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1 Introduction

Designing and proving the correctness of protocols in distributed systems is a notoriously diffi-
cult problem. The potential for faulty behavior makes the problem even more difficult. Subtle
bugs are often found in seemingly correct protocols (see, for example, [GS80,SH86]). Con-
sequently, researchers have looked for good tools to analyze distributed systems. Temporal
logic [OL82,Pnu77], the state machine approach [BG77,BS80,Mer76,Sun79], Floyd-Hoare-style
methods [HO83], model checking [CES83], and interval logic [SM82], have all been advocated,
and indeed, have been used successfully to verify a number of distributed protocols.

While the proofs in the cited papers do indeed demonstrate correctness, they do not usually
help the reader to understand why the protocol is correct. Reading the step-by-step details of
these proofs, one loses the global picture of what is happening in the protocol. It is not obvious
which of the protocol’s features are important and what is the role of each of the steps in the
protocol. This understanding is crucial if we want to redesign the protocol so that it still works
correctly in a slightly different environment or if we want to optimize the protocol in some
way. Ideally, the design and verification of a protocol would be closely related and one could
straightforwardly derive correctness proofs from the design methodology. In practice, design
and verification are often done separately, in fact by different groups of people.

Recently it was suggested [HM84] that a useful way to analyze distributed systems is in terms
of knowledge and how communication changes the processes’ state of knowledge. Since then the
role of knowledge in distributed systems has been extensively studied [CM86,DM86,FI86,FHVS6,
Had87,HF85,HV86,LR86,MT86,NT87,PR85] (see [Hal87] for an overview). In this paper, we
use reasoning about knowledge to design and verify a family of protocols that deal with a
standard problem of data communication that we call the sequence transmission problem. We
believe that our analysis provides further evidence of the usefulness of a knowledge-based ap-
proach.

The problem is easily stated: Consider two processes, called the sender and the recesver.
The sender S has an input tape with an infinite sequence X = (zg,2,...) of data elements.
S reads these data elements and tries to transmit them to the receiver R. R must write
these data elements onto an output tape. We require that (a) at any time the sequence of data
elements written by R is a prefix of X (this is the safety property) and (b) if the communication
medium satisfies appropriate fairness conditions, then every data element z; in the sequence
X is eventually written by R (this is the liveness property).

The sequence transmission problem clearly has a trivial solution if we assume that messages
sent by S cannot be lost, corrupted, duplicated, or reordered. S simply sends zg, 71, ... in order,
and R writes them out as it receives them. However, once we consider a faulty communication
medium, the problem becomes far more complicated. A number of different communication
models have been extensively studied in the literature. For example, [AUWY82,AUY79] decribe
protocols that solve the problem in the case of a completely synchronous communication channel
which allows only one-bit messages (we call this communication model the AUY model). They
consider various types of faulty behavior, including message deletion and corruption. The
famous Alternating Bit protocol [BSW69] is a solution to the sequence transmission problem
for an asynchronous channel where messages cannot be reordered or duplicated, but may be



lost or (detectably) corrupted. Stenning’s protocol [Ste76] deals with the problem in the case
where messages may be duplicated, lost, (detectably) corrupted, or reordered.

The solutions to the sequence transmission problem ‘that appear in the literature were all
designed individually, on an ad hoc basis. As we show here, they can all be viewed as instances
of the same high-level knowledge-based protocol. (A knowledge-based protocol is one with
explicit tests for knowledge; cf. [HF85).) By considering these protocols from the viewpoint of
knowledge, we obtain simple, transparent derivations and correctness proofs for them all. We
urge the reader to compare our correctness proofs to those that can be found, for example, in
[BG77,Gou85,Hai82,Hai85,HO83].

It is interesting that the idea of thinking about such protocols in terms of knowledge appears
in an informal way quite early in the literature. For example, in [BG77] it says that “Verification
... will correspond ...to finding out whether and in which circumstances the sender subsystem
(and its user) can ‘know’ that all data obtained from the user have been received correctly and
in sequence to the user in the receiver subsystem.” However, knowledge is not explicitly used
to verify correctness in any of the papers cited above.

The rest of the paper is organized as follows: In the next section we describe our formal
model of distributed systems. We also discuss formally the notion of knowledge in distributed
systems and knowledge-based protocols. In Section 3 we simultaneously derive a high-level
knowledge-based protocol for the sequence transmission model and a finite state protocol which
is an implementation of the knowledge-based protocol. In Section 4 we show how to implement
the finite-state solution in the AUY model by appropriately encoding messages. In Section 5
we derive other high-level protocols for the sequence transmission problem, and then obtain
corresponding implementations of these protocols in the AUY model. The solutions we obtain
here are essentially the same as those actually presented in [AUWY82,AUY79]. Correctness
proofs for all the protocols are almost immediate from our derivation. (The formal details,
however, are somewhat tedious and left to the appendix.) In Section 6 we extend our results to
the Alternating Bit protocol and Stenning’s protocol. In Section 7 we consider necessary and
sufficient conditions on the state of knowledge required for the sequence transmission problem,
as was done in [HM84] for coordinated attack, [DM86,MT86] for Byzantine agreement, and
[Had87] for atomic commitment. We conclude in Section 8 with further discussion of the
knowledge-based viewpoint and some directions for further research.

2 The formal model

A detailed description of the model we use can be found in [HF87], so we only sketch the
necessary details here, and refer the reader to [HF87] for further motivation and examples.

We assume that our processes are state machines and that the relevant features of a system
at a given time are described by the global state of the system, where a global state is a tuple
describing the local state of each of the processes and the state of the environment. We take
the environment to consist of everything in the system that is relevant to the analysis that
is not part of the state of the processes. (Exactly what is relevant will of course depend on
the particular system being analyzed.) For simplicity, we assume that time ranges over the



non-negative integers. (The definitions can easily be extended to other time models.) A run
(or ezecution) of the system is defined to be a function from the non-negative integers to global
states. Intuitively, a run is a description of the relevant features of the system over time. We
occasionally refer to a pair (r,m) consisting of a run r and a time m as a point. As has been
done in numerous previous papers (e.g. [CM86,HF85,HM84,PR85)), we identify a distributed
system with a set R of runs. We say (r,m) is a point in system R if r € R.

For protocols solving the sequence transmission problem, the processes are S and R. Thus
a global state is a tuple of the form (s,,ss,sr), where s, is the environment state, sg is S’s
local state, and sg is R’s local state. The details of the states will depend on how we choose to
analyze the system; we will discuss this in more detail when we formally analyze the protocols
presented in the sequel.

We define a protocol for process j to be a (possibly nondeterministic or probablistic) function
from j’s local states to actions. Thus a process’ protocol describes what actions the process
takes as a function of its local state. Usually we think of these actions as coming from a small set
of basic actions, such as reading a data element, writing a value, sending a message, or receiving
a message. We find it useful to think of the environment as also running a protocol. In the
introduction we discussed assumptions on the communication model such as “messages cannot
be reordered or duplicated, but may be lost or (detectably) corrupted.” Such assumptions,
which implicitly describe the environment’s behavior, can be captured by the environment’s
protocol. We take a joint protocol P to consist of protocols P,, Ps, Pp for e, S, and R
respectively. (We remark that for all the cases we consider in this paper, both Ps and Py are
deterministic, while P, is nondeterministic or probabilistic.)

We would like to associate with every (joint) protocol a particular set of runs. To do this,
we first must specify the possible local states for each of e, S, and R. Call these sets of states
L., Ls, and Lp respectively. Let § = L, x Lg x Lg be the set of possible global states. (Not
all the global states in § will necessarily be reachable when we run the protocol.) The next
step is to specify the subset §o of § which consists of the possible initial global states. Finally,
we must specify how the actions performed by e, S, and R change the global state. Let Act,,
Acts, and Actg be the actions performed in P,, Ps, and Pg respectively. A transition function
T associates with every joint action (a.,as,ar) € Act, X Acts x Actg a global state transformer
7(ae,as,aR), i.e., a deterministic function from § to §. (We could allow r(a.,as,ar) to be
nondeterministic, but we do not need this level of generality in this paper.) Thus we can think
of 7(a.,as,ar) as describing the effect of simultaneously having e perform action a,, S perform
as, and R perform ag.

Fix G, o (o € §), and 7 as above. We say that a run r is consistent with protocol P (with
respect to G, Go, and 1) if

1. r(0) € Go (so r(0) is a legal initial state).

2. For all m > 0, if r(m) = (s,,ss,sRr), then there is a joint action (ae;as,ar) € Po(s.) x
Ps(ss) x Pr(sg) such that r(m + 1) = r(a,,as,ag)(r(m)) (so r(m + 1) is the result of
transforming r(m) by a joint action that could have been performed from r(m) according
to P).

We use R(P) to denote the set of all runs consistent with P (with respect to §, Go, and 7).



Besides the type of protocol defined above (which we occasionaly call a standard proto-
col), we will also be interested in a more high-level notion called a knowledge-based protocol
((HF85]), where we allow explicit test for knowledge. To define such protocols formally, we
find it convinient to assume that there is some set & of basic facts about the system. The
set @ can include facts of the type “zg = 0", “R sent m to S”, etc. We define an interpreted
system I to be a pair (R, ) consisting of a system R and an assignment 7 of truth values to
the basic facts for each point in R, so that for every p € ® and point (r,m) in R, we have
n(r,m)(p) € {true,false}. We say that the point (r,m) is in the interpreted system J = (R, )
ifreR.

Given an interpreted system I = (R,7) and a point (r,m) in I, we define a satisfiability
relation |= between the tuple (7,7, m) and a formula . For a basic fact p € D, we have

(Z,r,m) = p iff x(r,m)(p) = true.
We extend the |= relation to conjunctions and negations in the obvious way:

(I,rm)E-p iff (I,r,m) o
(I,nm) oAy iff (I,r,m) k= pand (I,r,m) = 4.

We want to extend our language to allow formulas of the form K j®, which is read “process j
knows ©”. We ascribe knowledge to processes in a distributed system using ideas first discussed
in [HM84], and later amplified in numerous other papers (see [Hal87] for an overview and .
references). Again, we state our definitions under the assumption that the only processes in
the system are S and R, although they clearly extend to the case with an arbitrary (but fixed)
set of processes.

Given two global states s = (s,,ss5,sg) and & = (st,85,5%R), we say s and &' are indis-
tinguishable to process j (where j is either S or R) if j has the same state in both s and
¢, ie., if 5; = &;. We say two points (r,m) and (¥, m') are indistinguishable to 7, and write
(r,m) ~; (¥',m'), if the global states r(m) and ¢ (m') are indistinguishable to j. We then define

(Z,r,m) E Kjo iff (I,F,m') |z o for all ¥ and m' such that (r,m) ~; (', m').

This definition is designed to capture the intuition that processor j knows @ at r(m) if p is
true at time m' in run ¢/ for all points (v, m') indistinguishable to j from (r,m).

An important property of this definition of knowledge is that K;p > . Thus, if I,rym) =
K;jp, then (I,r,m) |= p; this easily follows from the observation that (rym) ~;j (r,m).

A knowledge-based protocol allows éxplicit tests for knowledge. Unlike the tests that appear
in a standard protocol, the truth value of the test in a conditional statement of the form “if Ksp
then ...” cannot be determined by looking at the local state in isolation. Its truth depends on
the truth of © at other points (all the ones with global states that S' cannot distinguish from
its current global state). Thus, whereas a protocol for S is a function from S’s local states
to actions, a knowledge-based protocol is a function from S’s local states and an interpreted
system to actions. For example, consider a protocol Pg with an instruction of the form “if Kgp
then send m else send m'”. Suppose that in state sg process S is at the step in the protocol



with this instruction. The action performed by S in state ss is “send m” if S knows ¢, and
“send m'” otherwise. Thus we have

send m if (I,r,m) |= ¢ for all points (r, m) where
Pg(ss,I) = S’s state in r(m) is sg
send m' otherwise.

Note that the only difference between the formal definition of knowledge-based protocols and
standard protocols is that a knowledge-based protocol takes an interpreted system as one of its
arguments. Of course, a standard protocol can be viewed as a special case of a knowledge-based
protocol where the function is independent of the interpreted system.

Fix a set § of global states, a subset o C § of initial states, a transition function 7 on
G, and an interpreted system I with global states in §. We define a run r to be consistent
'with (knowledge-based) protocol P relative to I (with respect to G, Go, and 7) just as we
defined the notion of a run being consistent with a standard protocol P, except that now
the joint action (a.,as,ag) in clause 2 is in Pe(se,I) x Ps(ss,I) x Pgr(sg,I) rather than
Pc(Sg) X Ps(Ss) X PR(sR).

An interpreted system I = (R, ) is consistent with a knowledge-based protocol P (with
respect to §, Go, and 7) if every run r € R is consistent with P relative to . In general, there
is not a unique interpreted system that is consistent with a given protocol.

3 A knowledge-based protocol and a finite-state implementa-
tion

In this section we design a knowledge-based protocol that solves the sequence transmission
problem and simultaneously derive a finite-state protocol that solves the problem in a situa- ,
tion where we allow messages to be deleted, (detectably) corrupted, duplicated, but disallow

reordering of messages.

We start by trying to informally derive a solution. Suppose that the input sequence X is
(0,0,1,...). (For simplicity we assume throughout the paper that the input sequence consists
only of Os and 1s, although in fact we could deal with any finite language.) Intuitively, S should
start by sending O (the first bit) to R. Clearly, sending the first bit only once is not enough,
since R might not get the message. So how long should S continue to send this message? One
approach is for S to continue sending until S knows that R knows the value of Zo, which we
write KsKRg(zo) (we use Kg(z;) as an abbreviation for Kp(zi = 0) V Kgp(z; = 1)). We can
implement this by having R send S an ack message when it gets zo. When S gets the ack
message, KsKp(zp) holds. Can S safely send R the data element z; when it gets R’s ack?
Unfortunately, it cannot. Since z, is also 0, if S sends z; and R receives it, R will not know
whether this is yet another attempt on the part of S to send zo (because S did not receive R’s
acknowledgement), or an attempt by S to send z;. S must somehow let R know that KsKgr(zo)
holds. We can implement this by having S acknowledge R’s acknowledgement, i.e., send ack-ack
(which we abbreviate to ack?) to R. When R receives this message, it can stop sending the ack
message; moreover, it knows that the next data element it receives will be Zy, not zo. S must

5



continue sending ack? until it knows that R knows that S knows that R knows Zp, 1.e., until
KsKrKsKg(xo) holds. We implement this here by having R send an ack® message so as to
acknowledge the receipt of the ack? message. When S receives the ack® message, S can safely
send z; to R, since S knows that R will not confuse z; with zg.

Below we describe a knowledge-based protocol A that formalizes the intuitions above.
In A, S sends the i*? data element until KsKg(z;) holds, then sends “KgKp(z;)” until
KsKpKsKpg(z;) holds, and then reads the next data element and repeats the cycle. We
also describe a standard protocol A that implements A (and solves the sequence transmission
problem) provided we restrict the environment’s actions appropriately, as we discuss below.
We present these two protocols side-by-side to emphasize their relationship. In particular, the
reader should note that the ack, ack?, and ack® messages of protocol A” are simply a way of
guaranteeing that the appropriate level of knowledge is attained.

In the appendix, we give formal semantics for these protocols in terms of the formal model
described in the previous section. All the theorems stated in this section are also proved in the
appendix. We make a few remarks now that suffice for us to state the results and (hopefully)
allow the reader to follow the informal presentation and get a high-level picture of what is going
on.

The protocols all start with an INIT statement that describes the initial settings of all
relevant variables. We assume that S has a local variable y for storing the last data element
read. Thus the effect of “read y” (in INIT or line S1 of the figure below) is that S reads the
next bit in the input sequence and stores it in the variable y. Similarly, we assume that S and
R have local variables, 2 and 2’ respectively, for storing the message last received. R does not
send anything until it receives the first value from S; we make this explicit in line R1 with the
command “send A\” (where we use A to denote that nothing is sent). In a command such as
‘send “KsKp(z;)” on line S1 of A, we assume that “KsK(z;)” is just some string of symbols
(we allow arbitrarily long strings to be transmitted in one time step of the knowledge-based
protocol), and that these strings are distinct for every value of 1, as well as being distinct from
strings of the form “z; = y”. Of course, the intention is that when R receives a message such
as “KsKpg(z;)”, then in fact R will know that S knows that R knows the value of z;. Our
semantics assumptions will indeed force this to be the case (cf. Lemma 3 in the Appendix).

As we shall show, the knowledge-based protocol A is correct in a wide variety of settings,
precisely because it a.bstra.cts away the details of how a sta.te of knowledge such as KsKg(z;)
is attained. In particular, it is correct even if

1. we allow messages to be duplicated, reordered, and detectably corrupted as well as being
deleted.

2. we have an asynchronous system, where S and R perform an action only when they are
scheduled (rather than performing an action at every round). Of course, in order to assure
the liveness property, we must assume that S and R are scheduled infinitely often.

3. there is some a priors knowledge about the sequence X. For example, we might have a
situation where every even-numbered data element in X is (commonly) known to be 0. In
this case, when running protocol 4, R would be able to write zg even before it received
any messages from S (since the state of knowledge K g(zo) would hold at line R1).



S’s protocol: S’s protocol:
INIT. read y;1:=0; 2 := )\ INIT. read y; z2:= A
S1. send “z; = y”; receive z; S1. send y; receive z;
if KsKp(2;) ' if 2 = ack
then go to S2 else go to S1 then go to S2 else go to S1
S2. send “KsKRg(z;)”; receive z; S2. send ack?; receive z;
if KsKrKsKp(z;) if z = ack®
then read y; ¢ := 1+ 1; go to S1 then read y; go to S1
else go to S2 else go to S2
R’s protocol: R’s protocol:
INIT. ¢:=0;2 =\ INIT. 2': =)
R1. send A; receive 2/; R1. send A; receive 2/;
if Kp(zy) if(ZZ=0vz= 1)
then write z;/; go to R2 then write 2/; go to R2
else go to R1- else go to R1
R2. send “Kg(zy)”; receive 2/ - R2. send ack; receive 2';
if KpKsKpg(z:) if 2’ = ack?
then go to R3 else go to R2 then go to R3 else go to R2
R3. send “KrKsKpg(zi)”; receive 2'; R3. send ack®; receive 2;
if Kp(zi41) ' if(2’=0v2=1)
then i’ := ¢/ + 1; write z;s; go to R2 then write 2/; go to R2
else go to R3 , else go to R3
Protocol A Protocol A”

To prove the correctness of A we require that the processes do not “forget” their message
histories. This is captured in the formal model by taking S’s and R’s local states to encode
all the messages they have sent and received thus far. (See the appendix for details.) To
understand the need for no forgetting, suppose R moves from R2 to R3 because K rKsKpg(zy)
holds. Moreover, suppose this happens because it gets a message of the form “KgKpg(zy)”
from S. R will continue sending the message “KrKsKg(zy#)” until it knows z4;. But if it
“forgets” that it received the message “KsK R(z)” from S, it might no longer be the case that
KrKsKg(zy) actually holds.

There is one more small technical condition we must require for the correctness of protocol A.
We want to restrict our attention to interpreted systems I = (R,m) where the truth assignment
7 is such that the formula z; = 0 (resp. z; = 1) is true exactly at the points where z; really
does have the value O (resp. 1). To make this precise, we restrict attention to systems R where
the environment component at every point has the form (X,...), where X = (zg,x;,...) is the
sequence of data elements, and the sequence X is constant throughout the run. For the purposes
of this theorem, we will call an interpreted system J = (R,7) reasonable if the environment
component does indeed have this form at all points, and #((r, m))(z; = v) = true iff the value
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of the #*" component of X is v. These issues are made precise and discussed in more detail in
the appendix, where the following theorem is proved:

Theorem 3.1: Let I be a reasonable interpreted system where (1) messages may be deleted,
reordered, duplicated, or detectably corrupted, and (2) 7’s local state contains a complete record
of the messages sent and received by 5 (for 5 € {S,R}). If I is consistent with protocol A,
then every run of I has the safety property, and those runs of I where S and R are scheduled
infinitely often and every message sent by S (resp. R ) infinitely often is eventually delivered
uncorrupted (when R (resp. S) is scheduled) also have the liveness property.

Protocol A is an infinite state protocol. This is immediate from condition 2 of Theorem 1,
where we assume that process j’s state contains the whole message history. As we mentioned
in the discussion above, this assumption is necessary for the correctness of the protocol. In
practice, however, one does not want to store so much information. If S and R just keep track
of the number of data elements they have read (resp. written) thus far, an analogue of protocol A
will still work. In this case, we would have to replace the messages “Kg(z;)”, “KsKg(z;)”, and
“KrKsKpr(z;)” by “R wrote z;°, “Ks(R wrote z;)”, and “KrKs(R wrote z;)”. Similarly, the
tests KsKp(z;), KrKsKg(z;), and KsKpKsKgr(z;) have to be replaced by Ks(R wrote z;),
etc. In the appendix we discuss how to modify the proof of correctness of protocol A to deal
with this variant. '

However, even if S and R only record the number of data elements they have read (resp.
written) in their local state, they would still requires an unbounded amount of memory. Un-
bounded memory is not an artifact of our solution; it is a necessary requirement for sufficiently
general solutions. If we allow messages to be deleted and reordered (and there is no upper
bound on message delivery time for messages that do get delivered), then it is not hard to show
that any solution to the sequence transmission problem must involve infinitely many distinct
states. Similarly, it can be shown that if messages can be duplicated and reordered then no
finite state solution to the sequence transmission.problem exists (even if messages cannot be
lost).

There are finite-state solutions if we restrict the environment’s actions. In particular, as we
now show, A” is a solution to the sequence transmission problem if we do not allow messages
to be reordered (although they can be deleted, corrupted detectably, and duplicated).

Theorem 3.2: Protocol A” solves the sequence transmission problem in systems where mes-
sages can be deleted, corrupted detectably, and duplicated (but not reordered). Every run of A”
has the safety property and those runs of A® where S and R are schedule infinitely often and
every message sent by S (resp. R) infinitely often is eventually delivered uncorrupted (when R
(resp. S) is scheduled) also have the liveness property.

We prove correctness of A® by showing that in a precise sense it is an implementation of
protocol 4, i.e., we show that R(A4%®) can be mapped into an instance of an interpreted system
consistent with A. The details are provided in the appendix.



4 A solution in the AUY model

In the AUY model [AUWY82,AUY79], message transmission is assumed to proceed in syn-
chronous clocked rounds. We can conceptually think of a round or step as consisting of three
phases: a send phase, a receive phase (where all messages sent in that step that are not deleted
are received, possibly after being corrupted), and a local computation phase (during which
data elements may be be read from the input sequence or written onto the output sequence).
Since a message is received on the same round in which it is sent (if it is received at all),
messages cannot be reordered or duplicated. As in [AUWY82,AUY79], we assume that the
symbols transmitted over the channel are 0, 1, and X (again A denotes that nothing is sent),
and that the input sequence X consists of Os and 1s. We consider three types of errors in the
communication medium:

e Deletion errors: 0 or 1 is sent, but A (nothing) is received.
e Mutation errors: O (resp. 1) is sent, but 1 (resp. 0) is received.
e Insertion errors: A is sent, but O or 1 is received.

As observed in [AUWY82,AUY79], the sequence transmission problem has no solution if all
three error types are present. To see this, observe that if all error types are present, then any
sequence o of messages in {0, 1,A}* transmitted by S can be altered by the channel to any other
sequence o’ of the same length. Thus R can gain no information from the messages it receives
about the messages that S actually transmitted. It was also shown in [AUWY82,AUY79] that
for any combination of two out of the three possible types of errors, the problem is solvable.
- However, the informal correctness proofs presented in [AUWY82,AUY79] are difficult to fol-
low, and some effort has been expended in constructing more formal proofs [Gou85,Hai85].
Unfortunately, these proofs are also far from transparent.

We provide solutions to the sequence transmission problem in the AUY model by imple-
menting protocol 4. Note that A” as it stands does not provide a solution, since messages
such as ack? are illegal in the AUY model.

We overcome this difficulty by encoding the messages A, 0, 1, ack, ack?, and ack® using only
A, 0, and 1. This is straightforward under our assumption that the system is synchronous.

Suppose first we restrict attention to deletion and insertion faults. Then we can encode 0
and ack as 00, 1 and ack® as 01, and ack? and A as 10. Since S sends only 0, 1, and ack?, while
R sends only ack, ack®, and ‘), there is no conflict in this choice of encoding. We implement a
command such as “send ack?” in A" by first sending 1 and then sending 0. Similarly, “send
0” is now implemented as “send 0; send 0”. With this encoding, we have effectively disabled
insertion errors, since a A is never sent.

We implement receiving by dividing time into 2-blocks. The first 2-block consists of times
0 and 1, the next one consists of times 2 and 3, etc. Let e® denote the encoding above (the
di stands for “deletion” and “insertion”), so that ¢%(0) = 00, e#(1) = 01, and so on. If e%(m)
is received by S (resp. R) in a 2-block, for some element m of the alphabet used in protocol
AP, then we say that m is received. If part of a 2-block gets corrupted (by a message being
deleted), then we say that X is received.



Let us call the resulting protocol A%. We describe A% below. We have numbered the steps
so that they correspond to those of A”. Essentially the only difference between A and A% is
that a command of the form “send m” in A” is replaced by “send e#(m); send e¥(m)” in A%,
where we use ef(m), 7= 1,2, to denote the j*% element of e#(m) (so, for example, e (1) = 0
and ef(1) = 1). We now assume that $ uses variables z; and z; to receive messages, rather
than just z; similarly, R uses 2] and 2j. This way S and R can keep track of both messages

received in a 2-block.

S’s protocol:

INIT. read y; 21 :=A;29:= A
Sla. send e (y); receive 2;; go to S1b
S1b. send ef(y); receive zy;
if 2125 = e®(ack) then go to S2a else go to Sla
S2a. send e (ack?); receive z;; go to S2b
S2b. send e (ack?); receive 2s;
if 2129 = e®(ack®) then read y; go to Sla else go to S2a

R’s protocol:

INIT. 2| :=2); 25 :=
Rla. send eff()); receive z|; go to R1b
R1b. send ef(X); receive zb;
if z{25 = ¢%(0) then write 0; go to R2a
else
if 2{25 = e%(1) then write 1; goto R2a
else go to Rla
R2a. send ef(ack); receive 2|; go to R2b
R2b. send ef(ack); receive zb;
if 2{z) = e®(ack?) then go to R3a else go to R2a
R3a. send ef(ack3); receive 2}; go to R3b
R3b. send ef(ack®); receive zb;
if z{zj = e#(0) then write 0; goto R2a
else
if z}z5 = e%(1)then write 1; goto R2a
else go to R3a

Protocol A%

The fairness condition required now is that there be infinitely many 2-blocks where both of
S’s transmissions are delivered, and infinitely many 2-blocks where both of R’s transmissions
are delivered.! There is a straightforward mapping from runs of protocol A% to runs of protocol
A”. Using this mapping, we show in the appendix that:

!Note that if we assume a fixed non-zero probability of any given message arriving, then the set of runs satisfy-
ing our fairness criterion has measure 1. Our fairness condition is equivalent to that used in [AUWY82,AUY79].
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Theorem 4.1: Protocol A% solves the sequence transmission problem in the AUY model with
deletion and insertion faults. Every run of A% has the safety property, and those runs with
infinitely many 2-blocks where both of S’s messages are delivered and infinitely many 2-blocks
where both of R’s messages are delivered also have the liveness property.

A number of optimizations are possible in protocol A*. For example, if R receives a 1 in
step R2a, then it knows that S sent an ack?, independent of what it receives in step R2b. (This
is so because e¥ has the property that if e¥(m) = 1 then m is either ack? or A, and R knows
that S never sends A.) Similarly, if R receives 1 at step R3b, then R knows that S must be
" trying to send e®(1), even if it does not receive any message at step R3a; R could thus safely
write a 1 and go to step R2a. Clearly other optimizations are possible. We could also consider
trying to get an encoding that is more efficient in some sense. We have not bothered pursuing
these issues here, since our goal is to get an easily understood and easily verifiable protocol,
not one that is most efficient. (We remark that [AUWY82] presents a protocol with an optimal
transmission rate.)

Although A% solves the sequence transmission problem in the AUY model for the case of
deletion and insertion errors, it cannot deal with mutation errors. If 0 and 1 can be mutated,
then it is possible that, for example, S sends e%(0) = 00 and R receives 01 = e%(1). We solve
this problem by using a different encoding function when dealing with mutation errors. The key
observation ‘here is that the encoding €% we used in A% could be replaced by another encoding
€, as long as e has the following two properties (with respect to the faulty behavior allowed):

1. (Unigue decodability) If ¢(z) is received uncorrupted, then the recipient knows that it is
uncorrupted, and that it is an encoding of z.
2. (Corruption detectability) If e(x) is corrupted, then the recipient knows it is corrupted.

An encoding with these properties essentially allows us to treat any type of faulty behavior
as a deletion error. If corruption is detected, a message can be ignored and treated as if it were
lost. Clearly e® has these properties in the case of deletion and insertion errors. In order to
implement 4% in the presence of deletion and mutation errors, we must find an encoding that
preserves unique decodability and corruption detectability in the presence of these errors. One
encoding that works is €™, defined by:

€™ (0) = e¥™(ack) = 1)),
™ (1) = e¥™(ack®) = A1),
™ (ack?) = e¥™(A) = AAL.

It is easy to check that €™ does indeed have the properties of unique decodability and corruption
detectability in the case of deletion and mutation errors. Clearly any uncorrupted sequence of
messages received in a 3-block is uniquely decodable. A mutation error is easily detectable and,
indeed, easily corrected: Since O does not appear in any encoded message, if 0 is received it
must be the case that a 1 was sent and mutated. If a message is deleted, then the receipient
will get AAX in a 3-block and know that the message was corrupted.
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Finally, in order to deal with mutation and insertion errors, we can use the encoding e™
which is obtained by reversing the roles of 1 and \ in e%™:

e™(0) = e™(ack) = A11,
e™ (1) = e™(ack®) = 1)1,
e™ (ack?) = e™()\) = 11).

We leave it to the reader to check that ™ has the required properties in the case of mutation and
insertion errors. (Of course, neither e™ nor ™ is unique; there are many possible encodings
with the appropriate properties.)

We can now construct protocols 49" and A™ from A” by doing our encoding using 4™
and e™, respectively. Note that for A% and 4™ , we divide up time into 3-blocks rather than
2-blocks, and, to prove correctness, we modify the fairness condition accordingly. Formally, we
have the following extension of Theorem 3:

Theorem 4.2: Protocol A%™ (resp. A™ ) solves the sequence transmission problem in the AUY
model with deletion and mutation (resp. mutation and insertion) errors. Every run of A%™
(resp. A™ ) has the safety property, and those runs with infinitely many $-blocks where all of
S’s messages are delivered and infinitely many $-blocks where all of R’s messages are delivered
also have the liveness property.

We could deal with other error types too, provided we could find appropriate encoding
functions. There is, however, no encoding function with the properties of unique decodability
and corruption detectability that can deal simultaneously with deletion, mutation, and insertion
errors.

Note that as we move further away from our knowledge-based protocol, we make more and
more use of the details of the underlying model. In particular, A” makes heavy use of the
assumption that messages are not reordered, and the protocols A%, 49" and 4™ make heavy
use of the synchronous nature of the AUY model, so that messages are received in the same
round that they are sent (if they are received at all).

5 Other solutions to the sequence transmission problem

In this section we construct two other families of protocols that solve the sequence transmission
problem.

In the solution constructed in Section 3, S waited until it knew that R knew that S knew
that R knew z; (i.e., until Ks KrKsKp(z;) held) before sending z;,,. Does S really need this
depth { knowledge before sending z;4;?

Suppose X is an input sequence with zo = 0 and z; = 1. Again S sends zo until it gets
an acknowledgement. But in this case it would be safe to send z; without needing to send
“KsKp(zo)”. Unlike the previous example, where we had zyp = z; = 0, there would now be
no ambiguity about whether S was trying to resend zo (because KsKg(zo) did not hold) or
sending r;. The point is that although in this case S does not know that R knows that S
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knows that R knows zg before it sends z;, S does know that when R gets z1, R will know that
S knows that R knows zo. Intuitively, “KsKr(z0)” is “piggy-backed” on top of the z,.

Below we describe a knowledge-based protocol B that captures this idea. In protocol B,
S starts sending “zi4+; = y” to R when S knows that R knows (the value of) z;. Since such
messages are distinct for all values of 4, this message encodes i + 1, so that when R gets it, R
knows that S knows that R knows z;.

Protocol B” is a finite-state implementation of B, using the symbols 0, 0/, 1, and 1. S has
a variable 1 that keeps track of the parity of the data element it is currently sending. If the last
data element that S read has value y and parity ¢, then S sends R the message var(y,t), where
var(y,:) is y if 1 is 0 and ¥ if 1 is 1. Assume, for example, that both the 6" and the 7t data
elements are 0. S will use 0 to send the 6*® and 0’ to send the 7", thus eliminating ambiguity.
Similarly, R has a variable ¢’ that keeps track of the parity of the data element it next wants to
receive. If R receives a message 2’ of the form var(0,+) or var(1,4'), then R writes var{1(2'),
the first component of var~!(2'). R then sets #/ := i’ @ 1 (where & is addition mod 2), and
acknowledges by sending i/ © 1 to S (thus telling S it has received the old value and wants a
new one). If, instead, R receives a message of the form var(0, © 1) or var(1,7' © 1), then this
message is ignored, since it is a data element that R has already written.

S’s protocol: -

if Kr(z) then write z;; ¢/ :=1¢' + 1
then write z;1; ¢/ :=1' + 1;
go to R2

Protocol B

S’s protocol:

INIT. read y;i:=0; z:= ) INIT. read y;1:=0; z:= A
S1. send “z; = y”; receive z; S1. send var(y,1); receive z;
if KsKpg(z;) ifz=1
then ¢ := 1+ 1; read y; then i :== 1@ 1; read y;
go to S1 go to S1
R’s protocol: R’s protocol:
INIT. ¢:=0;2:=) INIT. ¢:=0;2': =)
R1. send A; receive 2/; R1. send A; receive 2/;
if Kgr(zi) if (' =var(0,1") v 2’ =var(1,4'))
then write z;1; ' := ¢/ + 1; then write var7!(2); ' ;= ' @ 1;
go to R2 go to R2
else go to R1 else go to R1
R2. send “Kg(zi-1)”; receive 2/; R2. send ' © 1; receive 2';

if (2! =var(0,4') v 2’ =var(1,i'))
then write var[}(2'); ¢ =i’ @ 1;
go to R2

Protocol B”

It is straightforward to prove that protocol B solves the sequence transmission problem

in the same wide range of settings as A, again under the assumption that processes’ states
record their message histories. And, just like A%, protocol B” solves the sequence transmission
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problem in systems where messages can be deleted, dupli_ca.ted, or detec’qa.bly corrupted (but
not reordered). We can also convert B to protocols B#, B and B™ that deal with any
pair of error types in the AUY model by doing encoding just as in the previous section.

It is interesting to note that the protocols presented in [AUWY82,AUY79] are all essen-
tially implementations of protocol B”. For example, the reader can check that the protocol of
[AUWY82,AUY79] that handles only deletion errors is an implementation using the encoding
e defined by:

e?(0) = 0A, €%(1) = e%(ack’) = 1),
€?(0') = A0, e4(1’) = e%(ack) = A1,
ed(A) = AA.

The two families of protocols discussed so far can be viewed as sender-driven protocols: §
sends z; if S does not know that R knows z;; i.e., S sends z; when -KsKp(z;) holds. We
can also consider receiver-driven protocols, where S sends z; only if S knows that R does not
know z;; i.e., when Ks—Kg(z;) holds. Receiver-based protocols might be quite practical if S
is relatively busy, or if S’s messages are quite long rather than only consisting of one bit.

Such a receiver-driven protocol is given below. As usual, we describe a knowledge-based
protocol C that captures this idea, and also give a finite-state protocol C” that implements
C. (We discuss below the assumptions under which C and C” are correct.) The idea behind
C” is again quite simple. As in protocol B® S uses a variable ¢ to keep track of the parity of
the data element it last sent, and R uses a variable #’ to keep track of the parity of the data
element it next wants to receive. R keeps sending ' to S (thus telling S the parity of the next
data element it wants to receive). If S is at S1, then it sends R its current value and moves to
line S2. If S is at S2, it sends A until it receives a non-\ message z from R. If 2=1@ 1, then
S knows that R has received the current value, so that S reads the next value. If z = 1, then
S knows that R still does not know the current value. (Since S sent a X in the current round,
R could not have learned it.) In either case, S now knows what value R does not know, so it
moves to line S1 and sends it.

Note that S never sends non-\ messages in two consecutive rounds. The reason is that
if S sent the current data element at round m and does not get a message from R at round
m saying that R knows that data element (presumably because it was also sent on an earlier
round), then S does not know whether or not R knows the value of the current data element
at the beginning of round m + 1. (We could be a bit more efficient by having S send the next
value if it knows that R just received a value, i.e., if it receives i® 1 in S1, but we do not bother
to do this here.) Also note that R can write an element as soon as it receives it; there is no
ambiguity. The protocol guarantees that any value received by R is the value of the next data
element.

Recall that we want the knowledge-based protocol C to behave properly even in a system
where there is some @ priori knowledge about the values of the data elements. Thus C has tests
for knowledge not present in C”. In particular, it may be possible that Kg(z;) holds without
R receiving any message about z; from S, in which case R sends A (in line RO) rather than
““Kp(z;).

It is not the case that C works in the same general setting as A and B. Suppose, for
example, that we consider an asynchronous system where messages may take an arbitrary
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S’s protocol: S’s protocol:

INIT. read y;¢:=0; z:= A INIT. read y;i:=0; z:= X
S1. send “z; = y”; receive z; go to S2 © S1. send y; receive z; go to S2
S2. send A; receive z; S2. send A; receive z;
istKR(I,') fz=191
then 1 := 4+ 1; read y; then 1 := 1 & 1; read y;
if Ks—KRg(z;) then go to S1 if 2 =1 then go to S1
else go to S2 else go to S2
R’s protocol: R’s protocol:
INIT. ¢:=0;2":= A INIT. ¢:=0; 2 := A

RO. send A; receive 2';
if Kp(z;) then write z; ¢/ := ¢ + 1;
if ~-Kg(z;) then go to R1
else go to RO

R1. send “~Kpg(z;y)”; receive 2'; R1. send #; receive 2/;
ifKR(I,'r) ifz';é/\
then write z;; ¢ :=1' 4+ 1; ) then write 2/; ¢/ :=¢' @ 1;
if ~Kp(z:) then go to R1 go to R1
go to RO
Protocol C Protocol C”

number of rounds to be delivered. It is easy to see that C has the safety property, but liveness
will not hold in general. The problem is that S only sends “z; = y” when Ks—Kpg(z;) holds.
However, even if S gets a message from R saying “~K r(z;)”, it is not necessarily the case that
Ks-Kpg(z;) holds. Although this message may have been true when it was sent, it may no
longer be true after it is received. S has no way of knowing whether R received an by =y
message sometime after R sent its message. While Kp(z;) is a stable formula (once true it
remains true), ~Kg(z;) is not stable. However, C does have the liveness property in systems
where messages have finite lifetimes (i.e., systems where there is some constant T such that
messages are delivered within time T if they are delivered at all). Note the AUY model is a
special case of a system where messages have finite lifetimes; in this case the lifetime is one
round.

On the other hand, just as for A® and B”, it is straightforward to prove that protocol C”
solves the sequence transmission problem in systems where messages can be deleted, duplicated,
and detectably corrupted (but not reordered). In fact, since the only messages sent in protocol
CP are 0, 1, and A, CP actually solves the sequence transmission problem in the AUY model
with only deletion errors. We can also find protocols C%, C%" and C™ that deal with any
pair of error types by doing encoding just as in the previous section.
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6 The Alternating Bit and Stenning’s protocol

The communication model for the Alternating Bit protocol assumes that the data domain
consists of k bit strings, for some fixed k, and that we can send (k + 1)-bit messages along the
channel. The channel is is asynchronous; messages can take an arbitrary number of rounds to
arrive. Messages may also be lost or detectably corrupted.

Recall that protocol B works perfectly well even without the assumption of complete
synchrony, as long as messages are not reordered. In fact, the Alternating Bit protocol turns
out to be simply an implementation of protocol B. It follows much the same lines as B”,
except that now var(m, ) is mO if i is even and m1 if 1 is odd (where mn denotes the result of

concatenating m and n). The proof of correctness is now precisely the same as that of protocol
B,

As we remarked before, in an event-driven system with no rounds, we must modify the pro-
tocol so that messages are sent periodically until an appropriate acknowledgement is received.
This can be done using a timer. We omit the straightforward details here.

We now consider Stenning’s protocol, which handles a wider variety of faulty behavior
than the Alternating Bit protocol. Messages can be lost, duplicated, reordered, or corrupted
detectably. However, we now assume we can send messages of unbounded length on the channel.
Stenning’s protocol is a completely straightforward implementation of protocol B. Essentially
all that is done is that the test ‘if KgKgr(z;) ..." on line S1 is replaced by ‘if z = “KsKp (z;)”
... and the test “if Kg(zy) ...” on line R1 is replaced by ‘if 2’ = “zy = y” ....> (Recall that
the messages such as “Ks Kp(z;)” are arbitrary strings of symbols.)

Correctness of the Alternating Bit protocol and Stenning’s protocol now follow immediately
from the correctness of protocol B.

7 Necessary and sufficient conditions on knowledge

Part of our motivation in constructing protocol B was to investigate whether S needs depth
4 knowledge of the form KsKrKsKp(z;) before sending z; to R. Although S does not wait
until it attains this knowledge before sending z;;; in protocol B, S does eventually attain it.
In particular, S knows that when R receives z;4;, R will know that S knows that R knows z;.
More formally, the following formula is valid in all reasonable interpreted systems consistent
with protocol B (recall an interpreted system is reasonable if the formulas z; = 0 and zi=1
have the appropriate interpretation):

Ks O (R received Tiy1 O KRKsKR(I,-)), (1)

where (7 be the standard temporal logic symbol for always. (In our formal model, we have
(I,r,m) =Qp iff (I,r,m") |z ¢ for all m' > m.)

The question arises whether the state of knowledge defined by Equation 1 is really necessary.
It is easy to see that the answer is no. For example, S might assume that the channel is relatively
reliable and send five messages at a time before waiting for an acknowledgement. In this case,
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S would be sending z; without even knowing that R knew zo (although it would not send z;
before it knew that R knew zy,...,z,; moreover, S would know that when R received zj5, R
would know that S knew that R knew zg,... ,Z4). However, provided we require that § and R
alternate reading and writing (i.e., S reads z;;, only after R writes z;), then we can show that
there is a precise sense in which the level of knowledge described in Equation 1 is necessary and
sufficient. Observe that in protocols A”, B, and C” (as well as the Alternating Bit protocol
and Stenning’s protocol), reads and writes do indeed alternate, so this is not an unreasonable
assumption.

There is a small problem in making this statement completely precise: We must make clear
exactly what it means for R to receive z;4;. In a protocol such as A or B, we can take this
to mean that R gets a message of the form “z;,; = y”. However, in a protocol such as A® R
only receives a message of the form 0, 1, ack?, or A. While we could say that R receives z;4;
when it receives the first 0 or 1 after S reads Zi41, it is not immediately clear how to generalize
this notion to receiving z;4 for an arbitrary protocol. The situation becomes even worse when
we consider a protocol such as A% or A% where none of the messages received corresponds to
Zi+1; rather, a whole block of messages does.

We avoid this problem by replacing the phrase “R received Zi41” by “R wrote z;,,”. We
restrict our attention in what follows to interpreted systems I where for any point (r,m) in
I, the environment component has the form (X,¢c,Y,...), where X is the input sequence, ¢
is a counter that describes which element of X is currently being read by S, and Y is the
output sequence of elements thus far written by R. (We remark that in the formal semantics
for protocols A, A, A% A9™ and 4™ given in the appendix, the environment component
always has this form.) The formula “R wrote z,” is true at the point (r,m) if output sequence
Y in r(m) has length at least i+ 1. (Since we also restrict attention to runs that have the safety
property, it will actually be z;;; that is written at this point.} Note that it is the case that in
all the protocols we considered, z;,; is written at the same round that it is first received by R,
so this change does capture the intuition we had all along. Similarly, we take “S read z;” to
be true at (r,m) if the value of ¢ in r(m) is at least 5.

We do need to make one further assumption on the set of runs in order to prove the
result. We must assume that processes remember the sequence of values they have read or
written (i.e., this sequence is encoded in their local states). Note that this is weaker than
the assumption that processes record their complete message history, since from the message
history it can be deduced what values were read and written.

Theorem 7.1: Let I be a reasonable interpreted system such that for any point in I:

1. the safety property holds (so that Y is always a prefiz of X ),

2. reading and writing alternate (so that the number of data elements read by S 1s always
[Y] or [Y]+1), ‘

8. S’s state records all the elements it has read, and R’s state records all the elements it has
written.

Then for all pointé (r,m) in I and all i > 0, we have
(I,r,m) E Ks O (R wrote z;4; D KrKsKp(z;)). (2)
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Proof To prove Equation 2, it suffices to show that for all points (r, m) in I we have
(I,r,m) = (R wrote z;41 D KpKsKg(z;)). (3)

Equation 2 follows from Equation 3 and the general observation that if (I,r,m) |= ¢ for all ~
and m, then (I,r,m) i K5Oy for all r and m.

To prove Equation 3, assume, by way of contradiction, that for some point (r,m), we have
(I, T, m) l= (R wrote z;41 A HKRKsKR(I,')).

It follows that we can find points (', m') and (r”,m") such that (r,m) ~p (¢, m’'), (', m') ~g
(*",m"), (I,¥,m') = ~KsKgr(z:), and (I,7",m") = =Kp(z;).

Since (r,m) ~g (¥, m') and R’s state records the elements that R has written, it must be the
case that (I,r',m') = R wrote z;4,. Since reading and writing alternate, it must be the case
that (I,7',m’) |= S read ziyy. But (@, m') ~5 (", m") and S’s state records the elements it has
read, so we must have (I,7”,m") |= S read z;4,. Again, since reading and writing alternate,
we must have (7,7, m") |= R wrote z;. Thus, in r'(m"), the output sequence has length at
least ¢ + 1. Suppose, without loss of generality, that the (i + 1)* element written is 0. Since
(I,7",m") |= ~Kp(z;), there must be some point (", m™) such that (+',m") ~g (", m")
and (I,7",m") |= (2; = 1). Since R’s state records all the elements it has written, it must be
the case that the (i +1)** element written by R at the point (¥, m™) is 0. But this contradicts
the safety property. Hence Equation 3 must hold. §

8 Conclusions

We have described high-level knowledge-based protocols for the sequence transmission prob-

lem, and have shown that several well-known protocols are simply implementations of one
of our knowledge-based protocols. These observations allowed us to provide well-motivated
and easy correctness proofs for all these protocols. We feel that such an approach—starting
with a knowledge-based protocol that is almost model-independent, and then implementing
the knowledge acquisition using particular properties of the model—leads to a better under-
standing of the protocol and far easier proofs of correctness than other approaches that have
been used. Moses and Tuttle [MT86] also start with a knowledge-based protocol (for Byzan-
tine agreement) and derive efficient implementations of it. Gafni has also advocated a similar
“layered” approach to protocol design [Gaf86], although he did not specifically suggest using
knowledge-based protocols at the highest level.

We also considered the state of knowledge required to perform the sequence transmission
problem, and essentially characterized it in the case of alternating reads and writes via Equation
2. Theorem 5 demonstrates that this state of knowledge is a necessary precondition; protocols
A and B demonstrate that it is sufficient. It would be interesting to try to characterize the
state of knowledge required to solve the sequence transmission problem without the additional
assumption of alternating reads and writes.

The knowledge-based protocols we designed assumed processes with infinitely many distinct
states and required that infinitely many distinct messages could be sent. In retrospect, this is
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perhaps not surprising. It is often the case that a high-level solution to a problem is inefficient.
Protocols such as the AUY protocols and the Alternating Bit protocol show that under some
circumstances (i.e., under appropriate restrictions on the actions of the environment) we can
find finite-state solutions to the sequence transmission problem. However, as we observed at the
end of Section 3, if we allow messages to be reordered and lost (or reordered and duplicated),
and there is no upper bound on message delivery time (for messages that are delivered), then
there is no finite-state solution. (We remark that if there is an upper bound on message delivery
time, then the modified Stenning protocol [Ste76] gives a finite-state solution.) And if we allow
undetectable corruption of messages (so that any message can be converted to any other),
then there is no solution at all, either finite state or infinite state (since any message sequence
can then be converted to any other). It would be interesting to characterize the assumptions
required to guarantee that a solution to the sequence transmission problem exists, and the
assumptions required to guarantee a finite-state solution, and then to generalize these results
to the case where we have a whole network rather than just two processes (see [GA8T] for
preliminary work along these lines).

A Appendix: Semantics and correctness of the protocols

A.1 Semantics for A and 4"

We give the semantics of A and A% as a set of runs as described in Section 2. We start with
A. Our first step is to specify G—the set of possible global states of protocol A.

Let Ms (resp. MRg) be the set of messages that S (resp. R) can send according to Ag
(resp. AR), i.e., all the messages of the type “z; = y” and “KsKg(z;)” (resp. “Kg(z;)” and
“KrKsKg(z;)”). Note that both Ms and My are infinite. Since messages can be lost or
corrupted (detectably), the set of messages S (resp. R) can receive is actually Mg U {A,*}
(resp. MsU{),*}), where X denotes that nothing is received and * denotes a special corrupted
message.

We have some latitude when it comes to representing the runs of A. We have chosen to make
explicit the fact that a “step” of the protocol consists of a sending phase, receiving phase, and
a local computation phase. In order to bring this out in the set of runs, we take Ls to consist
of states of the form (Sj,q,y, z,h,1), where j € {1,2}, g€ {s,1,1},y€ {0,1}, z€ MpuU{), *},
1 2 0, and h, S’s history, is a sequence over {“sent m” |m € Mg} U {“received m” |m €
Ms U {A,«}}. The first component, Sj, is the step in the protocol S is about to perform
or in the midst of performing, the second component, g, describes whether S is in the send,
receive, or local computation phase, the third component, y, is the data element last read, the
fourth component is the value last received, A is a sequence, initially empty, that is updated
whenever S sends/receives a message (such-that every time a message m is sent by S, “sent
m” is appended to h, and every time a message m’ is received by S, “received m'” is appended
to k), and i records the value of the counter i used in As. Similarly, we take Ly to consist
of states of the form (Rk,q',2',R',i'). L., the environment states, consist of states of the form
(X,¢,Y,¢",bs,br,g0s,g0R), where X is the input sequence, ¢ is a counter describing which
element of X is currently being read, Y is the sequence of elements written, ¢” is the phase, bs
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(resp. br) is a sequence over Mg (resp. MR) containing all the messages sent by S (resp. R).
We take gos (resp. gor) to be a Boolean variable whose valuen is 0 or 1 depending on whether
S (resp. R) is scheduled to move on that round. ‘

Go, the set of initial global states of A, consists of all global states of the form

((X,O, <)13’ <>a <>ngSygoR)a (Slas’ an’\’ <>10))1 (Rlas”\’ <>a0))a

where X is an infinite sequence of Os and 1s.

We define R, the set of potential runs of A, to be the set of all runs r over G such that
r(0) € Go. When we consider interpreted systems that are consistent with A, we will only
consider systems R that are consistent with respect to §, Go, and 7, where 7 is a transition
function we are about to define. In particular, we will have R C RE.

It is now easy to view S’s protocol Ag as a function from its local state and an intepreted
system I to actions. In a sending phase, S performs an action of the form “send m”, m € Mg;
in a receiving phase it performs an action of the form “receive z”; in the local phase it performs
actions of the form “go to S;” and perhaps “read y” or “i := i + 1”. The only case where
the interpreted system I plays a role is when there is a test for knowledge (in a local phase).
Typical clauses for Ags include:

— Lo e M
= send “z; = y”;

AS((Slassysz’hai 11)
J) = send “KsKpr(z:)”;
=T

)
AS((Sza 5,2, hsi)’

®
b A((Sj’ Ty yazsh,i), ) eceive 2z

~ go to S2 if (I,7,m) = Kg(z;) for all global states r(m)
* As((S1,4,y,2,h,1),1) = where S’s state is (S1,0,y, z,h, 1)

go to S1 otherwise.

We leave it to the reader tofill in the remaining clauses for Ag and the similar clauses for Apg.

The environment runs the nondeterministic protocol that performs the empty action A
during the send phase, nondeterministically sends messages during the receive phase (in a
manner described below), and perform actions of the form goj =1,forj € {S,R}and: € {0,1}.
(Note that the values of gos and gog are only changed after the local computation phase, so
they are constant during a round.)

At the receive phase, the environment is allowed to lose, reorder, or duplicate messages,
as well as to detectably corrupt them. We capture this by having the environment nondeter-
ministically choose to perform a “sends m” action, for some m € br U {*,A} whenever it is
in the receive phase and gog = 1. The result of this action is that S will receive the message
m. Similarly, the environment nondeterministically chooses to perform a “sendg m” action for
some m € bs in the receive phase if gop = 1. The environment does not send any messages
to S (resp. R) if S (resp. R) is not scheduled. (We could of course assume that messages are
delivered even when processes are not scheduled, or that the environment can deliver more than
one message at a time. The resulting model would be similar to the one we use.) Duplication of
messages is possible, since a message is not deleted from bg or bg after being sent. We capture
the possibility of message corruption by allowing the environment to send the message * (other
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more sophisticated ways of capturing message corruption are clearly possible); message deletion
is captured by allowing the environment to send ).

Finally, we need to define 7. The definition is completely straightforward, although tedious
to write down. For example, we have ‘

7(A,“send m”,“send m'”)

((Xa C’Ya S, bS, bRs 1a0)3 (51,8, y,z,h,i), (Rais) Z,sh,’ "))
((X,¢,Y,r,bs;(m),br,1,0),(S1,r,y,2,h; (“sent m”),1), (R3, s, 2! B 1").

This says that if, in the send phase, S sends m and R sends m' when only S is scheduled, then
the result is that m is appended to the environment’s message buffers bg, “sent m” is appended
to S’s message history (h), and S moves into the receive phase. Note that the actions of R is
disabled (i.e., has no effect on the system) since R is not scheduled (gog = 0).

The effect of 7(act.,acts,actr) is similar for other joint actions. For example, in the receive
phase, if the environment sends some messages, then h and h’ are updated with the values of
these messages (by appending “received m™). The result of “read y” is that y is set to z. (if
X = (z0,21,22,...)) and c is increased by 1, while the result “write 2> is that 2 is appended
to Y. We leave further details to the reader.

Although up to now we have implicitly been associating A with the pair (As, Ag), we now
formally take it to be the joint protocol (A., As, Ar), where A, is the nondeterministic protocol
for the environment described above.

We have now given all the details necessary to determine whether a given set of runs is
consistent with the knowledge-based protocol A. Note that this construction guarantees that
the assumptions of Theorem 1 hold. In particular, both S’s and R’s local states contain a
complete record of the messages they have sent and received.

To give the semantics of A®, we start by specifying G, the set of global states of A®. The
definition of G# is similar to the definition of §; the main difference is that we omit the message
histories, the counters, and the infinite message buffers in the local states of S and R (after all,
A” is intended to be a finite state protocol!). We therefore take L{; to consist of states of the
form (Sj,q,y,2), where j, ¢, and y are just like before, and z € {*,),ack,ack®}. Similarly, we
take L%} to consist of states of the form (Rk,¢’, 2') where 2/ € {*,1,0,1,ack?}. L%, the set of
possible environment states, consists of states of the form (X,¢,Y,q¢",bs,br,g0s,g0R), where

- X,¢6,Y,q" gos, and gog are just like before, and bg (resp. br) is a sequence over {0,1,ack?}
(resp. {ack,ack®}).

We take the set gg‘ of initial global states of A to consist of all global states of the form
((X’ 0, ()a S, ()a 0,905,90}2), (Sla S, Zo, ’\))a (Rl, S, ’\))

where X is an infinite sequence of Os and 1s.

Recall that A% is a standard protocol. It is now easy to view S’s protocol A{é as a function
from L{s" to actions. For example, we have

o AR((S1,s,y,2)) = send y;
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L A/’((SZ, s,¥,2)) = send ack?;
o A*((S7,r,y,2)) = receive z
o As((SL1,y,2,h,i),R) = { go to 52 if z =ack?

go to S1 otherwise.

We leave it to the reader to fill in the remaining clauses for A{; and the similar clauses for Af’z.

Unlike A, in A” the environment cannot reorder messages (although it can delete them,
duplicate them, or corrupt them detectably). We capture this by having bg and bg (the mes-
sage buffers which are part of the environment’s state) consist only of the messages that the
environment can still deliver. Thus, if bs = (mj,...,m;) and the environment delivers the
message m; for some 5 < k, then all the messages m; with { < j are deleted from bs. (We
remark that we can show that for A®, the buffers are always of length at most 2.) In the receive
phase, if gos = 1 (resp. gor = 1) the environment nondeterministically chooses an element of
brU {*,A} (resp. bs U {#,A}) and delivers it to S (resp. to R). It also has to update bs and
br as explained above. Asin A, the environment also performs actions of the form goj =1 for
J € {S,R} and i € {0,1} in the local computation phase, and performs the null action A in the
send phase.

We define a transition function 7 in much the same way as before. We leave further details
to the reader. We now formally take A® it to be the joint protocol (A{‘,Ag ,Aﬁ), where A2 is
the nondeterministic protocol for the environment described above.

We now have given all the details necessary to generate R(A”), the set of all runs consistent
with A%,

A.2 Correctness of A

In this subsection we prove Theorem 1. Let J ='(R,) be a reasonable interpreted system
consistent with A satisfying the semantic construction of the previous subsection. Since I is
otherwise an arbitrary interpreted system, it might well be a system where there is no message
duplication (since there may be no runs in R where the environment delivers the same message
twice). There may also be some a priori knowledge in I about the input sequence X; for
example, it might be common knowledge (i.e., true in all runs of R) that the first and second
data elements in X are the same.

The proof of safety for A is almost trivial, since R writes z; only if R knows its value.
Formally, we show , :

Lemma 1 For all runs r € R and all times m > 0, if r(m) = (s, ss,5Rr), where s, i3 of the
form (X,¢,Y,...) and sg is of the form (Rk,...,i'), then Y < X and i’ = Y.

Proof We proceed by induction on m. The case m = 0 follows from our characterization of
o, the set of initial global states. For the inductive step, note that ¥ and i’ are the same in
r(m) and r(m+1) unless in r(m) it is the case that R is scheduled, R’s local state is of the form
(Rk,l,z,h,1'), where k = 1 or k = 3, and (I,r,m) = Kg(z;y1). But in this case z;s is appended
to Y and 1’ is increased by one. Thus, in 7(m + 1), we still have ¥ < X and #/ = Y]. 1
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In order to prove liveness, we need the three preliminary lemmas. Following [HM84], we
say that a formula ¢ is stable with respect to I if, once ¢ is true in a run of J, it remains true;
ie., (7,r,m)  © implies (J,r,m’) |= © for all m' > m.

Lemma 2 If o, goi and ©; are stable with respect to I, then so are ) Apa, 1V @2, and K;p
for 7 € {S,R}.

Proof The fact that ¢; Aws and p; Vo, are stable is immediate. The stability of K;p depends
on the fact that processes do not forget (i.e., they record their message histories in their local
states). Suppose (7,r,m) |= Kjpand m’ > m; we want to show that (I, r,m’) = K;e. Suppose
r' € R and (r', ) ~; (r,m'). Since j’s message history at r(m) must be a prefix of ;s message
history at r'(m), while ;’s message history at #/(£) is the same as its message history in r(m’)
(this is because (r',£) ~; (r,m’) and we assume that j’s state records its message history), it
easily follows that there is some £ < € such that (r,m) ~; (r',#). Since (I,r,m) = K;p and
(rym) ~; (7', 8), it follows that (I,7,£) k= . Since o is stable, we have that (I,7,8) = p. We
have just shown that for all points (r',#) with (r',€) ~; (r,m'), we have (I,#,#) |= . Thus
(I,r,m') = K;jp. It follows that Ky is stable with respect to I.

Lemma 3 For everyi > 0, j € {R,S}, and ¢ of the form z; = y, Kg(z;), KsKpg(z;), or
KrKsKg(zi), we have:

1. ¢ 13 stable with respect to I. )

2. If ‘sent “p” ’is in process j’s message history at the point (r,m) in I, then (I,7,m) & .

8. If ‘recesved “p” ’is in process j’s message history at the point (r, m) in I, then (I,r,m) =
K;p.

Proof The stability of z; = y follows from the assumption that-J is a reasonable interpretation.
The stability of all the other formulas follows immediately from Lemma 2.

For part 2, we proceed by induction on m. First suppose ‘sent “¢” ’is in S’s message history
at (r,m). The code for protocol A shows that ¢ is either of the form z; = y or KsKp(z;). By
part 1, both of these formulas are stable. Thus, if ‘sent “p” ’ is also in S’s message history at
(r,m — 1), it follows from the induction hypothesis and the stability of @ that (I,r,m) & o.
If ‘sent “p”’ is not in S’s message history at (r,m — 1), this message must have been sent at
the point (r,m). To deal with the case that ¢ is of the form z; = y, observe that for all points
(r',m')in I,if r'(m') = ((X,...),(S7,¢,¥5-..,8),...) a0d X = (z0,21,...), then y = z;. ;From
this it immediately follows that (I,r,m) k= ¢. If ¢ is of the form KgK r(z:) and this is the first
time the message “©” is sent, then it follows that S is scheduled at (r,m) and S’s local state at
(r,m) must be of the form (S2,...,7). If m' < m is the previous time that § was scheduled in
7, then S’s local state at (r,m') must be of the form (S1,...,5). Moreover, it must be the case
that (J,r,m') |= KsKg(zi) (otherwise S would have stayed at location S1). Since KgK r(zi)
is stable, the result follows. The proof for the case that ‘sent “p” ’is in R’s message history is
similar and left to the reader.

For part 3, we again proceed by induction on m. Suppose ‘received “¢”* is in S’s message
history at (r,m) and suppose (#',m') ~g (r,m). It follows that ‘received “p”’ is also in S’s
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message history at (r/,m'). It must be the case that ‘sent “©”’ is in R’s message history at
(',m'). From part 2, it follows that (I,r',m') = p. Thus (I,r,m) = Kgp. The proof is
similar if ‘received “¢” ’ is in R’s message history. 1

Given a local state for S of the form (S7,q,y, 2, h,1), let the corresponding reduced state be
(SJ,1). Similarly, given a local state for R of the form (Rk,q',2',k’,4'), let the corresponding
reduced state be (Rk,1').

Lemma 4 Let r be a run of R. Then the sequence of reduced states for S in r is either of the
form
(51,0)%(82,0)*(S1,1)*(S2,1)* ... (S1,i)*(S2,9)* ...
or of the form
(51,0)*(52,0)*(S1,1)*(S2,1)*... (87,4
(where (S7,i)* denotes a sequence of one or more global states with reduced state (S7,1), and

(S7,4)¥ denotes an infinite sequence of global states with reduced state (S7,1)). Similarly, the
sequence of reduced states for R in r is either of the form

(R1,0)*(R2,1)*(R3,1)*(R2,2)*(R3,2)*...(R2,i")* (R3,i")*

or of the form
(R1,0)*(R2,1)*(R3,1)*(R2,2)*(R3,2)* ... (Rk, ).

Proof Immediate from the code of Ag and Ag. 1

We are finally ready to prove liveness. We show that in r is a fair run of R, then in R’s
reduced states in r include reduced states of the form (Rk,s) for all ; > 0. From Lemma 1,it
. follows that R writes arbitrarily long prefixes of X, so we get liveness as desired.

Lemma § Ifr € R is such that S and R are scheduled infinitely often in r, and every message
sent by S (resp. R) infinitely often is eventually delivered uncorrupted (when R (resp. S) is
scheduled), then the sequence of reduced states in r for R is of the form

(R1,0)*(R2,1)*(R3,1)*(R2,2)*(R3,2)* (R2,3)" ...

Proof Suppose r € R and the sequence of reduced states in r for R does not have the form
above. By Lemma 4, it follows that the sequence of reduced states must either have the form
(R1,0)“, (R1,0)*...(R2,#")“, or (R1,0)*...(R3,#)“. By considering each of these cases in
turn, we show that they cannot occur in a fair run.

Case 1: the sequence of reduced states in r for R is of the form (R1,0)¥. :
Since R is scheduled infinitely many times in r it follows that for all m >0, (I,r,m) E
—K,(zo) (otherwise R would go to location R2). Hence, the sequence of reduced states
in r for S does not include (52,0) (since (I,r,m) = ~Kg(zo) implies that (I,r, m) k=
~KsKRg(zo) and S enters (52,0) only if KsKg(zo)). By Lemma 4 it follows that the
sequence of reduced states in r for S is of the form (S1,0)“. Assume that z = 0. Since
S is scheduled infinitely often, it follows that S sends the message zo = 0 infinitely often.
By assumption, the message zo = 0 is eventually received by R, so it follows that for some
m' > 0, R’s history contains “received zy = 0”. By Lemma 3, it follows that (I,r,m) =
K r(z0), contradicting our assumption that for all m > 0, (I,r,m) E —~Kg(zo).
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Case 2: the sequence of reduced states in r for R is of the form (R1,0)* ... (R2,7")~.
It follows that for all m > 0, (J,r,m) = ~KpKsKp(zir). Similar reasoning to the
previous case shows that the sequence of reduced states in r for S does not contain
(S1,# + 1), and therefore is either of the form ($1,0)* ... (Sk,7)* for some k € {1,2}
and y < 7.

Thus we have four subcases:

Case2a: k=2and j=1":
S sends infinitely many “KsKRg(z;)” messages, (by the fairness assumption) at least
one of which is delivered to R, and hence for some m’ > 0, “received KsKp(zy)”
will be in R’s message history. But, by Lemma 3 this implies that (I,r,m) E
KrKsKg(zir), contradicting our assumption that for all m > 0, we have (I, r, m)
—\KRKsKR(:L‘,v).

Case 2b: k=1and j =1"
In this case, for all m > 0, (I,r,m) | =KsKg(zir). But R sends infinitely
many “Kg(zy)” messages, at least one of which is delivered to S, and then KsKg (z4)
holds. This contradicts the assumption that for allm > 0, (I, r, m) = ~KsKp(zy).

Case 2c: k=1and j <1
In this case, for all m > 0, (I,r,m) = ~KsKRg(z;). However, there must be some
m' < m such that R’s reduced state at (r,m') is (R2,5) and R’s reduced state at
(r,m'+1) is (R3,5). Hence (I,r,m') | KrKsKg(z;). It follows that (I,n,m') E
KsKp(z;). But by Lemma 2, this formula is stable, so that (I,r,m) = KsKg(z;).
This gives us a contradiction.

Case 2d: k=2and j < ¢.
In this case, for all m > 0, (I,r,m) | ~KsKrKsKpr(z;). But R sends infinitely
many “Kpg(ry)” messages, at least one of which is delivered to S, say at time m’.
If (r',€) ~g (r,m’), then ‘received “K r(zi7)” is in S’s message history in ' (€. It
follows that that R must have been in reduced state (R2,1') at some point (r',#'),
where ¢ < ¢. Since j < i, there must be some #’ < ¢ such that R is in reduced
state (R2,7) in (#,£") and in reduced state (R3,7) in (7,€" + 1). It follows that
(1,7,¢") = KrKsKRg(z;). Since this formula is stable, we must have (I,7,0 E
KrKsKg(z;). Since (r',€) is an arbitrary point with (r,€) ~s (r, m'), it follows
that (I,r,m') = KsKrKsKRr(z;), contradicting our original assumption.

Case 3: the sequence of reduced states in r for R is of the form (R1,0)*...(R3,i")v.
It follows that for all m > 0, (I,r,m) = ~K R(Zi41). Similar reasoning to the previous
case show that the sequence of reduced states in r for S does not contain (S2,4 +1),and
therefore is of the form (51,0)*...(Sk, ;) for some k € {1,2} and j < ¢’ or k = 1 and
J =1+ 1. We can now derive a contradiction as before; we leave details to the reader. 1

As we remarked in Section 3, if S and R just keep track of the number of data elements
they have read (resp. written) thus far, an analogue of protocol A, where we replace Kg(z;)
by R wrote z;, will still work. Since we no longer keep track of the complete history, it is now
no longer the case that Lemma 2 holds; even if ¢ is stable, Ki(p) may not be stable. However,
it is still the case that an analogue to Lemma 3 holds. The point is that a formula such as
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Ks(R wrote z;) is stable in any set of runs consistent with the modified version of A. This
allows us to prove the correctness of the protocol essentially in the same way as we proved the
correctness of A.

A.3 Proving the correctness of A"

In this subsection we prove the correctness of A”. We have chosen to do this by proving that,
in a precise sense, A” is an implementation of A. We define a mapping h from runs of A” to
runs of A that preserves the reading and writing of data elements, and preserves fairness by
mapping fair runs of A® to fair runs of A. Thus safety for A® follows from safety for A, and
liveness for A® follows from liveness for A. Although our proof will essentially include all the
lemmas required for a direct proof of the correctness of A” by standard techniques, we have
chosen this technique since it demonstrates the intrinsic relationship between A and AP as well
as highlighting the idea of an implementation.

Formally we proceed as follows: Let p be a run. A finite prefiz of p is a function with
domain {0,...,m — 1} that agrees with p on their common domain. In this case, we say that
the length of p, written |p|, is m.. If R is a set of runs, let P(R) consist of the runsin R together
with all the finite prefixes of runs in R. We can define an ordering < on P(R) by taking p < p'
whenever o' extends p (so that p' has a larger domain and p and p' agree on their common
domain).

We define a function h: P(R(4%)) — P(R%) so that for every p € P(R(A”)) the following
properties hold:

1. h is monotonic, .e., if p' < p, then h(p') < h(p).

2. |h(p)] = |pl.
3. If the last state in p is of the form

((X,¢,Y,q,55, 55,905, 90r), (7,4, 4, 2*), (Rk, ", &),
then the last state in h(p) is of the form
((X, Y, ' bs, bR,QOSagoR)a (S]a q'a ¥,2,h, c)a (Rk’ q"’ z’a hla IYI))

The definition of & is the obvious one. For example, suppose p € P(R(A”)) and S sends
the message y in p(m). (We can tell this is so if S is in the send phase in p(m), gos = 1, and
the last message in b{s‘-' is y.) Then S sends the message “z, = y” in h(p)(m), where the value
of ¢ is determined by the second component of the environment’s state in p(m). Since S’s state
in h(p) records the complete message history, we have to append the message “sent z, = y” to
h and bs in h(p)(m). Similarly, if S sends ack? in p, then S sends KsKg(z.) in h(p), where
again ¢ is determined by the environment’s state. If S receives a message ack or ack® in p(m),
then S receives the corresponding message “Kg(z.)” or “KpKsK r(z¢)” in h(p). If S receives
* or A in p(m), then S receives the same message in h(p)(m). We omit the straightforward
details of the definition of A here.

Let R = h(R(A?)), and let I = (R,) be a reasonable interpreted system. (Recall this
means that the formulas z. = 1 and z, = 0 are true exactly where they ought to be.) Our goal
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is to show that J is consistent with A. Thus, for example, we must show that when S sends
the message “KsKpg(z.)” at some point in a run h(p), then the test KsKp(z.) actually holds.

In order to do that, we characterize the possible runs of A”. What we intend to show is
informally captured in the diagram below, where we focus only on the location counter and
ignore the state of the environment. At a high level, what is happening in A” is that essentially
S and R proceed in lockstep, with R at most one step behind S.

ack? lost

S2, R2

ack? revd

ack
rev’d s
ack® lost
S1,R1|—¥4 Js1 Ro 52, R3
y lost ack lost ack® revd
yrevd

S1, R3

y lostl ¥

Our first step in characterizing the runs of A is to establish some invariants.
Lemma 6 Assume r € R(A”). Then for allm > 0, if r(m) 3 of the form
((X) ¢ Ya 4”, bSa bRa g0s, gOR), (S]’ Y, Z), (Rk’ Q', zl)),
where X = (z9,1),23,...), then the following all hold:

1. y=z,.

2. If gos = 1 then ¢' = ¢; if gos = O then q' = s. Similarly, if gop = 1 then " =gq;if
gor =0 then ¢" = s. '

8. If 3 =1 then esther

(8) k=1,c=|Y|=0, or

(b)) k=2and|Y|=c+1, or
- ()k=3and|Y|=c¢
4. Ifj=2then|Y|=c+ 1 and either k=2 or k = 3.
5. If g € {r,1} then

(8) Ifj=1andk=1 then bs € {(0:{v)} andbr = (). Ifgos =1 then y € bg.
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(¢) If ; = 1 and k = 2 then bs = (y). If c = O then br € {(),{ack)}, otherwise
br € {(ack), (ack®), (ack®,ack)}. If gor = 1 then ack € bg.

(¢) Ifj = 2 and k = 2 then bg € {(y), (ack®), (y,ack?®)} and bg = (ack). If gog = 1 then
ack? e bs.

(d) If j = 1 and k = 3 then bs € {{ack?), (y), (ack?,y)} and bg = (ack®). If gog = 1
then y € bg.

(¢) Ifj =2 and k = 3 then bs = (ack?®) and br € {(ack®), (ack), (ack,ack®)}. If gop = 1
then ack® € bg.

6. Ifg=1 and gos =1 (resp. gor = 1) then z € bg (resp. 2’ € bs).

Proof We proceed by induction on m to show that all of the properties above hold for the
global state r(m). The base case follows immediately from our assumption about the form of
the initial global states. For the inductive step, assume (1)-(6) are true for r(m'), m' < m.
We have to show that any joint action that could have been taken from r(m) would lead to an
r(m + 1) that satisfies (1)~(6). There are lots of possibilities of r(m) to consider: six possible
combinations of j and k, three possible values of ¢, four combinations of gos and gog, and
several combinations of bs and br. The argument in all cases is similar; we present two of the
cases here. '

First consider the case where ¢ = s, and j = k = 1, gos = gog = 1. By the induction
hypothesis, in 7(m) we have ¢ = |Y| = 0 and y = zo. The joint action taken from r(m)
is of the form a = (a.,as,ar), where ag = send y, ar = send A, and a, = A. Therefore,
r(m + 1) = 7(a)(r(m)) is of the form

((X,0,(),r, (z0), (), 1, 1), (S1,7,20,2),(R1,r,2')),

and hence r(m + 1) satisfies (1)-(6).

4

Next suppose ¢ =1, 5 = 1, k = 3, gog = 1, and gog = 0. By the induction hypothesis, (m)
is of the form

(X, e, (2o, ..., 2c-1),1,bs, (ack®),1,0), (51,1, 2., 2), (R3,1,2")),

where bs € {(z.), (ack?,2.)} and z € bg (i.e., z #ack?). The joint action taken from r(m) is
therefore of the form a = (a.,as,ar), where as is “go to S17, ap is irrelevant (since gog = 0
and ag will have no effect) and @, = A. Thus 7(m + 1) = r(m), and so satisfies (1)-(6) by the
induction hypothesis. 8

Note that it is easy to add the clause Y < X to the six invariant clauses above, and thus
show that A” has the safety property.

For any global state g € G of the form ((X, ¢, Y, ¢", bs, br,g0s,90r), (57,4, 9, 2), (Rk,q', 2')
we define the reduced global state of g to be the tuple (c,Sj, Rk). Parts 3 and 4 of Lemma 6 tell
us that the only possible global states that arise are those of the form (0,51, R1), (¢, S1, R2),
(c,S2,R2), (c¢,S2,R3), and (c, S1, R3), for ¢ > 0. For convenience, we abbreviate these as o,
Vdc+1s V4e+2y V4e+3, aDd Vgetq, respectively. The following analogue to Lemma 4 says that the
diagram above does indeed capture all the possible state transitions.
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Lemma 7 Letr € R(A®). Then the sequence of reduced global states of r is either of the form
vg'vf'v;' ... or of the form v} vl ... v¥. Moreover, the transition Jrom vy to vaeqy (resp. vyeqy
20 V4c42, Vac+2 10 Vgct3, Vic+3 10 Vicyq), for ¢ 2 0, occurs ezactly when R recetves y (resp. S

receives ack, R receives ack?, S receives ack® ).

Proof We proceed by induction on m to show that that if p is a prefix of r of length m, then
the sequence of reduced global states of p has the form v3 ... v} for some n. By our assumption
on the form of initial global states, the base case holds. For the inductive step, assume that I’y
is a prefix of r of length m, and that the sequence of reduced global states in o’ is vaof ..ot
Let p be the prefix of r of length m + 1. We want to show that the reduced global state of
p(m + 1) is either v, or vp41, and that the latter case occurs only if the appropriate message
is received. Consider the case where vy, is of the form (c,S1, R2). By the semantics of AP the
first component of the reduced global state cannot change (since S does not perform a read
action in S1), the second component can change only if S is in the local computation phase
and receives an ack message from R, in which case it changes to S2, and the third component
can change only if R is in the local computation phase and receives an ack? message from $.
By part 5(b) of Lemma 6, R cannot receive an ack?, since ack? ¢ bs at this point. The result
follows in this case. The other four cases are similar and left to the reader. This establishes the
inductive step. I

Note that at this point we could directly prove the liveness property for A by showing that
for fair runs the sequence of reduced global states must be of the form vg vy ..., much as we
did in Lemma A.2. However, we proceed with our proof that 4/ implements A.

Given a run r € R(A4%”), we call the point (r,m) a transition point if the reduced global
state at (r,m) and (r,m + 1) is different. Recall that R = {h(r)|r € R(A%)}.

Lemma 8 Suppose r € R(A”), (r,m) i3 a transition point, the reduced global state of r(m) 1s
Vac+k for some ¢ 2 0, 0 <k < 3, and I = (R, 7) 13 a reasonable interpreted system. Then

1.3k = 0 then (I,h(r),m) | Kgr(z.) A ~KsKg(z:) and for all m' < m, we have

(I,h(r),m') F —~Kg(z.) '

2. 3fk =1 then (I,h(r),m) KsKp(z:) A\~KrKsKp(z.) and for all m' < m, we have
(I,h(r),m') ~KsKpg(z.)

8. tf k =2 then (I,h(r),m) | KrKsKpg(z.) A=-KsKpKsKpg(z.) and for all m' < m, we
have (I,h(r),m’) E ~KprKsKp(z.) ,

4. sf k=3 then (I,h(r),m) = KsKrKsKp(z.) A =Kpg(Zc+1) and for all m' < m, we have
(I,h(r),m’) E ~KsKprKsKp(z.).

Proof We proceed by induction on m. All cases are similar; we consider one representative case
here. Suppose ¢ > 0 and k = 0. Since (r,m) is a transition point, it follows from Lemma 7 that
R received the message y at this point in r. For definiteness, suppose that at this point y = 0.
From Lemma 6, it follows that z, = 0. By definition of h, R receives the message “z, = 0” at
this point in h(r) and appends this message to its message history. ;From Lemma 3, it follows
that (I,h(r),m) = Kp(z. = 0), so we also have (I,k(r),m) k= Kgr(z.) (since Kp(z.) is an
abbreviation for Kr(z. = 0) vV Kp(z. = 1)).
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To prove that (I,k(r),m) | =KsKp(z.), consider a run # € R(A”) that agrees with r
up to time m — 1, but R does not receive 0 at r'(m). We clearly have (k(r),m) ~5 (h(r'),m)
and (I,h(r'),m) = ~Kgr(z. = 0). We clearly also have (I,k(),m) I =Kgr(z. = 1), so that
(I,h(r'), m) |z =KRr(z.). Thus (I,h(r),m) | ~KsKgr(z).

It remains to show that for every m’ < m, we have (I,h(r),m’) = Kp(z.). Let ' € R(A#)
be just like r except that z, = 1 in 7. From Lemma 7 it follows that R does not receive the
value of z. before time m in r, thus we have (h(r),m') ~gr (h(r'),m’) for all m' < m. Since
(I,h(r"),m') = 2. = 1 for all m’' < m, we have (I,h(r),m’') i =Kg(z. = 0) for all m' < m.
And since (I,h(r),m') = 2z, = 0, we also have (I,h(r),m') = ~Kg(z. = 1) for all m'. Thus
(I,h(r),m') E-Kg(z) forall m' < m. I

We are now ready to establish

Lemma 9 If R = h(R(A®)) and I = (R,7) is a reasonable interpreted sytem, then I is
consistent with A.

Proof Let h(r) € R. We have to show that for all m > 0, if h(r)(m) = (s.,ss,sr) then
there is a joint action (a.,as,ar) € A.(s., ) X As(ss,I) x Ar(sgr, ) such that h(r)(m+1) =
7(ac,as5,ar)(r(m)). The proof is by induction on m. If in h(r)(m) the environment is in either
the send or the receive phase, then, since r € A®, the claim is trivial. We therefore consider
only the case that in h(r)(m) the environment is in the local phase (i.e., m = 2 mod 3). But

now the claim follows immediately from the semantics of A and Lemma 8. 1

Since the definition of h guarantees that for every run in r € R(A”), the same read and
write actions are performed at the same times in r and h(r), and since I is consistent with A,
it follows from Theorem 3.1 that every run in R(A”) has the safety property. It is also easy
to see that the mapping k also preserves fairness (if every message in a run r € R(A”) that is
sent infinitely many times is eventually delivered uncorrupted to the recipient when the latter
is scheduled, then the same is true in h(r)). Since Theorem 3.1 guarantees that fair runs of R
have the liveness property, the same is true of fair runs in R(A%).

This completes the proof of Theorem 3.2. I

A.4 Semantics and correctness of A%, A™, and A"

In this subsection we prove Theorems 3 and 4. We start by constucting the appropriate set
of runs for A%. The construction very similar to that for A®. We take Lg to consist of
states of the from (Sj,u,q,y,21,2) where j € {1,2}, u € {a,b}, ¢ € {s,r,1}, y € {0,1},
z1 € {\, ef (ack),ef(ack®)}, and 27 € {)\,eF (ack),e¥(ack®)}. Similarly, L consists of states
of the form (Rk,u',q’,21,25). The set L, consists of states of the form (X,c,Y,q",bs,br),
where the components have the same meaning as in A”, except we now omit the gog and gog
components since we are dealing with a synchronous system where processes are continuously
enabled, and we now take bs (resp. bgr) to consist of the last message sent by S (resp. R).

The actions that S and R can perform when running A* are analogous to those they
perform when running A”. The environment’s actions are somewhat more restricted, since we
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only allow deletion and insertion errors. The environment performs the null action A in the
send phase and the local computation phase. At the receive phase, its actions have the form
(as,br), where a and b are one of ins0, insl, del, or A. The effect of ins0s is that R receives
0 if S sent A; otherwise R receives whatever S sent. The effect of inslg is similar. The effect
of dels is that R receives A (i.e., S’s message, if there is one, is deleted), while the effect of Ag
is that R receives whatever S sent. The effect of actions of the form br is analogous. We can
now define the transition function 7 is defined in the obvious way. We take Go, the set of initial
states, to be the set of all states of the form ‘

((X,0,(),s,A,1),(S1,a,s,70,A,A), (R1,a,s, ), A)),

and then we can get R(A%), the set of runs that are consistent with A%. We leave details to
the reader.

The idea of the correctness proof for A¥ is straightforward. We show that A% is an im-
plementation of A”, much as we showed that A% is an implentation of A (although the details
are simpler in this case). We again define a mapping from runs of A% to runs of A” that
preserves the reading and writing of data elements. (Since every two rounds of A% correspond
to one round of A” in an obvious way, this mapping is easy to define.) Moreover, the mapping
preserves fairness, in that it maps fair runs of A% to fair runs of A”. Thus safety for A% follows
from safety for A®, and liveness for A%¥ follows from liveness for A”.

More formally, we have a function h”: P(R(A%)) — P(R(A®)) such that for every p €
P (R(A%)) the following properties hold:

1. k" is monotonic, so if p' < p then A?(p') < h(p).
= hf*

2. If |p| =6m + 7, 5 € {1,...,5}, then h?(p) = h"(p'), where p' is the prefix of p of length
6m.

3. If |p| = 6m and p(6m) is of the form
((X’ c, Ya Sy bSabRa 1, 1), (SJa a,5,Y, zlaz2)a (Rk,aa S, zi,zﬁ)),
then |h*(p)| = 3m and h®(p)(3m) is of the form

((X’ c’ Y) s’ b’s’b;z’ 1’ 1), (SJ" s’ y’ z)’ (Rk’ s’ z’))’

where )
m if e#(m) = 2129, m € {ack,ack?}
z= .
A otherwise

and )
J=l™ if e#(m) = 2122, m € {0, 1,ack?}
1 A otherwise.

Property 3 implies that the two parts of the message e®(m) sent at rounds 6m ~ 6 and
6m — 3 of p are both received iff the message m sent in round 3m — 3 of h”(p) is received. In
particular, this means that when we pass to infinite runs (using the monotonicity guaranteed
by property 1), we get that r is a fair run of A% iff A(r) is a fair run of A”.
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We first define % for finite prefixes in P(R(A%)) by induction on the length of the prefix.
If p€ P(R(A%)) and |p| = 0, then p(0) must have the form

((X,0,0),8,(),0),(S1,a,s,z9,, A), (R1, 8,8, ))).
We take h#(p) to be the prefix of length zero such that A% (p)(0) has the form
((X,0,0,s,0, 0,1, 1),(S1,s,20,4, 1), (R1,s,4, A)).

It is immediate that this is indeed a legitimate initial state of A%, so h(p) is well-defined.
Clearly it also satisfies property 3 above.

For the inductive step, suppose we have defined A” on all prefixes of length m > 0 and
p € P(R(A%)) has length m + 1. Take m' such that m + 1 = 6m’ + §, for j € {1,...,6}. If
J < 6, then we define h*(p) = hf'( '), where p' is the preﬁx of p of length m. Clearly this
satisfies all the requirements. If j = 6, consider the prefix p' of p of length 6m'. It is easy to
see that for all runs r € R(A%) and all n, we have that r(6n) has the form

((Xac’YassbS’bR)a(Sjaa S Y, 21722) (Rk a, s, zi,z;)).

In particular, p'(6m') and p(6m’' + 6) must also have this form. By the induction hypothesis,
[R®(p')| = 3m' and h(p')(3m') is of the form

((X,c,Y, 8,65, 65, 1,1), (57, 5,9, 2), (RE, 5, ).

Observe that once we decide what action the environment takes at step 3m' + 1, we get a
unique extension of h*(p) to a prefix p” of a run of A of length 3m' + 3. (This is because
S’s and R’s actions are a deterministic function of their state, and in step 3m and 3m +2,
then environment performs the empty action A.) We construct p” so that p"(3m’ + 3) and
p(6m’ + 6) satisfy property 3 of A above. Thus the environment deletes S’s message at step
3m + 1 of p" precisely if it deletes S’s message in either step p(6m’ + 1) or p(6m' + 4), and it
deletes R’s message precisely if it deletes R’s message in either step p(6m' + 1) or p(6m' + 4).
Take h*(p) = p". We must show that this choice indeed satisfies property 3 of the induction
hypothesis. In particular, we must show that S and R are in corresponding locations in the
global states p(6m’+ 6) and h**(p)(3m' + 3). To do this, we must consider all six combinations
“of pairs of locations for R and S in p(6m') and for each of these, consider the sixteen possible
actions the environment can perform at step 6m' + 1 and sixteen four possible actions it can
perform at step 6m’ + 4. Since any insert action performed by the environment has no effect,
most of the cases are identical. We omit the straightforward (but tedious) check here.

We have now defined h” on finite prefixes of runs in R(A%). We extend it to runs in
the unique way required to preserve monotonicity. Note that properties 2 and 3 of A hold
vacuously for infinite runs.

Since we have proved the safety property for A, and properties 1, 2, and 3 of A together
guarantee that for all runs r € R(A%), the sequence of reads and writes in r is the same as that
in R (r), the safety property of A% immediately follows.

In order to prove liveness, we again have to define what it means for a run r € R(A%) to be
consistent with an infinite sequence of actions. The definition is analogous to that for runs in
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R(A”), so we omit details here. We say that r € R(A%) is a run where infinitely many 2-block
messages from S to R (resp. R to S) are delivered if r is consistent with a sequence of actions
Qg, a1 ... such that for infinitely many even #’s, neither ay; nor ay,;; has first component delg
(resp. second component delp). :

As we remarked above, h/? preserves fairness: h” maps fair runs of A% (fair in the sense that
infinitely many 2-block messages from S to R and from R to S are delivered) to fair runs of A”
(fair in the sense that infinitely many messages from S to R and from R to S are delivered).
Thus, liveness for A% follows immediately from liveness for A%,

This completes the proof of Theorem 3. §

Theorem 4 follows by extending the methods of Theorem 3 to deal with A™ and Ad™.
Since in both these cases the environment can mutate messages, we must allow the environment
additional actions of the form muts and mutg, where mutg results in R gettinga 0if S sent al
and R getting a 1 if S sent a 0, and mutp, is defined similarly. However, in A™ the environment
cannot the actions delg and delg, while in A%™ the environment cannot perform actions of the
form insOs. We leave the straightforward details to the reader. §i
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