Abstract: ,

In this paper we present several systolic algorithms for Factorial Data Analysis:matrix products
of several types such as XXT where X is a rectangular matrix of size k X n,RX where R is upper
triangular of size k,AB where A and B are square dense matrices of size k,Cholesky factorizations
and triangular matrix inversions.

All these algorithms are built to run efficiently on the same asynchronous MIMD triangular
systolic array with orthogonal connections:SARDA (Systolic Array for Data Analysis).

A Programmable Systolic Array
for Factorial Data Analysis
Part I:Matrix Computations

Tiba Porta

Research Report YALEU/DCS/RR-542
June 1987

This work was supported by AFOSR-86-0098 and done in part at LCS/Grenoble.

1. Introduction

The computations needed for Factorial Data Analysis come down to a unique computation

kernel [2,3]. For each of the factorial techniques there is a preliminary computation to do on the
matrix of observations to obtain the k x n matrix of data X and possibly on the A, (respectively
B),symmetric positive definite matrix of size n,(respectively k),which represents the chosen norm
on R",(respectively R¥). Then we compute the Cholesky factorization of A and B when they are
not diagonal:we define R4 and Rp upper triangular of sizes n and k such that A = RKRA and
B = RERp (where T stands for transposition).
After that we let E = RpX R£ and W = EET and we define the eigenvalue decomposition
of W:(A;,w;) for ¢ = 1,...,k such that wfw; = 1. Finally we compute f; = RLw; and g; =
AVPAXT S,

We can therefore restrict ourselves to the following set of computations:

. matrix product A = XX7 where X is k X n.
. Cholesky factorization A = R Ry of order k.

. triangular matrix inversion RXI.

W N

. matrix products RX where R is upper triangular of size k and X rectangular of size k x n and
matrix products AB where A and B are both square of order k.

5. dominant eigenvalues computation of the symmetric positive definite matrix W of order k.

The purpose of that work was to devise efficient systolic algorithms for the computations listed
above from 1 to 5 all running on the same programmable systolic array:the Systolimag machine
built by Gerard Chevalier[11]. This machine composed of 9 processors allows to create or to simu-
late experimental,two-dimensional systolic arrays of sizes from 2 up to 12:SARDA (Systolic Array
for Factorial Data Analysis).

Each processor has a microprocessor MC6809,an arithmetic coprocessor AM D951,a ROM (Read
Only Memory) of 4Kbytes,a RAM (Random Access Memory) of up to 16 Kbytes and 4 communica-
tion channels to let the processor communicate with its 4 nearest neighbors from North,South,East,
and West[11].

We wanted to use the Systolimag machine as an asynchronous MIMD (Multiple Instruction Multiple
Data) machine.That is to say to use the fact that the processors are programmable and they don’t
have to do all the same thing and that their programs are ruled by data flow.

As our systolic array had to be of a fixed size s (s < 12) we realized the computations 1 to 5

with matrices of size s X s or s X n by block partitioning (see [10,3]). We wanted also to keep the
same structure for all our algorithms in order not to lose time by changing the connections with
the nearest neighbors between two algorithms.
We chose a triangular array with orthogonal connections (four nearest neighbors north-east-south-
west) as our stucture to deal with Factorial Data Analysis.The first reason is because Data Analysis
~ involve mainly symmetric or triangular matrices so we only need to use s(s + 1)/2 processors (one
per matrix element) instead of s2.The second reason is that this structure is especially well suited
for implementing 1 and 2 in cascade [10,12,13].The orthogonal connections are the simpliest to build
because every processor has 4 “natural” (hardware) communication channels with its neighbors and
they are mainly used for the computations 1 to 5.

In section 2 we present the systolic implementation of the matrix product A = XX7T with X
rectangular of size s x n followed in cascade by the Cholesky factorization of size s of A: A = RTR.In
section 3 we detaile the upper triangular matrix inversion with R stored in the array and the matrix
products described as computations 4.

~ — ~ o~
J W N
4 5 3 2
— Wy
An Xz %, Xy~ -7*
! 1 1 ! 11
|] ! !
1 | ! ! T
! ! ! (n+1
! ! i ! X1n
! ! ! !
! ! ! (nT) | x3
' ! ! /
! !
]]
! 1) X
] ' 'I I' () 12, 5 -~
! ! 4 s o5 W
! [} !] (zv) Xu B X —1 j
] ' ! 1 __‘ \:‘ s
! I ! 1 [("’“ "7\ Y
! ' 1 y ‘]\)_1, Xan Rz ¥%pz X, V222
1 ! ! ! . 21] | 1 1 22
f] [}]] !) . S)T
! ' ' ! 1 ! ! - [%2n (n+
! l' l' / I_ ===
1 [! s T | xy- =77 4 L _ -|%23 (ne2)T
1 ! ! [B -
oo GDT | xy-—F "7 X2z)T
' [}]]] i - L
[}] "] --r - .] < T)
Y ! (DT %™ 70] e LT
] { |]
,’ / ' ,‘ ($T) | ¥aq
! ! f‘-‘l ~ .
! 1] !] ' [
%on X3 X Xgy — ‘?}1 ZS\:
~ o~ ™ ~
¢ ¢ % 2
3 N 3 N
L3
|

Figure 1: progression of the matrix X in the array for the
computation of A = XX7T.
2. Systolic implementation of A = XXT and Cholesky factorization of A,A = RTR:

2.1. matrix product A = XXT with X of sizels xn:
Set down A = () J)lsi j<s-We have: X ; =3 =P, 1z
The processor ¢5 computes); 4 = Aji. Here are now the detail of the operations carried out by
the array in the case s = 3 and n = 4.The figure 1 presents the progression of the matrix X in the
array with the time steps which correspond to.At each clock cycle T',each processor receiving input
data performs a multiplication on them, adds this result to its memory contents and broadcasts
the data on its outputs.There are two types of cells,the diagonal cells which only receive one input
data and the others which receive two.It corresponds to two data treatments which are described

respectively by figures 2a and 2b.

We get A1 = E,zl’n xi, at the instant nT.
We get Ayp =30, , xg’l at the instant (n + 2)7.

We get A5 = 1, ©2; at the instant (n + 2(s — 1))T.
So we need (n + 2s — 2) time steps to compute X X7T.

Ug

(2a) (2b) l

u Uy

Figure 2: (2a) program of a diagonal cell.
(2b) program of a non diagonal cell.

2.2. Cholesky factorization of A,A = RTR:

We can link the matrix product A = XX7T together with the Cholesky factorization of A.As
soon as the first A; ; are computed the computation of R upper triangular such that A = RT R can
begin.

Set down R = (r; ;)1<i,j<s-We have:

1',',,' = {Ai’i - El;‘l,i 7‘12’1-]1/2 fOI' i = 1, oo ge

Tij = [/\,',j - Zl:l,i—l n,,-rg,j]llz/r;,,- for] =1,...,sand i <]

There are Cholesky algorithms different from this one presented here.Those are adaptations
of the LU factorization of a square matrix (chapter 4 of [7],chapter 2 of [4],[6]) to the symmetric
case [1].The Brent-Luk model [1] is an hexagonal array of s(s+ 1)/2 processors and needs 4s times
steps.The algorithm of Schreiber [12],[13] can be implemented on a triangular orthogonal array
composed of s(s + 1)/2 processors and needs only 3s time steps.The arithmetic operations are
roughly the same.The winning of s time steps comes from the fact that in our case the matrix

3

R stays in the array for a susequent utilisation (computation of R~!,or matrix product of R by
another matrix). In the Brent and Luk model [1] the computation of R is achieved only when the
matrix R is out of the array which takes s additional times steps.

In our array the non diagonal processors ji compute r; ; for 5 > ¢,and the diagonal processors
compute r;;.-We can see on the figure 3 how we obtain the r;; from the);; =);; at each time
step.As for the matrix product XX7T there are two types of cells,the diagonal cells and the others
which perform different tasks showed in the figures 4a,4b,5a and 5b.These tasks can be decomposed
in two steps:the first one is composed of (5 — 1) time steps where j stands for the column index of
the array and,the second one,of one time step. During the first step,every processor receiving input
data performs a multiplication on them,substracts this result to its memory content and broadcasts
the data on its outputs.During the second step,the diagonal processors compute the square root of
their memory content and send it downwards and the non diagonal processors,divide their memory
content by the last data they receive and send this result to the right.

Py
11
5
rd
e
(n+2)T N, -
4 “
“':‘?’. Tia
]]
21 |

Mo (n+s+2)T

! =12 (n+s+)T

— ’ Y —-—
Tas r N2 r. (s
_____ -~ 419 , - 28 154» S
$1 ~ s2 -~ $S

3 5 3

X T &

+ N -+

= & B

- -1 4

Figure 3: Cholesky factorization of A:computation of the
upper triangular matrix R such that A = RTR.

We get r11 = [A1,1]"/? at the instant (n + 1)7.
We get r2,2 = [Ag;3 — r%,]"/2 at the instant (n + s+ 1)T = (n+4)T.

4

We get ra,6 = [As,e = Xojg 41 77,]"/2 at the instant (n+ 25 — 1)T = (n+ 1 + 3(s — 1))T.

So we need (3s — 2) time steps to compute R from A.

uﬂ
u .____._# V= V-uz Uy —— V= \L/A:*q-z_—_) Uy
(4a) l (4b) l
u U,

Figure 4: (4a) first step of the program of a diagonal cell.
(4b) first step of the program of a non diagonal cell.

Uy

————— 3 vyl "'"TV:V/UZ——_)V
(5a) 1 (5b) l
v U,

Figure 5: (5a) second step of the program of a diagonal cell.
(5b) second step of the program of a non diagonal cell.

3. Other matrix computations:

We defined the triangular structure of the array from the two functions to perform in cas-
cade:computation of A = XX7T and then the Cholesky factorization of A.It remains to show that
the triangular array allows us to execute efficiently the other functions:matrix inversion and matrix
products.

3.1. triangular matrix inversion:

Sometimes,in Factorial Data Analysis,we have A~! and B~! which are matrices of empirical
variance of the form X X7 jinstead of A and B, and for the computation of £ = RgX Rf,{ ,we need
the Cholesky factorizations of A and B.To get these we proceed in two steps:first,we define the
Cholesky factorizations of A™! and B~%:A"! = RY_, R, and B~1 = RI_,Rp-: and second,we
inverse the upper triangular matrices R4-1 and Rg-1 .Then we have: E = (Rp-1)" X (R -1)"T.

The step of matrix inversion is always preceded by a Cholesky factorization. That is why we
can always compute R~! from R,R being already stored in the array.We present here a method for
our triangular array of s(s + 1)/2 processors which can be executed in (2s — 1) time steps from R
stored in the array.

The Li and Wah algorithm [8] can be done on a triangular array of s(s 4+ 1)/2 processors
and in (2s — 1) time steps but the interconnections are this time hexagonal (every processor has 6
neighbors).Furthermore the matrix R and the matrix W of the intermediate results which will be
R at the exit of the array,are both introduced in the array.

For our method and that of Li and Wah [8] the arithmetic operations are roughly the same,only
the diagonal processors tasks and the data flow movements differ. These algorithms are optimal in
that sense that they minimize the number of processors and time steps.(see [8])

Set down R = (ri,j)ISiS.'iSs and R71 = (r:',j)lﬁiﬁjﬁs'we have:

1 -1 . " IR . - _
rii=ri; fori=1,...,sand = [21=j,i+1"i,l"t,j] rigforj=1,...,sand ¢ <j.

The figure 6 presents the movements of the r},j and the time steps they are obtained from
the r;; in the array for s = 4.The diagonal processors i1 having their memory content equal to
rii;inverse it and send this value downwards and to the left at the right time steps.(see figure
7a).The non diagonal processors ji compute the r:-,j from the r; ; contained in their memory.They
execute tasks which can be splitted up into three steps,the first and the third,of one time step and
the second, of (5 — 1 — 1) time steps corresponding to (j — ¢ — 1) successive couple of data inputs
where 7 and j stand respectively for the row and column indices of the array.These three steps are
described by the figures 7b,8a and 8b. During the first step every processor receiving an input
data sends first its memory content downwards,then multiplies the data with it,changes the sign
and sends the data on its output.During the second step the processors perform a multiplication
on their input data,substract this result to their memory content and send the data on their
outputs.Finally,during the third step,the processors multiply the last input data they receive with
their memory content,send the data on their output and then this result to the left.

(L)

, LTh
T €
) 11

\
\
o
ss T3
~ ~ ~ Y ~ -~ ~
49 2 % e O
N - + _.‘-‘
~ = - v-|—¥ N
qu -~
= | 473

Figure 6: inversion of the upper triangular matrix R.

We get r, , = 1/r, , at the instant T'.
We get r,_; ,_; = 1/rs—1,-1 at the instant 27T.
We get r,_;, = —Ts—1,6" Ty, Ty_1,_1 at the instant 3T = (1+2 x 1)T.

We get r} , = —[> 1=, 271477 ,] - 1,1 at the instant (1 + 2(s — 1))7T.

So we need (2s — 1) time steps to compute R~! from R.

V< vz Uy e——jv=vaule——u,
(#) l) |
v v

Figure 7: (7a) program of a diagonal cell.
(7b) first step of the program of a non diagonal cell.

V e——{V=vVxU - - -~

Figure 8: (8a) second step of the program of a non diagonal
cell. (8b) third step of the program of a non diagonal cell.

3.2. matrix products:

There are a lot of systolic algorithms for matrix products.They depend on the chosen structure
of the array,(hexagonal or orthogonal connections), and on the type of cells,(with local memory or
not). Suppose we want to compute the product C = AB with A and B square matrices of size
s;the rows of A and the columns of B will have to cross in the array to get the matrix C.

When the cells have no local memory the intermediate results Y=t @i 1b1 3,1 < p < s have to
go through the array at the same time as the matrices A and B ([9],[6],[8]).

In the model of Melkemi and Tchuente [9] the matrix A (respectively B) is introduced column
by column (respectively row by row) and moves horizontally along the rows of the array from the
left to the right (respectively from the right to the left). C moves vertically from the top to the
bottom.The connections between cells are orthogonal and the array can be square (composed of s2
cells) or rectangular (composed of s X m cells with m > s).The product is executed after (3s — 2)
time steps.If the array is of size s(2s — 1) we only have to introduce the matrix A (respectively B)
column by column (respectively row by row).But if the array is of size s X m with s < m < 25— 1,we
have to repeat some of the elements of the columns of A (respectively of the rows of B) because
some of the cells have to perform the tasks of several cells. By using this principle we can execute
a matrix product of two square matrices of size s on an array of s? cells in (3s — 2) time steps.
This algorithm is optimal (it minimizes the number of time steps and processors).Nevertheless it
has two drawbacks:

1. it is necessary to apply a non trivial treatment to the matrix A and B (dupplicate some columns
or rows) before introducing them into the array.

2. when we want to compute several matrix products in cascade,as it is our case when we have
to deal with block partioning,the duration of introducing the matrices A and B into the array
is practically doubled which delays for about s time steps for the next product.

The Kung and Leiserson model [6],7] is used for band matrix products. If A and B are of band
widths w; and wy the product C = AB is performed on an array with hexagonal connections,a
parallelogram shape and composed of w; X wy cells.A and B are introduced diagonal by diagonal
along the diagonals of the array from the top and the result C moves vertically from the bottom
to the top.The product is obtained after 3s+ min(ws, wg) time steps.However this array cannot be
used for dense matrices because the number of cells of the array becomes too high ((2s — 1)? cells
would be necessary).

The Li and Wah algorithm [8] deals with dense matrices on an array with hexagonal connec-
tions.It is of the same type of array than that of Kung and Leiserson but it allows,thanks to a
different data introduction,to reduce the number of time steps and cells.The array has this time an
hexagonal shape and is composed of 3s(s — 1) cells.The matrices B and C move along the diago-
nals of the array,B from the top,C from the bottom, and A moves vertically from the bottom to
the top.The matrices A and B are introduced counterdiagonals by counterdiagonals,the (2s — 1)
counterdiagonals along the diagonals of the array and we get C' diagonal by diagonal . The matrix
product is computed after 2s time steps.The algorithm is simple to do and very fast but the cost
of processors is still high.

When the cells have a local memory the arrays are the most often square, with orthogonal
connections and composed of s? cells.The matrices A and B move along perpendicular directions
and the intermediate results El:l,p a; b j,1 < p < s are stored in the cell of the ith row and jth
column which computes ¢; ; ([5]).In that case the matrix product takes (3s — 2) time steps and
(s — 1) additional time steps are necessary to get the matrix C out of the array.

Melkemi and Tchuente [9] use again the same technique of dupplication of some elements of
A and B in order to activate faster the cells of the array and thus save (s — 1) time steps.This
algorithm is optimal if we introduce A and B along two sides of the array but it has the same
drawbacks than those quoted earlier.

3.2.1. matrix product RX with:

e R upper triangular of size s

o X rectangular of size s X n

We cannot use here the techniques of matrix products described above because our array is tri-
angular instead of being square or rectangular,but the basic operations are roughly the same.Instead
of moving R and X simultaneously in the array along different directions we introduce the matrix
R a little time before the matrix X in order to store it in the array.Every r; j is then memorized in
the cell j5.When X is introduced,its elements are multiplied by the memory contents of the cells
forming the product C = RX which moves from the top to the bottom.

Set down R = (ry;)1<i<j<s,X = (%ij) 1<i<s and C = (i ;) 1<i<s -
1<j<n 1<j<n -

The figure 9 presents the movings of the matrices R and X and the dates, the ¢;,j are computed
in the array for s = 3 and n = 4.There are once more two types of cells which tasks are described
by the figures 10a and 10b. Every diagonal cell 47 memorizes r; i,then multiplies its memory content
by the input data it receives and sends this result downwards.Every non diagonal cell § 7 memorizes
rj,i,;multiplies its memory content by the input data coming from the left and broadcasts it to the
right,adds this product with the input data coming from the top and sends this result downwards.
Our matrix product is executed in (2s + n — 1) time steps which is of the same order of time as
the product algorithms described above but with practically twice less cells.This product takes
place in the computation of E = RgX R£ where R4 and Rp are upper triangular of sizes n and
k respectively and X is k X n (see introduction).When k > s we apply block partitioning to the
matrices R and X (see [10]).

The product C = RX is followed by the product E = C(R')T which can be performed in the
same way but,instead of introducing C row by row as X, we introduce C column by column.This
second step begins at the instant (n+ 1)T just after the entry of Z1, in the array and is executed in
(2n+ s —1) time steps.As soon as we get the first elements e j of E, the computation of W = EET
(see introduction) can begin.This last step begins at the instant (2n+2)T and as it can be performed
in (n + 2s — 2) time steps (see 2.1.) we get W in the array after (3n + 2s) time steps and,out the
array, after (4n + 2s — 1) time steps.

10

_L(- Uts)

;o ' D &T
/ e eT
N C 1)

(s4n-1)T

cs+n)T

¥

(1s)

Cern)T
(s+3)T
(+2)T
()T

(s¢3)T
s+2)T
(a+1)T
Ly Pk
--------- 24)

(Zs+n_-1_)'_l’__ Csn
. -ti-—-=- " _::‘__.. -Cs3
Up----=-~-""7 _ —___..Ca.a— - "“°—_- _____ - Co2
Ciz-----~"""" . a2--~ "7 :______-—-C«.
Cn—-""": _______ €=~~~ "
==~~~ 7

Figure 9: moving of the matrices R, X, and C in the array
for the product C = RX.

We get ¢33 = Zl=1” 14 21,1 at the instant (s + 1)T.
We get c12 =3, , 1, - 1,2 at the instant (s + 2)T.

We get ¢1, = E,ﬂ" T1,1* T at the instant (s + n)T.

We get con = 75,4 * Z5,n at the instant (25 +n — 1)7.
So we get C = RX after (25 + n — 1) time steps.

11

YVmmeod |- > Vs
u— v .,
(10b) [
UxV UV + U,

Figure 10: (10a) program of a diagonal cell.The cell mem-
orizes the value v it receives.

(10b) program of a non diagonal cell.The cell memorizes the
first value v it receives and then broadcasts the following val-
ues to the right.

3.2.2. matrix product C = AB with:

e A and B square matrices of size s.

Our array being composed of processors with local memories,we can use the techniques pre-
sented in [5] which consist of sending A horizontally by rows, B vertically by columns and of storing
the intermediate results of the product),_, , a;ib;; in the processor ij.(see figure 11) But in that
way we only get the elements of the lower ,triangular part of C. In order to obtain the upper
triangular part of C' we introduce the matrix B (respectively A) by columns (respectively rows)
again into the array but that time horizontally (respectively vertically).The matrices A and B are
introduced again into the array in the following way:

Every a;;,l = 1,...,s of the jth row of A is memorized in the jth diagonal processor during
the computation of ¢; ; = El=1,s a;jb ; and is sent again to the bottom of the array, one time step
after b, ;;the b;;,l = 1,...,s of the ith column of B enter the array one time step after a;s.(see
figure 12)

Every diagonal processor i computes c; ; and every non diagonal processor ¢j ,¢i,j and then c;;
with ¢ > j,without waiting delay between these two operations.The movings of the matrices A and
B in the array and the instants when the ¢; ; are computed are detailed in the figures 11 and 12 and
the tasks of the diagonal and non diagonal cells,in the figures 13a,13b,14a and 14b.This product is
executed in (4s — 3) time steps which represents a saving in comparison with the standard matrix
product which is executed in (3s — 2) time steps on an array of s? processors.

12

by, (27)
bt (1)
~ ~ e~
w N g
323 °
A Gu— o 1
a4s 2 M (sT)
!] 1 '1 1
]
b l _ by (20T
1 1 [] - - -
] - -
1 o - -
;o J T byt ,; b T |
) - - i
T ! - ‘
A C Y f ke D |
1 I ! - |
l - :
I - - - |
i ,' 1 @T) by -| c ¢
U B v s X 4 [
o {
;o ,' ¢ q A €22
azs Az Az siift (2T (33T bes
A | 1y beg|my T UEST) _(ZiQ --bag
,I oy S / - -
[l Qe AT bgp ': DL by 1T (20T (254 by
. .~ I} -
! - - / - -
-4 4~ ! I -
" ’l (s+ 1T baq ' ' _'l‘ -- —5'{ y G)T
L---F" 1
! ' i ' ' !
I' ! (sT biq : ! ! ! :
, ' I
!
oy Css
a',,_ Qsq (32 :
Ges Qs Qg Ss
~ 7~
T 9 I NS
- ~~r Yo Y3 “”
E &g 3 3 |

Figure 11: Moving of the matrices A and B for the matrix
product C = AB.

First phase:computation of the lower triangular part of
C.

13

1(-%¢)

1(L+%2)

o
Ry

-

-
- .

1(kts2)

it AT

-~ -

(45-3)T

(3s-10T

(2641)T = (35.2)T

11
1
[]
!
}
]
:ﬂ—u (26+¢1)T
|
> lags (s+3)T
N |
= 1 (sx2)T
Y v
by —- - Ci2
,' (2444)T]
1 24 22
!] ta
!] - !
(3s.4)T :44;— -~ _ _,:dzz
- | -7 i
(20T :a..z' - A -:a21
i —--"" - |
(2sT) 1 211 !
- C45 - - _L.”.. .52.5 ..%—) CZSL‘
(3o AYT (s 3
s1 s2
—~ - LN
Ty
LoL ok
4 4 4

Figure 12: Moving of the matrices A and B for the matrix

product C = AB.

Second phase:computation of the upper triangular part

of C.

14

SS

Figure 13: (13a) first phase of the program of a diago-
nal cell:the cell memorizes every u; it receives in an internal
FIFO(First In First Out).

(13b) second phase of the program of a diagonal cell:the cell
broadcasts every u; memorized in its internal FIFO.

u
sl
!

|

I

uz""" 4 --~=->U1
——— Vz:v2_+ —
Wxu

(14b) 1 |

|
v
Uy

Figure 14: (14a) first phase of the program of a non diagonal
cell.
(14b) second phase of the program of a non diagonal cell.

The reader will find page 16 a summary table of the studied algorithms as well as comparisons
with other algorithms.We put a star * on those we chose.All these algorithms are linear in time.

15

algorithm

matrix product XX7T
with X of size s x n

Cholesky factorization
of XX7 square matrix
of size s

inversion of R upper
triangular matrix of
size s

matrix product RX
with R upper trian-
gular of size s and X
rectangular of size s X n

matrix product of two
square dense matrices
of size s

shape and connections
of the array

triangular array of
s(s + 1)/2 proces-
sors with orthogonal
connections [fig 1-2]

triangular array of
s(s + 1)/2 proces-
sors with orthogonal
connections [fig 3-5]

triangular array of
s(s + 1)/2 proces-
sors with hexagonal
connections

triangular array of
s(s + 1)/2 proces-
sors with hexagonal
connections

triangular array of
s(s + 1)/2 proces-
sors with orthogonal
connections [fig 6-8]

triangular array of
s(s + 1)/2 proces-
sors with orthogonal
connections [fig 9-10]

square array of s? pro-
cessors with orthogonal
connections

hexagonal array of
3s(s — 1) processors
with hexagonal connec-
tions

triangular array of
s(s + 1)/2 proces-
sors with orthogonal
connections [fig 11-14]

number of time steps

(n + 2s — 2) time steps

(35 — 2) time steps

4s time steps

(25 — 1) time steps

(28 — 1) time steps

(25 + n — 1) time steps

(835 — 2) time steps

2s time steps

(4s — 3) time steps

Table 1: Matrix computations

16

authors and special
features

Schreiber* [12],[13]

Schreiber* [12],[13]:in
cascade with the ma-
trix product X XT

Brent-Luk [1]

Li-Wah [8]

Porta* [10]:is computed
from R stored in the
array

Porta* [10]:R is stored
in the array before X
is introduced

Melkemi-Tchuente [9]

Li-Wah [8]

Porta* [10]:compu-
tation of the upper
triangular part and
then of the lower trian-
gular part.

References
[1]R.P.Brent,F.T.Luk (1982) Computing the Cholesky factorization using a systolic architec-
ture.The Australian University,Dpt of Computer Science,Technical Report T-R CS 82-08.

[2]F.Chatelin,D.Belaid (1986) Numerical Analysis for Factorial Data Analysis.Part I.Etude
IBM F-107.Centre Scientifique de Paris.

[3]F.Chatelin,T.Porta (1987) Numerical Analysis for Factorial Analysis.Part II.Etude IBM F-
110.Centre Scientifique de Paris.

[4]J.M.Delosme (1982) Algorithms for finite shift-rank processes. Ph.D.Technical Report M
735-22.Stanford University.

[5]Guibas et al (1979) Direct VLSI implementation of combinatorial algorithms.Proc.Calt.Conf.
on VLSI pp 509-521.

[6]H.T.Kung,C.E.Leiserson (1980) Highly Concurrent systemsin Introduction to VLSI Systems
C.A. Mead-L.A.Conway Eds. pp 271-289.

[7]C.E.Leiserson (1981) Area Efficient VLSI Computation.Ph.D. Carnegie Mellon University.

[8]G.J.Li,B.W.Wah (1985) The Design of Optimal Systolic Arrays. IEEE Transactions on
Computers Vol C-34 No 1 pp 66-77.

[9]L. . Melkemi,M.Tchuente (1986) Complexity of Matrix Products on a Class of Orthogonally
Connected Systolic Arrays.to appear in IEEE Transactions on Computers. TIM3-IMAG Grenoble.

[10]T.Porta,F.Chatelin (1986) Un reseau systolique programmable pour I’Analyse Factorielle
des Donnees.Etude IBM F-103.Centre Scientifique de Paris.

[11]G.Saucier,G.Chevalier (1986) A 2-D Processor Array for Wafer Scale Integration.Rapport
Interne LCS-IMAG Grenoble.

[12]R.Schreiber (1985) Private Communication.Centre Scientifique IBM, Paris.

[13]R.Schreiber (1987) Cholesky Factorization by Systolic Array.DCS RPI Troy,NY 12180-3590
T-R No 87-14.

17

