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Abstract

This paper presents an approach to sensor-based decision making in unstructured environments
that relies on describing geometric structures by parameterized volumes. This approach leads
to large systems of nonlinear, stochastic inequalities. We describe how these inequalities can be
solved using interval bisection, discuss the structural and statistical convergence of the technique,
and present some preliminary experimental results.

1 Introduction

The increasing emphasis on adaptability and autonomy in robotics places high demands on the
ability of a system to react to sensor data. This is particularly true when the system must operate in
partially or totally unstructured environments. However, unstructured situations pose challenging
problems in sensor data fusion and sensor-based decision making.

Solving a sensor data fusion or decision making problem involves stating a set of constraints
that describe the relationship between problem inputs (sensor data) and desired solutions (model
parameters, segmentations, decisions, and so forth), and developing' a method for resolving the
constraints when applied to real inputs. One of the difficulties in unstructured environments,
particularly when geometric issues are involved, is finding a set of constraints that are physically
plausible, solvable, and useful for the problem at hand.

Many sensor data modeling techniques fit or match one or more modeling primitives to the data
and consequently rely on strong assumptions about the form and/or physical behavior of observed
objects. There has been work in this area based on parametric patches [2, 3, 8, 9], generalized
cylinders [15], superquadrics [17], deformable models [14, 18], parameterized model recognition
[5, 7] and many other variations too numerous to mention here. By increasing the complexity of

OThis is a revised and updated version of an article that will appear in the Proceedings of the 1991 IROS conference,
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such models, it is presumably possible to model nearly anything to acceptable level of accuracy.
However the complexity of the resulting description may rival that of the data itself! Moreover, more
complex modeling schemes usually lead to more difficult problems in detecting and accommodating
outliers in the data and attaching some meaning to fitting error.

Instead of modeling geometry using surfaces defined by equalities, we propose modeling volumes
defined by inequalities. By using inequalities, it is possible to make correct, consistent decisions
about observed surfaces that do not necessarily correspond to a specific geometric form.

For example, suppose that the task is to pack a variety of irregularly shaped objects into a
confined space. One approach to this problem would be to fit some type of regular surface to the
object, and to find a placement of these regular surfaces within the space. However, due to fitting
errors it is quite possible that the chosen placement will not work with the actual objects. By
changing the equalities describing the surfaces to inequalities, it is possible to compute bounding
descriptions for the objects and find an arrangement of these bounding descriptions. In this case, the
placement is guaranteed to work (modulo some assumptions about the accuracy and completeness
of the observed data).

Solving sets of nonlinear inequalities is a difficult problem. Least squares, Bayesian estimation,
or energy minimization—all popular methods for solving equality constraints—are often difficult
to apply when nonlinear inequalities are involved. Recently, we have been investigating solving
sensor data fusion problems using interval-based constraint solving methods [6]. The procedure
we use is a combination of minimization and constraint solving. This method works directly
on the problem constraints, and convergence can be demonstrated for an extremely wide variety
of problems with very few statistical or structural assumptions. This approach has the further
advantage of generating sets of solutions. Hence, it is possible to evaluate the robustness of actions
taken based on the solution. For example, a small solution set for the placement of an object in
a container suggests that the likelihood of collision when physically placing the object is relatively
large.

The remainder of this paper describes some preliminary results on applying the constraint
solving paradigm to the large systems of inequalities arising from sensor data fusion and decision
making problems. The major points discussed are: the solution of systems of nonlinear constraints
and the properties of constraints that contain random variables, formulating the constraints for
determining a packing of a small number of objects, and the discussion of some preliminary ex-
perimental results for the packing problem. Readers interested in further experimental results of
interval-based constraint solving are invited to consult [6]. '

2 Modeling with Constraints

In [6] we discuss a methodology for developing systems of constraints describing sensor data fusion
problems. Briefly, we assume that data is observed with bounded error. We state two general classes
of constraints: sensing-related constraints and task-related constraints. Sensing-related constraints
describe the relationship between observations and an underlying physical or geometric, parametric
model. These constraints are usually independent of the specific problem that is being solved.




Conversely, task-related constraints, as the name suggests, describe the conditions that must be
satisfied to reach a decision or take an action for a particular problem.

For example, the definition of the packing problem employs sensor-related constraints that
describe enclosing volumes for the objects themselves, and task-related constraints that describe
containment and disjointness of all objects when packed. We formulate this problem using a
superquadric representation of two-dimensional contours. Superquadrics have the advantage of
allowing a range of sizes and shapes, although they can only accurately represent convex bodies. A
superquadric in standard position is described by a vector s = [a,b,v] where a and b represent size
along the z and y axes, and v encodes shape. Let ! = [z,y, ] describe a location and orientation
in the plane, T(l,u) denote mapping of the point u under spatial transformation defined by /, and
T-1(l,u) denote the inverse mapping. The functional form that describes a superquadric in the

plane is:
2/+v\ /2
9'((a,5,7],[=,9]) ( 3 )

9(;8,2) = ¢'(s,T7'(1,2))

If g(I;s,2) 2 1 the data point lies outside the superquadric, and conversely g(I;s,z) < 1 indicates
that the data point is within the region enclosed by the superquadric.

The packing problem requires parameters for n superquadrics describing objects, and n trans-
lations and orientations of the objects within the container. Let ! and s denote locations and
superquadric parameters as above, m = [s,t,a] denote a position within the container, and
p = [m1,l1,81,...,Mn,ln, 8;] denote the vector describing the entire system. Given sets of data
vectors O1,0,,...,0, from n objects and a set C of data vectors from a container, the system of
constraints for object 1 is:

x 2/~

a

y

Vze0; g(li;si2z) <1
VzeC, g(mi;si,2)21
Vi#1i, VzeO;, g(mj;sj,T(m;,T'l(l,-,z))) >1

A satisfactory solution to a sensor data fusion problem requires satisfaction of both sensor-related
and task-related constraints. In general, task-related constraints may be interpreted universally—
the criteria must hold for all consistent models, or ezistentially—the criteria must hold for some
consistent model. The proper interpretation depends on the criteria themselves, as well as the
definition of what constitutes a consistent model for the data. For example, to grip an object, we
must prove that no matter what the exact size of the object is, it is less than the gripper opening.
If the geometric model is defined using equality, then any consistent model “fits” the data up to
observation error. In this case, it must be proven that all possible models are smaller than the
gripper opening. Conversely, if the geometric model is defined using an inequality so that it bounds
the object, then it suffices to exhibit some model that bounds the data and is small enough to




fit into the gripper. In this article, we will only be concerned with feasibility—that is, existential
problems. _

In the remainder of this article the vector Z represents the “giant” vector resulting from the
conjunction of all data vectors z, and p of dimension s represents the collection of all problem pa-
rameters. With these conventions, by appropriate reindexing, renaming of variables, and algebraic
manipulation we can rewrite any conjunction of constraints in the form g*(p, Z) < 0 where < is
interpreted to apply componentwise. A parameter vector p is consistent with a data vector Z if
and only if g*(p, Z) < 0. If this condition does not hold, the parameter vector is inconsistent. The
set of all consistent interpretations of a vector of data, Z, with respect to a system of constraints,
g*,is

P*={pePlg*(p,Z) < 0}.
We refer to P* as the solution set consistent with a series of observations. The problem is to
determine if this set is nonempty, and if so to generate some portion of it.

3 Interval-Based Constraint Solving

There are several approaches to solving systems of equalities and inequalities [10]. Most techniques
encode some or all of the constraints as an objective function and perform constrained or uncon-
strained minimization. Our constraint solving techniques are based on interval arithmetic. The
seminal work on the subject of interval-based computation is Moore [11]. More modern expositions
include [1] and the proceedings of a quintennial conference [12, 13].

In the following R represents the real line. We denote the closed interval from a to b, a < b,
by [a,b]. If a and b are vectors in ®°, a; < b;, i = 1...s, then we regard the set [a,d] = [a1,b1] X
... X [as,bs] as an interval vector in ®°. We distinguish between point-valued and interval-valued
variables by writing the latter in bold-face type, and we denote the space of intervals in R* by
[RI. So, if z € R*, we may write z € x = [x,%] € [R]°, indicating that a real vector x falls within
some real interval vector x with lower vector x and upper vector X. We often take the liberty of
mixing point values with interval values within expressions in which case a point value, z, should be
thought of as the degenerate interval x = [z, z]. We define two special operators, the width function
w : [R]* — R* by w(n) = T — n; and the center function ¢: [R]* — ®* by ¢(n) = (A + n)/2.

For a continuous function h : R* — R, we require that an interval function, h : [R]* — [R]
satisfy the following condition:

h(x) 2 {y|y = h(z),z € x}. (1)
For example, given two intervals x and u in [R]°, we can define binary + and unary — as
x+u:i=[x+u,x+1 and -x:=[-%,-x]
Binary — can be defined by x — u = x + (—u). Likewise,

X * u := [min(xu, Xu, XU, XU), max(xu, Xu, XU,Xu)] and




1/x:= [1/%,1/x].

Division of two intervals is then x/u = x*(1/u). All of these operations form the minimal bounding
interval satisfying (1).

In general, a continuous function A maps a compact set to a compact set, hence y = h(x) is
a closed interval, and therefore a point in [R].! Consequently, interval extensions exist for most
commonly encountered functions as well as for comparison operators and set-theoretic operations.
The only non-standard operation is U, which we define as the minimum bounding interval of its
operands instead of strict set-theoretic union. Also, we note that interval comparison is a three-
valued logic: two intervals may be related by less than, greater than, or neither.

We define the interval eztension of a function H : £ — R™ with component functions A; :
R R,i=1,...,mas

H(x) = hy(x) X hy(x) X ... X hpn(x).-

Given interval versions of the basic algebraic and trigonometric operators, the interval extension of
a function can be computed by replacing all point operators and functions with their corresponding
interval equivalents. In short, the interval extension of a function provides a convenient means for
computing the range of a function applied to interval arguments.

3.1 Interval Bisection

As noted previously, we assume that observation errors are bounded so that a data vector z can
be represented as an interval z = [z — ¢,z + t] where ¢ is a known error bound. Z represents the
conjunction of these vectors. If the interval extension of g*, g*, is evaluated on a parameter interval
vector n and data interval vector Z, and g*(n,Z) < 0, then every point in n is consistent with
Z. Every point in an interval vector n is inconsistent with Z if, for some component kof g7,
gi(n,Z) > 0. If neither case holds, then no decision can be made. Using these ideas, we define an
interval reduce() operator as:

reduce(n,g*,Z):
1. For each component %, i =1,...,s, trisect? n in 4, yielding intervals nj j,n1,2,..., 052, s 3.

2. If for some component k, gi(n; ;,Z) > 0 then n;; :=0.

3. n:= n U n;;
1<i<s1<5<3
Intuitively, reduce() tests each component of an interval parameter vector to see if a subinterval
can be “sliced off” by showing it is inconsistent with the system of constraints. This simple “first-
order” version of interval reduction will be used throughout this paper. The use of higher order or
other modified versions of reduce() are discussed in [6].

1For the interested reader, we note that it is relatively straightforward to define a topology on the space of closed
intervals so that the continuity of a function h defined on R carries over to its interval equivalent h defined on [R]’
{1, 11).

2Trisection is the division of a node into three equal parts by division of single component.




For an interval n, bisect(n,d) computes the set of subintervals resulting from bisecting compo-
nent d of n. The skeleton of an algorithm for incremental computation of a solution set is:

generalized-bisection(n,g*,Z) :

1. (Initialization)

(2) Q:={n}.
(b) £:=0.

2. Termination Test

(a) If @ = £ = 0, stop with inconsistency.
(b) If £ # 0 stop with success.

3. (Reduction)

(2) Remove an interval x from Q.

(b) Compute reduce(x,g*,Z).

(c) If x =0, go to step 2.

(d) If g*(x,2) < 0, then £L:= L U {x}. Go to step 2.

4. (Bisection)

(a) Choose a dimension 1 < d < s with w(xg) > 0.
(b) Q:= QU bisect(x,d).
(c) Go to step 3.

Intuitively, the algorithm can be thought of as incrementally “classifying” portions of the pa-
rameter space as inside or outside the solution set. At every iteration, the set of intervals QU L is a
partitioning of the current best approximation to the solution set. The algorithm terminates with
success if a feasible point is found and inconsistency if the system of constraints has no solution.

There are two points of nondeterminism in the algorithm: the choice of node to take from the
queue, and the choice of dimension to bisect. It is crucial that certain fairness properties hold in
order to guarantee convergence. In practice, this is seldom a problem, although good choices can
significantly improve convergence. These points will be discussed in Section 4.

3.2 Some Comments on Convergence

There are two aspects to the convergence of constraint solving methods: structural and statistical.
By structural convergence, we mean the convergence of the computed set of feasible points to the
true set of feasible points for a given system of constraints. Statistical convergence refers to the
decrease in size of the solution set as more (stochastic) constraints are added to the system. We

6




cannot provide a complete discussion of convergence in this paper, but we will strive to estab-
lish some intuition with minimal notation and theory. All results will apply to scalar systems of
constraints, though most extend to multidimensional systems in a straightforward way.

For a fixed system of constraints, if the interval operators are properly defined and satisfy (1),
the algorithm will halt with success only if there is a point that satisfies all constraints. Assuming
the constraint functions obey a Lipschitz condition, that variables representing data only appear
once in interval expressions, and that certain fairness properties hold when choosing nodes from
the active queue and choosing components to bisect, it is possible to demonstrate that the interval
bisection procedure converges to the solution set of a system of constraints.

Interval bisection makes no assumptions about the nature of sensing errors. However, in prac-
tice, most observation errors are time-varying to some degree. In such cases, repeated intersection
over time leads to increasingly tighter bounds on the unknown quantity. For example, by straightfor-
ward manipulation the system z; = z+uv;, v; € [~1, 1], yields the constraint z € [2;—1, z;4+1] for each
i. Assuming v varies within its uncertainty interval, the intersection will never be empty and will
become continually smaller. For example, given the sequence of observations 10,9.5,10.5,9.1,10.1,
under the above constraint the final value must fall in the interval [9.5,10.1]. More generally, the
following properties hold: ’

. Let X;,Xa,...X, be a sequence of independent random variables such that
¢ X; € [9 - a;, 0+ b,'], and

‘ o for any 6 > 0, there is an € > 0 such that P(X; <@ —a;+6) > eand P(X; >0+b;—6) > ¢
(the distribution places mass around the endpoints of the interval).

Let S, = ﬂ[X, - b, X + a,-]. Then

=1
1. Foralln> 0,0 € S,.

2. Forany ¢ > 0, lim P(w(S,) > ¢) — 0 as n — oo. (the sequence of sets converges in probability
[4])-
An immediate consequence of the above is the following:

Let X1, X3,...X, be a sequence of random variables as above and let f be a continuous function

defined on
U180 — ai — b;,0 + a; + b;]. Then

1. f(6) € 5% = (ﬂ} (X = b, Xi + ai)).
v 1=1

2. For any ¢ > 0, lim P(w(S{) > ¢) = 0 as n — 0.

3. 6€{a] f(a)€ SL}.




In other words, convergence is preserved under continuous transformations. Furthermore, if
f~1 is also a continuous function then the uncertainty interval on @ is a closed interval. Although
these results are formulated for equalities, the same results can be derived for inequalities using
similar methods of argument.

While we have not formally stated and proved such a proposition, these two results suggest
that interval bisection on increasingly larger systems of stochastic constraints converges to the true
underlying solution set of the system.

Finally, a word about so-called outliers. Our convention is that an outlier is an observation that
exceeds the error bound used to formulate the system of constraints. Therefore these observations
potentially render the system of constraints inconsistent. We use a very straightforward approach to
handling outliers in data. If it is suspected that ¢ percent of the data is outlier data, then no interval
is rejected until it is inconsistent with ¢'n constraints, where n is the total number of constraints
in the system and ¢’ > c. For large data sets this has proved to be a very workable approach to
robustness, and can also be proved statistically convergent under reasonable assumptions.

4 Implementation and Experimentation

We have performed some initial tests of the constraint solving system on the problem of two-
dimensional packing. This has been carried out both in simulation and with real data.

The constraint solving system we use, implemented in C++, supports writing procedures to
compute the truth value of constraints such as the inequalities presented above, and provides
“binding” operators for associating data with the constraints. Nodes are chosen from the active
queue by looking at the extent to which they satisfy the system of constraints. This measure of
satisfaction is much like an objective function in that it governs and guides the search for a solution
to the constraints. The function is formulated as follows.

Suppose a constraint is of the form g(p, z) < . Expanding in a Taylor’s series about a point po
and dropping higher order terms leads to the linear form:

9(po, z) + ¢'(Po, 2) - (p — po) < e

The gradient vector g'(+,-) is the local normal to the constraint surface in parameter space. So,
a coarse approximation to the distance from the point po to the constraint surface is given by:

' _ g(p ,Z) - Q ’
d(po, 2,9) = m llg'(po, )| # 0.

Here, we have preserved sign, so negative distances indicate that the parameter point satisfies
the constraint. Let C; = (g;, ;) represent a constraint in the form described above together with
a set of observations O;, and let C = {C1,Ca,...,Cn}. Then we define the objective function as

E(p,C)= (g%a)tgcgggd(p,z,g)

In other words, the objective function is approximately the distance (in parameter space) to the
boundary of the feasible set.
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Figure 1. The configuration of several simulated objects as generated by the packing algorithm.

Placements for packing are computed sequentially. First, the largest object is chosen and
bisection carried out until the value of the above-defined objective function is negative for some
point within an interval (indicating that the interval contains at least one feasible point). These
points are sampled as reduce() is computed: each is the center point of one of the subintervals that
reduce() evaluates. The system parameter vector is then extended to accommodate another object,
and the algorithm searches for a joint placement of two objects with the placement of the first
restricted to the interval known to contain a feasible point. This process is iterated for as many
objects as needed. It is important to note that, while the placement for prior objects is restricted to
an interval, the data modeling constraints are computed anew. This allows the algorithm to adjust
modeling parameters to accommodate the additional constraints from newly introduced objects.

To give an example, suppose we are given a square container with 20 mm sides and origin at
the upper left corner. An object with size 23mm by 6mm is introduced. The initial bounds on
placement are all positions in the container and angles in the range —7/4 to /4. Bounds on the
size of the object are computed by fitting a rough bounding box to the data. After 18 iterations,
the algorithm produces intervals (9.6, 10.4] and [8.9,11.1] on position within the container, and an
interval of [r/6, /4] on orientation. Note, in particular, that the algorithm has correctly deduced
that the object must be tipped to fit into the container. A second object of size 6mm square
is introduced. After another 40 iterations, intervals of (6.7,8.0], [16.3,17.0] and [r/12,7/12] are
produced for the translation and orientation parameters of this object. The bounds on placement
of the first object are also smaller. A slightly rounded version of the second object is added, and
after an additional 23 iterations the results are the intervals [13.6, 15.6}, [3.0,4.9) and [—7/4,7/4]
describing the placement. Finally, a small square of size 4mm on a side is added and after 38
additional iterations the algorithm finds placement [3.0,3.7], [11.2, 11.9] and [-7/4,-7/12]. One
of the final configurations is shown in Figure 1.

The algorithm will also determine when objects cannot be fit by noting that the problem is
inconsistent: there are no feasible points. The same comments hold for multiple objects. However,




Figure 2. The generated placement of the test objects is depicted by superimposing their contours on the
contours of the container.

it is always possible that there is a solution for multiple objects that is lost by fixing the position of
the first object to a particular region. The latter can be overcome by either solving for a placement
of the objects simultaneously or generating additional possibilities for the placement of the first
object. '

The algorithm has also been tested on real data. The example presented here is to pack a knife
and a small piece of paper into a rectangular area (a cd case). The data used were image contours
of the objects. The edges were extracted using the “vgef” operator (an implementation of the filter
described in [16]) supplied with the Khoros system [19].

Finding a placement for the individual objects took relatively little time. For the paper alone,
the algorithm took 6 iterations to generate the first feasible point. The knife, since it is substan-
tially “tighter” fit, required 50 iterations to generate the first feasible point. Placing both objects
simultaneously particularly difficult because the paper only will fit on one side of the knife. At a
very early point in the solution process, the algorithm must decide on the approximate region to
place the paper. If the correct initial placement region for the paper is chosen, the current imple-
mentation is able to generate and verify a placement for both the knife and paper in 101 iterations.
If the initial choice is wrong, it spends several hundred iterations proving that there is no placement
on one side before moving to the other side. This is a general problem when there are symmetries
in problems. For this reason, we plan to perform a “beam” search when symmetries such as this
appear. This will avoid the backtracking problem at the cost of maintaining multiple search paths.

Figure 2 shows the placements that were generated for the single objects, and Figure 3 shows
a placement that was generated for both objects. Note that the knife has a clean, but irregular
outline, and that the paper is somewhat irregular, and also contains interior texture. None of these
factors affect the operation of the algorithm.
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Figure 3. A placement that was generated for the two test objects.

5 Discussion

We have presented an approach to sensor-based decision making in unstructured environments. The
features of this approach are conceptual simplicity, generality, and provable convergence for a wide
variety of problems. In the next stage of our work, we plan to couple this packing algorithm with
our robot arm. As noted in the previous section, the algorithm we have described is able to generate
placements for single objects relatively effectively. The constraints for generating placements for
multiple objects requires projecting the data for the objects into their proposed positions, and
verifying the placement of a new object. A more natural approach is to generate the placement
for a single object, place the object into the container with the arm, acquire another image, place
a second object, and so forth. These techniques may also be combined with “active” exploratory
techniques that simply try to insert an object and only invoke the geometric method described
above when no solution is found.
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