Matrix Multiplication on
the Connection Machine

S. Lennart Johnsson, Tim Harris
and Kapil K. Mathur

YALEU/DCS/TR-736
September 1989

To appear in the Proceedings of Supercomputing 1989




Matrix Multiplication on the Connection Machine

S. Lennart Johnsson; Tim Harris and Kapil K. Mathur
Thinking Machines Corp.
245 First Street,
Cambridge, MA 02142

Abstract

A data parallel implementation of the multiplication of
matrices of arbitrary shapes and sizes is presented. A
systolic algorithm based on a rectangular processor lay-
out is used by the implementation. All processors con-
tain submatrices of the same size for a given operand.
Matrix—vector multiplication is used as a primitive for
local matrix-matrix multiplication in the Connection
Machine system CM-2 implementation. The peak per-
formance of the local matrix—matrix multiplication is in
excess of 20 Gflops s™!. The overall algorithm includ-
ing all required data motion has a peak performance of
5.8 Gflops s~ 1.

Keywords: data parallel algorithms, systolic algo-
rithms, matrix multiplication.

1 Introduction

The multiplication of two matrices is one of the most
common operations in scientific computing. On a data
parallel architecture where each processor has its own
local storage the matrices to be multiplied are, in gen-
eral, distributed across several, but not necessarily
all processors. Several different matrix products may
be formed concurrently in disjoint sets of processors.
Within each set data motion is required to compute a
matrix product. In general, each processor will have
more than a single matrix element of each operand as-
signed to it. A suitable local matrix multiplication algo-
rithm is required in addition to a global algorithm that
implements the appropriate data motion given the al-
location of the operands. Matrix multiplication by the
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standard algorithms require pr(2g — 1) floating-point
operations for the multiplication of a p X ¢ matrix by a
¢ x r matrix. This is independent of the order of traver-
sal of the index space. Different order of traversals of
the index space effect the efficiency of pipelines, the
memory access times and the extent to which registers,
or caches, can be used to reduce the need for mem-
ory bandwidth. Scientific software libraries such as the
Basic Linear Algebra Subroutines (BLAS) [17,5] encap-
sulate architectural dependence of commonly used ma-
trix operations. However, currently available libraries
are designed for single processor systems, with the ex-
ception of LAPACK [2,1], a library design for shared
memory multi-processor systems.

A library for a data parallel architecture must be de-
signed for concurrent execution of different tasks as well
as concurrent execution of each individual task. Crit-
ical issues are the specification of which tasks can be
executed independently and concurrently, and the con-
trol and data motion implicit in the algorithms for each
task. With respect to performance, data motion is the
most critical issue in a data parallel network architec-
ture. Load balance is another important issue in any
parallel architecture. For the systolic matrix multipli-
cation algorithm described here only communication is
of significance.

The data motion aspect in the design of distributed
algorithms is most prominent in the design of systolic
algorithms. A variety of such algorithms have been pro-
posed for the multiplication of dense and banded ma-
trices [3,4,16,19,11,14,13,7,15]. Compared to a rank-1
update algorithm, the systolic algorithms do not require
broadcasting. Systolic algorithms by Dekel et. al. [4]
and Cannon [3] make use of nearest neighbor commu-
nication only. The Dekel algorithm assumes a Boolean
cube topology and the Cannon algorithm assumes a
two—dimensional mesh topology.




Systolic algorithms assume constant storage. A re-
duction in the communication time is possible, if data
aggregation is allowed [9]. Minimizing communications
time requires additional communication buffers and
temporary storage. On the Connection Machine sys-
tem [8] the communications overhead is small and con-
sequently, constant storage algorithms are often prefer-
able.

Most systolic algorithms for dense matrices are de-
scribed assuming that the matrices are square, and that
there is one element per processor. Generalization to
a submatrix of each operand per processor is made in
[9,12,10,6]. Algorithms have also been proposed for par-
allelizing all three loops present in a conventional algo-
rithm for matrix multiplication [9,12].

The matrix multiplication algorithm for dense ma-
trices of arbitrary shape described here involves data
motion on a two dimensional mesh with wrap-around.
Matrix—vector multiplication is the basic local mem-
ory to memory primitive for local matrix-matrix mul-
tiplication. First, the essential characteristics of the
Connection Machine architecture are described briefly.
Finally, the systolic algorithm for the global multipli-
cation of the two matrices is presented. Key implemen-
tation issues are discussed in some detail, and perfor-
mance results both for the local kernels and the overall
matrix multiplication algorithm are reported.

2 The Connection Machine Ar-
chitecture

The Connection Machine [8] is a data parallel architec-
ture. It has a total primary storage expandable up to 2
Gbytes. At a clock rate of 7 MHz the data transfer rate
to storage is approximately 45 Gbytes s~!. The pri-
mary storage has 64K ports, and a simple bit-serial pro-
cessor for each port. The Connection Machine model
CM-2 can be equipped with hardware for floating—point
arithmetic. With this option, 32 bit—serial processors
share a floating—point unit, which is an industry stan-
dard, single chip floating-point multiplier and adder
with a few registers. There is a 32-bit wide data path
between each floating—point chip and the memory. A
total of 2048 32-bit operands can therefore be accessed
in a single cycle on a fully configured Connection Ma-
chine system with 64K ports.

The Connection Machine needs a host computer.
The Connection Machine is mapped into the address
space of the host. The program code resides in the
storage of the host. It fetches the instructions, does
the complete decoding of scalar instructions, and exe-
cutes them. Instructions to be applied to variables on
the Connection Machine are sent to a microcontroller,
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Figure 1: The Connection Machine System, CM-2 Ar-
chitecture

which decodes and executes these instructions. The
Connection Machine architecture is shown in Figure 1.
The Connection Machine secondary storage system is
known as the Data Vault. There are eight I/O channels,
connecting the Data Vault to the Connection Machine.
Each channel has a block transfer rate of up to ap-
proximately 30 Mbytes s™!. The size of the secondary
storage system is expandable up to 640 Gbytes. The
Connection Machine can also be equipped with a frame
buffer for fast high resolution graphics.

The Connection Machine bit-serial processors are or-
ganized such that there are sixteen such processors to
a chip. These “processor” chips are interconnected as
a 12-dimensional boolean cube. The communication is
bit-serial and pipelined. The hardware supports con-
current communication on all ports. Through the bit—
serial pipelined operation of the communication system,
remote processor references require no more time than
nearest neighbor references, if there is no contention for
the communication channels. For communication in ar-
bitrary patterns the Connection Machine is equipped
with a router, which selects the shortest available path
between the source and the destination.

The Connection Machine system supports two dif-
ferent address maps. In cube address mode the con-
ventional translation between array indices and binary
addresses are performed. In the lattice address mode
array indices are instead encoded in a binary reflected
Gray code [18]. Each axis is encoded separately. The
advantage of this mode is that adjacent lattice points
are placed in memory locations that differ in precisely
one bit. For a memory with uniform access time there is
no particular performance advantage to this encoding,
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Figure 2: Local matrix multiplication operation when
the sub-matrices residing on each processor are “con-
forming”. A local matrix multiplication is performed on
the entire block using the memory-to—memory primi-
tive.

but for a paged memory or a distributed memory, there
is often a performance advantage of having adjacent lat-
tice points assigned to memory locations that are close,
or on adjacent processors. Local communication in the
lattice also implies local communication between pro-
cessors. The matrix multiplication algorithm described
here makes use of this lattice emulation feature.

3 Data Allocation

The set of processors are assumed to be configured
with Ng processors along axis zero and N; processors
along axis one. The processor address spans the space
(k,£), where 0 < k < No and 0 < I < N;. The ma-
trix elements are assigned to processors by consecutive
assignment [10]. Processor (k,£) holds data elements
A= {aok+Po,01l+P1 | 0< fo< @, 0< B < ou} of
matrix A, where ag = [N-L“] and a; = [—131-'[ The data
elements of matrix B assigned to the same processor
are B = {yok+680,11£+ 61 |0<60<70,0< 6 <},
where vy = {'ﬁo—] and v, = rNL,] The data elements
of the product matrix C assigned to processor k, £ are
{aok + Bo, 1€+ 61 | 0< Bo < 20,0 < 6, <71} When
o, 01,90, and v; are equal to some power of two the
lower order bits of the matrix element index encode the
local matrix elements. For example, the lowest order
log, ap bits of the row index and log, a; bits of the
column index encode the local matrix elements of the
matrix A.

If No # Ny, then the range of the inner index for
the two operands is clearly different in every processor.
The alignment must assure that the inner index range
for one operand is a subset of the inner index range
of the other operand. This property must be main-
tained during the multiplication phase. We accomplish
this task by emulating a square array with max(Ny, N;)
virtual processors assigned to each axis. Each physical
processor emulates E?;xé% virtual processors. Fig-
ure 2 shows the local multiplication operation on the
sub—-matrices when the range of the inner index for the
two operands is the same. In Figure 3 the range of
the inner index is eight for operand A and only two for
operand B. Axis zero for operand matrix A emulates
four virtual processors.
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Figure 3: Local matrix multiplication operation
when the sub-matrices residing on each processor are
“non—conforming”. In this case, the local matrix multi-
plication operation is performed only on the conforming
part of the sub—matrices. The sub—matrices are then
rotated unequally to allow use of all data.

The current implementation of the Connection Ma-
chine system software requires that the axes length of
any array corresponds to some power of two. For axis
length p, [logap| address bits are assigned to the encod-
ing of the elements along that axis. These address bits
cannot be used for any other axis. The address field
of the Connection Machine is divided into three parts
(off-chip|on—chip|memory). The off—chip field consists
of twelve bits that encode the 4096 Connection Machine
processor chips, the on—chip field encodes the sixteen
processors on each Connection Machine processor chip,
and the lower order bits encode the memory addresses
local to a processor. The default allocation scheme at-
tempts to configure each part of the address space (off—
chip, on—chip, and memory) to conform with the shape
of an array. To the extent possible, all axes have a seg-
ment of each address field, and the ratio of the lengths
of segments for different axes is approximately the same
as the ratio of the length of the axes.

The number of physical processors in the Connec-
tion Machine system may be as large as 64K. When
the number of physical processors exceeds the number
of matrix elements the matrix is only allocated to a
fraction of the total number of physical processors. For
these cases, the array in which the matrix is stored must
be extended beyond the size of the matrix. For exam-
ple, CM-Fortran makes this extension by adding one
more axis to the array. The length of this axis is equal
to the the number of instances of the array that exactly
fit in the physical machine.

The basic software on the Connection Machine sys-
tem allocates the data serially to a processor. The bits
of a word are allocated such that they have succes-
sive memory addresses. However, 32 Connection Ma-
chine processors share a floating—point unit that can
access the memory of the 32 processors in bit—slices.
By “transposing” the data of the 32 processors from
field-wise to slice—wise each word is allocated across
the memory of groups of 32 processors, each sharing
a floating-point unit. Using this facility, a fully con-
figured Connection Machine can be viewed as having
2048 32-bit wide processors, each with up to 1 Mbyte
of memory. The kernels of the matrix multiplication
routine are based on this slice-wise view of the ma-




Figure 4: Loop ordering for local matrix-vector multi-
plication kernels.

chine.

The data transposition interchanges the lowest order
oft—chip bit and the processor bits (four bits) with the
memory address field. A five-shuffle is performed. For
a one—dimensional array the memory stride for bit k,
with the lowest order bit being bit zero, is 2* where
s = (k+5) mod (1+ chip+ memory bits). The st-
ride for successive array elements is 32. The stride is
increasing for elements at increasing distance up to a
point. The stride for the fifth highest order bit is one.
In the case of multi-dimensional arrays the stride of
the different axes becomes fairly complex. Therefore,
a memory reordering is performed such that the stride
of the first array axis is one, the stride for the second
equal to the length of the first axis, and so on.

4 Local Matrix Multiplication

In the global operation C «— A x B + C, the matrix A
is a px ¢ matrix, B a ¢ x r matrix and C a pX r matrix.
The matrices are distributed over a set of processors.
Each processor in the set holds a sub-matrix A4 of size
7 x §, and a sub-matrix B of size 7 x 7.

The local matrix multiplication makes use of matrix—
vector multiplication, or vector-matrix multiplication
depending on the shapes of the operand matrices A
and B. Those routines are based on SAXPY opera-
tions. Although the matrix—vector, or vector-matrix
kernels are memory-to—memory operations, however in
the SAXPY operation y «— y-+ az the vector z is taken
from memory and the vector y and the constant « are
taken from and written to the registers of the floating—
point unit. The vector length is determined by the ar-
chitecture of the floating—point unit, and the way it is
integrated into the Connection Machine. The archi-
tectural restrictions on the 32-bit and 64-bit floating—
point units are different. The loop ordering of the
matrix—vector kernel for both the 32-bit is shown in
Figure 4. The loop labeled 0 is the inner-most loop.
Loops 0 and 1 together define the SAXPY operation.

px gx 7 | Gflopss™*
64x4x1 7.84
64x8x1 11.98
64x16 x1 16.35
64x32x1 17.35
64x64x1 19.08
64 x 256 x 1 20.38
64x4x8 9.20
64 x8x8 13.53
64x16 x 8 17.74
64 x 32 x 8 18.02
64x64x8 19.55
64 x 256 x 8 20.51
64 x 4 x 32 9.38
64 x 8 x 32 13.71
64 x 16 x 32 17.88
64 x 32 x 32 18.11
64 x 64 x 32 19.61
64 x 256 x 32 20.52

Table 1: Performance data for the local ma-
trix-multiplication kernels.

The time for data motion with this loop ordering is
{&(1’5+ 1)+ (,?c- - 1){)} 17 +ﬁ€-t,, where k. is the num-
ber of columns of C in the block matrix-vector product
defined by loops labeled 0 and 1, ¢, is the time required
for loading one data item, and , is the time required for
storing one data item. When the loop traversal order is
0,1,3,2 the data motion time becomes $g(1+ -kl—')tl+ pt,,
k, is the number of rows in the block matrix—vector
product defined by loops labeled 0 and 1. On the 32—
bit floating—point unit, k. may be several times as large
as k,. The loop ordering 0,1,2,3 minimizes the number
of storage accesses.

The performance for a few matrix shapes are given
in Table 1, and shown in Figure 5. The single—precision
floating point rate shown in Figure 5 corresponds to a
fully configured Connection Machine system with 2048
floating point units. For the example shapes of the local
sub-matrices, the measured performance of the kernel
is in excess of 20 Gflops s~ 1.

5 Global Matrix Multiplication

The matrix multiplication algorithm for the Connec-
tion Machine described here is based on mesh emula-
tion. The algorithm has two distinct phases — Align-
ment and Systolic multiplication. The alignment phase
reallocates matrices A and B such that for a square
array of processors, all processors have the same “in-
ner” index of both operands. For a rectangular array
of processors the range of inner indices of one of the




Gflops s~}

22 —
21
20 —

19

Figure 5: Performance of the local matrix—vector mul-
tiplication kernels during the multiplication of local
sub-matrices 4 and B of shape 64 x 256 and 256 x 7 re-
spectively. The performance reported here is projected
to a fully configured Connection Machine system with
2048 floating point units.

operands is a subset of the range of inner indices of the
other operand. All processors then perform a multi-
plication and an addition concurrently using the local
matrix-matrix kernel described in the previous section.
In the case of a single matrix element per processor,
and a square array of processors (P x P), the algo-
rithm can be described as in Table 2 [3]. The speed—up
of the arithmetic part is proportional to the number of
processors. The data motion! in the systolic multipli-
cation phase of the algorithm requires nearest neighbor
communication only. The multiplication of matrices of
arbitrary shapes on Boolean cubes of any size involves
generalizing the above algorithm for the following cases:

o The set of processors are configured with Ny pro-
cessors along axis zero, and N; processors along
axis one, Ng # Nj.

e A sub-matrix per processor instead of a single el-
ement. ’

e Arbitrary values for p, ¢, and 7.

o Parallelization of the loop corresponding to the
“inner” index.

The first generalization is necessary for several rea-
sons. The primary reason is that the total number of
processors N = Ny x N; to which the matrices are allo-
cated may not be a square. In addition, for small ma-
trices and a large number of processors, the operands

1Corresponding to statements marked t.

forall 4,5 € {0,1,...,P -1} x {0,1,...,P—1} do
/* Alignment Phase*/

a(i, j) « a(i, (3 + j) mod P)
b(3, 5) < b((i + j) mod P, j)

/* Multiplication Phase */

(1, 5) « (3, 7) + a(%,5) x b(s, §)
fork:=1to P—-1
a(i,j) « a(i,(j + 1) mod P)!
b(3,5) « b((i + 1) mod P, 5)!
c(4,5) « (%, 3) + a(4,7) x b(3, 5)
endfor k

/* Re—alignment Phase*/

a(i, j) < a(i, (i — j) mod P)
b(3, 5) < b((i — 5) mod P, j)

endforall 3,

Table 2: Pseudo—code for the Cannon algorithm.

for a matrix product may only extend over a subset of
processors, even if only a single element of each operand
is assigned to each processor. In this case, as well as
in the case where each operand has several elements
assigned to each processor, the optimum configuration
for the processors is an array of the same shape as that
of the product matrix C [9]. The need for the second
and third generalization is apparent. The last general-
ization is motivated by the fact that the total number
of processors N may be significantly greater than the
number of elements p x r of the product matrix C. For
N > p x r all three loops in a Fortran 77 code may be
parallelized. The axis corresponding to the “inner in-
dex” can be instantiated partially, or totally, in space.
With all three axes instantiated in space, the operands
are assigned to orthogonal planes. For example, the
matrix A can be assigned to the plane defined by axes
zero and two, the matrix B to the plane defined by axes
one and two, and the matrix C to the plane defined by
axes zero and one. The matrix A is copied along axis
one, and the matrix B along axis zero. The product
matrix C is obtained by reduction along axis two.

The standard allocation scheme for arrays implies
that, in general, the configuration of the physical ma-
chine is different for arrays of different shapes. For the
algorithm described above the operands need to be al-
located assuming the same physical machine. The re-
configuration of the set of physical processors to a com-
mon shape is performed as part of the alignment phase.
The alignment is performed by the Connection Machine
router.




pxgxr | 8K | 16K | 32K | 64K

128 x 1024 x 1024 | 117 | 196 — —
256 x 1024 x 1024 | 190 | 321 582 968
512 x 1024 x 1024 | 281 | 496 825 | 1468
256 x 256 x 256 | 107 | 210 316 488
512 x 512 x 512 | 199 | 362 558 | 1062
1024 x 1024 x 1024 | 357 | 664 | 1045 | 1936
2048 x 2048 x 2048 —_ — | 1829 | 3463
4096 x 4096 x 4096 — — — | 5814

Table 3: Performance in Mflops s™! of the overall ma-
trix multiplication algorithm.

The reconfiguration and alignment is made on data
in field-wise format. The systolic multiplication phase
is performed on data in the slice—wise format. The com-
munication is made using the lattice emulation primi-
tives, which can be applied directly to data stored slice—
wise. The computations are performed in—place. The
matrices A and B are subject to a complete revolution,
and restored by an “un-alignment phase” after the sys-
tolic multiplication phase is complete. For the systolic
multiplication phase, a processor in the algorithm de-
scription is equivalent to a floating—point processor.

The systolic algorithm described here requires no
temporary storage. Some overall performance data for
the Connection Machine implementation of the algo-
rithm is reported in Table 3, and Figure 6. Although
the systolic multiplication phase has a peak floating—
point rate of approximately 8 Gflops s™*, the overall al-
gorithm peaks at 5.8 Gflops s~! because the two align-
ment phases represent a significant portion of the total
time.

6 Summary

The matrix multiplication algorithm presented in this
article applies to matrices of arbitrary shapes and sizes.
The processor layout is assumed to be rectangular. The
size is arbitrary. The algorithm has two distinct phases:
Alignment and Systolic multiplication. In the Con-
nection Machine implementation the alignment is per-
formed using the router. The systolic multiplication
phase makes use of the mesh emulation capability. Each
of the two input operands is subject to a complete rev-
olution. One operand is subject to circular shifts along
rows, the other along columns. For each cyclic shift,
a multiplication of sub—matrices local to a processor is
performed. Depending on the shape of the local sub—
matrices, this matrix multiplication is based on either a

Mflops s~ !
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Figure 6: Performance of the matrix multiplication al-
gorithm on a fully configured Connection Machine sys-
tem CM-2 with 64K physical processors and 2048 float-
ing-point units; n is the size of the square matrices.

matrix—vector multiplication, or a vector-matrix mul-
tiplication.

The measured peak performance of the local ma-
trix multiplication kernel is in excess of 20 Gflops s~ 1.
The systolic matrix multiplication algorithm peaks at
approximately 8 Gflops s™!. After accounting for the
initial alignment and the final un-alignment of the
operand matrices, the total peak performance of the

matrix multiplication implementation described here is
5.8 Gflops s~ 1.
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