Yale University |
Department of Computer Science

Systolic FFT Algorithms on
Boolean Cube Networks!

S. Lennart Johnsson, Ching-Tien Ho,
Michel Jacquemin, and Alan Ruttenberg

YALEU/DCS/TR-619
March 1988

This work has been supported in part by the Office of Naval Research under
Contracts N00014-84-K-0043 and N00014-86-K-0564. Approved for public re-
lease: distribution is unlimited.

1To appear in the Proceedings of International Conference on Systolic Arrays San
Diego, CA, May, 1988.

Systolic FFT Algorithms on Boolean Cube Networks

Lennart Johnsson+3 Ching-Tien Hot Michel J acqueminH Alan Ruttenbergﬁ

T Thinking Machines Corp., 245 First Street, Cambridge, MA 02142
I Dept. of Computer Science, Yale Univ., New Haven, CT 06520

§ Dept. of Electrical Engineering, Yale Univ., New Haven, CT 06520
q Dept. of Computer Science, MIT, Cambridge, MA 02139

Abstract Systolic algorithms are typically devised for one- or two-dimensional arrays
of processing elements. In this paper we describe a systolic Cooley-Tukey Fast Fourier
Transform algorithm for Boolean n-cubes with a substantial amount of storage per cube
node. In mapping a Cooley-Tukey type FFT to such a network the main concerns are
effective use of the high connectivity/bandwidth of the Boolean n-cube, the effective
use of the computational resources, the effective use of the storage bandwidth, if there
is a storage hierarchy, and pipelines should the arithmetic units have such a feature.
Another important consideration in a multiprocessor, distributed storage architecture
is the allocation and access to coefficients, if they are precomputed. We describe FFT
algorithms that use both the storage bandwidth and the communication system opti-
mally, and which require storage of P +nN coefficients for a transform on P > N data
elements. A complex to complex FFT on 16 million points is predicted to require about
1.5 seconds on a Connection Machine model CM-2.

1 Introduction

The Fast Fourier Transform (FFT) is one of the most important algorithms in sig-
nal processing and the solution of partial differential equations. This paper addresses
the data mapping and control structures for the implementation of Cooley-Tukey type
FFTs on Boolean cube networks. In addition to the locality of communication (or lack
thereof) as defined by the topological properties of the Boolean cube, we also consider
the effective use of a local storage hierarchy. Such a hierarchy occurs in multiprocessors
in which each node has a cache, or a register set allowing multiple, concurrent accesses.

A large amount of work has been devoted to reducing the needs for storage band-
width in register or cache based architectures by careful partitioning and rearrangement
of loops in the Cooley-Tukey FFT, such that intermediate results can be kept in the
registers, or the cache, and thereby the need for maim storage bandwidth reduced by
locality of reference. Another concern that has received a significant attention is to
avoid bank conflicts in architectures for which the storage cycle time is a multiple of the
processor cycle time. The performance gain from proper attention to storage references

1

can be quite significant. Algorithms for vector architectures are described in [17,16,2,14]
and for a combined cache and vector architecture in [1]. The algorithm by Fornberg
relies on fast compress and merge instructions. Swarztrauber [16] not only considers
vector and cache architectures, but also shared memory and Boolean cube configured ar-
chitectures. For a summary of current efforts for the computation of Fourier Transforms
on a variety of architectures see [18].

We have implemented the algorithms described here on the Connection Machine.
It has 64k processors, and each processor has 8k bytes of primary storage using 256
kbit memory chips for a total of 512 Mbytes of storage, and 2 Gbytes using 1 Mbit
memory chips. The bandwidth to storage is approximately 50 Gbytes/sec at 8 MHz
clock rate. The bandwidth for the emulation of butterfly networks has a peak capacity
of about 16 Gbytes/sec for many small networks, and a peak of about 13 Gbytes/sec for
a large butterfly network. The nominal peak floating-point capacity for three operand
instructions that do not make use of the registers on the floating-point unit is about 5
Gflops/sec, and the nominal peak for multiply-add instructions that make use of the
registers is 32 Gflops/sec. In practice, the measured rate for the first type of operations
in high level languages is in the range of 1.6 to about 3 Gflops/sec, whereas for carefully
coded kernels of the second type rates in excess of 20 Gflops have been achieved.

The Connection Machine is a data parallel computer in that an operation is per-
formed in one instruction time on all data elements to which a given operation is applied.
In practice, there may not be a sufficient number of processors to support concurrent
operation on all elements to which an instruction is applied. Virtual processors are
introduced to provide the programmer with an arbitrary number of processors. Virtual
processors time-share a physical processor. Each virtual processor occupies a unique
part of the local storage of a processor. The allocation of virtual processors to physical
processors is currently performed at compile time, and transparent to the user. The
instruction time is a function of the number of virtual processors.

The 64k Connection Machine processors are distributed evenly among 4k chips in-
terconnected as a 12 dimensional Boolean cube. Communication can take place on
all ports concurrently. The details of the interconnection network on-chip are imma-
terial for the description here. Each floating-point unit is 32-bits wide, has one path
to primary storage, a number of registers, and a multiplier and an adder that can be
operated concurrently. The FFT algorithms we describe make efficient use of both the
communication network and the floating-point unit.

In the remainder of the paper we first review the computational considerations of
Cooley-Tukey FFT algorithms, then consider the mapping of such algorithms to Boolean
cube networks. The allocation and use of the twiddle factors are considered last.

2 Computational Considerations of Cooley-Tukey
FFT Algorithms

For a description of the Cooley-Tukey radix-2, -4, and -8 FFT algorithms see for instance
[15] or [13]. We consider both decimation-in-frequency (DIF) and decimation-in-time
(DIT) algorithms. There are log, P stages in a radix-2 algorithm on a data set of P = 2?
complex elements. There is one complex multiplication for each butterfly operation, and
two complex additions for a total of ten real operations. With one complex data point
per processor, these operations can be split between a pair, but we will for the moment
only consider the sequential complexity. The number of butterfly stages for a radix-4
algorithm is half of that for a radix-2 algorithm, and that of a radix-8 one third of
that of a radix-2 algorithm. The number of complex multiplications is pi;- for a radix-2
algorithm, and g% for a radix-4 algorithm. A radix-8 algorithm requires some internal
complex multiplications, which the radix-2 and radix-4 algorithms do not. A careful
analysis of the number of real arithmetic operations for the radix-2, -4, and -8 FFT
algorithms yields the following ratio 2 : £ : 1 for real multiplications, and 2.8 1for
real additions. The actual number of operations are given in Table 1. For the number of
additions it is assumed that the radix-4 and radix-8 FFTs are factored internally so that
the number of additions remains constant. The total number of arithmetic operations
for the radix-8 algorithm is approximately 20% less than that of the radix-2 algorithm.

In an architecture with a higher bandwidth for the register, or cache, access the
lower storage bandwidth requirement for a higher radix algorithm may be of greater
importance than the reduced number of arithmetic operations. Assuming that all tem-
porary results fit in the registers, or the cache, the storage bandwidth requirements of
the radix-2, -4, and -8 algorithms compare as 3 : % : 1 for the data. In general, a radix-Q
algorithm reduces the need for storage bandwidth by a factor of log, Q compared to a
radix-2 algorithm. This is indeed of the optimum order [3].

If the twiddle factors are read from storage and discarded immediately upon use,
then the storage references for the twiddle factors compare as % : g : 1. However, if
R = 2" registers (complex) are used for twiddle factors and all butterfly computations
requiring those coeflicients in a given rank computed successively, then r ranks can be
computed with a single load of R twiddle factors, one rank with two loads, one with four,
etc. The total number of storage references is P — R. The minimum number of registers
needed for twiddle factors for a straightforward implementation of the radix-2, -4, or
-8 FFT is 2, 6, and 14, respectively. If the twiddle factors are stored, then the storage
references for data dominates. If there is a sufficient number of registers for radix-2,
and radix-4 FFTs, but not radix-8, then the total number of storage references compare
as % : %—% : 1, approximately. If only a radix-2 can be performed with a single load of
twiddle factors for each rank, then the storage references compare as —% : g% : 1. Reuse
of coefficients in registers requires that, for a DIF FFT, as the number of independent

FFTs increases the same subset of all FF'Ts is processed before any other subset.

Arithmetic Storage

FFT Operations References
Add | Mult | Total | Rel. | Data | Rel.
Radix-2 | 3Pp | 2Pp | 5Pp | £ | 2Pp
Radix-4 | 25Pp | 2Pp | 7 Pp| 22 | Pp
Radix-8 | 2:55Pp | $Pp | ZPp| 1 | ZPp

[l [N9

Table 1: Comparison of arithmetic operations and storage references for radix-2, -4, and

-8 FFTs.

3 Boolean Cubes and Address Maps

In a Boolean cube of N = 2" nodes, n bits are required for the encoding of the node
addresses. In a Boolean cube every node 4 = (Up—1Un—2...Un ... uo) is connected to
nodes v = (Unp—1Up-2...Um...Uo),Vm € [0,n — 1]. Every node has n neighbors. The
distance between a pair of nodes u and v is Hamming(u,v) = Y"1 (um D vn). The
maximum distance between any pair of nodes is n, the number of nodes at distance m
is (Z), and the average distance is %n The number of edge-disjoint paths between a

pair of nodes u and v is n. Of these paths Hamming(u,v) are of length Hamming(u, v)
and n — Hamming(u,v) are of length Hamming(u,v) + 2.

In our model each processor has a local storage of S = 2° words, and the total
address space requires s+ n bits assuming word addressing only. For an FFT on P = 27
complex data elements it is clearly required that p < s +n — 1, if the “twiddle factors”
are computed and there are a few registers in addition to the local storage. If the
twiddle factors are precomputed and stored it is necessary that p < s +n — 2. For the
computation of an FFT of a size that only requires a fraction of the total storage, several
options exist for the allocation of the data, assuming the choice can be made entirely
with respect to the FFT computation. If N = 2" processors are used, N < P, then
several elements are allocated per processor. Of the p bits required for the encoding of
the data elements a subset of n bits is used for real processor addresses, and a subset of
p — n bits for virtual processor addresses, or local storage addresses. The bit-fields can
be chosen in many ways. We consider cyclic and consecutive assignment [5]. The two
forms are illustrated below.

Cyclic assignment:

(Tp-1Tp-2 ... Ty Tp-1Tn—2 ... x@.

up P

Consecutive assignment:

(Tp—1Zp=2 + - - Tp—n Tp—n—-1Tp—n—2 - - - wo)-

Tp vp

In the cyclic assignment all data elements with the same n low order bits reside in
the same processor. In the consecutive assignment the elements in a processor have the
same n high order bits.

4 Cooley-Tukey FFTs on Boolean Cubes

4.1 Mapping Butterfly Networks to Boolean Cubes

A radix-2 butterfly network for P inputs and outputs has P(p + 1) nodes. These
can be uniquely encoded with a total of p + [log,(p + 1)] bits. Let the address be
partitioned as follows (yp—1Yp—2 ... Yo|#:-12:t—2 . .. 20), Where t = [log,(p+ 1)]. Then, the
butterfly network is defined by connecting node (y|z) to the nodes (y @ 27|z 4+ 1) and
(y|z + 1), z € [0,p — 1], where @ denotes the bit-wise exclusive-or operation. For the
computation of the radix-2 FFT the last ¢ bits can also be interpreted as time. The
network utilization defined as the fraction of the total number of nodes that are active
at any given time is I. During step z communication between ranks z and z + 1 takes
place, and the complex multiplications in rank z for decimation-in-time FFT and rank
z + 1 for decimation-in-frequency FFT.

The butterfly and CCC networks are closely related. If the last column of the
butterfly network is identified with the first, and node (y|z) connected to nodes (y|(z —
1) mod p), (y|(z + 1) mod p) and (y @ 27|z) then the CCC network is obtained. The
mapping of FFTs to linear arrays are described in detail in [12,8], and to Boolean cubes
and other networks in [11,6,16,18].

By identifying all nodes with the same y value and different z values in the butterfly
network node y becomes connected to nodes y @ 2%, Vz € [0,p — 1], which defines
a Boolean p-cube. All nodes participate in every step in computing an FFT on P
elements on a p-cube. In step z all processors communicate in dimension z. For N = 2"
processors and p > n there are 2°~™ wirtual processors per real processor. If virtual
processors correspond to high order bits of the data index, i.e., cyclic assignment is
used, then regardless of whether a decimation-in-frequency or decimation-in-time FFT
is used the first p — n ranks of butterfly computations are local to a processor. The
last n ranks require interprocessor communication. For consecutive assignment the
first n steps require interprocessor communication, and the last p — n steps are local
to a processor. If the data is allocated in a bit-reversed order, then the order of the
interprocessor communication and the local reference phases are reversed.

4.2 Algorithm Selection and Scheduling for Maximum Effi-
ciency

With no virtual processors all the data is engaged in every step of the algorithm. The
best load balance that can be achieved is obtained by splitting each butterfly operation
between the two processors holding data for a butterfly computation, and the parallel
arithmetic complexity becomes 5log, N for real arithmetic operations, ignoring lower
order terms. The sequential complexity is 5NV log, N, and the speed-up is N with respect
to arithmetic complexity. The communication complexity is 3log, N element exchanges
in sequence.

With a large number of virtual processors the looping order becomes important.
Virtual processors as well as the butterfly stages are mapped to time. With the loop
over virtual processors being an inner loop with respect to the loop over butterfly stages
only ;1; of the total communication bandwidth is used, as in the case with one virtual
processor. If the mapping of the data to the processors is such that the first p — n
stages are local to a processor, for instance by using a cyclic mapping of the data to
the processors, then the computation for the last n stages consists of 2°~" independent
FFTs, each with one data point per processor. However, exchanging the loop order
does not resolve the problem with a poor communication efficiency. We consider the
following ideas for its improvement.

e Perform an FFT on the local data set followed by pipelining of successive FFT
computations defined by virtual processors.

e Perform an FFT computation on the local data set followed by a data reallocation
to allow for a new FFT on the same size data set, or a smaller set if p— n > n.
With 2P7" local elements this procedure is equivalent to computing the FFT by
radix-2?~" FFTs.

¢ Perform a set of radix-Q., FFT locally, Q,, < 2°~", then perform a data real-
location requiring interprocessor communication for the computation of radix-Q,
FFTs, Q. < 2", and pipeline these computations and reallocations.

e Divide the virtual processors into n sets and perform a reallocation of sets such
that the first rank of each set requires communication in a distinct dimension, the
same for the second and all following ranks. One such reallocation is obtained by
m shuffle operations on wirtual processor set m, with sets labeled consecutively
from zero.

4.2.1 Pipelining successive FFT computations for virtual processors

For pipelining of computations we consider cyclic assignment of data elements to pro-
cessors and a DIF FFT. Then, after the first p — n ranks of butterfly computations

6

there are 2P~" independent FFTs of size 2" to be computed. This fact was used in
[4] for devising sorting algorithms on Boolean cubes. Each FFT has one element per
processor, and each only requires one communication in each of the n cube dimensions.
The computations of the 2°~™ FFTs can be pipelined, such that a total of n + 27" — 1
communications are required with concurrent communication on all ports. The com-
munication efficiency, measured as (the sum of the communication resources used over
time)/((total number of available communication resources)*(time)), for the stages re-
quiring communication is a—%, if 27~ > n. The efficiency is approximately one for
277" > n. The total communication efficiency measured as (the sum of the communi-
cation resources used over time)/((available communication resources)*(total time)) is
- +2P_,,_21p;" 7= which for 2™" > n is approximately equal to p_i +7- The reason for

this low efficiency is simply that most of the computations are local to a processor.

4.2.2 Pipelining successive FFT computations with recursive reallocation
of the data set

An alternative to this straightforward pipelined algorithm is obtained by recursively
partitioning the set of 2°~™ FFTs, such that one half of the FFTs are computed in a
half-sized Boolean cube, and the other half of the FFTs in the other half. The number of
elements per processor of a given FFT doubles for every step. The communication time
for this pipelined, recursive partitioning FFT is 2P~"~! 4 n — 1, which is approximately
half of that of the straightforward pipelined algorithm. The recursive partitioning tech-
nique was used in [7,9] for Balanced Cyclic Reduction on Boolean cubes.

The recursive partitioning strategy for computing FFT for 2 virtual processors, p —
n = 1, is illustrated in Table 2. Steps p—n through p of the algorithm can be illustrated
in terms of the address space as follows

Initial allocation: (&ipn—lmn—2 ... To) (p—1=n).

v

vp TP

Step 1: (&wn_l Tpeg...20).

TP vp TP

Step 2: (TnZTn-1 T2 Tn_3...Z0)

TP vp TP

Step p — 1: (ZnZn-1...71 To).
L

Tp vp

The dimension representing the virtual processors is successively moved to the lowest
order bit position. In general, for p—n > 1 several exchange algorithms are possible. For
instance, if the real processor dimension on which a butterfly operation is to take place
is moved to the highest order virtual processor position, then the data permutation is

7

Proc. id Po P]_ P2 P3 P4 P5 Ps P7
after 0|12 |3|4|5|6]|7
stepvp—1| 8 | 9 |10|11 12|13 |14 |15
after 01123 |8]9|10]11
step vp 4 |1 5|6 |7 |12|113|14(15
after 01 (4|5 |8]9(12]13
stepvp+1| 2|3 |6 |7 |10|11|14 |15
after 02|46 |8 |10|12|14
stepvp+2| 1 3|5 (7|9 |11|13]|15

Table 2: The data distribution for the recursive partitioning, radix-2, FFT for two
virtual processors.

equivalent to conversion from cyclic to consecutive storage [5]. In any step only one
dimension is used, and successive steps can be pipelined. The numbers in Tables 2 and
3 are with respect to the input, not the output. The frequency components are in bit-
reversed order with respect to the input ordering. Note, that the bit-reversal operation
applies to the entire data set.

Initial allocation: (ivp_l Tp-2.. TpTnoi... :co).

— —

vp p

Step p — n: (Tp—1 Tp—2Tp—3 ... TnTn-1 Tn_z ... Lo).
\ /N ~ '\ ~ /
p up p
Stepp—n +1: (Tp—1Tp—2 Tp—3Tp—a ... Tn_g Tp-3... :1:(9.
p wp p
Step p — 1: (ivp_la:p._z e Tpn Tpn-1Tp—n—2 - .. To).
p up

4.2.3 High radix FFTs for many virtual processors

Computing the FFT as a sequence of radix-2P"" FFTs requires a data reallocation of
the form all-to-all personalized communication [10] in cubes of dimension p —n. There
exist 22"~7 distinct such cubes in a n-cube, assuming 2n — p > 0. The total number of
reallocations that are required is [p%n], each requiring a total of 2P~"~! element transfer
times, with concurrent communication on all p — n ports.

The ideas of pipelining and high radix FFTs can be combined. After an FFT is
performed on the local data set radix-Q. FFTs involving communication are performed,
and the different FFTs pipelined with respect to communication, assuming Q. < 2".

8

The total number of element transfers in sequence for this algorithm is (277""% +
[5";'[— 1)2%~1, where Q. = 2%. This expression specializes to the pipelined, recursive
partitioning radix-2 algorithm for ¢. = 1, and the non-pipelined radix-2°~" algorithm
for ¢. = p —n. The value of the expression is minimized for ¢, = 2 if ¢. < n. However,
the improvement of such a radix-4 algorithm over a radix-2 algorithm is insignificant
(one element transfer). '

The recursive partitioning strategy can also be applied to higher radix FFTs. Table 3
shows the global steps for p—n = 2 and n = 4. The first step is an all-to-all personalized
commaunication within each subcube of dimension 2 with respect to the 2 highest order
real processor dimensions. For instance, processors 0, 4, 8 and 12 are in the same
subcube. For the radix-4 algorithm, two bits are involved in every step. In general, for
a radix-Q). algorithm, g, bits are involved. Successive steps involve consecutive blocks
of ¢g. dimensions, and the steps can be pipelined. With the same strategy as in the
radix-2 case for multiple virtual processors, the data permutation is again the same
as in conversion from cyclic to consecutive assignment. Note, however, that it is only
guaranteed that consecutive sets are in consecutive processors, but the order within a
processor is not necessarily sequential. (It is sequential if the total number of elements
is divisible by the number of virtual processors.)

Initial allocation: (ivp_lacp_2 o Tn Tney ... xo).

vp Tp
Step 1’;‘7": (itp_lalp_z Tp—ge Tp=ge=1Zp—ge=2 - -+ TnTn—1 - - - Tn—g Tn—ge—1 - - - woj).
rp wp rp
Step % + 1: (fp—lxp—2 e xp—-2qc4£cp—2qc—-1xp—2qc—2 e xn—2q€&—2qc—l .o .’1)0/).
p vp P
Step -g’: —-1: (icp_lw,,_z - Tp—n Tp-n-1Tp-n—2-- - wq).
P vp

We conclude that with respect to communication efficiency a pipelined radix-2, or
radix-4, algorithm shall be used, if p —n < n. Otherwise, a radix-Q, algorithm with
Q. = n shall be chosen. In such a case, the pipeline filling time of n — 1 is avoided. For
a large number of wirtual processors this time is only a small improvement.

4.2.4 Concurrent communication by reallocation through shuffle operations
on sets of FFT data

A fourth alternative is to divide the virtual processors into n sets and perform a real-
location by cyclic rotation of the addresses m steps for set m with the sets numbered
consecutively from 0. After such a reallocation the communication required for any

Proc. id Po .P1 Pg P3 P4 P5 P6 P7 Ps Pg P10 Pu P12 P13 P14 P15
after 0 1 2134|567 |89]|10|11 1213|141 15
step 16 | 17 |18 |19 (20|21 |22 (23 |24 |25 | 26 | 27 | 28 | 29 | 30 | 31

1’2£ —1 3233343536 |37|38|39 |40 |41 | 42 | 43 | 44 | 45 | 46 | 47

48 | 49 | 50 | 51 | 52 | 53 [54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63

after 0 (1 2|3 |16|17 |18 |19 (323334 | 35 | 48 | 49 | 50 | 51
step 4 | 5|6 |7 [20]21]22|23|36|37| 38|39 | 52| 53|54/ 55
=+ 8 [9 (10 (11|24 |25|26 |27 |40 (41| 42 | 43 | 56 | 57 | 58 | 59
12 (13 |14 [15|28 |29 |30 |31 |44 |45 | 46 | 47 | 60 | 61 | 62 | 63

after 0| 4|8 [12]16|20 |24 (2832|3640 | 44 | 48 | 52 | 56 | 60
step 1|15 |9 | 13|17 (2125|2933 |37| 41 | 45 | 49 | 53 | 57 | 61
Z4+1 2 |6 |10(14|18|22)|26|30|34|38| 42| 46 | 50 | 54 | 58 | 62
3 | 7 |11 |15(19|23|27|31(35|39| 43 | 47 | 51 | 55 | 59 | 63

Table 3: The data distribution for the recursive partitioning, radix-4 FFT for 16 pro-
cessors and 4 virtual processors.

rank is in different dimensions for the different sets of virtual processors. The commu-
nication system is fully utilized. A final reallocation is required after the completion
of the computations to realign the data. A one step rotation is a shuffle operation;
sh(u) = (un_gun_3 . UgUn_1), Where u = (Up—1Up—2...up). A rotation of j steps is de-
fined by sh? = sh o sh’~1. The communication time requlred for the two sets of shuffle
operations and the FFT computation is at least 2 . 22~"»~12=L | 9p-n~1 This bound is
obtained by dividing the local data set into n subsets, and noticing that the average
communication distance is 2. An FFT based on shufﬁe operations is clearly inferior to

2°
the pipelined, or high radix algorithms.

4.3 Allocation of Twiddle Factors

All twiddle factors wf;, Jj €10, % — 1] are used in the first rank of a radix-2 DIF FFT,
or the first two ranks of a radix-4 DIF FFT, or three ranks of a radix-8 DIF FFT. As
the computation proceeds from the input to the output, the number of distinct twiddle
factors needed decreases. For the radix-2 DIF FFT the exponent of the twiddle factors
needed for the butterfly on elements z(j) and z(j + P), where j = (jp-1Jp-2---Jo),
is (jp—2Jp-3--.Jo). For the second rank the exponent of the twiddle factor wp is
(Jp-3Jp-a-..Jo0) for the pairs in locations j and j + —. In general, for an in-place
DIF rad1x—2 FFT algorithm [13] the twiddle factor requlred for the computation of a
butterﬂy on the elements in position j and j + =2+ 2q+1 , 1.e., for butterflies on bit p—¢—1 is

wfé’ ~2=ap—g=3-+000- 0, where the number of trailing 0’s is ¢, ¢ € [0, p— 1] is the rank index.

The exponent is simply the address of the lower storage location of the two involved

10

in a butterfly computation shifted left as many steps as the index of the rank being
computed.

If the DIF FFT is computed on a Boolean p-cube, then node P — 1 requires p — 1
distinct twiddle factors. If the FFT instead is computed on a n-cube with n < p,
then there are p — n ranks computed locally. The number of twiddle factors required
for these ranks are -7 2P="~™ = 2P=" _ 1. After these first p — n ranks are com-
puted the interprocessor communication takes place. The twiddle factors needed are
wip—2melp=a=23000-0 h ore the number of trailing 0’sis ¢, ¢ > p—n,and p—2—q < n—2.
With a cyclic assignment of the data to processors, all twiddle factors needed for all
elements in a processor are the same. Hence, for cyclic data assignment and a radix-2
DIF FFT computed on a Boolean n-cube, n < p, the maximum number of distinct
twiddle factors needed in a processor is 2P~" 4+ n — 2.

For a DIT radix-2 FFT, the exponent of the twiddle factors can also be computed
from the addresses of the elements of an in-place algorithm. The twiddle factors for
rank q are wk~PetiIp=100-0 " ore the number of trailing 0’sisn—1—g¢, ¢ € [1,p—1].
Note, that the address is bit-reversed and shifted for the proper exponent. For the
radix-2 DIT FFT the twiddle factors in computing rank 0 are all w%. In computing
the DIT FFT on a Boolean n-cube it is convenient to use a consecutive allocation of
data elements to processors. In such a case all elements assigned to a processor have
the same n high order bits, and all butterfly computations for the elements assigned
to a processor require the same twiddle factor for any rank requiring interprocessor
communication.

5 Summary

We have presented FFT algorithms that make effective use of the hardware floating-
point capability of the Connection Machine, and for which the use of the storage band-
width and the communication system are of optimum order. For FFTs local to a proces-
sor, 1.e., on virtual processors, a radix-R FFT should be used where R is determined by
the number of available registers on the floating-point processor. For inter-chip FFTs
a radix-4 pipelined algorithm yields minimum communication time with a very small
margin over a radix-2 algorithm, if the number of dimensions required for virtual proces-
sors is smaller than the number required for real processors. Otherwise, a reallocation
of the type all-to-all personalized communication between two sets of local FFTs offers
the lowest communication time by a small margin over the radix-2 pipelined algorithm.

With a cyclic data assignment for a DIF FFT the first p — n ranks of butterfly
computations for an FFT on P elements on N processors are local and the last log, N
ranks require interprocessor communication. All butterfly computations for a given
rank and chip pair require the same twiddle factors. The exponent of the twiddle factor
is obtained from the global address left shifted a number of steps equal to the rank.

11

For interprocessor communication only the processor address is needed. For DIT FFTs
a consecutive data assignment yields similar properties, except that the first n steps
require interprocessor communication, and the last p — n steps are local. The exponent
of the twiddle factors are computed from the global address bit-reversed, left shifted,
but with a decreasing shift with the rank. For the first n steps the processor address
suffices for the computation of the exponent, and all butterfly computations between a
pair of processors for a given rank require the same twiddle factor. The total number
of twiddle factors stored is % + nN for % elements stored in each of N procesors. No
communication of twiddle factors is needed. The expected execution time for an FFT
on 16 million complex data elements is about 1.5 seconds.

The optimal number of processors is equal to the number of data elements, or the
maximum available should the number of elements exceed the number of processors.
The only exception is very small FFTs.

References

[1] David H. Bailey. A high-performance fast Fourier transform for the Cray-2. The
Journal of Supercomputing, 1(1):43-60, 1987.

[2] Bengt Fornberg. A vector implementation of the fast Fourier transform. Mathe-
matics of Computation, 36:189-191, 1981.

(3] Kung HT Hong J.W. I/O complexity: the red-blue pebble game. In Proc. of the
13th ACM Symposium on the Theory of Computation, pages 326-333, ACM, 1981.

[4] S. Lennart Johnsson. Combining parallel and sequential sorting on a Boolean n-
cube. In 1984 International Conference on Parallel Processing, pages 444448,
IEEE Computer Society, 1984. Presented at the 1984 Conf. on Vector and Parallel
Processors in Computational Science II.

[5] S. Lennart Johnsson. Communication efficient basic linear algebra computations
on hypercube architectures. J. Parallel Distributed Comput., 4(2):133-172, April
1987. (Tech. Rep. YALEU/DCS/RR-361, Yale Univ., New Haven, CT, January
1985). |

[6] S. Lennart Johnsson. The FFT and fast Poisson solvers on parallel architectures.
In Fast Fourier Transforms for Vector and Parallel Computers, page , The Math-

ematical Sciences Institute, Cornell Univ., 1987. YALEU/DCS/RR-582, March
1987.

[7] S. Lennart Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM
J. Sci. Statist. Comput., 8(3):354-392, May 1987. (Tech. Rep. YALEU/DCS/RR-
436, Yale Univ., New Haven, CT, November 1985).

12

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

S. Lennart Johnsson and Danny Cohen. A Mathematical Approach to Com-
putational Networks for the Discrete Fourier Transform. Technical Report,
USC/Information Sciences Institute, 1983. in preparation.

S. Lennart Johnsson and Ching-Tien Ho. Multiple tridiagonal systems, the alter-
nating direction method, and Boolean cube configured multiprocessors. Technical
Report YALEU/DCS/RR-532, Dept. of Computer Science, Yale Univ., New Haven,
CT, June 1987.

S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum

broadcasting and personalized communication in hypercubes. Technical Re-
port YALEU/DCS/RR-500, Dept. of Computer Science, Yale Univ., New Haven,
CT, November 1986. To appear in IEEE Trans. Computers.

S. Lennart Johnsson and Peggy Li. Solutionset for AMA/CS 146. Technical Re-
port 5085:DF:83, California Institute of Technology, May 1983.

S. Lennart Johnsson, Uri Weiser, Danny Cohen, and Al Davis. Towards a formal
treatment of VLSI arrays. In Proceedings of the Second Caltech Conference on
VLSI, pages 375 — 398, Caltech Computer Science Dept., January 1981.

Alan V. Oppenheimer and Ronald W. Schafer. Digital Signal Processing. Prentice-
Hall, Englewood Cliffs. NJ, 1975.

W.P. Petersen. Vector fortran for numerical problems on CRAY-1. Communica-
tions of the ACM, 26(11):1008-1021, November 1983.

L.R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing.
Prentice-Hall, Englewood Cliffs. NJ, 1975.

Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197-210, 1987.

Paul N. Swarztrauber. Vectorizing the FFTs. In G. Rodrique, editor, Parallel
Computations, pages 490-501, Academic Press, 1982.

Charles van Loan, editor. Fast Fourier Transforms for Vector and Parallel Com-
puters Workshop, Mathematical Sciences Institute, Cornell Univ., March 1987.

13

