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Abstract

The known O(dk log k) bound on the VC dimension of k-fold unions or intersections
of a given concept class with VC dimension d is shown to be asymptotically tight.

Keywords: combinatorial problems, VC dimension, concept classes, unions of
concepts, intersections of concepts

1 Concept Classes and VC Dimension

A concept over a set of points X is a subset of X. A concept class is a set of concepts.
A concept class C over X shatters a set of points Y C X if {cNY | c € C} = 2, where 2V
denotes the powerset of Y. The VC dimension of C [3] is sup{|Y| | C shatters Y C X}, a
quantity that may be used to bound the number of examples necessary to PAC learn any
concept from C [1].

2 k-fold Unions

For each integer k > 1, we define C¥ to be the set of concepts that are the unions of k
concepts in C, or k-fold union of C. In symbols, C¥ := {c;U---Ucy, | c1,...,cx € C}. Note
that ci,..., ¢, need not be distinct, so CS, CCk forall k' € {1,...,k}.

Blumer et al. [1] show that there exists real § > 0, independent of C and k, such that
the VC dimension of CS is at most 3 - dklogk, where d is the VC dimension of C. This
result simplifies the analysis of complex concept classes that may be expressed as k-fold
unions or intersections. In the same paper, for example, Blumer et al. use it to bound the
VC dimension of intersections of k halfspaces in R"™.

Our main result is that O(dklogk) is asymptotically tight when no restrictions are
placed on C.

Theorem 1. There exists real o > 0 such that for all d > 5 and for all k > 1, there
is a concept class C of VC dimension at most d such that C¥ has VC dimension at least
«a-dklogk.



3 Preliminaries

Let = be a real number and n be a positive integer. (x), := H?:_Ol (z — j) denotes the nth

falling power of x. log xz denotes the logarithm of x base 2. We use the following standard
inequalities, which hold when z < 1 and k is a positive integer.

<Z>§(e‘n/l€)k l—z<e™ tmna<{l-o)f

The last of these is Bernoulli’s inequality.

4 Desired Properties of the Construction

Let n be a positive integer and let X := {1,...,n2"}. In the next section, we construct
a random concept class C that possesses the following properties with probability 1 in the
limit as n — oo:

1. C contains every concept with cardinality at most 1.

2. For each b = 1,...,[logn] and for every set S C X such that |S| > n2"?, there
exists a concept ¢ € C such that ¢ C S and |¢| > n/b.

3. No two distinct C-concepts (concepts in C) intersect in 5 or more points.
The significance of these properties is given by the next two lemmas.
Lemma 2. If C satisfies Properties 1 and 2, then for all k > 3-2", Ck shatters X.

Proof. 1t suffices to show that any set S C X may be written as a union of at most 3 - 2"
concepts in C. If S = (), this is clearly true, so assume S # ) to avoid unseemly edge cases.
The following greedy algorithm expresses S as a union of C-concepts:

1. Find a C-concept ¢ C S of maximal cardinality.
2. If S # ¢, express S\ ¢ # () as a union of C-concepts and append ¢ to the union.

Since C includes all one-point concepts (Property 1), ¢ always exists, and this algorithm
always terminates. Property 2 ensures that the number of terms in the union is not too
large. Let

b/n, if m > 2" and n2"b < m < p2n b+
f(m) = : n
1 ifm<2

m

Y

F(m) =Y f(j).

J=1



Intuitively, if we assign cost 1 to each concept in the union and divide it equally among
the points in that concept, f(m) is the marginal cost of adding the mth point to S, and
F(m) is the total cost of the first m points. We first show by induction on |S| that the
greedy algorithm expresses S as a union of at most F(|S|) concepts in C, confirming this
interpretation. We then bound F(]S]).

When 1 < |S| < 27, the conclusion is immediate, as F'(|S|) = |S|. Otherwise, let b be
the smallest integer such that |S| > n2"~°. The concept c chosen by the algorithm satisfies
lc| > n/b by Property 2. By the inductive hypothesis, the algorithm proceeds to write S'\ ¢
as a union of at most F(|S| — |¢|) concepts. Since f(|S|) = b/n and f is nonincreasing,
each of the |c¢| > n/b terms f(|S|—|c|+ 1), f(|S|—|c|+2),..., f(|S]) is at least b/n. Thus,
F(|S|) > 1+ F(|S| — |c|), and the conclusion follows.

We now verify that F'(|S]) < 3-2" for all S. Since F' is increasing, assume S = X. We
have

n2™ n2"
F(n2") =Y f()=2"+ > f()
i=1 =2+
[logn] [logn]
<2"4 > m2"t(b/m)=2"+ ) b2nt<3.2n,
b=1 b=1

with the last inequality following from the sum 3 p2, b27° = 2. O

Lemma 3. If C satisfies Property 3, then its VC dimension is at most 5.

Proof. Suppose that C shatters a nonempty set Y C X. Let y € Y. There exist two distinct
concepts cj,c2 € Csuch that Y = NY and Y \ {y} = coNY. Thus Y \ {y} C c1 N ey,
and by Property 3, Y] <|ci Neal +1 <5+ 1. O

The construction alone will give us concept classes of VC dimension 5 whose k-fold
unions have VC dimension ©(klogk), but Theorem 1 calls for classes of VC dimension d
whose k-fold unions have dimension ©(dk log k). The following lemma allows us to increase
the VC dimensions of a concept class C and its k-fold union proportionally.

Lemma 4. If a concept class C over X has VC dimension d and CB has VC dimension d',
then for all integers £ > 1, there exists a concept class D over {1,...,£} x X such that D
has VC dimension {d, and DE has VC dimension (d'.

Proof. A similar argument appears in the proof of Proposition 1 of [2]. Let
D := {({1} Xcl)U"'U({f} XC@) | Cl,...,CgGC},

the tagged ¢-fold union of C. A set Y C {1,...,¢} x X is shattered by D if and only if
for all j € {1,...,¢}, the set {z | (j,z) € Y} is shattered by C. Thus, the VC dimension
of D is ¢d. Since ij is equal to the tagged ¢-fold union of Cﬁ, its VC dimension is ¢d’ by
a similar argument. O



5 The Construction
We construct the random concept class C := gfg nl Cp, where each Cp, is defined as follows.
Take Cp := {0}U{{z} | x € X} to ensure that C satisfies Property 1. Forb=1,..., [logn],
let a := [n/b] and s :=n2" ", Let t be a positive integer to be determined later and take
Cp:={c1,...,ct}, where ¢y,. .., ¢ are independent random a-point concepts. By choosing
t to be large enough, we ensure that C satisfies Property 2 with probability 1 in the limit.
Let § C X be any s-point set. We call S covered if there exists j such that ¢; C S
and uncovered otherwise; if all s-point sets are covered, then C satisfies Property 2 for
the b under consideration. The probability that c¢; C S is

=)/ (%)

p=(5)a/(52")a > (s — a)?/(s2°) = 27°(1 — a/s)* > 27*°(1 — @?/s),

We bound p as follows:

using Bernoulli’s inequality for the last step. Noting that ab < n + [logn| and also that
a<n s >on 1 a2/5§n2~27"+1,

we have p > 2~ (IFe(D)n(] _ 9=(1—o())n) — 9=(+o(1)n
The probability that some s-point set is uncovered is no greater than the expected
b b
number of uncovered sets, or (Si )(1 — p)t. Thus, when t > (n +In (Si ))/p, the former

quantity is bounded by
b b
<52 >(1 —p)' < <S2 >e_pt <e ™
S S

We analyze the asymptotic order of the numerator with the standard binomial bound given
in Section 3, remembering that s < n2"~1:

2b
n+In <s > <n+sln(e- 2b) =n+s(1+bln2) = o(1+o(1))n
S

Regardless of b, then, choosing ¢ := 22+°(1)" ensures that the probability of some set being
uncovered is at most e~™. C contains at most 1 + n2" + [logn]t = 22T concepts in
total and satisfies Property 2 with probability at least 1 — [logn|e ™.

We show separately that C satisfies Property 3 with probability 1 in the limit. In
particular, we do not condition the distribution of C on satisfying Property 2: the key
fact here is that most of C is made up of a fixed number of independently chosen random

concepts, all of which have prescribed cardinalities of at most n points. If 0 < ny,no < n,



the probability that a random ni-point concept intersects an independently chosen random
ng-point concept in at least 5 points is at most

=2 ()0

with equality when n; = ng = n. (The summand is the probability that the n-point
concepts intersect in exactly j points.) For large n, the j = 5 term of the sum is the
largest, and we have the inequalities

oo ()0 /O = (M55 ()

<n%n2" —n)"%(n)s < n(2" —1)"°n® < nb(2" —1)7> = 2= G—e(l)n,

Ignoring the 1+ n2™ concepts in Cy, which are too small to have a 5-point intersection, C
consists of 2@+ random concepts, making 24+ pairs that can potentially violate
Property 3. The probability that a particular pair constitutes a violation is at most ¢, so
the probability that any violation occurs is at most ¢-2(4Te()n = 9=(1—o(L)n ¢ therefore,
satisfies Properties 1, 2, and 3 with probability 1 in the limit.

We are now ready to prove Theorem 1. Given d and k, we take n to be the largest
integer such that 3-2" < k, namely n := [log(k/3)|. If k is sufficiently large, the preceding
construction yields a concept class C with VC dimension at most 5 such that ij‘zn, and
thus CF, has VC dimension n2". Otherwise, let C := {0, {1}}. Chosen in this way, C has
VC dimension ©(klogk).

Applying Lemma 4 to C with expansion parameter ¢ := [d/5], we obtain a concept
class D with VC dimension at most 5¢ < d such that D has VC dimension ¢ - ©(klogk),
which is within a constant factor « of dklog k. This concludes our proof of Theorem 1.

6 Discussion

The construction described in this paper also yields lower bounds on the maximum VC
dimension of intersections, by duality under complementation, and symmetric differences,
since the greedy algorithm of Lemma 2 always produces disjoint unions.

It is natural to ask about the VC dimension of CF when C has VC dimension d < 5.
A lower bound of dk is easily obtained by applying Lemma 4 with ¢ := d to the class
{0y u{{x} | =z € {1,...,k}}. This bound is in fact tight for d = 1, since if C¥ shatters a
(k + 1)-point set Y, some concept ¢ € C contains two points y1,y2 € Y, implying that C
shatters the set {y1,y2} and thus that d > 1.

For 2 < d < 4, there is a gap between the known O(klogk) upper bound and the
known Q(k) lower bounds. Reyzin [2] gives an explicit construction that achieves (8/5)dk
for d € {2,4} and infinitely many k. Also open is whether the O(nklog k) bound obtained
by Blumer et al. on the VC dimension of intersections of k halfspaces in R" is tight.
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