L4239

“_/;7/2 /5’11/ /‘%/c//e//orac,

Combining parallel and sequential sorting
on a Boolean n-cube

S. Lennart Johnsson
Department of Computer Science
Yale University
New Haven 00520

Abstract - Three parallel algorithms for sorting M
uniformly distributed elements on a Boolean m-cube of Ns=2®
N<M processors are presented. Two of the algorithms
combine sequential sort with bitonic sort to accomplish a time
complexity of O(MlogM/N) for N< <M, and O(log?M) for
M~N. One algorithm sorts the elements cyclically, such that a
processor holds sorted elements that are congruent modN. The
other algorithm sorts subsequences of M/N consecutive
elements into each processor. The third algorithm is a parallel
bucket sort that sorts the elements into L buckets in time
O(M/N+L) if N<L and time O(M/N+L-+logN-logL) for N>L.

L Introduction

Our interest in sorting algorithms for Boolean n-cubes is
motivated by the construction of a mnitiprocesor with that
configuration [8]. Currently a 64 processor machine is in
operation, and s 1024 processor machine is planned. Another
machine featuring a Boolean n-cube configuration and a large
number of processing elements, 10* or more, is the Connection
Machine being constructed at MIT. In the computational
model we use, each processor has its own local storage and
control. In Flynn's terminology [3] it is 8 MIMD machine, with
no global storage. A processor with its local storage is refered
to as a node.

Batcher's bitonic sort [1], is a well known parallel sorting
algorithm of time complexity O(log?M), for sorting M elements
on the appropriate sorting network [1}, [5]. Stone [0] observed
that comparison-exchange operations in bitonic sort are made
on elements that can be brought in proximity by sbuffle
operations, and presented an algorithm for bitonic sort on a
perfect shuffle network. Nassimi and Sahni [7] describe an
implementation of Batcher's bitonic sort on a mesh configured
array. Adaptations of Batcher’s odd-even merge to mesh
configured arrays are given by Thompson and Kung [12], and
Kumar and Hirschberg [6]. Sorting requires global
communication and O(M"z) is a lower bound for sorting on
processing elements configured as a mesh. The Boolean n-cube
offers node connections that are a perfect fit for bitonic sort.

Comparison-exchange operations are simply performed along
the different coordinate directions of the cube.

The above references only address the case where the number
of processing elements, N, equals the number of elements to be
sorted. For N<M a naive mapping of bitonic sort on to the n-
cube does not produce an efficient algorithm. Lower time
complexity is achieved by combining good sequential sorting
algorithms with bitonic sort. The bitonic sort is used for
internode sorting, while sequential sort is used within a node.
Baudet and Stevenson [2] outline one combination. We present
two algorithms, one having the characteristics of the suggestion
in [2]. The time complexity of both algorithms is O(MlogM/N)
for a cube small relative to M, and O(log?M) for a cube of a
size comparable to M.

Two sorting orders are considered. In eyclic order node i
stores all elements {j} of the sorted sequence such that
i=jmodN. In consccutive order M/N successive elements of
the sorted sequence are stored in each node, with successive sets
of M/N elements being stored in nodes in order of increasing
node address. If the total storage of the n-cube is viewed as
matrix with one column for each node, and one row for each
element, then cyclic order implies sorting in row major order,
and consecutive sort sorting in column major order.

The bucket sort described last completes the rank assignment
of all elements in time O(M/N+L) if N<L, and time
O(M/N+L+logN-logL) if N>L. The increased time
complexity compared to Hirschberg’s algorithm is due to the
restricted communication in the cube.

II. Cyeclic sort

In bitonic sort sorted subsequences of equal length are
merged recursively. By storing one of the sequences in the half
cube with highest address bit 0, and the other in the half cube
with highest address bit 1, and with corresponding elements in

" corresponding nodes, the first step in bitonic merge is carried

out by comparing elements stored in nodes that differ only in
the highest address bit. Subsequent steps compare elements in

|22

nodes that differ in successivly lower order address bits. A)

mask determines whether sorting is performed in mon-
descending or non-ascending order, as shown in the algorithm
below.

For i:=1,2,...n do

fi<ndo
m(. ooy ’ yooy)‘-l set mask==1.
Bodes (l’:, o ::, ::, . 2), a,=0, set mask=0.
end
For j:mmi-1-2, ..,0 do
Bodes (3, “, 1, 'rl' weey a'), send their elements to
podes ('M’ . “, B e ay), which compare local
and recieved ele

nodes with muk-O keep the smaller element and
nodes with mask==] keeps the larger

rejected elements are sent to (:._l, - B 1,a R ‘o)
end

end

This algorithm requires a time of ﬂn+l)(2t.,r+t“)/2. In
sorting a sequence of 2" numbers on 2" nodes, only half of the
podes are used for comparison operations. 2™! podes suffice to
sort 2" elements. Conversly, two sequences of 2° elements each
can be sorted in time n(n+'lX4t../,+t")/2 time on 2" modes.
The storage need per processor remains the same.

Assume for simplicity that M=2Y*2, To create a sorted
sequence of 2¥*? clements from two sorted subsequences of size
2%1+® by bitonic sort requires k+n steps. With cyclically
stored sequences, the first k steps are local to each node. The
result after those k steps is 2% bitonic sequences ordered with
respect to each other. Each sequence has one element per node.
The last n steps are separately perfomed on each of those

sequences.

Carrying out the first k local steps as bitonic sort results in
an algorithm with poor performance. The operational
complexity of bitonic sort is O(MlogM), compared to
O(MlogM) for a good sequential sort. The algorithm outlined
below is a generalization of Batcher's 16-sorter constructed out
of 4-sorters [1]. The first set of sorters consist of 2° sorters,
each merging two sorted sequences of length 2K, Since the
two sequences are stored cyclically the input to each sorter is
bitonic. The number of sorters in the second set is 2, each
sorting a bitonic sequence of size 2°. Choosing the input to
each of the second set of sorters as corresponding elements from
the outputs of the sorters in the first set makes the inputs to
the second set of sorters bitonic. Figure 1a shows two sorted
subsequences, Figure 1b their storage in the n-cube, and Figure
1c the result of the k first steps of bitonic sort. Figure 2 shows
the generalization of Batcher's 16-sorter.

Each of the first set of sorters is implemented within a node
as a merge. Each of the second set of sorters is implemented as

[

Figure 1: Cyclic storage of bitonic sequences

[pr—
> | ——
zk—sortor h"—coﬂor
S
| —
| ——
Zk—sortcr 2'!|or!0r
S
e o | —
— |
ﬂk-mor 2" sorter
——

Figure 2: A network of 2° 2X-sorters followed by 2¥ 2°-sorter

an internode bitonic merge. Two bitonic sequences can be
merged concurrently. The outline of the algorithm for cyclic
sort is as follows:

1. Separately sort in cyclic order two sequences, each of
length 2512°, ope in non-descending order, the other in mon-
ascending order. Time 2T, ,.

2. Concurrently in all processors perform a merge-sort.

3. For j:—l,2,3,...,2k" perform bitonic merge of two
sequences on a n-cube with one element per processor.

A mask is wsed to determine whether sorting shall be
performed in mon-descending or mon-ascending order. The
mask remains the same for all nodes and steps required to
implement the merge of one pair of sequences (k>0). A mask
bit is associated with each sequence.

The time for cyclic sort by this algorithm is given by the
following first order linear recurrence

T, =2 T, , +(2%1), + 25 o4t +t,)
Ty = n(n+1)(4¢, 4t)/2 + n{4t, 4t) + ¢,
or Ty = 25 Y(u(n+2k+1)4t, , +1_)/2 + Ak-1)t,) + ¢,

Hence, T, = O(MlogM/N) for M>>N and Olog?M) for
M=N. The speed-up is linear for a small cube and gradually
changes to O(N/logN), the speed-up for bitonic sort.

HI. Consecutive sort

An algorithm for consecutive sort can .be devised to be
recursive on the number of elements in a mode, as the cyclic
sort described above. However, the following algorithm
incorporates all elements in a node into sorted subsequences of
increasing length by a recursion on the number of nodes. Such
a recursion concurs with Baudet and Stevenson's [2] suggestion.

Bitonic sort is used for internode sort. The merge-split
operation [2] is replaced by a comparison-exchange operation on
subsequences. The initial local sort is carried out so that
sequences to be merged in the first step of the bitonic internode
sort are sorted in different order (non-descending and non-
ascending). In the first step of the internode sort pairs of
subsequences, each with M/N elements, are compared and the
resulting two bitonic sequences sorted independently by
separate processors. The comparions are shared between the
two processors holding the two subsequences in order to
minimize the time needed. The result after the local sort is a
sorted sequence of 2M/N elements with M/N elements per
processor. The process is repeated recursively until all nodes
are included. The bitonic property of sequences sorted locally
in each step of the internode sort is exploited by performing the
local sort as a merge after the maximum (or minimum) is
located by bisection.

1. All odd procesors, i.e., (s, ;,-.,8;,1), set mask=1, and all
even processors set mask==0.

2. Concurrently perform a local (merge) sort in all processors.
Time [M/N(log(M/N}-1}+1}t ..

8. For i:=0,1,2,....n-1 do steps 4 through 7

4. Processors (3,3, o), &, +1™=1 set mask=1. All other
processors set mask==0.

§. for j:w=ii-1,...,0 do step 6

6. Processors (‘.-r‘n-z'""o)’ nj—l, send their last M/(2N)
elements to processors (aﬂ,...z,..,to), .j—o, and processors
(3, 18, 20--189) a=0, send their first M/(2N) elements to
processors (a8 ,,..,8), 3=l Concurrently in all processors
compare elements pairwise, one from each sequence. Processors
with mask==0 and aj—O(l), keep the smaller (larger) element in
each comparison and send the larger (smaller) to the processors
aj-l(o). Processors with mask==1 and .j-ou) keep the larger
(smaller) elements and send the smaller (larger) ones. This step
takes time M/(2N)(4t,, +t_) for each j.

7. Locate the maximum (or minimum) of the bitonic
sequence in each node and perform a merge on sequences of
length M/N. Time (M/N-1+2log(M/N)k ,

The time for sorting (M/N)2' elements on 2/ processors is
given by the recurrence,

T; = T,y + (M/@2N)X4t, 41,) + (M/N-1+2log(M/N)),
To = [M/N(log(M/N}1)+1]t,,
Solving this recurrence yields for i==n=jogN

T, = M/(2N)(logN(logN+lXlt./t+t“)/2 + 2logM-1)t) +
logN(2log(M/N)-1)t

or T, = O(M/N(logM+log?N)+logN(logM-logN)). The
speed-up is linear for a small cube and approaches O(N/logN)
for M~N.

IV. Bucket sort

Hirschberg [4] gives an algorithm for parallel bucket sort that
performs rank assignment to M numbers sorted into L buckets
using M processors and (L+2)M storage in O(logM+logL) time.
The algorithm is based on a computational model that allows
an arbitrary number of processors to access in parallel any set
of distinct storage locations. Our model only allows each
processor to access any location in its own storage in unit time.
In the following we consider the case where K>1 elements
(M=K*N) are stored in each nmode. The storage need is

2M+LN for the elements, the rank assignments, and the bucket

.counters. Each node has its own set of bucket counters. The
time eonpluity is O(L) for the global bucket count,
accumulation, and rank assignment if N<L and
O(L+logN-logL) for N>L. The initial bucket assignment and
final rank assignment within a processor needs O(M/N) time.

The global bucket count is made by concurrently carrying
out several "folding" operations, each terminating in a different
processor. For each folding operation the number of partial
bucket counts being propagated is reduced by two. In the first
global counting step the last L/2 local bucket counts can be
sent from each even processor to each succeeding 0dd processor,
and each odd processor can send the first L/2 buckets to the
preceeding even processor. After the initial step global bucket
counting can proceed concurrently for each half of the buckets
in each half of the cube. In the final step L/N global bucket
counts are contained in every processor, for N<L. The time
for the global bucket count is L(1-1/N)2t,, 4t,), where ¢_ is
the time for incrementing a bucket counter. For N>L there is
only one value that needs to be propagated in the last logN-
logl. steps, whick renders the time complexity
- (L1N2e '+t'.)+(logN-logLXt'lr+t‘).

The global bucket count can be accumulated in the same
storage locations as the local bucket count. After the initial
step of the global bucket count half of the nodes have the local
" bucket counts in their counter locations, and half the modes
have the sum of their own local bucket counts and the bucket
counts of the modes that are unchanged. The process is
repeated recursively until only 1 bucket remains, or the folding
is completed. The local counts that are replaced by partial
sums can be recovered by performing the summation process in
reverse order, and querying processors containing a preceeding
partial sum.

The global bucket counts are scattered throughout the cube.
Accumulation for the assignment of ranks to buckets can be
accomplished in 2logN steps by recursive doubling, [10], [11].
For NSL there is one initial and one final local step. For
N>L there are logN-logL initial and final propagation steps.
After the imitial JlogN-logL. steps the values for the
sccumulation are in a subcube of size L. The initial and final
phase each requires time (L/N-1g, for N<L, and
(IagN-logL)t.,r for N>L. The accumulation requires a time
2logN(t,, +t) for N<L, 2Iogut.,,+t_) for N>L. On
completion of the accumulation the rank of the last element in
each bucket is contained in the node that contained the global
bucket count for that particular bucket. The accumulation can
be made using the same storage locations used by the global
bucket count.

The rank assignment to buckets in individual processors is
obtained from the highest rank for the buckets and the partial
sccumulation of bucket counts conmtained in the counter
locations in different nodes by performing the global bucket
count in reverse order. In the first step the processors that

have the highest rank for the buckets send the accumulation

values they have to the processors from which they last
received partial bucket counts. Those processors keep the
highest bucket ranks, deduct their partial bucket accumulation,
and send back the difference. The process is repeated until the
highest rank for a bucket reaches the node that contains the
local count for that particular bucket. The buckets in those
podes will be assigned the highest rank. The nodes in which
the global bucket counts terminate are assigned the lowest rank
for their particular buckets. The time needed for global rank
assignment is vL(l-l/NX«.l'ﬂ‘) for N<L, and
(L-1)(4¢,;,+t H(logN-logL)2t,, +t,) for N>L At the expense
of additional storage one communication action instead of two
would suffice in each step of the rank assignment process.

To complete the rank assignment a local assignment is made
concurrently in all nodes.

Adding up the time needed in the various phases of the
algorithm yields

For N<L

T = [M/N+L+logN-1]2t_ + [L(l-l/N)3+logN]2t.,,

which for N==1 equals [M+L-1]2t, the time for a sequential
algorithm. ’

For N>L
T = [M/N+L+logN-1]2t, + [6(L-1)+5logN-3logLt, ,,

For few processors and a large number of elements compared
to the number of buckets the algorithm offers linear speed-up.
If the number of buckets is comparable to the number of
elements to be sorted the speed-up is sublinear. For few
buckets and a large number of processors, M/N small, the
speed-up is O(N/logN).

V. Conclusions

The order bebavior of the consecutive and the cyclic sort is
the same. However, the number of communication actions and
the number of comparison operations differ. The consecutive
sort is always more efficient than the cyclic sort for more than
eight elements per node. For fewer than eight elements, the
relative costs of communication and comparison will determine
which sorting algorithm is the more efficient. If the

communication time t,/, s of the same order as the time for a
comparison, t,.» then the recursion on the number of modes is
always more efficient.

Rearranging a sorted sequence from one storage order to the
other can be accomplished in logN steps. Successive steps
perform exchanges of M/(2N) elements between modes that
differ in successive lower order address bits. In each step one
processor exchanges the content of the lower (or upper) half of
the locally stored elements with the content of the upper (or
lower) half in the other processor, followed by a shuffle (one
step left cyclic shift) on all local addresses. The time for
rearrangment is MlogN(t,, + ¢,)/N, where by is the time for
sending or recieving one element between adjacent modes, and
¢,y is the time to perform a shuffle on local storage addresses.

The bucket sort presented for the n-cube offers linear speed-
up of the element term, but is linear in the number of buckets.
When each node has its own buckets, there is no improvement
possible if all the buckets are nonempty in all the nodes.
However, with sparsely populated buckets an improvement is
possible. The algorithm also reaches a point of diminishing
returns for N>L. For t , =0 the optimum is N=M, for
byt the optimum is N=M/3 and for by =10t it is
obtained at N=M/25.

The programming of the bucket sort is more complex tlnn‘

the other algorithms. In the algorithms employing bitonic sort
the flow of control in a processor depends in each step only on
s single address bit and the mask. In the bucket sort
successively more bits are distinguishing the operations taken
by a processor. This added complexity stems from the
increasing mumber of folding operations being performed
concurrently in the global bucket count (and the reverse
operation for rank assignment)

Acknowledgement

The author is indebted to Pey-yun Peggy Li for many helpful
discussions.

This work was supported in part by the Office of Naval
Research under Contract N00014-84-K-0043

h

el

Bl

4

5]

kel

I

8]

ol

o]

13}

(2]

References

Batcher, K.E. »

Sorting Networks and Their Applications.

In Spring Joint Computer Con ference, pages 307-314.
IEEE, 1968,

Baudet,G., Stevenson D.
Optimal Sorting Algorithms for Parallel Computers.
IEEE Trans. on Computers (1):84-87, 1978.

Flynn M.J.
Very High-Speed Computing Systems.
Proc. IEEE (12):1901-1909, 1066.

Hirschberg D.S.
Fast Paralle] Sorting Algorithms.
Comm. of the ACM (8):657-661, 1978.

Knuth. D.E.
The Art of Computer Programming, vol. 8.
Addison-Wesley, 1973.

Kumar M., Hirschberg D.S.

Ab Efficient Implementation of Batcher's Odd-Even
Merge Algorithm and Its Application in Parallel
Sorting Schemes.

IEEE Trane. on Computers (3):254-264, 1983.

Nassimi, D., Sahni S.
Bitonic Sort on a Mesh-Connected Parallel Computer.
IEEE Trans. on Computers (1):2-7, 1979.

Seitz C.L., Fox G.

The Homogeneous Machine.

Technical Report , Computer Science, California
Institute of Technology, 1083.

Stone H.S.
Parallel Processing with the Perfect Shuffle.
IEEE Trans. on Computers (2):153-161, 1971.

Stone H.S.
An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations.

Journ. of the ACM (1):27-38, 1973.

Stone H.S.
Paralle]l Tridiagonal Equation Solvers.
ACM Trans. Mathematical Sofiware (4):289-307, 1975.

Thompeon, C.D., Kung H.T.
Sorting on a Mesh-Connected Parallel Computer.
Comm. ACM (4):263-270, 1977.

