

Yale University

Department of Computer Science

Similarity Detection via Random Subsets for Cyber

War Protection in Big Data using Hadoop Framework

Dafna Ackerman1 Amir Averbuch2 Avi Silberschatz3

Moshe Salhov2

YALEU/DCS/TR-1517

July 10, 2015

1School of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
2School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
3Department of Computer Science, Yale University, New Haven, CT 06520-8285, USA

Abstract

 The increasing volume of Internet traffic to be analyzed imposes new challenges

for anomaly detection systems. These systems should efficiently analyze a large

amount of data to discover anomalous fragments within a reasonable response time.

In this work, we propose a method for anomaly detection such as intrusion attacks in

networking data, based on a parallel similarity detection algorithm that uses the

MapReduce methodology implemented on an Hadoop platform. The proposed system

processes large amount of data on a commodity hardware. The experimental results

on the 2009 DARPA database demonstrate that the proposed system scales very well

when data sizes increase.

 List of Abbreviations

 SDA Similarity Detection Algorithm

 IDS Intrusion Detection System

 MDP Multidimensional Data Point

 EMDP Embedded Multidimensional Data Point

 HDFS Hadoop Distributed File Systems

 DoS Denial of Service

 DDoS Distributed Denial of Service

 DM Diffusion Maps

 HTCondor High-Throughput Computing Condor

 DNS Domain Name System

 TCP Transmission Control Protocol

 UDP User Datagram Protocol

 IP Internet Protocol

 ICMP Internet Control Message Protocol

 LLC Logical Link Control

 ARP Address Resolution Protocol

 RM ResourceManager

 NM NodeManager

 AM ApplicationMaster

1 Introduction

In recent years, growing attention has been given to network security problems, in particu-
lar, network intrusion detection. This is due to the indisputable dependence on computer
networks for personal, business and government use. Intrusion Detection System (IDS)
has the potential to mitigate or prevent such attacks. Intrusion detection is the process of
monitoring network traffic for unauthorized use, misuse, and abuse of computer systems
by both system insiders and external penetrators [37].

The increasing volume of Internet traffic to be analyzed imposes new challenges to
an IDS performance. IDSs should efficiently analyze a huge amount of data to discover
anomalous fragments within a reasonable response time. Due to the complexity and the
size of the data generated by large-scale systems, traditional IDSs, which were designed for
small-scale network systems, cannot be directly applied to large-scale systems. In order
to cope with the increase in data sizes, new distributed methods need to be developed in
order to make the IDSs scalable in their operation [49].

In this paper, we propose an IDS, which applies a distributed similarity detection
algorithm (SDA) that uses the MapReduce methodology implemented on an Hadoop
platform. The proposed IDS processes large amount of data on a commodity hardware.
The experimental results from a 7TB 2009 DARPA dataset demonstrate that the pro-
posed system scales well with the increase of the data size.

This paper has the following structure: Section 2 discusses related work on detect-
ing intrusion attacks in networking data. Section 3 describes different preliminaries of
the mathematical background needed for the algorithm and the technical details of the
frameworks used to implement it. Section 4 presents a detailed description of the SDA
and how it is implemented. Section 5 presents the results from the application of the al-
gorithm applied to the 2009 DARPA dataset. Finally, section 6 presents our conclusions
and suggests options for future work.

2 Related Work

There are numerous approaches for detecting intrusion attacks in networking data and it
has been extensively studied over the years [10, 19, 50]. Intrusion detection techniques
are traditionally categorized into two methodologies: anomaly detection and signature
detection [27]. General description of these methodologies is presented in Fig. 2.1.

(a) Anomaly Detection (b) Signature Detection

Figure 2.1: Intrusion Detection Techniques

Anomaly detection based IDS monitors network traffic and compares it against an

3

established baseline. The baseline identifies what are the “normal” characteristics for that
network. This IDS stores features of the user’s typical behaviours into a database, then
compares the user current behavior with those in the database. It treats any incoming
traffic, which is significantly different than the normal profile, as anomalous [49]. It is
capable of identifying attacks which were not previously detected but have a high false
alarm rate for a legitimate activity [12]. This is due to the fact that the normal profile
cannot provide a complete description for the behaviours of all the users in the system.
Moreover, user’s behaviour changes constantly.

There are numerous anomaly detection techniques, which make use of supervised or
unsupervised methods, to detect abnormal behaviors in patterns. Parametric approaches
assume that the normal data is generated by a parametric probability density function.
This technique is often used in quality control domain [46]. Another category of para-
metric anomaly detection is known as “Regression Model Based” [11]. Non-parametric
techniques include density estimation and clustering-based techniques. These techniques
are known as non-parametric techniques since they do not rely on a specific parametric
representation of the data but rely on the interrelations between data-points to separate
between normal and abnormal behaviors in the data. Density estimation based anomaly
detection methods, such as in [45, 55], rely on a reasonable assumption that normal
trends can be defined and detected by the behaviors of most of the observations in the
dataset. Clustering based anomaly detection methods, such as in [58, 40, 9], group to-
gether data-points based on a similarity measure where the anomalies (attacks) are the
patterns in the smallest clusters. Two assumptions have to hold for anomaly detection
method to be effective:

1. The number of normal patterns should be higher than the number of the anomalies.

2. The anomalies should be distinguishable from normal patterns.

Signature detection based IDS monitors network traffic and compares it against a
database of signatures or attributes from previously known malicious threats. This
method involves prior knowledge of anomalies patterns [23]. Its advantages are in its high
detection speed, low false alarm rate and high true-positive rate for known anomalies.
However, it fails in detecting new emerging threats and the attacks signature database
has to be manually updated, which is time consuming and effectively creates a lag be-
tween a new threat discovery and its signature being applied by the IDS [51]. Signature
detection based IDS that uses SNORT [41], which is an open source network intrusion and
prevention, has been proposed in [30, 31, 39]. Other signature methods use algorithms
to generate decision trees adaptive to the network traffic characteristics [28, 7].

The results in [56] show, for the first time, that it is possible to efficiently obtain
meaningful statistical information from an immense raw traffic data through MapReduce
methodology implemented on Hadoop. As a result, a growing number of IDSs adjusted
to large-scale networks by their implementation on Hadoop platform have been proposed
[26, 33, 8]. Two algorithms for detecting DDoS attacks using MapReduce methodology
are given in [53, 54]:

1. Counter based algorithm: A method that counts the total traffic volume or the
number of web page requests. This method relies on three key parameters:

4

(a) Time interval: the time duration in which the packets are analyzed.

(b) Threshold: frequency of requests.

(c) Unbalance ratio: the anomaly ratio of responses per page requested between
a specific client and a server.

The number of requests from a specific client to a specific URL within the same
time duration, is counted using a masked timestamp. The map function filters
non-HTTP GET packets and generates key values of the server IP address, masked
timestamp and client IP address. The reduce function aggregates the number of
URL requests, number of page requests and the total server responses between a
client and a server. Finally, values per server are aggregated by the algorithm.
When the threshold is crossed and the unbalance ratio is higher than the normal
ratio, the clients are marked as attackers. The key advantages of this algorithm
is its low complexity that could be easily converted to a MapReduce implementa-
tion. However, the authors indicate that the threshold value is a key factor in the
algorithm, they do not offer any further information on how to determine its value.

2. Access pattern based algorithm: This method is based on a pattern that differenti-
ates the normal traffic from the DDoS attacks. This method requires two MapRe-
duce jobs: the first job gets the access sequence to the web page between a client
and a web server that computes the spending time and the bytes count for each
URL request. The second job finds suspicious hosts by comparing between the ac-
cess sequence and the spending time among clients trying to access the same server.
This method has a high computational complexity and ad-hoc queries are delayed
due to the FIFO scheduling [43].

An IDS, which is based on a SNORT alert log using Hadoop, is proposed in [13].
This method contains 3 components: Snorts, Chukwa, which is a package that collects
logs in various computers and stores them in HDFS, and Hadoop. Each Snort monitors
a working server and sends alert logs to Chukwa agent as an adaptor. Chukwa agents
send logs to a Chukwa collector, which writes logs into a single sink file. Periodically,
the file is closed and the next sink file is created. The map function parse the sink files
for warning messages using special expressions. Then, the reduce function calculates the
count of each warning type.

An unstructured log analysis technique for anomalies detection implemented on Hadoop
platform is described in [20]. This technique is based on an algorithm that converts free
form text messages in log files to log keys without heavily relying on application specific
knowledge. The log keys correspond to the log-print statements in the source code which
can provide clues of system execution behavior. After converting log messages to log keys,
a Finite State Automaton (FSA) is learned from the training log sequences to present
the normal work flow for each system component. At the same time, a performance mea-
surement model is learned to characterize the normal execution performance based on
the timing information of the log messages. With these learned models, the application
can automatically detect anomalies in new input log files.

5

3 Preliminaries

This section describes different preliminaries of the mathematical background used in the
algorithm and the technical details of the frameworks used to implement it. It describes
Hadoop and MapReduce, HTCondor, different intrusion attacks and a diffusion based
method that reduces the number of extracted parameters by embedding the input data
into a lower dimension space. These methodologies and information are needed for the
implementation of the SDA.

3.1 Hadoop and MapReduce

Hadoop [3] is a popular Apache open source platform. It is a Java-based implementation
that provides tools for parallel processing of vast amounts of data using the MapReduce
paradigm [36]. It can be used to process immense amounts of data in a distributed
manner on large clusters in a reliable and fault-tolerant fashion [34].

MapReduce is a programming model for processing large datasets. It was first sug-
gested by Google in 2004 [18]. MapReduce splits a computational task into two steps
such that the whole process is automatically parallelized and executed on a large cluster
of computational elements. The user only need to specify map and reduce functions. All
mappers and reducers are independent from each other, thus, the application can run
in parallel on different blocks of the input data. A mapper maps the input data, which
is in the form of key/value pairs, to a list of intermediate key/value pairs by the map
method denoted by map(key1, value1) → list < key2, value2 >. The mapped interme-
diate records do not have to be of the same type as the input records. A given input pair
may map to zero or to multiple output pairs. The reducer reduces a set of intermediate
values that share a common key to a smaller set of values by a reduce function, which
is denoted by reduce(key2, list < value2 >) → list < value3 >. The reducer has three
primary phases:

1. Sort: The framework groups the inputs to each reducer by a key since different
mappers may output the same key.

2. Shuffle: The reducer copies the relevant sorted output from each mapper using
HTTP across the network. The shuffle and sort phases occur simultaneously, i.e.,
while outputs are being fetched they are merged.

3. Reduce: The reduce function is called for each (key, <values>) pair in the grouped
inputs. The output of each reducer is written to Hadoop Distributed File System
(HDFS) and it is not re-sorted.

Data flow through MapReduce architecture is depicted in Fig. 3.1.

6

Figure 3.1: Data flow through MapReduce architecture

In some cases, there is a significant repetition in the intermediate keys produced by
each map task and the user specified reduce function is commutative and associative. In
this case, the user can specify an optional combiner function that does a partial merge of
the intermediate data before it is sent to the reducer over the network [17]. The combiner
is a “mini-reduce” process that is executed only on data generated by one mapper. The
only difference between a reduce function and a combiner function is how the MapReduce
library handles the output of the function. The output of a reduce function is written
to the final output file on HDFS. The output of a combiner function is written to an
intermediate file that is sent to a reduce task. A partial combining significantly speeds
up certain classes of MapReduce operations.

HDFS is a distributed file system designed to run on commodity hardware in a fault-
tolerance manner [29]. Files in a Hadoop cluster are typically gigabytes to terabytes in
size. HDFS divides each file into smaller blocks and distributes copies of these blocks
throughout the cluster across different machines. This way, the map and reduce functions
are executed on smaller subsets of large datasets. This provides the scalability that is
needed for big data processing. HDFS uses a master/slave architecture where a master
node consists of a single NameNode that manages the file system metadata and the slave
nodes are one or more DataNodes that store the actual data. To ensure high availability,
there are often an active NameNode and a standby NameNode.

Hadoop consists of a framework for job scheduling and cluster resource management,
called YARN. YARN can run applications that do not follow the MapReduce model.
It permits simultaneous execution of a variety of programming models, including graph
processing, iterative processing, machine learning, and general cluster computing. YARN
consists of a global ResourceManager (RM), NodeManager (NM) and a per-application
ApplicationMaster (AM). The RM manages and allocates all cluster resources among all
applications in the system. The NM manages and enforce node resources allocations. The
AM manages each application life-cycle and task scheduling. Every node in the cluster
is considered to be composed of multiple containers where a container is an available
resource on a single node. A container is supervised by the NM and scheduled by the
AM. One MapReduce task runs on a set of containers, as each map or reduce function
runs on one container.

When a client request the execution of an application, the RM negotiates the necessary
resources and launches an AM to represent the submitted application. Using a resource-
request protocol, the AM negotiates resource containers for the application at each node.
Upon execution of the application, the AM monitors the containers until completion.

7

When the application completes, the AM unregisters its containers with the RM, thus
completing the cycle [2].
A description of YARN architecture is presented in Fig. 3.2.

Figure 3.2: YARN Architecture [1]

3.2 High-Throughput Computing Condor (HTCondor)

HTCondor [5] is an open-source of High-Throughput Computing (HTC) software frame-
work for distributed batch jobs. It can be used to manage workload on a dedicated
cluster of computers and/or harness non-dedicated resources, such as idle desktop com-
puters, under a distributed ownership. Thus, it can efficiently harness the use of all
available computing resources [48]. Like other batch systems, HTCondor provides a job
management and scheduling mechanism, priority scheme and resource monitoring and
management [47]. When a user submits a job to HTCondor, it finds an available machine
on the network to run the job on that machine. HTCondor has the capability to detect
that a machine running a HTCondor job is no longer available. It can checkpoint the
job and migrate this job to a different idle machine. Then, it continues the job on a new
machine from precisely where it left off.

3.3 Intrusion Attacks

In this section, we describe a few common intrusion attacks, which are present in the
2009 DARPA dataset, and explain their significance.

1. Denial of Service Attacks (DoS)
A DoS attack is an attack in which the attacker causes the resources of CPU
and memory to be too busy or too full to handle other legitimate requests [57].

8

Therefore, it can deny legitimate users access to a machine.
In a DoS attack, one computer and one Internet connection are used to flood a server
with packets with the aim of overloading the targeted bandwidth and resources of
the victim.
A DDoS attack uses multiple machines and Internet connections to attack a specific
machine. It is often distributed globally using a botnet. A botnet is a number of
Internet connected machines that, although their owners are unaware of it, have
been set up to forward transmissions, which include spam or viruses, to other
machines. [16]. Therefore, DDoS attack is hard to deflect because there is no
single attacker to defend from since the targeted resource is flooded with requests
from hundreds or even thousands of different sources.
There are many varieties of DoS attacks [38], such as:

Mail Bomb: The attacker sends ample mail messages to a server, thus overflowing
its mail queue that may cause a system failure.

SYN Flood: Occurs during the three-way handshake that marks the onset of a
TCP/IP connection. In the three-way handshake, a client sends a SYN packet
to a server to request a new connection. In response, the server sends a SYN-
ACK packet back to the client and places the connection request in a queue
of a finite size. As a final step, the client acknowledges the SYN-ACK packet.
When an attack takes place, the attacker sends an abundance of TCP SYN
packets to the victim forcing it to open a considerable number of TCP connec-
tions and to respond to them. Then, the attacker does not execute the final
step of the three-way handshake. Thus, leaving the victim paralyzed since
he is incapable to accept new incoming connections since its queue is full of
half-open TCP connections [43]. Figure 3.3(a) presents a diagram of a normal
TCP 3-way handshake. Figure 3.3(b) presents a diagram of a SYN flood at-
tack where numerous half-open TCP connections deny service from legitimate
users.

Figure 3.3: SYN flood attack diagram

9

2. Spambot
A spambot is an automated computer program designed to send spam. Spambots
create fake accounts or collect e-mail addresses in order to build mailing lists for
sending unsolicited e-mails. A spambot can gather e-mail addresses from web sites,
newsgroups, chat-room conversations, etc.

3. Domain Name System (DNS) redirection
DNS redirection is the practice of subverting DNS queries. This can be achieved by
malware that overrides the TCP/IP configuration of a victim computer to point at
a rogue DNS server under the control of the attacker, or through modifying the be-
haviour of a trusted DNS server so that it does not comply with Internet standards.
These modifications may be made for malicious purposes such as phishing, blocking
access to selected domains as a form of censorship, or for self-serving purposes by
Internet service providers or public/router-based online DNS server providers to
direct users’ web traffic to the attacker own web servers where advertisements can
be served, statistics collected, etc [25].

4. Phishing
Phishing is the illegal attempt to acquire sensitive information, such as usernames,
passwords, credit card details, etc, for malicious reasons by masquerading as a
trustworthy entity in an electronic communication such as emails.

3.4 Diffusion Maps

Diffusion Maps (DM) is a dimensionality reduction algorithm introduced in [42, 14, 32].
Dimensionality reduction is the process of reducing the number of features in each Mul-
tidimensional Data Point (MDP). It can be used to extract latent features from raw and
noisy features. It computes a family of embeddings of a dataset into an Euclidean space
that is often low-dimensional whose coordinates can be computed from the eigenvectors
and eigenvalues of a diffusion operator on the data. The Euclidean distance between
data-points in the embedded space is equal to the diffusion distances between probability
distributions centered at these data-points. Different from linear dimensionality reduc-
tion methods such as principal component analysis (PCA) [52] and multi-dimensional
scaling (MDS) [24], DM is a nonlinear dimensionality reduction technique that focused
on discovering the underlying manifold where the data resides. The shape of the low-
dimensional manifold is unknown a priori. By integrating local similarities at different
scales, DM provides a global description of the dataset. Compared with other methods,
the DM algorithm is robust to noise perturbation and is computationally efficient.
The basic algorithm framework of DM has the following components:

1. Kernel construction
For a dataset X of M MDPs {xi}Mi=1 where each xi ∈ Rn, a Gaussian kernel matrix

also called a similarity matrix, is constructed by k(xi, xj) = exp
(
−‖xi−xj‖

2ε

)
where

ε is the scale (radius) of the Gaussian kernel.
Setting the scale value has a great effect on the performance of the DM algorithm
[22]. A small scale intensifies the notion of locality, however, it may result in a poorly
connected graph. On the other hand, a large scale guarantees graph connectivity

10

but makes the kernel insensitive to variations in the distances. In practice, the scale
is often determined as the empirical standard deviation of the dataset, however,
there exist analytic methods for setting the scale [15].
The kernel represents some notion of affinity or similarity between MDPs of X as
it describes the relationship between pairs of points. Different kernels, other than
the Gaussian kernel, are also possible.

2. Normalize the kernel matrix
A diagonal normalization matrix Dii =

∑
i
k(xi, xi) is used for kernel normalization

to obtain the transition matrix P = D−1K.

3. Singular Value Decomposition (SVD) is applied to the transition matrix P
SVD which is applied to P matrix, yields a complete sequence of left and right eigen-
vectors {Φj,Ψj}n−1j=0 and eigenvalues {λj}n−1j=0 . The eigenvalues are in a descending
order such that 1 = λ0 > |λ1| ≥ |λ2| ≥ The corresponding right eigenvector is
Ψ0 = 1 .

4. Embedding
The δ largest right eigenvalues and the δ corresponding eigenvectors of the P matrix
are used to obtain the embedded space by

Ψt(xi) , [λt1ψ1, . . . , λ
t
δψδ]

T (3.1)

where 1 ≤ δ ≤ M − 1 is the new subspace dimensionality and t > 0 is the time
steps. Each component in Ψt(xi) is termed a “diffusion coordinate”.

4 The Similarity Detection Algorithm

4.1 Preprocessing: Features Extraction

The input dataset X to the SDA is a matrix of size N × n. Each row in the matrix X
corresponds to a features vector, which is a MDP, with n extracted features. The matrix
is formed after a preprocessing phase of features extraction from raw pcap files. This
way, a features based data is created.

For the DARPA 2009 intrusion dataset (section 5.1), each non-overlapping time inter-
val is mapped into an MDP. For this purpose, a time interval-oriented traffic analyzer is
defined: The traffic analyzer handles only ICMP and IP protocols. For each newly arrived
packet, the analyzer parses its header and collects several values from the protocol. At
every predetermined time interval (e.g., one second/minute), the analyzer summarizes
the values collected during this time interval and saves them as an MDP. The follow-
ing features were gathered via time aggregation and computed for every predefined time
interval:

1. Number of TCP/IP packets;

2. Number of UDP/IP packets;

3. Number of ICMP packets;

11

4. Number of packets which are not TCP, UDP or ICMP;

5. Number of TCP packets with TCP flag “syn” ON;

6. Number of TCP packets with TCP flag “ack” ON;

7. Number of TCP packets with TCP flag “cwr” ON;

8. Number of TCP packets with TCP flag “ecn” ON;

9. Number of TCP packets with TCP flag “fin” ON;

10. Number of TCP packets with TCP flag “ns” ON;

11. Number of TCP packets with TCP flag “push” ON;

12. Number of TCP packets with TCP flag “res” ON;

13. Number of TCP packets with TCP flag “reset” ON;

14. Number of TCP packets with TCP flag “urg” ON;

15. Number of TCP packets with destination port 80 (HTTP);

16. Number of UDP packets with destination port 53 (DNS);

17. Number of TCP packets with source port 0;

18. Number of data TCP packets which where retransmitted (indication of slow appli-
cation performance and packet loss);

19. Number of control TCP packets (packets without a payload);

20. Number of data TCP packets (packets with a payload);

21. Number of data TCP bytes (the bytes count of all the payloads);

22. Number of TCP connections (sessions);

23. Number of completed TCP connections;

24. Ratio between the number of TCP packets with reset flag ON and the number of
TCP packets with syn flag ON (computed feature);

25. Ratio between the number of TCP packets with syn-ack flags and the number of
TCP packets with syn flag (computed feature).

This preprocessing phase was performed by the application of the packet analyzer
Tshark (terminal-based version of Wireshark) [6, 44] and by the HTCondor framework
[5]. The process of extracting features from each pcap file was performed by Tshark and
the distributed execution was done by HTCondor. The parsing of each pcap file was
issued as a separate job by HTCondor. After the parsing of a pcap file is completed, the
output file is copied to HDFS.

12

The preprocessing phase transforms the pcap files into a suitable input format to
Hadoop. Each line in the output files from the preprocessing phase represents an MDP
in the matrix X. Each line is divided into a key and a value parts by a <tab> character.
The key is the time-stamp of the MDP (metadata that describes the MDP) and the value
is the extracted features for a specific time interval. The delimiter between features is
the character ‘,’. An example of such a row in matrix X is:
11/4/2009 7:49 1687,30,0,0,64,1655,0,0,64,0,134,0,0,0,695,15,0,0,772,915,1266740,32,32,0.0228,0.9798.

A simplified configuration of the preprocessing phase is depicted in Fig. 4.1.

Figure 4.1: Preprocessing phase

4.2 Algorithm Description

The SDA finds similarities to a given initial designated MDP. Each MDP, which is similar
to the designated MDP that was detected in a previous iteration of the algorithm, becomes
a new designated MDP that leads to a detection of other similar MDPs to the newly
designated MDP. This process is repeated until no other MDP is found or a predefined
maximum number of iterations has been reached.

The input to the algorithm is a dataset X of size N × n and an initial designated
MDP y ∈ Rn, where N is the number of MDPs and n is the number of extracted features.
If y does not belong to X then it is added to X and there will be N + 1 MDPs in X. We
assume that y belongs to X and the size of the matrix is N × n.

Our objective is to find a set ξ ⊂ X of MDPs for all xi ∈ X, i = 1, . . . , N , which are
similar to y ∈ Rn. Similarity is defined next.

We commence this process by randomly selecting a number k, such that

13

0 < minFeatures ≤ k ≤ maxFeatures < n. Then, a new subset dataset Xk =
{x1, . . . , xN}, where xi ∈ Rk is constructed. In other words, the set of MDPs where
xi ∈ X, i = 1, . . . , N , is transformed such that it has only k features instead of n features.
The same transformation is applied to y ∈ Rn as well. It is denoted by yk that also has the
same k features instead of n features as Xk. This type of transformation is performed
repeatedly numPermutations for random selections of k, where numPermutations is
the number of permutations for random selections of k for each initial designated MDP.
The main assumption when using a feature selection technique is that the data contains
redundancy, irrelevant or modified features. When the number of features is reduced, the
data dimension also reduces and the new dataset is thus more compact [35].

Once the random feature selection is completed, nearest neighbours procedure is ap-
plied. A ball is defined around yk such that

Bµ1(yk) , {xi ∈ Xk|‖yk − xi‖ ≤ µ1}, i = 1, . . . , N (4.1)

where µ1 defines the maximum distance allowed between yk and all other MDPs in Xk.
The ball contains MDPs from Xk that are µ1-close to yk. The ball in Eq. [?] determines
the relation among MDPs.

Next, DM is applied to embed the MDPs that are contained in the ball Bµ1(yk)
(Eq. 4.1), as well as embedding yk into the same lower dimension space. The output
of the DM process is a matrix that is defined by Eq. 3.1, where its columns form a
basis for the low-dimension space. We denote this matrix by Xδ and denote yk in the
lower-dimensional space by yδ. The MDPs in the lower dimensional space are denoted by
Embedded Multidimensional Data Points (EMDP). Next, a nearest neighbours procedure
is applied to yδ. Thus, we find the nearest neighbours EMDPs to yδ from all xi ∈ Xδ, i =
1, . . . , N , where xi ∈ Rδ. The set of nearest neighbours in the lower-dimensional space is
defined by:

Bµ2(yδ) , {xi ∈ Xδ|‖yδ − xi‖ ≤ µ2}, i = 1, . . . , N. (4.2)

Each EMDP, which is µ2-close to yδ, is then added to the set of nearestMDPs.
This process is repeated multiple times with different random selections of k from the

source of n features. The MDPs, which present in most iterations of the randomly chosen
k, are described as similar to y. The number of times, which a specific MDP is expected
to appear until it is described as similar, is denoted by the threshold Ω. Each MDP,
which was described as similar, is added to the set of the designated MDPs denoted by ξ.
Every similar MDP then becomes a new designated MDP and a source for a new search
to detect other MDPs. If there are no related MDPs found, i.e. ξ = ∅, then the search
process ends. As mentioned before, this process acts as a crawler due to the fact that
we begin this process from a given initial designated MDP from which similar MDPs are
found. These similar MDPs are then used for the discovery of additional similar MDPs
and the process continues. Thus, one MDP leads the discovery of many other similar
MDPs.

The parameters of the algorithm should be set beforehand. The parameters are:

minFeatures: Minimum number of features in each permutation, 0 < minFeatures ≤ k.

maxFeatures: Maximum number of features in each permutation, k ≤ maxFeatures < n.

µ1: Maximum distance allowed between yk and all other MDPs in Xk.

14

µ2: Maximum distance allowed between yδ and all other EMDPs in Xδ.

Ω: Threshold of the number of occurrences for each MDP until it is described as similar.

maxIterations: Maximum number of iterations the algorithm can perform. Each iteration
means the process of finding similar MDPs to a specific initial designated MDP.

Figure 4.2 describes the flow-chart of the SDA described in this section.

15

Figure 4.2: Algorithm flow chart

Next we describe in details each step in Fig. 4.2.

Input
The extracted features from the input data are arranged in a matrix X as described
in section 4.1. y ∈ X is the initial designated MDP where we are searching for all
its similar MDPs in X. It describes a known attack.

16

Feature scaling (normalization)
The data is organized in matrix X of size N × n, where N is the number of MDP
samples and n is the number of extracted features. The data in each column of
X is normalized. This step scales the range of independent features to a common
numerical scale. It re-scales the features to be in the range of [0, 1] in the following
manner:

x′ =
x−min(x)

max(x)−min(x)
. (4.3)

Each column i = 1, . . . , n in X, which corresponds to a specific feature along the
n rows of X, is normalized independently from the other columns as described in
Algorithm 1.

Algorithm 1: Feature Scaling (Normalization)
Input: N × n matrix X with MDPs as its rows.
Output: Matrix X of size N × n where each feature (column) is normalized.

1: for j = 1 to n do
2: max← 0 # Initialize for each feature
3: min←∞ # Initialize for each feature
4: for i = 1 to N do
5: if Xi,j > max then
6: max← xi,j # Find max value of feature j
7: end if
8: if Xi,j < min then
9: min← xi,j # Find min value of feature j

10: end if
11: end for
12: for i = 1 to N do
13: Xi,j ← Xi,j−min

max−min # Normalize Xi,j

14: end for
15: end for
16: return X

Generating a random subset
After randomly selecting a number k, such that 0 < minFeatures ≤ k ≤ maxFeatures <
n, we create a new dataset with only k features instead of n features. A pseudo-code
for this phase is depicted in Algorithm 2.

17

Algorithm 2: Generating a Random Subset
Inputs:
N × n matrix X,
Length k of each row in the output subset.
Output: N × k matrix X.

1: X ← ∅
2: N ← Number of rows in X
3: n← Number of columns in X
4: if k < 1 or n ≤ k then
5: return X
6: end if
7: v ← A row vector containing k unique integers selected randomly from 1 to n inclusive.
8: for i = 1 to N do
9: xi ← Get only the columns of Xi,1:n that appear in v.

10: X ← X ∪ xi
11: end for
12: return X

Nearest neighbours
Finding nearest-neighbours MDPs to y.

A pseudo-code for this phase is depicted in Algorithm 3.

Algorithm 3: Nearest Neighbours
Inputs:
N × n matrix X,
y - Reference MDP which is compared to the other N − 1 MDPs of X,
µ - Maximum allowed distance from y
Output: Matrix X of all MDPs which are µ−close to y.

1: X ← ∅
2: for i = 1 to N do
3: xi ← Xi,1:n # Row i of X
4: r ← ‖xi − y‖, xi ∈ Rn
5: if r ≤ µ then
6: X ← X ∪ xi
7: end if
8: end for
9: return X

Finding MDPs that appear at least Ω times
Detect the MDPs, which are the nearest-neighbour to y in the lower-dimensional
space, for at least Ω permutations. A pseudo-code for this phase is depicted in
Algorithm 4.

18

Algorithm 4: Finding MDPs that appear at least Ω Times
Inputs:
N × n matrix X
Ω - Threshold for the occurrences of each MDP in the neighbourhood of y.
Output: Matrix X of MDPs that have at least Ω occurrences in X.

1: X ← ∅
2: uniqueMDPs← Get only the unique MDPs from X by duplication removal. # Array
3: counts← Count the number of occurrences in X of each MDP from uniqueMDPs. # Array
4: for all count ∈ counts do
5: if count > Ω then
6: xi ← The corresponding MDP from uniqueMDPs for count
7: X ← X ∪ xi
8: end if
9: end for

10: return X

4.3 Transforming the SDA to MapReduce

The SDA is iterative. The process of finding similar MDPs to a specific initial designated
MDP is referred to as an iteration of the SDA. Each iteration is transformed to be
executed in a distributed manner as MapReduce jobs. The first MapReduce job finds the
minimum and maximum values for the features scaling phase. This MapReduce job is
performed once at the beginning of the application for all iterations. Then, each iteration
is divided into two MapReduce jobs:

1. Nearest-neighbours MapReduce job.

2. Pass-threshold MapReduce job.

These two MapReduce jobs are repeated for maxIterations iterations. At the end of
the SDA, a final MapReduce job is performed that compares the results of the SDA to a
ground truth labeled data.
A flow-chart describing how the SDA is divided into MapReduce jobs is depicted in Fig.
4.3.

19

Figure 4.3: General algorithm flow chart divided into MapReduce jobs

The first MapReduce job finds the minimum and maximum values for each column
of X where column i describes feature i for all the MDPs in X. The mapper of this job
organizes all the features from the same column to go to the same reducer. Then, the
reducer finds the minimum and maximum values. The input to this job is the output
from the preprocessing phase.
The pseudo-code for the mapper and reducer of this job is depicted in Algorithm 5.

20

Algorithm 5: MapReduce job 1 -
Finding the maximum and minimum values for each column in the matrix X

function Map(key, value)
key – Timestamp of the MDP. Metadata.
value – MDP. The delimiter between features is the character ‘,’.
xn ← Parse value to tokens by a delimiter ‘,’ # xn is an array of size n
n← Number of tokens in xn
for iFeature = 1 to n do # For each feature (column)

emit(iFeature, xn[iFeature])
end for

function Reduce(key, 〈values〉)
key – Feature (column) index.
〈values〉 – A list of {features}.
max← 0
min←∞
for all value ∈ 〈values〉 do

if value > max then
max = value

end if
if value < min then

min = value
end if

end for
emit(key, (max,min)) # Output value is (max,min)

“MapReduce job 2 Nearest-neighbours” finds the nearest-neighbours to y in the lower-
dimensional space. The mapper generates a random subset for each permutation. Then,
the mapper finds the nearest-neighbours MDPs for each permutation. The reducer finds
the nearest-neighbours in the lower-dimensional space. The input to this job is the output
from the preprocessing phase.
As a preliminary phase, a permutation matrix P of size numPermutations×n is saved in
a separate file on HDFS. Each row in matrix P determines a specific permutation. Each
row in P has n entries, each entry is ‘1’ if the corresponding feature exists in the permu-
tation or ‘0’ otherwise. The number of 1’s in each row, which is the number of features
in the permutation, is chosen at random from the range [minFeatures,maxFeatures].
The delimiter between entries in each row is the character ‘,’. An example of such a row
in the matrix P is
0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0 .
In this example, the permutation contains the features 2,3,4,5,8,11,12,19,20,23 and does
not contain the features 1,6,7,9,10,13,14,15,16,17,18,21,22,25.
The pseudo-code for the mapper and reducer of this job is depicted in Algorithm 6.

21

Algorithm 6: MapReduce job 2 - Nearest-Neighbours (Mapper)
function Map Setup

Called once at the beginning of the map task.
P ← Read into memory from a file on HDFS.
numPermutations← Number of rows in matrix P
(max,min)← Read into memory from file on HDFS.
µ1 ← Read as parameter.
yn ← Read as parameter. # yn is an array of size n
n← Number of tokens in yn.
for iFeature = 1 to n do
yn[iFeature]← yn[iFeature]−min

max−min # Normalize the initial designated MDP
end for

function Map(key, value)
key – Timestamp of the MDP. Metadata.
value – MDP. The delimiter is the character ‘,’.
xn ← Parse value to tokens by the delimiter ‘,’ # xn is an array of size n
for iFeature = 1 to n do
xn[iFeature] = xn[iFeature]−min

max−min # Normalize the input MDP
end for
For each permutation in P :
for iPermutation = 1 to numPermutations do
distance← 0 # Initialize Euclidean distance
permutation← Parse line iPermutation in P to tokens by the delimiter ‘,’
for iFeature = 1 to n do # For each feature in the permutation iPermutation

j ← 0
if permutation[iFeature] = 1 then

xk[j]← xn[iFeature]
yk[j]← yn[iFeature]
distance← distance+ (xk[iFeature]− yk[iFeature])2

j ← j + 1
end if

end for
distance←

√
distance

if value = yn then # The MDP is the initial designated MDP
emit (iPermutation, (timeStamp, 0, xk))

end if
if distance < µ1 then # The MDP is nearest neighbour to the initial MDP

emit (iPermutation, (timeStamp, xn, xk))
end if

end for

22

Algorithm 6: MapReduce job 2 Continuation - Nearest-Neighbours (Reducer)
function Reduce Setup

Called once at the beginning of the reduce task.
µ2 ← Read as parameter.

function Reduce(key, 〈values〉)
key – Permutation index.
〈values〉 – A list of { (timeStamp, xn, xk) }.
datasetN ← ∅
datasetK ← ∅
for all value ∈ 〈values〉 do
xn ← Extract xn from value
xk ← Extract xk from value
timeStamp← Extract timeStamp from value
datasetN ← datasetN ∪ (timeStamp, xn)
datasetK ← datasetK ∪ xk

end for
k ← Number of elements in xk
δ ← bk/2c # Number of dimensions in the lower dimensional space
samples← size[datasetK]
if δ < samples then # If there are enough samples in datasetK
epsilon← computeEpsilon(datasetK) # Epsilon for DM
dm← diffusionMaps(datasetK, epsilon, δ) # Embed datasetK to δ dimensions space
map← ∅ # Initialize a map of key-value pairs
for iSample = 1 to samples do

key ← Element iSample from datasetN
value← Element iSample from dm
map← map ∪ (key, value)
xn ← Extract xn from key
if xn = 0 then

yδ ← value # The designated MDP in the embedded space
end if

end for
for all entry ∈ map do # entry is a key-value pair from map

xδ ← get value from entry
distance← ‖xδ − yδ‖
if distance < µ2 and distance > 0 then

key ← get key from entry
emit key # Emit only key, which is (timeStamp, xn)

end if
end for

end if

The functions “computeEpsilon” and “diffusionMaps” mentioned in Algorithm 6 are
computed according to [15] and section 3.4, respectively.

“MapReduce job 3 Pass threshold”, which is the next MapReduce job, finds the MDPs
that pass the threshold Ω. The input to this job is the output of the job “MapReduce
job 2 Nearest-neighbours”. The mapper of this job is a transparent (identity) function.
The reducer sums up the occurrences of each MDP and checks if this sum passes the
threshold Ω. For optimization purposes, this job has an extra combiner which sums up
the occurrences of each MDP for each mapper.
The pseudo-code for the mapper, combiner and reducer of this job is depicted in Algo-
rithm 7.

23

Algorithm 7: MapReduce job 3 - Pass Threshold
function Map(key, value)

key – Offset, ignored.
value – (timeStamp, xn).
emit (value, 1)

function Combiner(key, 〈values〉)
key – (timeStamp, xn), the MDP which is µ2-close to yδ in the embedded space
〈values〉 – A list of {1}.
sum← 0
for all value ∈ 〈values〉 do
sum← sum+ value

end for
emit (key, sum)

function Reduce Setup
Called once at the beginning of the reduce task.
Ω← Read as parameter.

function Reduce(key, 〈values〉)
key – (timeStamp, xn), the EMDP which is µ2-close to yδ
〈values〉 – A list of {count},
count is the number of 1’s from each mapper after the application of the combiner.
sum← 0
for all value ∈ 〈values〉 do
sum← sum+ value

end for
if Ω ≤ sum then

emit (key)
end if

The last MapReduce job in this flow is “MapReduce job 4 Compares results to the
ground truth”. This job compares the results from the SDA to the ground truth data. It
is used only for verification. The mapper emits the results that correspond to the ground
truth. If a result does not appear, the map function will emit ”FALSE POSITIVE”
and the corresponding result. The reducer is an identity function. The input to this
MapReduce job is the output of the MapReduce job “MapReduce job 3 Pass threshold”.
The ground truth data of the security-events (attacks) was provided in [4]. The ground
truth contains only the basic information about the events. It includes event type, source
and destination IPs and ports and the start and the end time of the attack (day, hour
and minutes). The ground truth data is arranged in an excel file. Each attack is depicted
in a separate row in the excel file. An example of a row in the ground truth data file is:

Event
Type

Source
IP

Source
Port

Destination
IP

Destination
Port

Start
Time

Stop
Time

spam bot 172.28.11.150 0 77.91.104.22 80 04/11/2009 04:30 04/11/2009 04:30

The pseudo-code for the mapper and reducer of this job is depicted in Algorithm 8.

24

Algorithm 8: MapReduce job 4 - Compares Results to Ground Truth (Mapper)
function Map Setup

workbook ← Get workbook from the excel file
sheet← Get sheet 0 from workbook
numRows← Number of rows in sheet
startT imeCells← Get all cells from column of “Start Time”
startT imes← Convert each cell from startT imeCells to milliseconds representation
stopT imeCells← Get all cells from column of “Stop Time”
stopT imes← Convert each cell from stopT imeCells to milliseconds representation
eventsCells← Get all cells from column of “Event Type”

function Map(key, value)
key – timeStamp - Timestamp of the MDP. Metadata.
value – The MDP. The features are separated by the delimiter ‘,’.
time← Convert key to milliseconds representation
falsePositiveF lag ← true
for iRow = 1 to numRows do

if startT imes[iRow] ≤ time and time ≤ stopT imes[iRow] then
emit (eventsCells[iRow], (key, value))
falsePositiveF lag ← false # This MDP is a real attack, so not false positive
break for loop # Terminate the for loop when the first attack is found

end if
end for
if falsePositiveF lag = true then

emit (FALSE POSITIVE!, (key, value))
end if

Additional MapReduce job was performed prior to the testing phase. It was executed
once for evaluation purposes only and are not part of the SDA. The input to this job is
the output from the preprocessing phase. It counts the occurrences of the normal MDPs
(not attacks) and each attack type in the input dataset to the SDA. The map function
emits the type of the MDP as key and ‘1’ as value. The type of the MDP is either
‘Normal’ or the attack type. The reduce function aggregates all the 1’s and emits the
sum.
The pseudo-code for the mapper and reducer of this job are depicted in Algorithm 9.

25

Algorithm 9: MapReduce job 5 - Counts the occurrences of the normal MDPs and
each attack type in the input dataset to the SDA

function Mapper Setup
workbook ← Get workbook from excel file
sheet← Get sheet 0 from workbook
numRows← Number of rows in sheet
startT imeCells← Get all cells from column of “Start Time”
startT imes← Convert each cell from startT imeCells to milliseconds representation
stopT imeCells← Get all cells from column of “Stop Time”
stopT imes← Convert each cell from stopT imeCells to milliseconds representation
eventsCells← Get all cells from column of “Event Type”

function Map(key, value)
key – timeStamp - Timestamp of the MDP. Metadata.
value – The MDP. The features are separated by the delimiter ‘,’
time← Convert key to milliseconds representation
normalF lag ← true
for iRow = 1 to numRows do

if startT imes[iRow] ≤ time and time ≤ stopT imes[iRow] then
emit (eventsCells[iRow], 1)
normalF lag ← false # This MDP is an attack, so not normal
break for loop # Terminate the for loop when the first attack is found

end if
end for
if normalF lag = true then # If this MDP is normal (not an attack)

emit (Normal, 1)
end if

function Reduce(key, 〈values〉)
key – pattern type
〈values〉 – A list of {1}.
sum← 0
for all value ∈ 〈values〉 do
sum← sum+ value

end for
emit (key, sum)

5 Experimental Results On Networking Data

5.1 Description of the DARPA Data

DARPA 2009 intrusion detection dataset [21] was used for testing the SDA. The dataset
was created to aid in the evaluation of networks IDSs performance. It was created with
a synthesized traffic to imitate Internet traffic between a /16 subnet (172.28.0.0/16) and
the Internet. The internal traffic inside the local subnet was not simulated. A simplified
configuration of the simulated data is depicted in Fig. 5.1.

Figure 5.1: A simplified layout for capturing of the synthesized traffic in the dataset [21]

26

The dataset spans a period of 10 days between the 3rd and the 12th of November 2009.
The dataset contains synthetic Transmission Control Protocol (TCP), User Datagram
Protocol (UDP) and Internet Control Message Protocol (ICMP) packets. The dataset
also contains other protocols, such as Logical Link Control (LLC) and Address Resolu-
tion Protocol (ARP), but their aggregated volume is negligible. The dataset contains a
variety of different types of security events, such as DDoS, spambots, DNS redirecting,
etc. The dataset consists of 7000 pcap files with around 6.6TB of total size. The size of
each pcap file is 954MB. Each pcap file typically covers around one to two minutes time
window depending on the traffic rate.

The number of normal MDPs and the number of selected attacks types MDPs from the
2009 DARPA dataset are depicted in table 5.1.

Normal
MDPs

Attacks MDPs

DDoS Spambots
DNS

Redirecting Phishing

11987 Normal 555 DDoS 89 spam bot
11 break-DNS
exploit echo

87 phishing email
exploit malware trawler

153 noisy c2+
tcp control

channel exfil nc

15
spambot client

compromise

3 break-DNS
home

administrator
attack scripts sdu

52 post-phishing
client compromise

+ malicious download

92 malware ddos
210 spambot

malicious
download

11 router-redirect
home

administrator
attack scripts

38 post-phishing c2
exploit malware

malclient.pl

4 c2+ tcp control
channel exfil -

no precursor nc
261 out2in dns

31 post-phishing c2
heartbeat exploit
malware malclie

235 out2in
1 noisy phishing

email exploit
malware trawler

Table 5.1: Number of MDPs (normal and attacks) in the 2009 DARPA dataset

5.2 Cluster Information

The experimental tests and verification were conducted on Tel-Aviv university Hadoop-
cluster. Hadoop version installed on the cluster was 2.5.1. 111 of active nodes are available
where each has available of 8GB of RAM. Total memory available is 888GB.

27

5.3 Experimental Results on DARPA Data

In this section, we present the experimental results from the similarity detection algo-
rithm applied to the 2009 DARPA dataset (section 5.1).

The permutation matrix used for the experiments was of size 50 × 25, i.e., 50 permuta-
tions with 25 features for each permutation. The features were defined in section 4.1.
The parameters of the permutation matrix were chosen to be minFeatures = 8 and
maxFeatures = 15.

The time interval chosen for the features extraction was one minute. This parameter
was chosen empirically after several tests with a smaller time interval, such as 10 mil-
liseconds, 0.5 seconds, etc, that resulted in a high false alarm rate. A time interval of
one minute fully describes an attack. The experimental results were performed on several
attacks types, as explained in section 3.3. The experimental results of the algorithm for
several attack types as the initial designated MDP are shown in table 5.2.

Reference
Attack
Type

(Initial MDP)

Parameters Results

µ1 µ2 Ω
max

Iterations

Number
of Same
Attack.

True
Positive

Number
of Other
Attacks.

True
Positive

Number
of False
Positive

False
Alarm
Rate
[%]

ddos 0.45 0.028 50 1 41 253 728 6.07

noisy c2+ tcp
control channel

exfil nc
0.15 0.035 50 1 23 198 514 4.28

noisy c2+ tcp
control channel

exfil nc
0.15 0.02 50 1 3 12 42 0.3

noisy c2+ tcp
control channel

exfil nc
0.15 0.02 50 5 14 148 480 4

spam bot 0.2 0.02 50 1 4 65 205 1.7

spambot malicious
download

0.2 0.02 50 1 27 199 558 4.65

out2in dns 0.5 0.03 47 1 15 109 356 2.9
out2in 0.5 0.03 48 1 18 187 492 4.1

phishing email
exploit malware

trawler
0.2 0.01 50 1 11 280 812 6.7

post-phishing
client compromise +
malicious download

0.4 0.03 50 1 5 380 803 6.69

Table 5.2: Results from the 2009 DARPA dataset. The false alarm rates in % were
computed in relation to table 5.1

28

where false positive is a result that indicates that a given condition has been satisfied,
when it actually not. In our case, a false positive means that the algorithm wrongfully
identifies a ‘normal’ MDP as an attack. False alarm rate is defined as the number of ‘nor-
mal’ patterns classified as attacks (false positive) divided by the total number of ‘normal’
patterns mentioned in table 5.1.

The results show that the SDA detects also other types of attacks, different from the
initial designated MDP. For example, the results for the initial designated MDP of the
type “noisy c2+ tcp control channel exfil nc” indicate the detection of attacks of types
“c2+ tcp control channel exfil nc”, “client compromise exfil sams launch vulnerable cli”,
“ddos”, “failed attack exploit iis asp overflow”, “failed attack or scan”, “exploit/bin/iis
nsiislog.pl”, “failed attack or scan exploit/bin/webstar ftp user”, “noisy c2+ tcp con-
trol channel exfil nc”, “noisy client compromise + malicious download exfil”, “noisy
blackhole exploit echo”, “post phishing client compromise + malicious download”, “scan
/usr/bin/nmap”, “spam bot” and “spambot malicious download”.

The results corresponding to the column “Number of Same Attack. True Positive” in
table 5.2 are the numbers of attacks correctly identified by the SDA that are the same
type as the initial designated MDP. The results corresponding to the column “number of
other attacks. true positive” in table 5.2 are the numbers of attacks correctly identified
by the SDA that are of different type from the initial designated MDP.

Performance Evaluation

To manifest the scalability of the SDA, we measured its completion time as a function
of its input data size. The performance evaluation was performed on a cluster and on
a single Hadoop-node. Figure 5.2 illustrates that 10 iterations of the SDA performed
on a cluster were completed within 10 minutes for 1TB and 24 minutes for 6TB, which
is over 3 and 10 times faster than their completion time performed by only one node.
These results illustrate the increased performance enhancement as the volume of the
input traffic becomes larger.

29

Figure 5.2: Completion time of the SDA regarding various sizes of the input data

6 Conclusions and Future Work

The work described in this paper is concerned with the development and application of a
similarity detection algorithm to big-data using MapReduce methodology implemented
on Hadoop cluster.

The experimental tests were performed on the 2009 DARPA intrusion dataset. The
proposed approach aims at detecting intrusion attacks in a networking dataset. The
proposed approach aims at gaining maximum detection of each attack with minimum
false positive rate. The experimental results show that the proposed algorithm detects
also other types of attacks, different from the initial designated MDP. This approach will
be very useful for the attacks detection in today’s changing attack methodologies.

Although the results presented here have demonstrated the effectiveness of the simi-
larity detection algorithm, it could be further developed in a number of ways:

1. Extending the algorithm to use a more sophisticated features selection:
Using the best quality of features, which represent the whole data while remov-
ing redundant and irrelevant features, is an important task of anomaly detection
systems due to the immense amount of data they need to process. Thus, a more so-
phisticated method for each subset features selection, such as in [35], should increase
the detection rate and decrease the false positive rate.

2. Extending the algorithm to implement the preprocessing phase on Hadoop:
Implementing the preprocessing phase of features extraction as several MapReduce
jobs or as any other additional software packages that can be installed on top of or

30

alongside Hadoop (e.g. Apache Pig, Apache Hive, Apache HBase, etc) will help to
perform the entire process as one unit.

3. Dividing the attacks search to separate cases according to protocol: Using
only the features that where extracted from a specific protocol to find the attacks
that are related to this protocol. For example, using only TCP/IP related features
to find TCP/IP related attacks, such as DDoS. This can potentially reduce the false
alarm rate.

Acknowledgments

This research was partially supported by the US-Israel Binational Science Foundation
(BSF 2012282), Israel Ministry of Science & Technology (Grants No. 3-9096, 3-10898),
and Blavatnik Computer Science Research Fund.

References

[1] Apache hadoop 0.23 is here! http://hortonworks.com/blog/

apache-hadoop-is-here/, 2011.

[2] Moving ahead with hadoop yarn. http://www.ibm.com/developerworks/library/
bd-hadoopyarn/, 2013.

[3] Apache hadoop. http://hadoop.apache.org/, 2015.

[4] DARPA 2009 intrusion detection dataset. http://www.darpa2009.netsec.

colostate.edu/, 2015.

[5] HTCondor - High Throughput Computing. http://research.cs.wisc.edu/

htcondor/htc.html, 2015.

[6] Wireshark. https://www.wireshark.org/, 2015.

[7] T. Abbes, A. Bouhoula, and M. Rusinowitch. Protocol analysis in intrusion detection
using decision tree. In Information Technology: Coding and Computing, volume 1,
pages 404–408, 2004.

[8] I. Aljarah and S.A. Ludwig. Mapreduce intrusion detection system based on a parti-
cle swarm optimization clustering algorithm. In Evolutionary Computation (CEC),
pages 955–962, 2013.

[9] M. Bahrololum, E. Salahi, and M. Khaleghi. Anomaly intrusion detection design
using hybrid of unsupervised and supervised neural network. International Journal
of Computer Networks and Communications, 1, 2009.

[10] Daniel Barbar and Sushil Jajodia. Applications of Data Mining in Computer Secu-
rity. Springer Science and Business Media, 2012.

31

[11] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41:1–58, 2009.

[12] A. Chauhan, G. Mishra, and G. Kumar. Survey on data mining techniques in
intrusion detection. International Journal of Scientific and Engineering Research, 2,
2011.

[13] J.J. Cheon and T.Y. Choe. Distributed processing of snort alert log using hadoop.
International Journal of Engineering and Technology, 5:2685–2690, 2013.

[14] R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, and S.W.
Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition
of data: Diffusion maps. Proceedings of the National Academy of Sciences of the
USA, 102:7426–7431, 2005.

[15] R.R. Coifman, Y. Shkolnisky, F.J. Sigworth, and A. Singer. Graph laplacian to-
mography from unknown random projections. Trans. Image Process., 17:1891–1899,
2008.

[16] P.J. Criscuolo. Distributed denial of service. Technical report, Department of Energy
Computer Incident Advisory Capability, 2000.

[17] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

[18] J. Dean and S. Ghemawat. Mapreduce: A flexible data processing tool. Commun.
ACM, 53(1):72–77, 2010.

[19] D.K. Denatious and A. John. Survey on data mining techniques to enhance intrusion
detection. In Computer Communication and Informatics (ICCCI), pages 1–5. IEEE,
2012.

[20] Q. Fu, J.G. Lou, Y. Wang, and J. Li. Execution anomaly detection in distributed
systems through unstructured log analysis. In Data Mining, pages 149–158, 2009.

[21] M. Gharaibeh and C. Papadopoulos. DARPA-2009 Intrusion Detection Dataset
Report. Technical report, Colorado State University, 2014.

[22] M. Hein and J.Y. Audibert. Intrinsic dimensionality estimation of submanifold in Rd.
In Y. Weiss, B. Schölkopf, and J. Platt, editors, Proceedings of the 22Nd International
Conference on Machine Learning, pages 289–296. ACM, 2005.

[23] K. Hwang, M. Cai, Y. Chen, and M. Qin. Hybrid intrusion detection with weighted
signature generation over anomalous internet episodes. Dependable and Secure Com-
puting, IEEE Transactions on, 4:41–55, 2007.

[24] P.J.F. Groenen I. Borg. Modern multidimensional scaling: Theory and Applications.
Springer, 1997.

[25] M. Janbeglou and M. Zamani. Redirecting network traffic toward a fake DNS server
on a LAN. 2010.

32

[26] H.J. Jeong, H. WooSeok, L. Jiyoung, and Y. Ilsun. Anomaly teletraffic intrusion
detection systems on hadoop-based platforms: A survey of some problems and solu-
tions. In Network-Based Information Systems (NBiS), pages 766–770, 2012.

[27] P. Jian, S.J. Upadhyaya, F. Farooq, and V. Govindaraju. Data mining for intrusion
detection: techniques, applications and systems. In Data Engineering, pages 877–
877, 2004.

[28] C. Kruegel and T. Toth. 6th International Symposium, chapter Using Decision Trees
to Improve Signature-Based Intrusion Detection, pages 173–191. Springer Berlin
Heidelberg, 2003.

[29] K.Shvachko, H. Kuang, S. Radia, and R. Chansler. Hadoop: The Definitive Guide,
chapter The Hadoop Distributed File System, pages 1–10. O’Reilly Media, 2010.

[30] V. Kumar and O.P. Sangwan. Signature based intrusion detection system using
SNORT. International Journal of Computer Applications and Information Technol-
ogy, 1:35–41, 2013.

[31] G.D. Kurundkar, N.A. Naik, and S.D. Khamitkar. Network intrusion detection using
SNORT. International Journal of Engineering Research and Applications, 2:1288–
1296, 2012.

[32] S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University,
2004.

[33] J.R. Lee, Y. Sang-Kug, and H.D.J. Jeong. Detecting anomaly teletraffic using
stochastic self-similarity based on hadoop. In Network-Based Information Systems
(NBiS), pages 282–287, 2013.

[34] J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining of Massive Datasets. Cam-
bridge University Press, 2014.

[35] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, 2000.

[36] M. Loukides. Applications of Data Mining in Computer Security. O’Reilly Media,
2009.

[37] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. Net-
work, IEEE, 8:26–41, 1994.

[38] R. Nene and M.J. Nene. A survey on latest DoS attacks : Classification and de-
fense mechanisms. International Journal of Innovative Research in Computer and
Communication Engineering, 1:1847–1860, 2013.

[39] S. Omatu, M.P. Rocha, J. Bravo, F. Fernndez, A. Bustillo E. Corchado, and J.M.
Corchado. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Com-
puting, and Ambient Assisted Living, chapter Design of a Snort-Based Hybrid Intru-
sion Detection System, pages 515–522. Springer Berlin Heidelberg, 2009.

33

[40] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using
clustering. In In Proceedings of ACM CSS Workshop on Data Mining Applied to
Security, pages 5–8, 2001.

[41] M. Roesch. Snort – lightweight intrusion detection for networks. In LISA ’99 Pro-
ceedings of the 13th USENIX conference on System administration, pages 229–238.
USENIX Association Berkeley, 1999.

[42] R.R.Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmon. Anal., 21:5–30,
2006.

[43] A. Almomani A. Mishra S. Tripathi, B. Gupta and S. Veluru. Hadoop based de-
fense solution to handle distributed denial of service (DDoS) attacks. Journal of
Information Security, 4:150–164, 2013.

[44] C. Sanders. Practical Packet Analysis: Using Wireshark to Solve Real-World Net-
work Problems. William Pollock, 2011.

[45] S. Shamshirband, A. Amini, N.B. Anuar, L.M. Kiah, Y.W. Teh, and S. Furnell.
D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for
intrusion detection in wireless sensor networks. Measurement, 55:212–226, 2014.

[46] W. A. Shewhart. Economic Control of Quality of Manufactured Product. D. Van
Nostrand Company, New York, 1931.

[47] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Beowulf cluster computing
with linux. chapter Condor: A Distributed Job Scheduler, pages 307–350. MIT
Press, 2002.

[48] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The
condor experience: Research articles. Concurr. Comput. : Pract. Exper., 17(2-
4):323–356, 2005.

[49] T. Verwoerd and R. Hunt. Intrusion detection techniques and approaches. Computer
Communications, 25:1356–1365, 2002.

[50] K. Wankhade, S. Patka, and R. Thool. An overview of intrusion detection based
on data mining techniques. In Communication Systems and Network Technologies
(CSNT), pages 626–629. IEEE, 2013.

[51] M.E. Whitman and H.J. Mattord. Principles of Information Security. Course Tech-
nology, 2011.

[52] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics
and Intelligent Laboratory Systems, 2(13):37 – 52, 1987.

[53] L. Yeonhee, K. Wonchul, and L. Youngseok. A hadoop-based packet trace processing
tool. In Proceedings of the Third International Conference on Traffic Monitoring and
Analysis, pages 51–63. Springer-Verlag, 2011.

34

[54] L. Yeonhee and L. Youngseok. Detecting DDoS attacks with hadoop. In Proceedings
of The ACM CoNEXT Student Workshop, pages 7:1–7:2. ACM, 2011.

[55] D.Y. Yeung and C. Chow. Parzen-window network intrusion detectors. In Pattern
Recognition, 2002. Proceedings. 16th International Conference on, volume 4, pages
385–388, 2002.

[56] L. Youngseok, W. Kang, and H. Son. An internet traffic analysis method with
mapreduce. In Network Operations and Management Symposium Workshops (NOMS
Wksps), 2010 IEEE/IFIP, pages 357–361, 2010.

[57] S.T. Zargar, J. Joshi, and D. Tipper. A survey of defense mechanisms against
distributed denial of service (DDoS) flooding attacks. Communications Surveys Tu-
torials, 15:2046–2069, 2013.

[58] S. Zhong, T. Khoshgoftaar, and N. Seliya. Clustering-based network intrusion de-
tection. Int. J. Rel. Qual. Saf. Eng., 14, 2007.

35

