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Abstract

One of the most important pragmatic advantages of functional languages is that concurrency in a
program is implicit — there is no need for special constructs to express parallelism as is required in most
conventional languages. Furthermore, it is fairly easy for systems to automatically determine the
concurrency and thus decompose a program for execution on a suitable parallel architecture. Yet it is
often the case that one knows precisely the optimal decomposition for execution on a particular machine,
but one can never expect a compiler to determine such optimal mappings in all cases. This paper is
concerned with ways to allow the programmer to ezplicitly express this mapping of program to machine,
by using annotations that, given a few minor constraints, cannot alter the functional semantics of the
program. We show through several detailed examples the power and conciseness of the resulting “para-
functional® programming methodology, using an experimental language called ParAlfl based on our

ideas. We also give a formal denotational description of the mapping semantics using a notion of
exzecution trees.

This research was supported in part by NSF Grant MCS-8302018.

1. Introduction

The advantages of functional languages have been well-argued by functional programming advocates in
the past several years. One of the most important pragmatic advantages is that functional programs
expose parallelism in a “natural way," and that it is easy for a compiler to detect such parallelism for
exploitation on a suitable parallel architecture. The lack of side-effects accounts (at least partially) for
the well-known Church-Rosser Property [31] that guarantees determinacy in the resulting parallel
computation. Indeed, many of the earlier functional languages were developed simultaneously with work
on dataflow or reduction machines (for example, VAL and the Static Dataflow Machine [8, 25}, ID and
the U-interpreter (1, 2], DDN and the dataflow machine DDMa1 (6, 7], and FGL and the reduction
machine AMPS (20, 21]). In all of these efforts the parallelism is detected automatically by the system —
the user in no way has to provide extraneous information such as that needed in most imperative

programming languages designed for parallel computation.




Recently there has also been a great deal of interest in so-called "network computers* or "ensemble
architectures," characterized as a collection of autonomous processing elements with only local store,
, interconnected by a homogeneous communications network, and communicating by "messages.® The
interest in this style of machine is actually not surprising, for many reasons. Not only do they avoid the
classical "von Neumann bottleneck® by being effecti}'ely decentralized, but they are also extensible, and
in general quite easy to build. Indeed several existing machines meet this description, such as the
Butterfly Multiprocessor (4], Cosmic Cube (28], Intel iPSC [19], and ZMOB [], to name a few, and there

are many proposed machines whose construction is not complete.

The combination of functional languages and network computers thus seems like a natural one. Indeed,
considerable research is uhderway in this direction, such as Keller’s Rediflow Multiprocessor [23] and the
author’s work on DAPS [14, 16, 17]. Such work shows considerable promise: a functional program is
automatically decomposed for dynamic distribution on a network of processors, typically by some sort of
"load-balancing® or "diffusion-scheduling® strategy, and execution takes place as the processors
cooperatively accomplish a global form of graph-reduction. Simulated performance figures are quite
encouraging, and it is hoped that the resulting systems will perform quite well on a wide variety of

programs.

We prefer to view the aforementioned systems as general-purpose multi-user computer systems. Yet it
" is often the case that one has a dedicated parallel machine for a particular application, and furthermore
that one knows precisely the optimal mapping of one’s program onto that machine. One can never
expect an automated system to determine this optimal mapping in all cases (indeed, in the general case
such a task is undecideable), so it is desireable to allow the user to express the mapping explicitly. This
need often arises, for example, in scientific computing, where many classical algorithms have been re-
designed for optimal performance on particula.r architectures. As it stands, there are almost no languages

providing this capability.

Our goal then, is to remedy this situation. Since functional languages seem generally well-suited to
parallel computing, we use it as a basis for the following simple solution: a functional program, being
essentially an immutable object, may be mapped to a machine by annotaling its subexpressions, in such a
way that the program’s functional behavior is not altered; i.e., the program itself remains unchanged.
We refer to the resulting methodology as para-functional programming, since not only does it provide a
much-needed tool for expressing parallel computation, but it also provides an operational semantics that
is truly "extra," or "beyond," the functional semantics of the program. The resulting methodology is

quite powerful, for several reasons:

First, 1t is very flexible. Not only is the idea easily adapted to any functional language, but also any
network topology may be captured by the notation, since no a priori assumptions are made with regard
to the logical structure of the physical system. All of the benefits of conventional scoping disciplines are

available to create modular programs that conform to the topology of a given physical system.




Second, the annotations are natural and concise. There are no special control constructs, no message-
passing constructs, and in general no forms of "excess baggage" to express the rather simple notion of
“where and when to compute things.* We will show t.hrough several non-trivial examples the perspicuous

nature of the annotations, and that very few annotations are required to express most typical mappings.

Finally, with some minor syntactic constraints, if a para-functional program is stripped of its
annotations, it is still a perfectly valid functional program. This means that it can be written and
debugged on a uniprocessor without the annotations, and then executed on a parallel system by adding
the annotations for increased performance. Portability is enhanced since only the annotations need to
change when one moves from one parallel topology to another (unless the algorithm itself changes). The

ability to debug a program independently of the parallel machinery is invaluable.
Relationship to Other Work

In spirit, the work that is most similar to ours is Shapiro’s “systolic programming® in Concurrent
Prolog (29], which is in turn derived from earlier work on "turtle programs® in Logo [27]. However, there
are important differences. First, both of these earlier efforts have a notion of "directionality;” i.e., a
notion of a process (or turtle) “navigating" through a network (or turtle world) by "facing" in a certain
direction. Our approach is more general, in that such navigation is simply a special case of a particular
mapping. We can "skip" from one processor to any other just as easily as to its neighbor. Another
important difference, of course, is the programming paradigm on which the extensions are based. Logo is
a conventional imperative language, and has all of the problems that one might expect with a language
having side effects. Concurrent Prolog has the purity of a functional language, but is of course based on

logic rather than functions.

It is interesting to note that in logic programming the success of these ideas seems to rely on the notion
of “read-only variables® (as well as a *commit" operator) which are an unnecessary distinction in
functional languages since in a sense all variables are read-only (of course, this can also be viewed as a
disadvantage, since the general utility of unification is unavailable). Also, the conventional block scoping
rules of functional languages seem to give one an added level of control over the use of variables, and thus
over the movement of data through the network. In particular, free variables in a mapped expression
may reference objects computed on any arbitrary processor. This added power slightly complicates the
semantics, as does the use of higher-order functions, but we believe it is w'orthwhile. The formal

semantics given in Section 5 is the first that we know of dea,ling with these issues.

Other related efforts include that of Keller and Lindstrom {24], who independently (in the context of
functional databases) suggest the use of annotations very similar to our mapped expressions. Their
purpose is to permit users to assign database objects to part,icula.r‘ “sites* in a distributed network, a very
useful capability. We have generalized that work by widening the application domain, and providing an

additional annotation to express "eager evaluation. The latter annotation is similar to Burton's




annotations to the lambda calculus to control reduction order; in particular, to provide control over
"lazy," “eager," and "parallel" execution [5]. Finally, we should point out that the "exposure® of the
operational notion of “the currently executing processor" is inherently a process of "reflection® as used by

Smith [30] and more recently by Friedman and Haynes [9].
Overview of Paper

In the next section we describe a functional language called ALFL that serves as a test-bed for our ideas.
When extended with the annotations, we call the resulting para-functional programming language
ParAlfl, and it is described in detail in Section 3. We then present several non-trivial examples in Section
4 that demonstrate the proposed programming paradigm. Having read through these examples the reader
should have a good intuitive feel for the semantics of ParAlfl, which we strengthen in Section 5 with a
formal denotational semantics. In Section 6 we summarize our work and discuss future research

directions.

2. ALFL: A Simple Functional Language

ALFL [15] is a block-structured, lexically-scoped functional language with lazy evaluation semantics,
similar in style to FEL [22] and SASL [32]. We describe it only briefly here, with the assumption that the
reader is familiar enough with this style of language that the examples will be mostly self-explanatory.

The saliant features of ALFL are:

e A program is an equation group, having the following form:
{ f1 x1 x2 ... == el;
2 y1y2 ..=e¢e2;
$result exp;

oo

fn z1 z2 ... == en }

An equation group is delimited by curly brackets, contains a collection of equations that
define local identifiers (f1 though fn), and has a single result clause that expresses the value
to which the equation-group will evaluate. (For clarity reserved words such as $result are
always prefixed with $.) Equation groups are just expressions, and may thus be nested to an
arbitrary depth.

e Equations are mutually-recursive, are evaluated “by demand," and thus their order is
irrelevant. A double equal-sign (“==") is used in equations to distinguish it from the infix
operator for equality.

e Functions defined by equations are “curried," and function application associates to the left.
Thus f x y = body defines the function f that takes one argument and returns another
function that takes one argument, finally returning body. Definitions of simple values, such
as X == exp, can be viewed simply as nullary functions.

® A conditional expression has the form “pred —> conms, alt* and is equivalent to the more
conventional "if pred then cons else alt."




o Lists are constructed *lazily." The symbols *** and **** are infix operators for cons and
append, respectively, and hd (“head") and tl (*tail*) are like car and cdr, respectively, in
Lisp. A proper list may also be constructed using brackets, as in [a,b,e] (which is equivalent
to a“b e []). ' ‘

e ALFL has a pattern-matcher through which complex functions may be defined more easily.
For example, the function member may be defined by:
member x [] == false;
’  x (x"L) == true;

x (y"L) == member x L;
When using the pattern-matcher note that the order of equations defining the same function
does matter. Also note the use of a single quote ’ as a sho::thand for the function name in
consecutive equations defining the same function.

’

¢ ALFL also has functional vectors and arrays. The primitive function call mkv n f creates a
vector v of n values, indexed from O to n-1, such that its ith element v i is the same as f i.
Similarly, the expression mka [d1,d2,...,dn] f returns an n-dimensional array a such that a
x1 .. xn = f x1 ... xn. Note that vectors and arrays defined in this way are used
syntactically just like functions.!

There are other syntactic and semantic vfeaturw of ALFL, but they are beyond the scope of this paper (the
interested reader should refer to [15] for more details). Our purpose here is primarily to give a framework

on which to build the extensions that make up ParAlfl.

3. ParAlfl = ALFL + Annotations

ParAlfl is an experimental para-functional programming language based on ALFL. The extensions that
Wwe propose, however, could easily be added to almost any functional language. In this section we present
the syntax and an intuitive operational semantics for the extensions, of which there are essentially only
two: fnapped expressions and eager expressions. We return to a formal denotational description of

ParAlfl in Section 5.

3.1. Mapped Expressions
As mentioned in the Introduction, our primary goal is to allow one to map the evaluation of a program
onto any particular network topology. We accomplish this by using mapped expressions, which have the

simple form:
exp $on proc

which intuitively declares that exp is to be computed on the processor identified by proc. The expression
exp is the body of the mapped expression, and represents the value to which the overall expression will
evaluate (and thus can be any valid ParAlfl expression, including another mapped expression). The
expression proc must evaluate to a processor id, or pid. We will assume, without loss of generality, that

processor ids are :ntegers, and that there is some pre-defined mapping from those integers to the physical

llndeed, the function mKV can be viewed simply as a caching functional!




processors they denote. For example, a tree of processors might be numbered as shown in Figure 3-1a, or
a mesh as shown in Figure 3-1b. The advantage of using integers is that the user may manipulate them

using conventional ALFL machinery; for example Figure 3-1 also defines functions that map pids to
neighboring pids.2

left pid == 2#*pid;

right pid == 2*pid+1;

parent pid == pid/2; ° ° e °

(a) “Infinite® tree

] "4
! I

e

up pid == pid<=n -> error, pid-n;

down pid = pid>(m-1)*n -> error, pid+n;

left pid = (pid-1)\n=0 -> error, pid-1; ----( mn-1 G
right pid == pid\n=0 ~> error, pid+1; | ’

Note: x\y returns the remainder of x divided by y.

o>

-

(b) Finite mesh
Figure 3-1: Two possible network topologies

To facilitate the use of mapped expressions, we also introduce a way for the user to access the currently
e:iecuting processor. This is a dynamic notion, since a recursive expression, for example, might be
evaluated on different processors, depending on the depth of the recursion. We provide this access

through the reserved identifier $self which when evaluated returns the pid of the currently executing

2A safer discipline might be to define a pid as a unique type, and to provide primitive functions to manipulate values having that

type.




processor. It should be pointed out that since $self is essentially a "dynamic variable,* its evaluation
violates the normal notion of referential transparency since it will have different values depending on
where and when in the program it is evaluated! This seemingly unfortunate state of affairs, however,
may be remedied by imposing the (reasonable) syntactic constraint that the identifier $self cannot appear
other than in the pid expression of a mapped expression. Since the value of a mapped expression
exp $on pid is exp, then with the additional constraint that all pid expressions must terminate, it is
easy to see that the value of a program cannot change, no matter how many expressions are mapped.
This simple determinacy property is a very important one, since it allows a program to be written and
debugged on a uniprocessor without the annotations, and then executed on a parallel system by adding

the annotations for better performance.

It should also be noted that the information provided by $self is philosophically no different from
providing the depth of the current execution stack, or the value of the current program counter, or the
register containing the value of a 'cex-ta.in variable, or any other arbitrary implementation-dependent
parameter. It’s just that the currently executing processor can be used to great advantage, as the
examples in the next section’will demonstrate. From a semantic viewpoint, just as the meaning of an
expression is normally given as a function of a "current continuation® and "current environment," the
operational meaning that we are trying to convey is given as a function of a “currently executing
processor.” And just as in Scheme one is given access to the current continuation via calls to the

primitive function call/ cc, we are providing access to the currently executing processor via the dynamic

variable $self.
Simple Examples of Mapped Expressions

As a simple example of the use of mapped expressions, consider the program fragment f(x) + g(y).
The semantics of the -4 operator allows the two subexpressions to be executed in parallel. If we wish to
express precisely where the subcomputations are to occur, we may do so by annotating the expression, as
in:

(fx $on 0) + (g y $on 1)
where O and 1 are processor ids. Of course, this static mapping is not very interesting, but by using the
dynamic variable $self we can be more creative. For example, suppose we have a mesh or tree of

processors such as in Figure 3-1. We may then write:
(f x $on left $self) + (g y $on right $self)

to denote the computation of the subexpressions in parallel, with the sum being computed on $self.

Similar mappings can be made from composite objects such as vectors and arrays to specific
multiprocessor configurations. For example, if f is defined by f i == i**2 $on i, then the call mkv n f
will produce a vector of squares, one on each of the processors, such that the ith processor contains the

ith element (namely iz). Further suppose we have two vectors v and w (which may be distributed as




above, but are not required to be), and we wish to create a third being the sum of the other two, but
distributed over the n processors. This can be done very simply by: mkv n g where g i = (vi+wi)

$on i.
A Comment on Lexical Scoping and Data Movement

It is important to note that no communications primitives and no special synchronization constructs are
needed in the above examples to “move data® from one processor to another. Together with the
annotations, it is accomplished simply through the use of normal lexical scoping mechanisms. 'For

example, consider the program fragment:

{ x == exp $on p;
$result ...
(+-x...) $on q

(-ex...) $on r

The value of x is created on processor P, and the two references to x essentially cause that value to be
"sent" to processors q and r. Since there are no side-effects, there is no need to synchronize the
concurrent accesses to x’s value. If “finer" control over x’s movement is desired, intervening references

can be made, as in:
{ x == exp $on p;
$result ...
{ x = x $on s;
$result ...
(.-x...) $on q

coe

: (..x...) $on r }
which essentially moves x to processor s prior to its access from processors qand r.

We feel that the environments created through lexical scoping fit naturally into the parallel computing
world, an idea supported by all of the examples given in Section 4. It is a simple yet powerful way to
express communication in a parallel computer, and eliminates the need for special message-passing

constructs as is used in almost every other language for parallel computing.

3.2. Eager Expressions

The second form of annotation arises out of the occasional need for the programmer to “override® the
lazy evaluation strategy of ALFL, which normally does not evaluate an expression until it is absolutely
needed. Opport.unities to override lazy evaluation can often be inferred by a suitable "strictness analysis"
7 [18, 26], but there are cases where such an analysis will fail, and in any case the programmer may wish
to make such inferences explicit in the source program. We thus introduce an’ eager expresston, which

has the simple form:




#exp
and intuitively forces the evaluation of exp in paralle! with its "most relevant* surrounding syntactic

form, as defined by:

if #exp appears as: it executes in parallel with: for example:
argument in function call the function call fx#yz
element of list the list [x, #y, z]
arm of conditional the conditional P>#xvy
operand of infix operator the whole operation x #y, x&#y

Thus, for example, in the expression p -> f #x y, z, the evaluation of x begins as soon as p has been
determined to be true, and simultaneously the function f is invoked on its two arguments. Note that the
evaluation of some subexpression begins when any expression is evaluated, and thus to eagerly evaluate

that subexpression accomplishes nothing. For example, note the following equivalences:

#P >%y=p->xy
#x&y=x&y
#Hxy="Fxy

Similarly, there is no need to eagerly evaluate either argument to a strict binary operator such as <+, since

in ParAlfl it is assumed that both arguments may be evaluated in parallel.

The value of an expression containing an eager subexpression is the same as if the expression had no
annotation at all. Thus, as with mapped expressions, the annotation only adds an operational semantics,
and means that the user may invoke a non-terminating computation yet have the overall program

terminate. For example, consider:
{fx=1;
gy =g (y+1);
$result f #(g 0) }

The call to g will be invoked eagerly and will not terminate, but since f does not depend on the value of
its argument, the program will terminate and return the value 1. The process that is computing g 0 is
often called an irrelevant task (once its value has been determined to be no longer needed). There exist
strategies for finding and deleting irrelevant tasks at run-time [3, 11, 12, 13], but such mechanisms are
well beyond the scope of this paper. Suffice it to say that given such a mechanism there are real
situations where one might wish to exercise the option of invoking a non-terminating computation. An

example of this is given in Section 4.2.
Simple Examples of Eager Expressions

Together with the conditional, we can define a simple function to evaluate two expressions in parallel:
par a b == false —=> #a, #b

Thus par a b will return the value b, but a is eagerly evaluated in parallel - note that par a b
terminates even if a doesn’t. This function is useful in eagerly starting the evaluation of a subexpression
that the programmer either knows will eventually be needed, or just conjectures will eventually be needed

and is willing to allocate the resources to compute it. Another use is given in the example below.
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To force the computation of all elements of a "lazy" list, we can use the following fimction:

strong-force 1 == { $result sf I;
sf [1 =1
sf (a"Ist) = par a (sf Ist) }

This function actually evaluates each element of the list. If all we were interested in was ezpanding the

list, but not computing the individual elements, we could define the “less forceful® function:

weak-force | == { $result wf ;
wf [] =1
wf (a"lst) == wf Ist }

which uses no annotations at all! Unfortunately, both of these functions tend to “strictify* lists; that is,
the end of the list must be reached before anything is returned, meaning that the function will not
terminate when applied to an infinite list. This can be remedied by changing the result clause in the

functions strong-force and weak-force to: $result par (sf 1) 1 and $result par (wf 1) 1, respectively.

3.3. Notes on Determinacy

All ParAlfl programs possess the following determinacy property, which we state as a theorem:

Theorem 1: (Informal) A ParAlfl program in which (1) the identifier $self appears only in
pid expressions and (2) all pid expressions terminate, is functionally equivalent to the same
program with all annotations removed. That is, both programs return the same value.

The reason for the first constraint was discussed earlier: $self can return different values depending on
the mapping strategy used. The purpose of the second constraint should be obvious: if the system
diverges when determining on which processor to execute the body of a mapped expression, then it will
never get around to computing the value of that expression. We postpone a formal proof of this theorem
until a formal denotational semantics for ParAlfl is given in Section 5, at which point the proof becomes

trivial.

Although neither determinacy constraint is severe, there are practical reasons for wanting to violate the
first one; i.e., for wanting to use the value of $self in other than a pid expression. The most typical
situation where this arises is in a non-isotropic topology where certain processors form a “boundary" for
the network. For example, the leaf processors in a tree, or the edge processors in a mesh. There are
many distributed algorithms whose behavior at such boundaries is different from their behavior at
internal nodes. To express this, one needs to know when execution is occurring at the boundary of the
network, which can be conveniently determined by analyzing the value of $self. An example of this is

given in Section 4.1.

One final note on determinacy concerns the use of 7. Although this annotation does not affect the
program’s functional behavior, there may be situations where one wishes to make an expression "strict"
in one of its subexpressions. Unfortunately this can prevent a program from terminating when otherwise
it would, thus changing its functional semantics. Our approach to providing this capability is therefore

not through annotations, but through a primitive function that induces the strictness property. The
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predicate terminate is defined such that terminate exp returns true if exp terminates; otherwise it

does not terminate either. We can then define:
strictify el e2 = terminate el -> e2, e2

so that, for example, strictify x (f x y 2z) will essentially make the call to f strict in x (and, as an aside,
will cause the evaluation of x before that of f x y z). This definition depends on the fact that in both
ALFL and ParAlf], (| -> x,x) = _| (where | is the symbol used in semantics to represent the value of

a non-terminating computation).3

4. Sample Application Programs

It has been our experience in looking at many multiprocessing algorithms that they are quite functional
in their global behavior, perhaps because their parallel nature precludes dependencies on a centralized
shared memory, and thus they fall nicely into the functional model. In this section we present four non-
trivial examples that demonstrate this, showing the power and flexibility of para-functional programming.

We urge the reader to note how few annotations are needed to accomplish the desired mappings.

4.1. Parallel Factorial

{ $result pfac 1 k $on root;

pfac lo hi == lo=hi -> lo,
lo=(hi-1) -> lo*hi,
{ $result (pfac lo mid $on left $self) *
(pfac (mid+1) hi $on right $self);
mid = (lo+hi)/2 };

left pe == (2%pe > n) -> pe, 2%pe;
right pe = (2*pe-+1 > n) -> pe, 2*%pe+1;
root == 1;

}

Figure 4-1: Annotated divide-and-conquer program to compute k!
Figure 4-1 shows a simple "parallel factorial® program, annotated for execution on a finite binary tree

of n = 2d processors.4 At each iteration, the computation is split into two parts and mapped onto the

two “children" of the current processor, enabling parallel computation of the two subexpressions of the

31t may seem as if terminate need not be primitive if at least one other type-predicate is primitive. For example, suppose there
is 2 predicate integer defined in the normal way. Then it seems as if the predicate terminate could be defined by:

terminate exp == integer exp -> true, true

Semantically speaking, this version of terminate has the property that terminate x = 1 if X=_{ , otherwise true. Although
this is also true of the primitive version of terminate described earlier, it does not fully capture the intended semantics, because
with such a definition it might be possible for a compiler to infer that an expression will be an integer, thus constant-folding the
overall expression to true! Our intent is more operational - i.e., we want exp to actualiy be evaluated (if it hasn’t been aiready),
and return true only if it terminates. Thus terminate must be primitive so that the compiler can decide if certain
transformations are applicable (in particular, it cannot reduce terminate exp to true even if it can infer that exp will terminate).

4.A.lthougi't this program computes factorial, almost any binary *divide and conquer® algorithm could fit into the same framework.
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multiplication. Note that through the normal lexical scoping rules, mid will be computed on the
“current” processor and passed to the child processors as needed (recall the discussion in Section 3.1).
The functions left, right, and root describe the network mapping necessary for this topology. In this
case, if the current processor is a leaf node, all further calls to pfac will be executed on that processor. In
practice, more complex routing runciions could be devised that, for example, might reflect the
computation upward when a leaf processor was reached. Figure 4-2 shows the process mapping and the

flow of data between processes for this example.

Figure 4-2: Dynamic flow of data for parallel factorial
{ $result pfac 1 k $on root;

pfac lo hi = lo=hi -> lo,
lo=(hi-1) -> loxhi,
{ $result leaf?($self) -> sfac lo hi 1,
(pfac lo mid $on left $self) *
(pfac (mid-+1) hi $on right $self);
mid == (lo+hi)/2 };

sfac lo hi ace == lo=hi -> lo*ace,

sfac (lo+1) hi (lo*ace);
leaf? pe == pe >= 2d-1
left pe == 2#pe;
right pe == 2*pe+1;
root == 1;

Figure 4-3: Divide-and-conquer factorial with unique behavior at leaves
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The above para}lel factorial program observes the constraints stated in Theorem 1, and thus it is
determinate regardless of the annotations. However, it may be desirable to use a more efficient factorial
algorithm at the leaf nodes. An example of this is given in Figure 4-3, where the tail-recursive function
sfac is invoked at the leaves. Note that even though $self is used in a non-pid expression, the program
ts still determinate. This is, of course, usually the case, but we cannot guarantee it in general without

the previously discussed constraints.

4.2. A Prime Number Generator

Figure 4-4 shows a program to compute the first n prime numbers, using the well-known "sieve of
Erastothenes.” Ignoring the annotations for a moment, this program demonstrates a classical use of
"infinite lists." First the infinite list of integers starting with 2 is generated (ints). The function sift
then removes the first element, which it takes as prime, and elides multiples of that prime from the
remaining list (by calling filter). This “filtered” list is then passed recursively to sift to form the rest of
the infinite list of primes. The primitive function call prefix n primes then selects the first n elements

from the result.

{ $result prefix n primes;
primes == sift ints;

sift (p"rest) == { $result p * (sift (filter rest) $on right $self);
filter (n"1) = n\p=0 -> filter 1, n " filter 1 };

numsfrom n = n * numsfrom (n+1);
ints == numsfrom 2;

}

Figure 4-4: Sieve of Erastothenes on an “infinite* vector of processors

With the single mapping annotation shown, the subsequent calls to sift are mapped onto successive
processors to the "right” of the current one. We will ignore the details of the function right that
accomplishes this, recognizing that the conceptually infinite vector of processors could be a ring, "“twisted
torus," hypercube, or other topology. However, there is something terribly wrong with this program: It
has no parallelism! Remember that lists are computed lazily, and thus there are no strict operators that

could create parallelism, other than those in the trivial subexpression n\p=0.

To fix this problem, one should first note that the function filter is essentially doing all of the work -
it must check successive elements of rest until it finds one that is not a multiple of p. To get parallelism
one needs to have several invocations of filter operating together, one “feeding® the next in an effectively
pipelined manner. However, there is no simple way to call filter and have it return just enough elements
. to satisfy subsequent calls to filter so that exactly n primes are generated. The simplest solution is to

make filter behave eagerly, extract the first n primes from the result eagerly, and let the system’s task
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manager "Kill off" the then irrelevant processes computing the filtered streams. This solution is shown in
Figure 4-5 - note the eager call to filter and the redefinition of prefix to evaluate its elements eagerly
(the other two calls to filter could also be made eagerly, but little additional parallelism would be

attained, since they get evaluated "immediately" anyway).

{ $result prefix n primes;
primes = sift ints;

sift (p“rest) = { $result p " (sift (filter rest) $on right $self);
filter (n"1) = n\p=0 -> filter 1, n * #(filter 1) };

numsfrom n = n * numsfrom (n+1);
ints == numsfrom 2;

prefix 0 1 == [];
> n(a®l) =a "~ #(prefix (n-1) 1)

Figure 4-5: Parallel version of Sieve of Erastothenes

As an aside, we should point out that this example demonstrates an important use of, and need for, an
_automatic task deletion mechanism as discussed in Section 3.2. In a "conventional” multiprocessing
environment one might instead have a global variable that could be set after the n primes were ektracted,
which could serve as a signal for the filter processes to “kill themselves."* This is not as clean 2 solution
for at least two reasomns: First, it requires the explicit coding of the termination condition into the
function filter, and second, providing such explicit mechanisms introduces the possibility of programmer
error, either terminating a process too soon or failing to terminate one that should. Providing an
automatic task deletion mechanism in a parallel system is akin to providing automatic garbage collection
in a sequential system -- it frees the programmer from the need to explicitly deallocate objects, whether

they be processes or cons cells.

{ $result sift ints;

sift (p“rest) == { new == filter rest;
$result par new (p “ (sift new $on right $self));
filter (n"1) = n\p=0 -> filter 1, n " filter 1 };

numsfrom n = n * numsfrom (n+1);
ints == numsfrom 2;

}

Figure 4-8: Sieve of Erastothenes using “piece-meal" parallelism

It is interesting to note that there is another useful parallel version of this program. Consider the
following request from a client: create a lazy, infinite list, but every time an element is *demanded" from
the list, return the element and simultaneously compute the next element in parallel so that it will be

immediately available upon the next demand. Surprisingly, this seemingly complex request can be filled
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simply by using par as defined earlier to eagerly evaluate filter rest when sift is called, thus computing
the next non-multiple of p in advance. The resulting program is shown in Figure 4—6.5 It is not hard to
imagine generalizing this technique so that a *buffer® of n primes is maintained, ready to be "consumed"

by some other process.

If nothing else, these examples of prime number generators amply demonstrate that parallelism in a
program is not an "all-or-nothing® proposition. There are many subtle degrees of parallelism and
mapping possibilities that the programmer may wish to express. In a conventional language augmented
for parallel computing, expressing these alternatives typically involves changing the program’s
fundamental functional behavior. We believe that the functional and operational behaviors should be
kept separate, and that the para-functional approach accomplishes this separat,ion‘quite well. One can
control not only the mapping of program to machine, but also the degree of parallelism manifested in the

evaluation strategy, without jeopardizing the functional correctness of the program.

4.3. Matrix-Vector Product

The next two examples represent typical scientific computing applications, and are both annotated for
executjon on a ring of n processors, numbered O through n-1. Although the topology of a ring is rather
simple, its limited interprocessor communications make it rather difficult to use effectively, and thus the
programs are typically rather complex, making them a good test-bed for para-functional programming.

Figure 4-8 shows a ring of size n=4.

The first example computes the product of a matrix A and vector b. We assume that (1) the vector
length‘ is n, the same as the number of processors in the ring, (2) initially the rows of A and the
corresponding elements of b are distributed uniformly around the ring, and (3) we wish the result vector
to be distributed in the same way. Although other data configurations are possible, this represents a

“typical” situation in scientific computing.

Given this initial configuration, the basic idea behind our algorithm is to compute each inner-product
one scalar multiplication at a time, while trying to minimize interprocessor communication. Since the ith
inner product needs to end up on processor i, it makes sense to compute it there. To do this the ith
processor needs the ith row of A and the entire vector b. Although it has all of the former, initiauy it
has only the ith element of the latter. Thus initially the ith processor is able to multiply Aul,i by bi
without having to perform any remote accesses. The vector b can then be "shifted* one position around
the ring so that the ith processor has the (i+1 mod n)th element of b — this requires exactly n
interprocessor "messages." It can then multiply that element by Ai,i+1’ mod n’
"running sum* for the ith inner product. This process of shifting b and computing another piece of each

and add the result to the

inner product is repeated n times, after which the final set of inner products is returned in a vector.

5I“cn' an alternative (and simpler) way to accomplish this annotation, see comment 5 in Section 6.
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{ $result prod 0 (mkv n zerov);
gerov i == 0 $on i;

prod k acc == k=n -> ace,
{ $result prod (k+1) #(mkv n sum);
sum i == (A i ((i+k)\n) * (blist i ((i+k)\n))
+ acc i) $on i };

blist == mkv n bvec;
bvec i = { $result mkv n bproc;
bproc j = j=i -> b i,
blist ((i+1)\n) j } $on i;

Figure 4-7: Matrix-vector product annotated for a ring topology

The first step in writing a ParAlfl program for this is to take care of “shifting® the vector b.b This can
be done in several ways, but the way we have chosen is to create a copy of b on each processor, whose ith
element is taken directly from b, and whose other elements are received "by demand® from each
processor’s immediate (say, left) neighbor (whose pid is (i+1) mod n). This causes the desired "shifting®
effect, and is captured by the vector blist in Figure 4-7 - each of its elements is a copy of b having the

desired properties. Note the recursive nature of the definition.

The only remaining step is to design a function to index through A and blist, performing
multiplications, and keeping a running sum for each inner product. The function prod in Figure 4-7
accomplishes this — k is the "index" and acc is the "accumulator® containing the running sum
(represented as a vector spread over the n processors). Initially the running sum acc is a vector of all
zeros (zerov), and at the end (i.e., after n iterations of prod) it is the desired matrix-vector product.

Note that the second argument to prod is "eagerly* evaluated.

It is interesting to note that with this solution it is possible for one processor to "get ahead” of another,
but since each processor ends up with its own copy of b, this is not a problem. The structure of blist is
such that only n2 immediate-neighbor transactions are incurred, no matter what the "synchronization®*

properties between the processors are.

However, it could be argued that there is overhead in permitting such overlap of computation, such as
the maintenance of “process descriptors" or other implementation mechanisms. In such cases the user
may wish to explicitly "synchronize” each "step" of the computation, which has the added advantage of
being intuitively easier to understand, and can be done quite simply by modifying the definition of prod

to:

6Remember that in ParAlfl vectors and matrices lock syntactically just like functions; A i j, for example, returns the [i,jlth
element from the matrix A.
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prod k acc == k=n -> acc,
{ $result strictify new-acc (prod (k+1) new-ace);
new-acc == mkv n sum;
sum i == ((A i ((i+k)\n)) * (blist i ((i+k)\n))
+ acci)$oni}

where strictify is as defined in Section 3.3. This version of prod simply ensures that new-acc is

completely evaluated before the recursive call is made.

With such synchronization it is now possible to draw two figures that help describe the overall behavior
of the program. First, Figure 4-8 shows the "filling in" of blist’s values during each “step" of the
computation. Second, Figure 4-9 shows in which time step each component of the final matrix-vector

product is computed.

4.4. Solution to Upper Triangular Block Matrix

The next example solves for the vector x in the equation Ux=b, where U is an upper triangular block
matrix. As for the previous example, we use a ring of size n, which is also the vector length, and each
row of U and the corresponding elements of b are distributed uniformly across the Aring. We wish the

solution vector x to be distributed as well.

Solve Un-l,n-lxn-lzbn-l On processor n-1. (step 1)

For i=n-2 down to 0 do:
Begin For j=i down to 0 do in parallel on processor j:
. :=b.-U. . * X, .
bJ b.l U‘],1 +1 * %, (step 2)
Solve Ui ixi=bi on processor i. (step 3)
End.

Figure 4-10: Algorithm for solving Ux=b on a ring

Figure 4-10 outlines the conventional “block row" algorithm for solving Ux=b. Initially, the last
element X1 of the solution vector is computed on processor n-1 (step 1). Then, a "back-substitution®
step takes place in parallel on the remaining n-1 processors (step 2). Completing this, the next-to-the-last
element of the solution (xn_z) can be computed (step 3). This alternating process (steps 2 and 3) of

solving and back-substituting continues until all elements of x are found.

{ $result iter (n-2) [lastx] b $on n-2;

lastx == uxb (u (n-1) (n-1)) (b (n-1)) $on n-1;
uxb u b = b/u

iter 0 x b == x;

iter i x b == { $result iter (i-1) (sol"x) newb $on i-1;
newb == mkv i backsub;
backsub j = (b j) - (U j (i+1))*(hd x) $on j;
sol == uxb (U ii) (newb i) };

Figure 4-11: Program for solving Ux=b, annotated for a ring
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A ParAlfl program for this algorithm is shown in Figure 4-11. -For simplicity we assume that the blocks
are of size 1 (and thus are represented simply as scalar quantities), but conceptually any size block could

be used. For block size 1, the solution to U, iX;=b; is simply X;= bi/Ui i» 2nd is captured by the function
uxb.

The solution vector is represented as a list, since it is computed element-by-element with intervening
back-substitution steps. The last element, and first to be computed, is lastx (step 1 of the previous
description). The function iter accomplishes the iteration of steps 2 and 3, and collects the elements of
the solution in the parameter x. Note how iter recursively performs the back-substitution by creating a
new version of b (newb) on each iteration. This vector decreases in length by 1 on each iteration, and is
computed in parallel as the previous description of the algorithm suggests (indeed, all of the parallelism in
the program is manifested here). It is then used to compute sol, the next element of the solution vector.
Figure 4-12 shows the temporal progression of the program, alternating between computing a new
element of the solution and doing a back-substitution. '

bo| bo b
b3 b1 b
b2 b2 -
b - -
=)
vl
- & -
Xq X3

Figure 4-12: Time sequence of program to solve Ux=b

Note in this example and the previous one (the matrix-vector product) that $self is not used at all; thus
both programs are essentially statically mapped to the ring. In this example the vector b and subsequent
vectors newb are uniformly distributed around the ring. There is no need for any processor to have more
than one element from any of these vectors, since each processor is "dedicated® to a particular element.
No special synchronization constructs are needed since the “call-by-need* semantics achieves the necessary
synchronization automatically.

Note finally that if true block matrices and vectors are used, the only change necessary is the
redefinition of the functions uxb and backsub.



5. A Formal Semantics for ParAlfl

Hopefully the reader at this point has a good intuitive feel for the operational semantics of ParAlfl.
However, we have glossed over many non-trivial details. For example: (1) In a mapped expression, where
'is the pid expression evaluated? (2) Where is an unmapped expression evaluated that appears at the top
level? (3) The identifier $self in a function body is evaluated when the function is applied, not when it is
created, but what exactly does that mean, especially in the context of curried functions? One approach to
providing these details is to anticipate as many of the above questions as possible, and answer each of
them in turn. This informal approach is unfortunately error-prone and susceptible to ambiguity because
of the English language. A better approach is to give a formal denotational semantics that captures the

desired operational properties, and that is what we do here.

For the following we assume that the reader is familar with the standard notational conventions for
denotational semantics, such as outlined in {10]. For clarity we also assume that the following syntactic

transformations have occurred on the ALFL or ParAlfl source program: -

e The equations defining curried functions, including pattern-matching, have been mapped into
lambda expressions. For example:

fac 0 = 1;
’ n == n*fac(n-1);
will be converted into:
fac = An. n=0 -> 1, n*fac(n-1)

e Lists have been converted into an equivalent infix cons form. For example, [x,y,z] is
converted into x"y"~z"~ [].

5.1. Standard Interpretation

To give a formal operational semantics for ParAlfl we first need to define its standard functional
semantics, which after the above syntactic transformations is relatively straightforward. It is captured by
the semantic function E: Exp->Env->D, where Exp is the syntactic domain of ParAlfl expressions,
Env is the domain of environments that map identifiers to values, and D is the standard domain of
expressible values. Feor convenience we will omit the details of the syntactic and semantic domains, as
well as errors; this will allow us to concentrate on the issues of mapping. We adopt the normal
convention of enclosing syntactic objects in double-brackets, and thus E [exp]l e denotes the value of exp

given environment e, and is defined by:




E [constant] e = B[ constant]
where B maps constants to their semantic counterpart.

Elidle = e[id]
E [unop el]le = Bunop] (E[elle)

E [el binop e2]le = B([binop] (E[elle) (E [e2]e)

E [pred->con,alt]e = if (E [pred]e) then (E [con]e) else (E [alt]e)
E[\x. explle = \%. E [exp] e[2/x]

E(el e2]e = (Elelle) (E[e2]e)

E[{fl==el

fn =en
$result exp }Je = E[exple’
: whererec ¢’ = e[E[[el]e’ / fl,

ey

E[en]e’ / fn]

E [exp $on pidlle = if (E[pidlle) = | then |
else (E [exp] e[E [pid] e/$self])

E[l#explle = E[exple

The semantics of a complete ParAlfl program (which must be either an equation-group or a mapped

expression whose body is an equation group) is given by the semantic function Ep, defined by:
Ep [program]] = E [program] initial-env

where initial-env contains bindings for primitive functions such as plus, and, etc., a default value for

$self, and constants such as true and false.

5.2. Determinacy Theorem Revisited

We return now to Theorem 1, which we restate formally below:

Theorem 1: (Formal) Let P be a ParAlfl program in which (1) the identifier $self appears
only in pid expressions and (2) for each pid expression pid in environment e, E [pidJle £ | .
Further, let P’ be the same ParAlfl program but with all occurrrences of mapped expressions
of form exp $on pid replaced with the body exp, and all occurrences of eager expressions of
form #exp replaced with exp. Then Ep [P]=Ep [P’].

Proof. We must prove that E[PJinitial-env = E [P’Jinitial-env. We do this by structural
induction on P. Consider any subexpression sexp and its "stripped" version sexp’. For all but mapped
expressions and eager expressions, it is clear that E [sexplle = E [sexp’Je, since $self will never be

evaluated. We consider mapped expressions and eager expressions below.

Suppose sexp = exp $on pid and thus sexp’ = exp. Then:
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E[sexplle = if (E[pidJe) = | then |
else (E[exp] e[E [pid]e/$self])

But we are given that E[[pidlle5% |, so: E[sexple = E[exp] e[E [pidle/$self]. Furthermore,
since $self will never be evaluated, we have that E [sexpJle = E [explle = E [sexp’'Je.

The remaining case is an eager expression. Suppose sexp = #exp and thus sexp’ = exp. Directly
from the semantic equations for E, we then have that E [sexplle = E[expJle = E [sexp’Je. This

covers all cases and thus the theorem holds. [J

5.3. Execution Trees

The obera.tiona.l semantics that we wish to capture is a notion of "where® (i.e., on which DProcessor) an
expression will be evaluated. For each expression exp we associate an ezecution itree that reflects the
evaluation history of exp. Intuitively, the root of exp’s execution tree t is labelled with the processor on
which exp will be executed, and each immediate subtree of t is the execution tree of each immediate
subexpression of exp. The notation pid:<t1, Ty sy t,> denotes an execution tree whose root is

_ labelled pid and whose children are the sub-trees t, through tn. pid: <> is a leaf node with label pid.

An execution tree may also be a lambda expression, corresponding to an expression that evaluates to a
function under the standard interpretation. This is called an abstracted ezecution tree, and it may be
applied to another tree, yielding a third. The application on processor cp of execution tree t1 to an

execution tree t2 whose value is v2, is written "t1 t2 v2 cp," and is defined by:

e if t1 = p:<<tl,...,tn>, n > 1, then tn t2 v2 cp.
e if t1 = At v p. body then a standard beta-reduction occurs.

e else error (i.e., t1 does not represent a function).

In other words, the application *trickles down" the right subtrees until it encounters a lambda expression

at the right-most leaf, in which case a normal function application occurs.

5.4. Semantics of Mapped Expressions

We now define a semantic function T such that T [exp]l cp te e denotes the execution tree for the
ParAlfl expression exp given the standard environment e, the “tree environment” te, and the currently
executing processor ¢p. A tree environment maps identifiers to execution trees. The semantic function T

is defined by:
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T [constant] cp te e = cp:<<>

TIid] cp te e = cp:<te[id] >

T [unop el]l cp te e = cp:<T[el] cp te e>

T [el binop e2] cp te e = cp:<T[el] cp te e, T [e2] cp te e>

T [pred->con,alt] cp te e = cp:<T [pred] cp tee,
if E[pred] e then T[con] cp te e
else T [alt] cp te e>

T [Xx. exp]l cp te e = cp: <<\ tx vx cp’.
T [expl cp’ te[tx/x] e[vx/x]>

T [el e2] cp te e = cp:<T[el] cp te e,
T[e2] cp tee,
(Tell cp te e) (TIe2] cp te e) (ELe2Te) cp>

TI{fl=el

fn =en
$result exp }] cp te e = T [exp] cp te’ e’
whererec te’ = te[T [el] cp te’ e’ / f1,
T [en] cp te’ e’ / fn]
and e’ = e[E[el]e’ / f1,

eoe

E(en]e’ / fn]

T [exp $on pid] cp te e = cp:<T [pid] cp te e[cp/$self],
T lexpl (E[pid] e[cp/$self]) te e[cp/$self]>

T [#expl cp te e = T [exp] cp te e

The first equation simply states that the value of a constant is computed where it is found. The second
equation reflects the fact that the value of an identifier is "moved" to the current processor e¢p, but that
it is evaluated on the processor on which it was defined, which is information contained in the tree
environment te. The next three equations define execution trees for primitive functions in ParAlfl,
including the conditional. The next two treat lambda abstraction and function application in turn; note
how an abstracted execution tree is built, and how it is expanded when it is applied. Also note that in an
application there are separate subtrees for the function, its argument, and the result of the application.
The next equation gives the execution tree for an equation group; it is here that the two environments te
and e are updated with new execution trees and functional values, respectively. The last two equations
define the behavior of mapped and eager expressions. For a mapped expression exp $on pid, clearly exp
will be evaluated on processor pid. However, that requires first computing the value of pid, which is
done onv processor cp. Note that the value is expressed as a call to E in an environment in which $self

has the value ¢p.



The only remaining question is what the execution tree of a program might be. A program can be

either an equation group or a mapped expression whose body is an equation group. We thus define the

semantic function Tp as:

TpIprogram] = T [program] default-pid initial-tenv initial-env
where default-pid is the name of some root processor on which an unmapped program is defined to
execute, initial-tenv contains the execution trees for pre-defined values, and initial-env is as described

earlier. Note that initial-env [$self] = default-pid.

6. Conclusions and Future Work

We have presented a way to explictly map a functional program for execution on an arbitrary
multiprocessor, as well as a method to control the "eager” evaluation of subexpressions. This expressive
power is gained through annotations that, given some minor constraints, cannot change the functional
behavior of the program. We feel that the resulting parallel programming methodology, that we refer to

as “para-functional programming,”® is a simple yet powerful way to write parallel programs.

Once this methodology is understood, many variations of it become apparent, and alternative language

design features present themselves. For example:

1. The dynamic variable $self is one of many that could be provided to the programmer.
Consider, for example, the use of:

e The dynamic variable $load to give the programmer a measure of the “processing load"
on the currently executing processor (perhaps it would simply be a count of the number
of tasks waiting in the process queue). Using this variable the programmer could
implement a dynamic load-balancing strategy tailored for a particular application.

e The dynamic variable $memory-utilization to provide information about how much
memory is left on a node.

2. In" addition to allowing one to map processes to processors, one could allow mapping data
objects to storage devices or I/O channels. For example, the expression Ist $on tape-drive-2
might cause the list Ist to be written out to a particular tape drive. The right combination of
such annotations, in addition to an appropriate set of non-deterministic operators, could
provide a powerful set of tools to build a "purely functional” operating system.

3. It may also be desirable to perform an operation on a data structure at the processor on
which the data structure resides. For example, the special function $location could be used
to return the pid of its argument’s "home." Thus the expression (f obj) $on ($location
obj) could be used to apply the function f to obj on whichever processor obj happens to
reside.

4. One of the more standard approaches to obtaining parallelism from a functional program is to
allow the compiler and run-time system to automatically decompose and dynamically
distribute the program for execution on a suitable multiprocessor (16, 17, 23]. An obvious
compromise is to combine this automatic approach with the more explicit para-functional
approach. For example, the annotated expression exp $on $arb might indicate that exp is
to be decomposed and distributed as the system sees fit, but that subexpressions internal to it
may still be mapped using the para-functional approach when needed.




5. Our language design choices were somewhat arbitrary, and thus other choices may be more
suitable for particular applications. One of the more obvious examples of this is in the use of
# — currently this annotation “parallelizes" the subexpression relative to, more or less, the
most immediately surrounding syntactic form. Another possibility would to parallelize the
subexpression relative to the innermost equation or result clause. Suppose that the
annotation ! is used for this purpose, and consider the function sift defined in Section 4.2:

sift (p“rest) == { new == filter rest;
$result par new (p * (sift new $on right $self));
filter (n"1) = n\p=0 -> filter ], n " filter 1 }

With ! this could be rewritten as:

sift (p“rest) = { $result p * (sift !(filter rest) $on right $self);
filter (n"1) = n\p=0 -> filter I, n * filter 1 }

At least for this example, the use of ! is much simpler and clearer.

A final area left open for investigation is ways to effectively ¢mplement a para-functional programming
language. Although we have made some progress in this area, the work is too premature to present here.
Our goal is to implement a working system on an Intel iPSC 128-node hypercube multiprocessor. A

future report will detail our success in this endeavor.
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