &) x [0: N] =
Lt=0—-0,
else — la(a,4,k,t— 1)+ (\+ [le(&, 4,5, — 1)
+1d(&, (6 +t— 1) mod N)F + 7, k)[0 < 5/ < §]) >,
a(i, k) over [0: P) x [0: R) = la(| &Y ], 4,k mod &, N).

For the first statement of the if-clause in le, the column index of the global matrix C is
transformed into the processor id (&), and the column index of the local submatrix C (j). With
Q = 27 the highest order n bits of the global column index are interpreted as &, and the lowest
order ¢ — n bits are interpreted as local column index. The transformation between the global
and the local index of D and A are similarly defined. The second statement of the if-clause in
lc accounts for the rotation from processor (& + 1) mod N to &. The rotation operation implies
nearest-neighbor communication if & and (& 4+ 1) mod N are in adjacent processors. Since & is
the Gray code encoding of the processor id, i.e., the jth block column is stored in processor pid
with G(&) = pid = G(j), rotation of C implies nearest-neighbor communications.

The second statement of the if-clause in la accounts for the cumulated sums of products at
iteration . The order of the local N block rows of submatrix D which interact with the current
submatrix C is important. Processor & holds the ((& + ¢) mod N)th block columns of C' during
iteration ¢. This column must multiply the corresponding block row of the local submatrix of D.
A naive implementation of the above code may use more storage than necessary. For instance,
each processor needs to store all the V column blocks of C. However, a reasonable compiler can
resolve this problem by deallocating unused space, or by using shared variables.

For binary encoding, i.e., the jth block column is stored in processor a = j, we redefine lc
and la as follows:
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le(e,4,5',t) over [0: N)x [0: P)x [0: €)X [0: N) =
L<t=0— c(i,a%+j'),
else — le(G((G™Ya)+ 1) mod N),i,5,t — 1) >,
la(a,i,k',t) over [0: N)x [0: P)x [0: ) x [0: N] =
Lt=0—-0,
else — la(a,4,k,t— 1)+ (\+ [le(a,i,5',t — 1)
*1d(c, G((G™Ya) + t— 1) mod N)Z + 5, k)]0 < §' < ) >.

The difference is that we interpret the first parameter a as a pid. Here, G((G~'(a) +
1) mod N) computes the pid of its next neighbor in the loop defined by the binary-reflected
Gray code traversal.

Instead of all-to-all broadcasting through rotations, a Gray code exchange algorithm can be
used:

/* A Gray code Exchange algorithm A(1,1,1). */
/* Column partitioning, binary code encoding. */
le(a,i,j',t) over [0: N)x [0: P)x [0: Qﬁ) x[0:N)=
L<t=0— c(i,ozj%+j'),
else — le(nbr(a, T(t—1)),%,7,t— 1) >,
ld(a,j,k") over [0: N)x [0: Q) x [0: &) = d(j,a & + k'),
la(a,i,k',t) over [0: N)x [0: P)x [0: &) x [0: N] =
Lt=0-0,
else — la(a,i,k',t— 1)+ (\+ [le(a,i,5',t — 1)
eld(a, (a® G(t— )% + 7, K0 < 7 < §)) >,
a(i, k) over [0: P) x [0: R) = la(| %], 4,k mod &, V).

The nbr(a,T(t — 1)) describes that processors communicate through the sequence of di-
mensions 0, 1, 0, 2, 0, 1, 0, 3, etc. Note, that all processors communicate along the same cube
dimensions at the same step, and the cube dimension changes with time. In the previous rotation
algorithm, different processors may communicate along different cube dimensions and the cube
dimension does not change with time. During iteration ¢, processor a holds the (a @ G(t))th
block column of C. For Gray code encoding, the Gray code exchange algorithm can also be
used. The code is similar and is included in appendix B. Note, that the rotation algorithm and
the Gray code exchange algorithm can be viewed as one-dimensional versions of Cannon’s [1]
and Dekel’s [4] algorithms, respectively. The encodings only affects the order the N block rows
of D within each processor where interaction occurs with the current block column of C.

If communication can take place concurrently on all the ports of a processor, the data set
for the matrix C is partitioned into n equal pieces (n block rows in the code below). Each
piece is broadcasted through a unique path. In the case of the Gray code exchange algorithm,
the paths are obtained through rotation of the cube dimensions, such that if the edges in cube
dimension 7'(t) are used by path 0 during step ¢, then path u uses the edges in cube dimension
(T'(t) + u) mod n during the same step.
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/* A Gray code Exchange alg. A(n,1,1). */
/* Column partitioning, binary code encoding. */
le(a, u,z,],t)over[O N)x[0:n)x[0:£)x[o0: Q_)X[ 0:N)=
<<t—0—>c(u + 7, a9—+3’),
else — lc(nbr(a, (T(t—1) 4+ u) mod n),u,,j,t — 1) >,
ld(a,j,k') over [0: N)x [0: Q) x [0: &) = d(j,a & + k),
la(a,u,?,k',t) over [0: N)x [0:n) x [0: £)yx[0: £)x[0: N] =
Lt=0-0,
else — la(o,u,?,k',t — 1)+ (\+ [le(a,u, 7, j',t — 1)
*ld(ex, (a @ (sh(u, G(t = 1)) F + §', K]0 < J< 7 >,
a(i, k) over [0: P) x [0: R) = la(| 5|, |&],i mod £,k mod &, N).

During iteration ¢, the uth block row of processor a is the uth block row and a & sh(u, G(t))th
block column of C. The code is essentially the same as in the one-port case except for the
parameters of nbr in lc and that of Id in la for the reasons just described.

Both the previous algorithms operate with constant storage requirements. The number of
communication actions is linear in the number of processors, but can be reduced if there exists
sufficient storage to employ a doubling algorithm. Note, that by using a high-level specification
for communication the code below is independent of how the communication is realized, and
hence independent of, for instance, network topology and low level communication primitives.

The initial allocation of C and D, and the final allocation of A are the same for all the
algorithms for column partitioning that we consider. The allocations are shown below, and
omitted in the following.

/* Initial allocation of C and D. */

le(a,i,j") over [0: N)x [0: P) x [0 Aﬁ)—c(z OlN-I-j),
ld(a,j,k") over [0: N)x[0: Q) x [0 —-d(],aN+k’),
/* Final location of matrix 4. */

/* For Algorithm A(-,1,4), la is replaced by la_red below. */
a(i, k) over [0: P) x [0: R) = la(| %], 4,k mod &).

/* A Doubling Algorithm A(-,1,1): */
lebrd(a,i,j)over [0: N)x [0: P) x [O Q)= lc([L—J,z Jj mod N),
la(e,i,k") over [0: N)x [0: P)x [0: &) = \+ [lc_brd(a ,7)*ld(a, j, kN0 < 7 < Q].

/* Algorithm A(-,1,3): */

letzp(a,i,j)over [0: N)x [0: £)x[0:Q) = lc([LJ,a-}\; + ¢, 7 mod %),
ldbrd(a,j,k)over [0: N)x [0: ) x[0:R)= ld(l_’g\’J,],k mod £),

latep(a,i,k) over [0: N)x [0: £) x [0 R) = \+ [letzp(a,t ,j) * ld_brd(a 5,k)0< < Q]
la(a,i,k") over [0: N)x [0: P) x [ £) =latzp(|F],imod £ Lol + k).
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[ Algorithm | Number of arithmetic operations |

A('vlal) 2PQ -%-l
A(+,1,3) 2QRPN-|
A(14) | PR2[F] -1 + PR + Xr [2])

Table 6: The arithmetic time for one-dimensional column partitioning.

/* Algorithm A(-,1,4): */

ldtzp(a,j',k) over [0: N) x [0: %) x[0:R)= ld(l_kNJ,aN + 7',k mod N),
la(a,i,k)over [0: N)x [0: P)x [0: R) = \+ le(ayt,5") * ld_ta:p(a JLEN0< 5 < 9‘]
la_red(a,i, k') over [0: N)x [0: P) x [0: &) = \+ [la(e/,i,a& + k)]0 < o/ < N].

Algorithm A(-,1,1) broadcasts C' and then performs multiplication of P x Q and Q X N
matnces locally. Algorithm A(-,1,3) transposes C, broadcasts D, performs multiplication of
N X @ and @ X R matrices locally, and transposes A. Algorithm A(-, 1,4) transposes D, performs
multiplication of P x 9— and 9— X R matrices locally, and performs (all-to-all) reduction of the
partial inner product. By calling the communication primitives such as broadcasting, transpose
and reduction, the implementation details are hidden.

Table 6 shows the total number of arithmetic operations in sequence. If P,Q, and R are all
multiples of N, then all three algorithms have the same arithmetic complexity. For P,Q,R > N,
the differences of the arithmetic complexities are within constant factors. Table 7 shows the
total number of elements transferred in sequence and the minimum number of start-ups for
P,Q,R > N. The superscript [ on A denotes a linear array algorithm, and superscript ¢ a
Boolean cube algorithm. For some values of P, Q, and R less than N, the communication
complexity can be smaller than what is given in the table, because some of the broadcastings
and personalized communications may complete earlier. The communication complexity for
the general case is complicated and is described in [9]. The data transfer time compares as
PQ : QR : PR, approximately, by considering the Iughest order term of A(-,1,1), A(-,1,3) and
A(-,1,4) and assuming P,Q, R > N. Note that for £ N = % = N’ the communication complexity
of A(+,1,1) is less than that of A(+,1,4), which in turn is less than that of .A(-,1,3). For a detailed
analysis, see [9].

4.2 Two-dimensional partitioning

The algorithms described for the one-dimensional case have analogues in the two dimensional
case. Algorithm .A(-,1,1) that computes A in-place by broadcasting C in its two-dimensional
form, requires broadcasting elements of C' along rows, and broadcasting elements of D along
columns. The two broadcasting operations need to be synchronized in order to conserve storage.
Cannon [1] has described such an algorithm for mesh configured multiprocessors (that can be
emulated on Boolean cubes) and Dekel et al. [4] described such an algorithm making use of
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| Algorithm | Element transfers | min start-ups

Al(1,1,1) (N - 1)P[%] N-1
A%(1,1,1) (N - 1)P[%] n
A°(L,13) | (N -DQIF] + &5 [§] + % [R] 3n
Ac(1,1,4) (N - 1)P[R] + "2TE] 2n
Al(n,1,1) LN -1)P[F] N -1
A¢(n,1,1) i(N-1P[Z] n
A(n,13) | (N - 1)Q[F] + 5w + Z[F] 3n
A%(n,1,4) L(N-1)P[&] + 2[E] 2n

Table 7: The communication complexity using one-dimensional column partitioning, assuming
P,Q,R> N.

the Boolean cube topology. These algorithms are special cases of matrix multiplication using
broadcasting algorithms that preserve storage requirements.

The algorithms corresponding to the four one-dimensional algorithms (\A(-,1,4) has two vari-
ations) are as follows:

o Algorithm A(-,2,1). Compute A in-place by broadcasting C in the row direction and
D in the column direction, such that each processor receives all elements of the rows of
C mapped into that processor row and all elements of D mapped into the corresponding
column of processors. Processor oy, a2 then computes C( |_—-p— |, *)D(*, [rﬁ;—]J) for all ¢

mapped to oy and all j mapped to ay. The commumcatlon operatlons are broadcastzng
from multiple sources within rows and columns.

Algorithm A(-,2,2). Transpose C, perform a multiple source broadcast along processor
rows for the elements of CT in that processor row, and accumulate inner products for A
through multiple sink reduction i m the column direction (of the processors). The accu-
mulation can be made such that N elements for each column of D are accumulated in

each processor by all-to-all reduction. A processor ay, as receives C(*, LTJ) during the

broadcasting operation, then computes the product C(x, LTJ )D( [TJ [+J) The

summation over index ¢ is the reduction operation along columns

e Algorithm A(-,2,3). Transpose C, perform multiple source broadcasting of the elements
of D within processor rows and accumulate inner products in the column direction. The
multiple sink reduction is performed such that each processor receives all i elements of
R distinct columns of D such that AT is computed. (Alternatively, the accumulatlon can
be made such that m elements for each column are accumulated in a processor
selected such that the proper allocatlon of A is obtained through a some-to-all personalzzed
communication within rows.) Processor aj, s computes C(| 4 = ]J ) | F Q_]J)D( | =4 T 1,%)
N N1 .
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Figure 2: Notation summary of the algorithms for two-dimensional partitioning.
for all 7, j such that |_——-7}5—J = a9 and [—{,_—J = 0.

o Algorithm A(-,2,4). Transpose D, perform a multiple source broadcasting of the el-
ements of DT within processor columns, and accumulate the partial inner products for
elements of A by multiple sink reduction along processor rows such that the elements of
at most [Nﬁ] columns are accumulated within a processor column. After transposition

and broadcasting, processor oy, as has the elements C(| — T 1] [r _9_1J)D(|_r _Q]J *) for all
i such that [—-p—_l = oy and j such that [_—_5_—] = oy.

o Algorithm A(:,2,5). Transpose D, perform a multiple source broadcasting of the elements
of C within processor columns and accumulate inner products for elements of A by multiple
sink reduction along processor rows, such that each processor receives N elements of AT

for each of & ~- columns of D. Processor a;,az computes C(x, LF-Q-'IJ)D(I‘[-9-1J |_r R]j)

for all ¢ such that [—R—J = a; and j such that [—__é'_—_l = as.

Figure 2 characterizes the 5 algorithms. The two subscripts in sequence are used to denote
the ordinal number of block rows and block columns of the Ny x N5 blocks. The “x” sign means
union of all the block rows (or columns). The superscript denotes the ordinal number of the
partial inner product result. The number in the square brackets (eg. [PR] in .A(-,2,1)) is the
minimum maximum number of processors to minimize the arithmetic time for each algorithm.
Algorithm A(-,2,2) has a matrix transpose in addition to the communication of C as in algo-
rithm \A(-,2,1). However, unlike the one-dimensional case, algorithm .A(+,2,2) may have a higher
processor utilization than algorithm A(+,2,1).

Broadcasting in .A(1,2,1) can be realized by a rotation algorithm, which yields Cannon’s
algorithm [1]. Unlike the one-dimensional case, an initial alignment is required in order to
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synchronize between the rotations of C and D. For N; = Ny = v/N, the code is shown below.
For Ny # N,, say N1 > N3, we further partition the submatrix C in each processor into %
blocks and simulate the algorithm for N; x N; blocks. Each processor simulates ]Nvf; processors.

The code is included in appendix B.

/* Cannon’s Algorithm A(1,2,1): */
/* Assume Ny = Ny = +/N, Gray code encoding. */
le(éu,62,4',5',t) over [0: vV N)x [0:v/N) x [0: f;ﬁ) x[0: 7‘%) x[0:VN) =
Lt=0— C(&lvp—iﬁ + i',&z% + '),
/* Initial alignment step. */
t=1— le(éy, (&1 + é2) mod VN, #, j',0),
/* Get from east neighbor. */
else — le(aq, (62 + 1) mod VN, 7,5, t — 1) >,
ld(é,éa,7',k',t) over [0: v/ N) x [0:v/N) x [0: %\7) x [0: \}iﬁ) x[0:v/N) =
LKt=0— d(dI% +j,>&2% + k/)a
/* Initial alignment step. */
t =1-1d((é1 + &2) mod /N, &,,7, j',0),
/* Get from south neighbor. */
else — ld((&1+ 1) mod VN, g, 5, k't — 1) >,
la(éy, 6,7, k',t) over [0: vV N)x [0:VN) x [0: —\}%—) x[0: 7——1%) x [0:+/N] =
Lt=0-—0,
else — la(dy, g, 7, k', t — 1)+ (\+ [lce(&1, &2,7, 5, 1)
*1d(G1, 82,5, K,1)[0 < j' < S]) >,
a(i,k) over [0: P) x [0 R) = lared(| 3, | %4E],i mod L, k mod £).

Processor (dy, @&3) gets the local submatrix of C from processor (é, (&1 + é2) mod VN ) and
the local submatrix of D from processor ((&; + é2) mod v/N, &3) for the initial alignment. The
rest of the code is similar to the Rotation Algorithm in the one-dimensional case. During each
iteration, processor (&1, &2) gets the local submatrix of C from its east neighbor, (a1, (ds +
1) mod v/N), and the local submatrix of D from its south neighbor, (61 + 1) mod /N, &).

It is also possible to design a matrix multiplication algorithm based on the SBT, or the
nRSBT communication algorithms. For Algorithm A(-,2,1), the temporary storage for each
processor becomes %—?— for C and QN—}; for D, instead of % and % for Cannon’s or Dekel’s
algorithms. However, the number of start-ups is reduced to O(ny + n3), instead of O(N; +
N;). Note, that the initial alignment steps can be eliminated. It is possible to interleave the
communication and multiplication steps to save half of the storage. However, an initial alignment
is required for such an algorithm.

The initial allocations of C' and D, and final allocation of A for the five algorithms below are
the same, and is described once and for all. For Algorithms A(+,2,2) and .A(+,2,4), la is replaced
by la_red.

/* Initial allocations of C and D. */
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le(oy, z,4,5") over [0: Ni) x [0: Na) x [0: &) x [0: ) = clarf + 4 a2 -I—] N,

ld(ai, 09,5, k") over [0: N1) X [0: N3) X [0: é)X[O )—-d(ole1 + 5 ,CM2N + k),

/* Final allocation of A. */ .
a(i,k) over [0: P) x [0: R) = la(| 2], [5}2], i mod N’%,k mod WR;-)

/* A Doubling Algorithm A(-,2,1): */
lerow(ay,ag,t',j)over [0: N1) X [0: Ng) X [0: N%) x[0: Q) =le(oy, Ll—l\—fl ,i,7 mod
ld_col(ai,ay,j,k") over [0: N1) X [0: N3) X [0 :Q)x[0: ) = ld( LLJ,OQ,j mod
la(ay, 0,7, k') over [0: N1) X [0: Na) x [0: 77 Eyx[o: ]—@) =

\+ [le-row(ay, az, ¥, 7) * ld_col(al,ag,],k’)IO <j< Q]

/* Algorithm A(-,2,2): */
letzp(aq,q,i,j) over [0: Ny) x [0: N2) x[0: £ ;) X [0: —OL) =
lc(l_(ole2 + ”)/W{J |_(a2—]% +]')/N2_| (alN + ') mod 7 ,(agN + j) mod & %)
letzp_row(oy,as,t,j) over [0: Ny) X [0: Na)x [0: P)x [0: )
letep(ay, l_%rzj,i mod N%,j'),
la(ay, az,4,k") over [0: Ni) X [0: No) x [0: P) x [0: £ )=
\+ [letzprow(oq, az,, ') * ld(ay, asz, j' ,k')IO <j < Jg ]
lared(ay,as,i',k") over [0: N1) X [0: N2) x [0: 77 Eyx[o: ) =
\+ [la(al,az,alN + ¢, kN0 < af < Nq].

/* Algorithm A(-,2,3): */
lc_ta:p(al,az,i’,j') over [0 : Nl) x[0: Nz) x[0: ) x[0: 9—) =
le([(eagy + 1)/ #s L@z i +-7,)/N2_| (g + i) mod - ’(0‘2N + ') mod 2),
ld_row(ay,as,j’, k) over [0 : Nl) X[0:Ny)x[0: 9—) x[0:R)=
ld(oq, |52, 5, k mod F)’
latzp(ai,aq,i, k) over [0: Ny) X [0: Ny) x [0: ) x[0:R)=
\+ [letzp(as, ag,?, §") % ld_row(ay, as, ' ,k)]() < j < —Q-]
latzpred(ay, as,t', k") over[ tN1) X [0:Ng) X [0: 77 Eyx|[o: 1) =
\+ [latzp(a), sz, ,oqN +E)N0< of < Nl]
la(ay, az,7, k") over [0: N1) X [0: Np) X [0: 77~ ) x[0: &)=

)
k'),

la_top-red(|(en £ + )/ F2), (0t + K)/ 2], (o e + ) mod £, (cat + ) mod £2).

Algorithm A(-,2,1) broadcasts C along rows broadcasts D along columns and locally multi-
plies matrices of the forms - Ay X Q and Q X 7. Algorithm A(+,2,2) transposes C, broadcasts C

along rows, locally multiplies matrices of the forms Px —Q— and Q X N and performs reduction

of the partial inner product along columns. Algorlthm 5 ,2 3) transposes C, broadcasts D

along rows, locally multiplies matrices of the forms —2
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I Algorithm | Number of arithmetic operations ]
A(2,D) 2QTEIR]

A(22) | CIF] = DIFTP+ 2 [FITE + [
A(.23) | CIE1 = DIFIRT S (H 1+ (R[]
A(.24) | CIET - DIFIR+ S (B[] + (R4
A(-25) | CIHE1 = DI+ s [R5+ [R112]

Table 8: The communication complexity for optimum buffer sizes, two-dimensional partitioning,
and one-port communication.

on A along rows of matrix (R), which is column of processor arrays (N1), and then transposes

A. Algorithms A(-,2,4) and A(-,2,5) are included in appendix B and is similar to Algorithms
A(-,2,2) and A(+,2,3), respectively.

Table 8 shows the total number of arithmetic operations in sequence. Note, that if P, Q
and R are multiples of N; and Ny, then the arithmetic complexities of the algorithms are the
same, and indeed the same as for a one-dimensional partitioning. Table 9 shows the total
number of elements transferred in sequence and the minimum number of start-ups with one-
port communication. By using some approximations, the values of N; and N, that minimize the
number of elements transferred for different algorithms are shown in Table 10. The resulting total
complexities are shown in Table 11. By considering the highest-order term, the data transfer
times compare as v/Q : VP : VR : VR : VP from A(1,2,1) to A(1,2,5). It can be shown [9]
that for P, @ and R being multiples of Ny and N,, the complexities of algorithms A(+,2,3)
and A(-,2,5) are always higher than that of min(A(+,2,2), A(+,2,4)), if the optimum values of
N1 and N, are chosen for each algorithm. Table 12 shows the communication complexity with

n-port communication and optimum packet size. For a detailed analysis and optimum choice of
algorithms, see [9].
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l Algorithm | Element transfers l min start-ups

'Ac(1>271) (N2 - 1) rNb-] ]-i-l n
+(N: — 1)fN1H &1
A°(1,2,2) | [x71[551n+ TNJ fNJ(Na 1) 2n
+141 INJ(Nl -1
'Ac(17273) [Nh.l l—%;ln + [- ] rN -I(NZ - 1) 3n
+fN1H (V1 — 1)+fN1HN21n
Ac(1>2’4) [-Nl] I—Nz-l + I-Nl-” 1(N1 - 1) 2n
+fN11 INJ(Nz - 1)
A(1,2,5) | [ ”Nij n+ |-N1] [Nz](Nl - 1) 3n
HATEI@: =) + [E1[E]n

Table 9: The communication complexity using two-dimensional partitioning.

lAlgorlthmI N1 l N2 |

A(1,2,1) | /EY | /BX
A(1,2,2) | /9T | /B
A(1,2,3) | /9| (/Y
Ac(1,2,4) | /BE | /9
Ac(1,2,5) | (/B | (/9

Table 10: The optimum values of Ny and N, for P, Q and R being multiples of N and one-port
commaunication.

| Algorithm | Trnin ]
A°(1,2,1) ¥ ta + A(2VPR - Bt + nr

A(1,2,2) T + T-(2vQR + 2=y 4 ong
9y

A(1,2,3) | 2884, + £(2/PQ + ———————”P(IJ“@)]_V_(PJ“Q) Vo + 3nr

A(124) | 3R, + K (2y/PQ + 2=y, 1 onr

nR(1+%)—(Q+R
A°(1,2,5) | E9Rt, + L (2y/QR + "EEB Oy, gy

Table 11: The total complexity with optimum values of Ny and N, for P, Q and R being
multiples of N and one-port communication.
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| Algorithm | min communication time T
A¢(n,2,1) ma,x(—z-:ll'Nl] [+ =]te + naT,
_J:ll-N1]rN_2]t +mr)
A(0,2,2) | nr+ (J (%] [t + ln=T)r)?

+([ ”NQ] +[N1]I—N2]_l:l)t

A0,2,3) | a7+ (/][] [Nz]tc +(n—-1)7)?
+(/T#] [Ng]t +V(n = 1)r)?
+(FHE1L 4 (£ [ 151y,

A°(n,2,4) nr+<\/r [ &t + (0= Dr)?

atballb:; ]M+[N]][N21_2:l)t

Am,2,8) | o+ ([R]1[# e + (= Dr)?
/TR R 1t + V(n = T)7)?

HIR TS + (#7122 )

Table 12: The communication complexity for optimum buffer sizes, two-dimensional partition-
ing, and n-port communication.

23



4.3 Three-dimensional partitioning

In the case of a three dimensional partitioning of the Boolean cube, each N{ x Nj subset of
processors compute the product of a P X % matrix and a Q, X R matrix If the matrices
3

are initially allocated such that there are distinct submatrices P X N' and , X R assigned
3

to each set of &Y «7 Processors, then the multiplication in each subset is the same as in the two
3

dimensional partitioning, except that @ is replaced by % In addition, there is an accumulation
phase at the end. The number of arithmetic operations for this part of the computation is
[NE{] I-TVB{] log N} without any pipelining, and all partial products being accumulated in the same
way. Matrix A is allocated among Nﬁfs processors. If there are several elements of the matrix
A that are stored in the same processor, then the accumulation can be made faster by using

e f'—ﬂ

I
all-to-all reduction. The arithmetic complexity becomes E 2, [—5—*]ts. The communication

N,HNJ TP”R1
complexity for the reduction is ;. 1|' 1te+ 1|' g | 7. When [N,][N,] > N3, it

is an all-to-all reduction, and the commumcatlon complex1ty of the reduction is approxxmately
odlbod

(1- ——r) f—ﬂ [—ﬂt + 22_1 —12—,B—IVL]T For a detailed complexity analysis, see [9]. The code

is glven below.

/* Algorithm A(-,3,1): */

/* Matrix C is partitioned as N{ x NiNj. */

le3(o,az,a3,1',j") over [0: N{) x [0: NJ)x [0: Ny x[0: -]}—\Er) X [0: TV%) =
c(on gy +1', aapy + a2y + 57,

/* Matrix D is partitioned as N{Nj x Ni. */

ld3(a1, 02, 03,5, k") over [0 : Nl) X[0:Nj)x[0: Ny x[0: —IQW) x[0:
d(os gy + oy + 5", caff + ),

/* Broadcast C along N} direction. */

le3_row(ay,az,as,i,j) over [0: N{) X [0: Nj)x [0: N§) x[0: ]iv’]T) X [0: NQ&) =

3

Zl
N’
Il

le3(aq, [ﬂéﬁij,ag,i',j' mod ﬁfm),
/* Broadcast D along N direction. */
ld3_col(a1,]\0;2,a3,j', k') over [0: N{)x [0: Nj)x [0: N§) x [0: —]%) x [0: N%,) =
N INI .
1d3( |_J——QL—=°*J,a2,a3,]' mod N{Q—J\E’k')’
/* Compute partial inner product locally. */
la3(ay, 0z, 3,1, k") over [0: NJ) x [0: Nj) x [0: Nj) x [0: N%,) x[0: NRZ) =
\+ [le3row(an, as, 03,7, j") * ld3_col(ay, az, as, 3, k')|0 < ' < %],
3
/* Reduction along N} direction. */
la3_red(oq, oz, as,i', k) o]\\fler [0:N{)X[0:Nj)x[0:N{)x[0: ’NPT) x[0: 'NR§) =
\+ [la3(aq, g, af, La3 JN1 + ¢/, (a3 mod 5)1\% + k)]0 < af < N{],
/* Relabeling processor mdlces as two-dimensional. */
la2(ay, 2,4, k') over [0: Ny) x [0: Na) x [0: £- A7) X [0 £ )=
la3_red( Lﬁﬂlj |_°’2N |, (e1 mod —Jr) t+a mod 1% ' K,
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/* Resulting matrix A is partitioned as Ny X Ny. */

. . N/! kN, .
a(i, k) over [0: P) x [0: R) = la2( [z—PlJ, |—g*],%mod N%,,k mod —1% .

Functions lc3 and [d3 assign the initial matrix elements of C and D, respectively, to the
emulated three-dimensional array N{Xx NjX N§. lc3_row broadcasts C along the second direction
(IN2). ld3_col broadcasts D along the first direction (V7). As a result, each processor can compute
a partial inner product locally as defined by /a3, followed by a reduction along the third direction
(N3) as defined by la3_red. la2 is introduced as an intermediate data structure to relabel the
processors as a two-dimensional array, followed by the function a that transforms the local index
to a global index using the processor addresses. Note, that /a2 and a can be combined into one
function, but the resulting function looks complicated.

In the above algorithm, the matrix A is partitioned into N; X Ny blocks with no extra
communication after the reduction step. Depending on how the data set is divided during the
reduction steps, the resulting matrix A can be partitioned into a form of N{2% x NéZ”é‘x blocks,
where 0 < z < nj, with the same communication complexity.

If the matrices C and D initially are partitioned into Ny x Ny blocks, then transformations
are required to change the allocation into N{ x Nj N blocks and N N4 x N} blocks, respectively.
The transformation can be specified as follows:

le3(ar, @, a3,7', j") over [0: N{) x [0: N3) x [0: N§) x [0: #7) x [0: i) =
1 2473
r o . NIN! .
162(0[1%} + I_’—‘].-yl_],a;;%z + LN?TA\%{JJ' mod NL;, (a2 mod _]2\7;-&)%]\7-;; + ]"R),
ld3(a1,a27o‘3,1,,7 k,) over [0 : N{) X [0 : N‘L,’) X [ON/]V:;) X [0 : Nl'QN37) X [0 : ]Té) =

' N 3
ld2(a3%;,~ + [%Laz% + 582, (ay mod —W)NJ{QW + 7", k' mod —]{%)

The transformations can be implemented using algorithms that realize an arbitrary dimension
permutation [6].

5 Conclusion

We have shown how algorithms for distributed architectures, such as a Boolean cube, can be
expressed in terms of a shared global address space, and how the translation between local
and global addresses can be carried out. We have also shown how the network and low level
communication features of the architecture can be encapsulated into generic global communi-
cation primitives, such as all-to-all broadcasting within a (sub)cube, all-to-all reduction, and
matrix transposition (dimension permutation). These primitives can either be integrated into
compilers, or incorporated into the communication system by providing different communication
modes. The communications would be transparent to the user. The architectural dependence
is hidden in the communication primitives. Algorithms for matrix multiplication that we have
used for illustration cover algorithms that parallelize one, two, or all three loops of a matrix
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multiplication, and algorithms that are optimal for different matrix shapes and architectural
parameters for each degree of parallelization.
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Appendix

A Communication primitives

A.1 One-dimensional partitioning

/* An nRSBT transpose algorithm (column part., n-port). */
letzpl(a,u,i,5',t) over [0: N)x [0:n)x [0: &) = x[0: 2‘%) X [0:n]
LKt=0— lc(a,i',u% + 7',
LWJ mod 2 = 0 —
K0<j< 2t X2 —>lc_ta:p1(a u,t 5t —1)
else — lc_twpl(nbr(a (v —t) mod n),u,,j — 2t‘1;Qﬁ,t —-1)>,
else —
L0<j<2t- 1;— — lc_ta:pl(nbr(a (u—t) mod n),u,i + &,5',t - 1)
else — ledapl(a,u,i' + L&, 5' — 207195 1 — 1) >>,
letzp(a,i’,j) over [0: N) x [0 ﬁ) x[0:Q)=
letapl(e, [MJ mod n, 7, [ J—Q— + 7 mod nN,n)

/* nRSBT reduction. */
/* Between columns, n-port, binary encoding. */
la_redl(a,u,i, k' t) over [0:N)x[0:n)x[0:L)x 0:£)x[0:n] =
< t=0-la(a,ul + 4, sh(u, [kNJ)N + k' mod 1}3,),
| se=fmsan ] mod 2 = 0 — la_redl(a u, ', k', t — 1) + la_red1(nbr(e, (v — t) mod n),u, K t-1),
else — laredl(a,u,i, k' + &, ¢ 1) + la_redl(nbr(a, (u—t) mod n),u,, k' + £,1 - 1) >,
la_red(a,i,k") over [0: N)x [0: P) x [0: £) = la_red1(a, |%],imod £,k n).

A.2 Two-dimensional partitioning

/* SBT broadcasting (row direction, one-port). */
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lerowl(oq,0,4,j',t) over [0: N1) X [0: Np) x [0: 7\%) x[0: 2t%) X [0:ng] =
L t=0-le(ay,az,?,j5"),
0<j' < 2”_1]\% — lecrowl(ay, ag, ¥, j',t — 1),
else — lcrowl(ay,nbr(og,t—1),4,5 — 2t“1%,t -1)>,
lerow(ay, ag,i,j) over [0: N7) X [0: Ny) x [0: 7\,}31-) X [0:Q) =lecrowl(ag,as,t,jd azN%,nz).

/* nRSBT broadcasting (row direction, n-port). */
lerowl(ay, ag,u,7,j',t) over [0: N1) X [0: N2) X [0:ng) X [0: nsz1) x[0: 2t1\%) X [0:ng] =
Lt=0— lc(al,ag,un:;Nl +1,7),
0<j'< 2t‘1N% — lerowl(aq, ag,u,7, 5,1 — 1),
else — lcrowl(oy,nbr(az,(u+t— 1) mod ny),u,?,j — 2*‘1]\%,t —-1)>,
lerow(oy, ag,u,i,j) over [0: Nq) X [0: N3) X [0:7n3) X [0: nﬁvl) x[0:Q)=
le_rowl(as, ag, | P |, i mod Eo, (sh(u, | 252]) @ 02) %, na).

/* SBT broadcasting (column direction, one-port). */
ld_coll(n, az,j',k',t) over [0: N1) X [0: Na) x [0:28) x [0: ) x [0: mq] =
Lt=0— ld(alaa%jlv k,),
0<j' < 2t-1% — ld_col1(ay, 0,5, k', t — 1),
else — ld_coll(nbr(ay,t —1), 0, — 2t‘1]%,k',t —-1)>,
ld_col(ay,az,j,k") over [0: N1) x [0: Na) x[0: Q) x [0: 7\%) =ld_coll(a1,0a2,7 ® alN%,k’,nl).

/* nRSBT broadcasting (column direction, n-port). */
ld_coll(oy,az,u,j',k',t) over [0: N1) X [0: N3) x [0:ny) X [0: 2t—]%) x[0: nﬁ\fz) X [0:m]=
Lt=0— ld(aq,042,_7",'1%11;‘:\,2 + k),
0<j' <271 — ld_coll(ay, 0, u, 5", k', t — 1),
else — ld_coll(nbr(ai,(u+t— 1) mod ny),az,u,j’ — 2t_1N%, E,t—1)>,
ldcol(ay, az,u,j' k) over [0: N) X [0: No) X [0:n1) X [0: Q) x [0: =B-) =

, . * niN2
ld_coll(ay, oz, | F242 |, K mod B, (sh(u, [452]) & 1) 2%, ma).

B Matrix Multiplication

B.1 One-dimensional partitioning

/* A Gray code Exchange alg. A(1,1,1). */

/* Column partitioning, Gray code encoding. */

le(@,1,5',t) over [0: N)x [0: P)x [0: —]%) X[0:N)=
< t=0-c(i,af + 5",
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else — lc(G™Y(nbr(G(&),T(t — 1))), 6,7t =1)>,
ld(é,j,k') over [0: N)x[0:Q) X [0: )—d(],&N+k'),
la(&,i,k',t) over [0: N)x [0: P)x [0: &) x [0: N] =
Lt=0-0,
else — la(é&,1, k't - 1)+(\+ le(a,i,5',t—1)
*ld(éa,(a® (1 - 1))N+] N0 << FD) >,
a(i,k) over [0: P) x [0: R) = la(| 5} ], 4,k mod &, V).

B.2 Two-dimensional partitioning

The index [ in the following code denotes the rank of the % blocks within each processor.
The number of the communication steps after the initial alignment is 2 max(Ny, N2) — 2 in the
code. It is possible to reduce it to N3 + N2 — 2 by a more complicated code.

/* Cannon’s Algorithm A(1,2,1): */
/* Npaz = max(Ny, N3) and Npyip = min(Nl,Nz) */
le(6q,62,1,4,5',t) over [0: Ny) X [0: N2) x [0: —mﬂl) x [0: —-—) X[0: ) X [0: Npaz] =
L Ny 2 Ny —
<=0 g+ 1%+ )
/* Initial alignment. */

6o L4146 dN1)N;
t= 1 le(ay, |(ERIIIWIB 4 61) mod 1,4, 57,0,

/* The last block gets from next proc. */
l= N]\-,gu —1—le(by, (a2 + 1) mod Ny, 0,4, 5t — 1),
/* Other blocks get from right locally. */
else — le(dy, 2,141,751 —1) >,
else —

<<t—0—>C(OllN +l -+, g +jl)7
t=1— lc(al, (Oélwi‘ + l + az) mod Nz, l, i,,j', 0),
else — lc(G1, (@2 + 1) mod No,l,#, 5t — 1) >>,

1d(G, é2,1, 7', K',t) over [0: N1) x [0: Np) x [0 : fmaz) x [0 :
<K N <Ny —
Ct=0—dagF +I1F +i,af +F),

;= 1 - ld([((alN +l-i-?lvzz)mosz)N1-| as, LMJ mod %lz,j/, k', 0),
| = Nmaz e — 1 — 1d((é&1 + 1) mod Ny, é3,0 ,j,k’ -1),
else — ld(Gq,a2,1+ 1,5,k ,t—1)>,

else —
t=0—déag +7, dafs + 1+ ),
t=1— ld((&gwi +1+ dl) mod Nl,&g,l,jl, k,, 0),
else — ld((&1 + 1) mod Ny, ég,1, 5, K, t — 1) >>,
la(dy, é,1,4, k', t) over [0: Ny) X [0: Ny) x [0: %’;?f) x[0: m%;) x[0:
Lt=0—-0,

)X [0: xE=) X [0: Niga] =

max

Nfa:t) X [0 . Nmax] =
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else — la(&l, &2,1, i’, k',t - 1) + (\+ [lC(&l, d2, l, ’il,j,, t)
x1d(éy, b2, 1,3, K, 1)|0 < 5 < g2=1) >,
a(i,k) over [0: P) X [0: R) =
< Ny > Np — la(|452], I_%Ylj | ¥ | mod Nl,zmod s ,kmod 7 V1),
else — la(|$], |52, |2 | mod Nl,z mod £~ ok mod £ o N2) >.

/* Algorithm A(-,2,4): */
ldtzp(aq, ag, ' k') over [0: Ny) x [0: N2) X [0 9—) x [0: ) =
1| (oae + 7)) andl + /L), (ar e + 57 mod &, (aadk + ) mod £2),
ldtzp_row(ay, ag,i, ] ) over [0 Nl) Xx[0:Np)x[0: ) x[0: R)=
ld_tep(ay, |2R], 5', k mod #),
la(ay, az,%,k) over [0: N1) X [0: N3) x [0: N") x[0:R)=
\+ [le(an, a2, j") * ldtzp_col(ay, 2,5, k)0 < _7 < 1@ ],
lared(ay,az,i,k") over [0: Ni) X [0: Na) x [0: 7 Zyx[o: ) =
\+ [la(aq,0b, 7, a2T\IR’1’ + k)]0 < af < N,].

/* Algorithm A(-,2,5): */

ld.t:cp(oq,az,] k) over [0: Np) x [0: Na)x [0: J£) x [0: &) =
(o + 7/ ) Lon -+ /3
(al—— +7') mod ’(0‘2N + k) mod £ )

lc_col(al,a2, i,7') over [ : Np) x [0: N2) x [0 P)x|[0: —9—) =
lc(]_zN |, a,imod o d')s

latzp(as,as,i, k') over [0: Ni) x [0: No) x [0: P) x [0: & )=
\+ [lecol(a, az,t,j') * ldtzp(a, az, j', k)0 < j < ]g ]

latzp-red(on,as,i' k") over [0: Ni)x [0: N2) X [0: & 2y x[o: TVRT) =
\+ [la_t:cp(al,a2,a2N + ¢, EN0< af < Ng],

la(ay, 2,7, k") over [0 : Nl) x[0:Ny)x[0: ) x[0: &)=

la tzp-red(|(on e + )/ Bl [(aadh + )/ R ), (@ e + ) mod £, (az e + K) mod 1),
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