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Efficient Protocols for Attaining Common
Knowledge and Simultaneous Byzantine Agreement

Ruben Michel

Abstract / ;

Motivated by recent research in the problems of attaining Common
Knowledge and Simultaneous Byzantine Agreement in the crash and omis-
sion models, we study these problems in a more malicious scenario where
incorrect processors may transmit arbitrary messages.

This paper introduces the notion of common knowledge informative pro-
tocols, which are protocols that attain, in a way, maximal common knowl-
edge. After characterizing these protocols we design a common knowledge
informative protocol which is maximally communication efficient according
to various natural complexity measures.

This protocol allows us to derive a worst case exponential lower bound
on the number of bits that correct processors transmit in runs of common
knowledge informative protocols and in runs of protocols which attain an
eager type of Simultaneous Byzantine Agreement.

1 Introduction

The interest in designing protocols for distributed networks and for multiprocessor
computers is a direct consequence of the increasing usage and popularity of these
systems.

As observed in various recent papers, such as [DM], [FI], [HM] and [MT],
the classical notion of common knowledge emerges naturally from the study of
coordination and simultaneity in multiparticipant systems. Roughly speaking, a
fact is common knowledge if it is true, the participants know it, the participants
know that the participants know it, and so forth. In a way, common knowledge
plays the role of a virtual shared memory in systems in which memory allocation
is primarily local.

This work was supported in part by the Office of Naval Research under Grant N00014-82-
K-0154



We analyze the problem of attaining common knowledge in a standard network
which is fully connected, synchronous, and in which some processors are faulty. A
faulty processor may transmit arbitrary messages only during a single tick of the
clock — a round. The faulty processor is correct before that round and it does not
transmit at all thereafter. This is, in effect, a single round Byzantine behavior.
Our approach generalizes to more complicated failure patterns and it extends to
related problems such as attaining knowledge in distributed systems and achieving
Simultaneous Byzantine Agreement.

After presenting our model for the distributed system — which closely resembles
the classical model in [PSL] — we introduce the notion of a common knowledge
informative protocol, ck-informative for short. The first approach that we consider
is to let a protocol be ck-informative if some ba.’sfc facts become common knowledge
as early as possible to processors following that protocol. This approach yields
interesting results in both the crash model and the omission model (cf. [MT]).
Unfortunately, it does not extend to the more malicious models (e.g. the Byzantine
model) since the performance of the faulty processors in runs of different protocols
cannot be readily compared. We consider therefore a slightly different approach:
A protocol is ck-informative if at each round the processors following that protocol
attain as much common knowledge about basic facts as they would have attained
had each of them transmitted at that round all its knowledge.

The definition of a ck-informative protocol does not provide us with an intuition
of how to design such protocols. To this end we introduce a basic notion, conveying.
A processor p conveys a fact to another processor ¢ if p is certain that ¢ will know
that fact if it trusts p. This notion of conveying allows us to state a concise
characterization of ck-informative protocols.

Equipped with this characterization we develop a ck-informative protocol which
we call the New Information Protocol, NIP. We prove that the intrinsic parameter
governing NIP’s performance, in terms of communication complexity, processing
time and storage space, is the number of actual lies performed by the crashing
processors. Stated briefly, for any fixed network size, NIP’s complexity is linear
in the number of actual lies. We prove that NIP is maximally communication
efficient according to various natural complexity measures. A corollary of this
section is the construction of a maximally communication efficient simulation of
the standard full-view protocol (cf. [PSL]). In appendix C we develop an efficient
procedure for evaluating the basic facts that are common knowledge at each round.

We are naturally led to analyze the complexity of determining common knowl-
edge using ck-informative protocols as a function of the parameter ¢, the standard
bound on the number of faulty processors. We prove in the Byzantine model that,
for every ck-informative protocol there exists a run of that protocol in which some




processor transmits at least ¢! bits at a round in which it is correct, for ¢ > 1.
A refinement of this proof shows that the same worst case lower bound holds in
the problem of achieving Simultaneous Byzantine Agreement when corresponding
sba-informative protocols are used.

This paper is organized as follows: In section 2 we introduce our intuitive
model, followed by its formalization in section 3. In section 4 we present a brief
overview of the knowledge formalism used in this paper. In section 5 we introduce
the concept of a ck-informative protocol. We then present the basic notion of
conveying information that allows a concise characterization of the ck-informative
protocols. In section 6 we develop our ck-informative protocol NIP. In addition,
we prove that NIP is linear in the number of agtual lies performed in the network,
and that it is maximally communication efﬁcieﬁf according to a natural complexity
measure. In section 7 we analyze the communication complexity of ck-informative
protocols as a function of the parameter . We derive an exponential lower bound
which we then extend to the problem of achieving Simultaneous Byzantine Agree-
ment. '

In appendix A we present a fairly precise description of NIP. In appendix B
we show that the consistency test of messages performed in NIP is as effective as
the most general consistency test. In appendix C we introduce the concept of the
critical round and an efficient algorithm for its evaluation in runs of NIP. Finally,
in appendices D through H we prove theorems 1 through 5.

2 The Intuitive Model

Let P = {p1,p2,...,Pn}, n > 2, denote the finite set of processors in a distributed
network in which every processor can communicate with every other processor
using messages. Messages are strings over a finite alphabet A.

The network is synchronous. This means that communication progresses in
discrete rounds. Each round has two phases: At the beginning of each round
every correctly operating processor transmits to other processors using messages,
and outputs using strings over a finite alphabet I'. At the end of each round I,
Il =1,2,... every processor p receives all the messages that were transmitted to it
at the beginning of that round and it also receives an ezternal input, INPUT (p,l),
which is a string over a finite alphabet X. Before communication begins, i.e. at
the end of round 0, the processors receive an external input IN PUT (p,0).

If a processor fails in any way during a round, a powerful diagnostic will detect
that flaw and disable that processor’s communication links at the end of that
round, thereby preventing it from transmitting erroneous information in future



rounds. We adopt the prevalent assumption that, for some fixed t < n — 1, at
most ¢ processors fail in the network.

Notice that this model is very similar to the classical model appearing in [PSL].
Moreover, since each incorrect processor may deceive only at a single round, the
lower bounds that we derive in this paper are fairly strong. In the following section
we present a new formalization of this model in order to make our claims rigorous.

3 Basic Definitions

In this section we formalize the intuitive model presented above.
A (transmission) protocol 7 is a set of proto ol functions {F(, 1} (p1)epxn- Each
F(p,1) is an n-tuple of functions (F(p ) (p - F(p ,)) so that,

FEiy (7)) x (A0 - A®,

F(p determines the message that p transmits to p; at round l as a function of
both the messages and the external inputs that p has received before .
An output protocol O is a set of output functions {O(p1)}(p,1)ePxNs

Oy : (B! x (AM™-1) — .

O(p,) determines the output of processor p at round /.
Let N denote the set of natural numbers. A run p is a tuple

(n,t,7,0,INPUT,CA,ADV)
where:

e n € N is the number of processors.

t € N is the bound on the number of faulty processors, t < n — 1.
e 7 is a protocol.

e (O is an output protocol.

L}

INPUT is a function P x ({0} U N) — T*.

CA, the crashing assignment, specifies which processors are faulty and at
which round they crash. Formally, C A is a set of at most ¢ pairs in P x N
so that no two pairs have the same first coordinate.




e ADV, the adversary, is the set of messages that each faulty processor
transmits at its crashing round and its output there. Formally, it is a
function that assigns to each pair in CA an element in (A*)" x I'*.

We say that p is a run of 7. Each run p induces a partition of P x N into one
of three states: healthylp], ill[p] and dead[p]. Consider a pair (p,l) € P x N; if for
all k, (p,k) & CA, then (p,l) € healthy[p]. If, on the other hand, for some k € N,
(p, k) € CA then:

e If | < k then (p,l) € healthy|p].

e If { = k then (p,l) € illp]. ,)'/
e If I > k then (p,l) € dead[p]. 5

Let failing[p] = ill[p] U dead[p]. We will usually abuse our notation by referring
to (p,!) € healthy[p] as “p is healthy at round ! in p”. This notation extends
similarly to the cases where (p,l) € ill[p], (p,!) € dead[p] and (p,!) € failing[p].

A run p naturally induces an ezecution EX|[p|, which specifies both the mes-
sages transmitted in the network and the outputs of the processors. In order to
formalize this notion we first define the view of a processor when it is healthy at
a round in some run. The view of processor p that is healthy at round [ in p,
v[p](p,1), is the messages that p has received before and including ! in p and its
INPUT there, that is, {INPUT (p, k)}o<k<i- Hereafter we restrict the domains
of F(p1) and O(p ) to the set of views of p at I — 1 in runs of both 7 and O.

We define EX|[p] according to the following rules:

e CA naturally induces the state of each processor at every round in p.

e At the end of each round every processor p; receives an n-tuple of messages,
whose j** coordinate, 1 < j < n ,j # 4, corresponds to the message pj
transmits to p; at that round. (The ** coordinate is 0.)

e A processor that is healthy at a round transmits in EX[p] according to
7. Assume that the messages transmitted in EX[p] before round ! were
already constructed. Then the message that p transmits to p; at [ in p, if
it is healthy there, is F(’;"’,)(v[p] (p,! — 1)), where p; # p.

e A processor that is healthy at a round outputs in EX|[p] according to O.
Thus, the output of p at ! in p, if it is healthy there, is O, (v[o] (p,! — 1)).




e A processor that is ill at a round transmits and outputs in EX|[p] according
to ADV.

e A processor that is dead at a round neither transmits nor outputs in EX][p].

Let M([p](p,q,!) denote the message that p sends to ¢ at round ! in EX]p].
Denote by SEG[p](l) the messages transmitted in the first [ rounds of EX[p];
more precisely,

SEG[p](l) = {(p,q,k,M[p](p,q,k)) I P9 € Pk < l}

In this paper we consider only the Byzantline case (in which processors that
are ill can transmit arbitrary messages) as can be implied from the definition of
the adversary.

4 XKnowledge Formalism

In this section we present a knowledge formalism along the lines of [DM], modified
according to our needs.

A predicate p is a set of runs. A predicate ¢ holds at a run p, denoted by
p E o, if p € p. A basic predicate is a predicate that depends only on CA and
INPUT.

A processor p that is healthy at round [ in p knows ¢, denoted by p = Kpne,
if © holds at all runs which are indistinguishable by p at | from p. To make this
definition more precise consider the following equivalence relation: Two runs of

il

the same protocol are (p,l)-equivalent, denoted by p ~ p', if p is healthy at [ in
both and it has the same view at [ in both. Thus, p = K, )¢ iff p is healthy at !

) (29)
inpand p' Epforal o ~ p.

Let p |= Ejp denote that every processor p that is healthy at [ in p knows ¢.
Let EPp = o and let p = E"*'p denote p = Ej( @) for m > 0. A predicate
@ is common knowledge at round [ in p, denoted by p |= Cjp, if for every m > 0,
PEE e

Two runs of the same protocol are similar at [, denoted by p L p', if there
exist a finite sequence of runs of that protocol {p¢ }o<k<m and a finite sequence of
processors {p;, }Jo<k<m SO that:

(ps'l t') (pt'g sl) (p‘.m—l ’l) (pim ’I)
p X p1 X~ ... ] Pm-1 = p.



It is apparent that L is an equivalence relation. The following basic fact, see,
e.g., [CM], [DM] and [FI], establishes a clear connection between knowledge and
distributed systems:

Fact 1

plCip iff Gl=p forall j satisfying 5L p.

5 Common Knowledge Informative Protocols

We begin this section by introducing a class of ;Fotocols that attain, in some sense,
maximal common knowledge at each round. .These protocols are called common
knowledge informative protocols or ck-informative for short.

The first approach that we consider is to let a protocol be ck-informative if some
basic facts become common knowledge as early as possible to processors following
that protocol. This approach yields interesting results in both the crash and the
omission models (cf. [MT]). It does not extend, however, to the more malicious
models, such as the Byzantine case, since the performance of the adversary in runs
of different protocols cannot be readily compared.

Thus, we need a slightly different approach. Let p be healthy at round [ in a
run of a ck-informative protocol. We want p to maximize the common knowledge
at [ in the following sense: Suppose that the processors transmit at  according to
some protocol functions which may be different from the ones in the ck-informative
protocol. Let ¢ be a predicate that is common knowledge at [ in that run. Then ¢
should also be common knowledge at [ if instead p follows at [ the ck-informative
protocol. Since we are comparing different protocols, we restrict our attention
to predicates @ that are protocol-independent, that is, basic predicates. Now, a
protocol is ck-informative if every processor that is healthy at a round in a run of
that protocol maximizes the common knowledge at that round.

We proceed to formalize these ideas. We first introduce a binary relation on
runs of different protocols. Unfortunately, (p,l)-equivalence cannot serve that
purpose, since it only relates runs of the same protocol. We say that two runs are
(p,!)-weakly-equivalent if p is healthy at ! in both, p has the same view at  — 1 in
both, and the protocol functions corresponding to processors at rounds prior to
coincide in these two runs.

w-(p,l)
Definition 1 Two runs are (p,l)-weakly-equivalent, denoted by p ~ p if:

o p 18 healthy at | in both.



e p has the same view atl — 1 in both.

e For every processor q and round k, k < I, the protocol functions of q at k
in p and p' coincide.

We now use this relation in order to formalize the notion of a ck-informative
protocol:

Definition 2 A protocol 7 = {F(p,l)} 18 ck-informative 1if the following holds for

w=(p,l)
any run p of that protocol: Let p' satisfy p' . p, and let p be any basic predicate

so that
P Ce. ),
Then -
r" E Crp,

where p" differs from p' only in that p transmits at | in p" according to Flon-

Interestingly, this notion coincides with the notion of an optimal protocol for
common knowledge appearing in [MT], when restricted to the omission model. We
will see in section 7.1 that this notion bears a close relation to a problem of eagerly
attaining Simultaneous Byzantine Agreement.

A natural problem that a;rises at this point is finding a simple characterization
of the ck-informative protocols. To this end we introduce some new concepts.
Consider a processor p that by checking the message that some other processor ¢
transmitted to it at I discovered that ¢ was ill at {. This can happen if, e.g., ¢
sends to p at [ some forged information about some other processor r, and also
M(r,p,l) # 0, so that p knows at ! that r was healthy at  — 1. In the Byzantine
case, the only meaningful information that such a message carries about basic
predicates is that ¢ was ill at [.

This intuition motivates the following definition: The reduced view of p at
round l in p, RV [p|(p,l), is the INPUT that p has received up to and including
round ! in p and the set of messages that p has sent and received in these rounds.
We exclude, however, every message M|p|(g,p,k), k¥ < I, for which p knew at k
in p that ¢ was ill at k. Such a message is replaced in the reduced view by the
statement “q was detected ill at k”.

We now introduce a basic notion — conveying. Let p be healthy at [ in some
run, and assume that p knows the predicate p. Suppose that p wants to inform
g at round [/ that the predicate ¢ is true. There are many ways for p to attain
this goal. The simplest would perhaps be to just transmit ¢. Another, probably
more efficient approach, would be to let p and ¢ have some a priori agreements



so that, e.g., more typical predicates would require less communication bits than
the rare ones. Conveying completely abstracts the issue of how information is
transferred. Instead, it captures the intuition that one processor informs another
one of a predicate, provided of course that the recipient trusts the sender, without
mentioning at all the means whereby this is achieved, and no matter how malicious
the unreliable processors are.

Definition 3 Assume that p is healthy atl in p and p = K(pi-1)p-
p conveys @ to g at | in p if

PE Kpi-1)Kgn ((fp s heayhy atl then ).
g

We say that p conveys its reduced view to'q at | in p, if p conveys to ¢ at !
in p the predicate ¢ = “The reduced view of p at | — 1 is RV [p](p,! — 1)”. A
protocol is a (reduced) conveying protocol, (R)CP for short, if at every run of that
protocol every processor conveys its (reduced) view to all the other processors at
every round in which it is healthy.

In order to introduce some life into the runs that we are considering we must
initiate them somehow. To this end we assume that each processor p that is healthy
at round 1 conveys its INPUT (at round 0) to every other processor.

Another notion we need in this section is information symmetry. The intuition
behind this notion is that the message that processor p, which is healthy at [,
transmits to a processor ¢ at l completely determines the message that it transmits
to any other processor at that round.

Definition 4 A protocol 7 = {F(‘;’,)} 1 information symmetric if (F("; ,))‘loFa, )
18 independent of q.

To see that this definition meets the intuition that we mentioned above, con-
sider the following rather trivial lemma:

Lemma 1 The protocol 7 = {F(pyl)} 18 information symmetric iff for every pair
of runs p and p' of 7 in which p is healthy at I, for all processors q and r,
Mpl(p, ¢,1) = M[p')(p,2,1) iff M[p](p,,1) = M[p'](p,7,1).

Finally, we state the central result of this section, which is a characterization
of information symmetric ck-informative protocols:

Theorem 1 An information symmetric protocol ¥ is ck-informative +ff ¥ is an

RCP.



5.1 Weak Information Symmetry

In the previous section we introduced the notion of information symmetry. As we
will see in this section this notion is too restrictive in several respects, therefore we
will try to modify it in order to capture more naturally our intuition of information
symmetry.

The changes that we want to introduce involve two aspects of information
symmetry that we find inappropriately strong. Consider again processor p that is
healthy at round I. Our first reservation about information symmetry is that it
requires p to transmit at [ to processors that it knew at [ — 1 would be dead at [.
Our second reservation is that p is required to convey to ¢ information, which p
knows that ¢ already knows, such as mformatn)&; that p received from ¢ at previous
rounds. '

Having stated the drawbacks of information symmetry, we now develop a new
notion called weak information symmetry that on the one hand maintains our
basic intuition about information symmetry, and on the other hand avoids the
drawbacks that we mentioned above.

Consider two processors ¢ and r that p did not know at [ — 1 would be dead at
l. We no longer require that the message that p sends to ¢ at round [ determine
the message that p sends to r at that round. The point is that p will completely
omit the messages that ¢ transmitted to it before ! from its transmissions to ¢ at
l, whereas it may convey them to 7.

Not surprisingly, there is a simple solution to this problem. We want the
messages that p transmits to ¢ up to and including ! together with the messages
that ¢ transmits to p prior to [, to completely determine the messages that p
transmits to r up to and including [.

We also require that if p knew at ! — 1 that ¢ would be dead at [, then p should
not transmit anything to g at . The skeleton of the definition of weak information
symmetry is now developed.

Definition 5 A protocol ¥ is weakly information symmetric if 4t satzsﬁes the
following two properties:

e Let p and p' be any two runs of 7, let p be healthy at | in both runs, and
assume that p did not know at | — 1 in either run that ¢ would be dead
at | nor that r would be dead at l. Then, if M|p|(p,q,k) = M['|(p,q,k)
for k <1, and Mp|(q,p,k) = M[p'|(q,p,k) for k < 1, then also for every
k <1, Mlp|(p,r, k) = M[¢'(p, 7, k).

e For every run p of ¥, if p 1s healthy at | in p and it knew at ! — 1 that q
would be dead at l, then M[p|(p,q,l) =0

10



Fortunately this weaker notion of information symmetry preserves theorem 1.
In fact:

Corollary 1 A weakly information symmetric protocol ¥ 1s ck-informative iff 7
13 an RCP.

Corollary 1 is the theoretical motivation for the New Information Protocol,
NIP, that we develop in the next section.

6 The New Information Protocol

It is apparent from theorem 1 that the staﬂ’da.rd Full-View Protocol, FV (cf.
[PSL]), in which every processor transmits its view whenever it is healthy, is ck-
informative. It is well known, however, that FV is communication inefficient.

In this section we introduce another ck-informative protocol, the New Infor-
mation Protocol, NIP. As indicated by its name, the basic idea behind NIP is that
each processor transmits only new information at each round in which it is healthy.

NIP has four appealing properties: First, of course, it is ck-informative. Sec-
ond, it is weakly information symmetric. Third, each processor transmits at every
round as little information as possible, and fourth, it is maximally communication
efficient under various natural complexity measures. This notion of information
will not be formalized in this paper.

6.1 Message Structure in NIP

NIP resembles FV in the structure of its messages. Recall that each message in
FV can be viewed as a union of atoms, e.g.,

M(piy_»Pipsl) = U atom
where each atom is an ordered pair of the form
atom = (chain, content).

Now a chain in this case looks like

-1
Piy 7 Pig = oo 7 Diy_o ™ Dip_,

and its content is either an INPUT, the empty message @, or a lie. The semantics
of that atom is that p;, transmitted content to p;, at { — k+ 2, and that this infor-
mation reached p;,_, at [ — 1 passing through p;,,pi,,...,pi,_,. Notice, however,

11



that some processor p;;, 1 < f < k, might have forged that content or the head of
that chain (i.e. pi, = pi, = ... — pi,_,)-

We now introduce the format of the messages in NIP. This format will allow
each processor to process and store its information efficiently. We begin by saying
what these messages are not. A message that is transmitted according to NIP is
not merely a sequence of chains queued one after the other; instead, it is formatted
as a transmission tree. The transmission tree that p transmits to g at [, which we
denote by TT(p,q,l), is a tree having nodes labelled with processors’ names, a
root labelled p, and no two sons of any internal node having the same label. A
path from a leaf to the root represents a chain that p received at | — 1, and every
such path carries the corresponding content. Nptice that the root p can in fact be
dispensed with. We have introduced it since it i/s easier to talk about transmission
trees instead of transmission bushes.

Another minor difference between the messages in NIP and the messages in
FV is that in NIP we allow the content of atoms to be of the form “processor ¢
was detected ill at round {.” '

6.2 Transmission in NIP

In this section we develop the intuition behind NIP. There are two basic principles
that make NIP an appealing protocol. The first is that each processor checks
the consistency of the messages it receives, and the second is that each processor
transmits only new information at each round. We now expand on these two ideas
by describing their implementation in NIP.

We need a technical detail: In definition 3 we introduced the notion “p conveys
the predicate ¢ to ¢ at [ in the run p”, for p healthy at I. Hereafter we extend this
definition also to processors p that are ill at | and to predicates ¢ that p claims
at [ to have known at ! — 1. We are assuming here that the recipient ¢ does not
detect that p was ill.

Consider a processor p that is healthy at round ! in some run of NIP. At the
end of that round p receives the messages that were addressed to it. The first fact
that p concludes from a nonempty message that a processor, say ¢, transmits to it,
is that ¢ must have been healthy at [ — 1, and therefore that the information that
g conveyed there is certainly trustworthy. Notice that trusting ¢ at [ — 1 might
involve trusting some other processors at ! — 3, and this in turn might involve
trusting some other processors at [ — 5, and so forth. Thus the mere fact that a
message is nonempty at [ conveys a substantial amount of information.

The next step that p performs at ! is to check the consistency of the messages
it receives. This consistency check is the first basic principle in NIP. Consider the

12



message that ¢ transmits to p at . The first examination that p performs on that
message is a standard syntactical test. Next, for every r that p knows is healthy
at [ — 1, p uses the weak information symmetry of NIP in order to check that ¢
conveyed to it at [ correct information about r. Similarly, for every r that p knows
is dead at I — 1, p checks that ¢ conveyed to it that ¢ did not receive a message
from r at [ — 1.

We have already said what p checks in the message it received from ¢ at [
concerning each processor r that p knew was either healthy or dead at [ — 1. What
can p check in that message if it did not know that r was either healthy or dead?
Well, as far as p knows, r could have sent any message whatsoever to g at [ — 1.
However, p does know that had ¢ been healthy ap l, it should have transmitted only
information that was new to it, according to.the second principle, and it should
have checked the reliability of the information that r conveyed to it. Notice that
the latter test is in effect a recursive procedure, since p might have to check next
that ¢ checked that r checked some other processor, and so forth. Now that we
know what it is that p can check, we state that this is precisely what it is going to
check. To test that ¢ transmitted only information that was new to it is fairly easy.
To test that ¢ checked the consistency of the messages that were transmitted to it
is somewhat more involved. p first constructs the reduced view of ¢ at { — 1 based
on the messages that ¢ transmitted to it up to and including I. p then checks that
the messages that ¢ claimed to have received from each such r could have passed
¢’s examination in the reduced view that g conveyed to it.

In appendix B we prove a central result, which states that when p checks ¢ at
| regarding the message that ¢ claimed to have received from r at [ — 1, it need
only check the new information that ¢ conveyed to p that r conveyed to ¢q. In
other words, if ¢ conveys to p at [ that r conveyed to it some information at [ — 1
that was in accordance with what ¢ knew at [ — 2, then this type of information
cannot lead to an inconsistency in the message that ¢ sent p at I. If, on the
other hand, ¢ transmits that information rather than conveying it, then p knows
immediately that ¢ was ill, since this contradicts the principle of transmitting only
new information. This lemma has a strong impact on the communication, time
and space complexity of NIP. In fact it shows that NIP is linear in the number of
lies committed in the network with respect to these three criteria.

We now discuss the second principle, namely, that each processor transmits
only new information when it is healthy. Consider again processor p after it checked
the consistency of the messages that it received at I. Since NIP is ck-informative,
p must find a way to convey its reduced view to all the processors that might be
healthy at I + 1. Let ¢ be a processor that transmits a non-empty message to p
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at ! so that p cannot determine at ! that it was ill. Thus ¢ must have conveyed to
p the message that it received from every other processor, say r, which we denote
by

M(Tv Qal - IIM((I’ ps l))

Assume first that M(r,p,l — 1) # @ and p could not determine at { — 1 that r
was ill at [ — 1. Then, the PIVOT message of p with respect to r atl — 1 or, more
shortly, PIVOT (r,p,l — 1) is M(r,p,l — 1). The motivation behind this name is
as follows: p does not transmit M(r,q,! — 1|M(q,p,!)). Instead, it transmits the
atoms whereby M(r,q,l — 1|M(qg,p,l)) differs from PIVOT(r,p,! — 1), which we
call the new information that ¢ conveys to p atl about r.

What about decoding? Since M(r,p,l — 1 /75 ® and p could not determine at
[ —1 that r was ill at [ — 1, p must have conveéyed M(r,p,! — 1) at I. Thus, all the
processors that are healthy at [ + 1 can retrieve M(r,q,! — 1|M(g,p,!)) from the
difference that p transmits at [ + 1 and the PIVOT. '

The point in transmitting only differences is that if both ¢ is healthy at ! and r
is healthy at [ — 1, then p will not have to transmit at [+ 1 any communication bit
whatsoever in order to convey M(r,q,l —1|M(q,p,1)). If, on the other hand, either
q is not healthy at ! or r is not healthy at l — 1, then each atom that p transmits at
[+ 1 carries at least one lie performed by either q at [ or r at [ — 1. This relation
between the lies that are committed and the atoms that are transmitted plays a
crucial role in the analysis of NIP.

Assume now that p managed to determine either that r was ill at  — 1 or that
the message that r transmitted to p at ! — 1 was empty. Here p will not choose
M(r,p,l — 1) to be the PIVOT message. Instead, it generates an imaginary
message M'(r,p,l — 1) as follows: First, for every s # r,p, let

M'(s,r,01 — 2) = M(s,p,l — 2)

up to weak information symmetry. Now let M'(r,p,l — 1) be the message that r
would have transmitted at { — 1 had it been healthy there'and had it received the
messages that we just constructed. The PIVOT of p with respect to r at [ — 1 is
M'(T,p,l - 1)'

Refer to appendix A for a more detailed explanation of NIP.

6.3 The Complexity of NIP

In this section we analyze the complexity properties of NIP. More specifically, for
a given processor p at round ! in some run p of NIP, we estimate the number of
bits that p transmits at [, provided, of course, that it is healthy there. We also
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estimate the time and the space that the routines described in appendix A use for
calculating the messages that p transmits at [.
We will prove that the intrinsic parameter governing NIP’s complexity in a

segment is the number of actual lies performed in that segment. Moreover, NIP is
linear in that parameter.

Before introducing our notion of an actual lie we make two observations: First,
recall that in a ck-informative protocol each processor conveys its reduced view
when it is healthy, and that its reduced view can be represented as a union of
atoms. Second, consider the atom

(pi, = - = pigs B),
1

that p;, conveys to g at I, where § = 0 or 8 = “detected ill”. In NIP this atom
conveys to ¢ two basic facts, provided of course that it trusts p;,,...,p;,: First,
that M(p;,, pi,,! — k + 1) = B, and second, that p;, conveys no new information
to pi, at | — k + 1 besides M(p;,,pi,,{ — k + 1) = B. The second fact means that
Di, Views the message that p;, transmits to it as the message M'(p;,, pi,,l — k+1)
defined at the end of section 6.2. Thus, a content can be naturally assigned to
each chain of the form

-1
@y = oo ™ iy = Piy = - = Diy-

With these observations in mind we now introduce our notion of an actual lie.
Intuitively, an actual lie is simply an atom whose content is incorrectly conveyed.

More formally, let ¢ be healthy at ! in p, and let r be ill at {. We distinguish
between two cases:

1. ¢ does not know at ! in p that r is ill at I and M[p](r,q,l) # 0.

The atom a is an actual lie that r conveys to ¢ at [ in p, if r conveys a to
g atl in p, and

o Ifa= (‘——-} r,a), then INPUT [p](r,l — 1) # a.
o If
-1
a=(pi, = ... = Pir_, = Di,, — T,Q)
then p;, conveys the atom
1-2
<p51 e Pigy, pip')’)

torat!—1in p, where v # a.

15



2. g either discovers at I in p that 7 is ill at I or M[p|(r,q,1) = 0.

Let M'(r,q,l) be the message whose construction we described at the end
of section 6.2. a is an actual lie that r conveys g at [ in p if either a is an
atom whose content is incorrectly conveyed to ¢ by r through M'(r,¢,l) as
explained above, or a is the message M[p|(r,q,!).

This definition naturally extends to ck-informative protocols other than NIP.
Let AL[p](k,l) denote the number of actual lies conveyed from round k to
round [ inclusive in the run p of NIP, where k < I, and for technical reasons let

AL*[p](k,l) = AL[p]fk,1) + 1.

The content length of an atom a, denoted bsf:|al, is the number of bits used in
order to represent the content of that atom. Let

lp| = {|a| | @ is conveyed in p}.
The following theorem determines the complexity of NIP:
Theorem 2 Let processor p be healthy at round l in the run p of NIP.

1. The number of bits that p transmaits at l in p to another processor s less
than

n((t+ 1) logn + |p|) ALY [p](l — 2,1 — 1).

2. The time needed for calculating the messages that p transmits at | using
the routines described in appendiz A 1s

cAL*[p](l - 38,1 -1)
where ¢ = poly(n,t,|p|). The space used in that calculation s
AL [p)(l -t - 1,1-1)
where, as before, ¢ = poly(n,t,|p|).

6.4 Maximal Communication Efficiency of NIP

Consider the following approach for comparing the communication efficiency of
different ck-informative protocols. Compare the total number of bits transmitted
by the processors that are healthy in segments of two such protocols sharing some
basic properties, such as identical CA and INPUT.
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Unfortunately, this measure is inappropriate; in fact, for every given run
oo = (n,t,Q,0,INPUT,CA,ADV) of a ck-informative protocol @, there ex-
ists a ck-informative protocol 7 and an adversary ADV' such that in the run
oy = (n,t,7,0,INPUT,CA,ADV') each processor that is healthy at a round
transmits at most a single bit to every other processor, and each such processor
conveys precisely the same atoms as the corresponding processor at the same round
in 0g. We construct the protocol ¥ as follows: Say that p conveys to ¢ at ! in o
the set of atoms £. We build 7 so that p conveys L to ¢ at [ iff p transmits to ¢
at [ the bit 1. The construction of o7 is clear. Thus, the communication efficiency
of protocols can only be measured in some weaker sense.

For introducing our notion of communicatipn efficiency we need the following
definition. Let A

k-1
a=(pi, = ... = pi;,a).
‘The oco-length of a in the run o, |a|e, is max{|a|,1} if p;; does not convey any
actual lie with chain p;, — ... gt pi; at k in o, and otherwise, it is max |b|, for

atoms b with chain p;, — ... k=1 pi; that p; ; conveys at k in 0.

A ck-informative protocol C€ is Communication Efficient if for every run o
of C€, and for every other ck-informative protocol 7, there exists a run p of 7
satisfying the following properties: First, the parameters n, t and C A are identical
in o and p. Second, the INPUTSs in p are no longer than the corresponding
INPUTs in o. Third, for every actual lie that is conveyed in p there exists a
comparable actual lie in 0. This means that there exists a one-to-one function
mapping each actual lie (ch,a) in p into an actual lie {ch,B) in o so that

l{ch, B)|oo > |{ch,a)|.

Finally, for every [, fewer bits are transmitted by the processors that are healthy
in SEG[o](l) than by the processors that are healthy in SEG|p|(l), up to a mul-
tiplicative factor of size polynomial in n and ¢. The intuition here is that since
exponentially (in n and ¢) many bits are often transmitted in runs of ck-informative
protocols, the polynomial factor is quite insignificant. Moreover, this polynomial
factor will allow us to establish worst case exponential lower bounds on the number
of bits that processors transmit when they are healthy in runs of ck-informative
protocols.

We now formalize this intuition. Let the Communication Complezity function
of SEG[p](1), CC|[p](l), be the number of bits transmitted by the processors that
are healthy from round 1 to round [ inclusive in p.

Let @ and 7 be two ck-informative protocols. Given a run o of Q, let the runs
of 7 dominated by o, DOM(7,0), be the set of runs p of 7, so that n, t and CA
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in o and p coincide,

(% ¢, INPUT[0](g, k))|eo = (%> ¢, INPUT[p](g, k))|

for all processors ¢ and 0 < k < [, and there exists a one-to-one function mapping
each actual lie (ch,a) in p into an actual lie (ch,B) in o so that |(ch,S)|cc =
|{ch,)|. Notice that the parameters generating DOM(7,0) are relatively short
INPUTSs and severely restricted adversaries.

Definition 6 A ck-informative protocol C€ is communication efficient if for some
p(n,t) = poly(n,t), independent of the number of actual lies performed in the
network, for every run o of C&, ck-informativg protocol ¥ and round l:
g7
cClo](l) < p(n,t ax_ CClp|(1).
e]@) < p(n,1) epB , CClI0)
We state now the main result of this section:

Theorem 3 NIP is a communication efficient ck-informative protocol.

We encourage the reader to develop other notions of communication efficiency,
and to prove that NIP satisfies them. Notice that NIP provides an interesting
O (actual lies) simulation of the classical FV.

7 The Complexity of ck-informative Protocols

In this section we present a lower bound on the number of bits that are transmitted
by the processors that are healthy in runs of ck-informative protocols in terms of
the parameter t.

Theorem 4 For every n andt and for every ck-informative protocol with these pa-
rameters, there ezists a run p of that protocol with |p| = 1 in which some processor
transmits at least ¢! bits at a round in which it is healthy, for ¢ > 1.

7.1 The Complexity of Simultaneous Byzantine Agreement

The lower bounds presented above extend to the problem of Simultaneous Byzan-
tine Agreement, SBA (cf. [DM]). Motivated by our notion of a ck-informative
protocol, we say that a protocol ¥ is sba-informative if, roughly speaking, the cor-
rect processors transmit sufficient information so that if SBA could be achieved at
a round using some other protocol functions corresponding to that round, then it
would also be achieved using 7.
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Definition 7 A protocol ¥ = {F(, 1)} s sba-informative if the following holds for

w=(p,})
any run p of that protocol: Let p' satisfy p) =~ p, and assume that SBA 1is

attained at l in p'. Then SBA 1is also attained atl in p", where p" differs from p'
only in that p transmits atl in p" according to F, ).

Refining the methods above we can prove the following worst case exponential
lower bound for this type of SBA, which we call Eager SBA.

Theorem 5 For every n and t and for every sba-informative protocol with these
parameters, there ezists a run of that protocol in which some processor transmits
at least ¢t bits at a round in which it is healthy, for ¢ > 1.

v
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A The Code for NIP

In this section we present a fairly precise description of NIP. We first introduce
the notations that we use in the code for NIP. Next we develop the procedures
whereby the healthy processor p at round ! maintains and updates its knowledge
data structure, which we denote by N K (p,!). Finally, we present a program that
generates the messages that p transmits at round [ + 1 in runs of NIP, provided

that it is healthy there. The crucial component of that program is, as expected,
NK(p,l).

A.1 Notations ¥

. e . ’ . .
In order to simplify our presentation we need some notations and conventions.

We adopt a PASCAL-like programming style. Procedure names are written
in capital sans serif style, e.g., UPDATE_NK(p,!). Names of arrays are written in
capital slanted style such as LB(g,p,!l). Labels are written in capital bold style,
e.g. CHECK and comments are written in typewriter style.

And now some notations: M(q,r,! — 1|M(r,p,l)) denotes the message that ¢
transmitted to r at [ — 1 as conveyed by r to p at l. Similarly, M(q,r,1|M(q,p,!))
denotes the unique message that ¢ should have transmitted to r at [ had it been
healthy there and had it transmitted M(g,p,!) to p (recall that NIP is weakly
information symmetric).

ST (s,r,l — 2|M(q,p,!)) denotes the subtree derived from M(q,p,!) (in fact
from the transmission tree that it denotes), by following the path starting at the
root (labelled ¢) going through its son labelled r and reaching the son of r labelled
s. Now ST(s,r,l — 2|M(gq,p,l)) is the subtree rooted at s.

Similarly, PRUNE(r,q,! — 1|{LB(q,p,l)) denotes the subtree derived from
LB(g,p,l) by first following the path starting at the root (labelled ¢) and end-
ing at its son labelled . Then PRUNE(r,q,! — 1|LB(q,p,l)) is the tree resulting
from LB(g,p,l) after pruning the subtree rooted at r.

A.2 The PIVOT

In section 6.2 we introduced the second principle of NIP, namely, that each proces-
sor transmits only new information when it is healthy. To this end we introduced
the PIVOT message.

Let p be healthy at ! in a run of NIP, and let ¢ be a processor that transmits a
non-empty message to p at ! so that p cannot determine at [ that it was ill. Thus ¢
must have conveyed to p the message that it received from every other processor,
say r, which we denoted by M(r,q,! — 1|M(qg,p,1)).
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If p could not determine at ! — 1 that r was ill at [ — 1 and M(r,p,l — 1) # 0,
then the message that p received from r at that round is the PIVOT message of
p with respect to r at { — 1, PIVOT(r,p,l — 1).

Assume now that p managed to determine either that r was ill at [ — 1 or that
the message that r transmitted to p at | — 1 was empty. Here p will not choose
M(r,p,l — 1) to be the PIVOT message. Instead, it generates an imaginary
message M'(r,p,l — 1) as follows: First, for every s # r,p, let

M'(s,r,l — 2) = M(s,p,l — 2)

up to weak information symmetry. Now let M'(r,p,l — 1) be the message that r
would have transmitted at [ — 1 had it been healthy there and had it received the
messages that we just constructed. The PIVOT of p with respect to r at [ — 1 is
M'(r,p,l — 1).

The intuition behind the PIVOT message is as follows: p does not transmit

M(Ta q7l - IIM(Qapa l))

at [+1. Instead it transmits the atoms whereby M(r, ¢,l—1|M(q, p,!)) differs from
PIVOT(r,p,l — 1). We will show in appendix A.4 how this difference is evaluated
in NIP.

A.3 The nc-state

In section 3 we introduced a partition of P X N based on the crashing assignment —
CA. We now introduce another partition based on the knowledge that a processor
has at a round in which it is healthy. More specifically, let p be healthy at ! in
p. We define the following partition of P x N into five sets which we call the
nc-state(p, ):

e nc-healthy[p|(p,!) = {(g,k)| p knows at [ in p that ¢ was healthy at &k }.
The sets nc-ill[p](p,!) and nc-dead[p](p,!) are defined similarly.

e nc-pseudo-healthy[p](p,!) = {(g,k)| p knows at [ in p that ¢ was either
healthy or ill, but it does not know which of the two }.

The set nc-pseudo-dead|[p](p,!) is defined similarly. Here the uncertainty
is between ill or dead rather than between healthy or ill.

Thus (g,k) € nc-pseudo-healthy[p](p,!) means that p knows at [ in p that ¢
was either healthy or ill at k, but it cannot determine which of the two. This can
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happen in the following situation: p receives a message from ¢ at round k, for
some k < [, from which it could not determine that ¢ was lying at k. Moreover, it
does not receive any message from g after k, and it gets no additional information
indicating that ¢ was ill at k.

We will find it useful to consider the following subset of nc-ill[p](p,!):

nc-detected-ill[p](p,1)={(g, k)| k¥ <! and (g, k) € nc-ill[p](p, k) }.

The idea is that if (g,k) € nc-detected-ill[p](p,!) then it is not only true that p
knows at [ in p that ¢ was ill at k, but it actually could determine that fact at
round k by examining the message that ¢ transmitted to it at k.

Also, let ] }; )

nc-failing[p] (p,!)= nc-ill[p](p,!) U nc-pseudo-dead|p](p,!) U nc-dead[p](p,!)

and let |
nc-known[p](p,!)= nc-healthy[p](p,!) U nc-dead|p](p,?).

A.4 The Operators A and

We introduce now the two binary operators that allow the coding and decoding
of the messages in NIP: A and v. Consider A first. Denote by C(M;) the set of
atoms conveyed through M;, for ¢ = 1,2. Then, M; A M, is basically an efficient
encoding of C(M;) \ C(My). :

These operators might be better understood by considering a simplification of
the problem. Assume for the moment that each message transmitted in NIP is
really a set of atoms instead of a transmission tree. Consider the following two
messages:

M = {(Chl’al)>(Ch2aa2)’(0h3’a3)}
M; = {{chi,a1),{chs,B2),({chs,as),{chs,Ps)}

where ch;,t = 1,...,4, denote different chains and o;,7 = 1,...,4, and §;,1 = 2,4,
denote distinct values for content. In this example

M, A M, = {(Ch% 0!2), (Ch‘la 04)}

where a4 is the content corresponding to chy4 as conveyed by the processor that
transmitted M;. Roughly speaking, the effect of A is to discard from its first
operand each atom that also appears in its second operand (hence, it is not sym-
metric). Further, an atom that appears in the second operand carrying a chain ch
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that is missing from the first operand will appear in M; A M, as an atom carrying
both ch and the corresponding content, which was conveyed by the processor that
transmitted the first operand.

More specifically, let p;, be healthy at ! in a run of NIP, and let p;,_, satisfy
(Pir_y»! — 1) € nc-pseudo-healthy(p;,,l —1). Assume that p;, did not know atl—1
either that p;,_, was healthy at | — 2 or that it was dead there, i.e., (pi,_,,l —2) &
nc-known(p;,,l — 1).

We now construct the tree

DIF = M(pi\_y,Pit_y»! — 2|M(piy_,, Piy,l — 1)) & PIVOT (piy_,,Piy ! — 2)

by examining the following cases. ) },
Assume first that M(p;,_,,pi,,! —2) # 0 and p;, did not detect at I — 2 that
pi,_, was ill. If p;,_, conveys to p;, at ! — 1 that M(pi,_,,pi,_,,! — 2) = 0, then

DIF = (pil:—z ™ Pira l:')l Pik,@).

If M(pi,_,,Pi,!—2) = 0 and p;,_, conveys to p;, at -1 that M (p;,_,,Pi,_,,{—2) =
@, then

DIF = .
Here M(pi,_,,Pi.»! — 2|M(pi._,,pi,,l — 1)) = 0 is implicit in p;,’s transmission at
l. Notice that if

M(pik..g,pik_pl - 2|M(pik_ppikal - 1)) = PIVOT(pik_zapik’l - 2),

then DIF = (p;,_, — Pir_, = piy,=). The case where p;,_, conveys to p;, at
[ — 1 that it detected that p;,_, was ill at | — 2 is treated similarly.
Assume now that p;,_, neither conveyed to p;, at [ — 1 that

M(pik_zvpik_lal - 2) =0

nor detected that p;,_, was ill at [ — 2. Here, we construct DIF as follows. First,
let

a = INPUT(p;k_Z,l - 3|M(p,'k_l,p,'k,l - 1))
o' = INPUT(pi,_,,! — 3|PIVOT (pi,_,,pi,,l — 2))-

—29
Then the atom , i1 -
(pik_z = Dipy — pl'k,a)

is included in DIF iff o # /.
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Second, consider the atom

-2 ‘
a = (pil s T P, T Pik_l,a) € M(Pik_z;Pi,‘_pl - 2lM(Pz‘k_pPipl - 1))

If forno 1< f < k— 2 is the atom

1-3
af=(piy = --. = Piy_y,P)

conveyed in PIVOT (pi,_,,Pi,,! — 2), where B =0 or B =“detected ill”, then let

-3
a', = (pil ... pl'k_gyal)

t
be the corresponding atom conveyed in PIVOT(p;,_,,pi;,! — 2). In this case the
atom

-1
<Pi1 e 7 Digy, pl'k’a)

is included in DIF iff a # o/. If, on the other hand, ay is conveyed in
PIVOT (pi,_,,Pi.>! — 2)

for some f, then a is included in DIF regardless of its content.
The case where

-3
<pi1 ... Pi,,_g,a’) € PIVOT(pi;,_g,Pikal - 2)
but p;,_, conveys
1-2
(pil oot 7 Piggy pfk-l’a)
to pi, at I — 1, with a # o/, is treated similarly.

Having completed the operations above, we delete redundant information from
DIF. For every atom

a= (pi, — e Di.,a) € DIF

no atom of the form
(Piy = 8 = Piy = -+ = Pigy7)

should be in DIF.

The operator 7 is roughly the inverse of A. If M3 denotes M; A M,, then
M, = M3 v M,.

The effect of A and 7 on transmission trees instead of on sets of atoms is
now self-explanatory. Further, the time and space that these operators require
when applied to transmission trees is linear in the sizes of the first and the second
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operands, up to multiplicative factors of polynomial size in n. The key idea is again
a proper choice of the data structure. Every transmission tree will be represented
as an n-ary tree, where each node may be connected to at most n — 1 other
nodes representing the other n — 1 processors, and to a special node carrying the
content corresponding to the chain defined by the path from the root to that
node. We represent each such node by a vector of size n containing pointers to
its sons. Locating a pointer to a son involves only O(logn) time. Executing A
involves visiting nodes in the transmission tree of the first operand in, e.g., depth
first search order, and adding or deleting pointers in some nodes according to the
second operand and the data structure described below.

[ 4
A.5 The Data Structure _.l:’

The data structure that each processor p that is healthy at a round [ uses in every
run p of NIP is called the Necessary Knowledge Data Structure and is denoted
by NK[p](p,!). It is an efficient data structure for encoding the knowledge of p
at round ! in p, and it is especially designed for allowing swift updates as new
information flows in.

The data structure NK [p](p,!) is a graph in which both the vertices and the
edges are labelled. Each of its vertices denotes a pair (g, k), where ¢ is a processor
and k is a round, for 0 < k < I. The vertex corresponding to (g, k) is labelled by the
nc-state[p](p,!) of ¢ at round k, and is denoted LB(g, k). The vertex corresponding
to (g,0) is labelled nc-healthy[p](p,!) for all g.

There is an edge between two vertices (7, f) and (s,k) in the graph iff r # s
and |f — k| = 1. The label of the edge ((r,k — 1), (s,k)) is denoted by LB(r,s,k).

If p knew at ! that r was healthy at k, then LB(r,p,!) would only carry

INPUT(r,k). Otherwise, LB(r,p, k) carries only that part of the new information
that r conveyed to p at k that p can trust at ! only if p knew at [ that r was healthy
at k.

For s # p, LB(r,s, k) is undefined unless p knows at [ that s was healthy at k+1.
In that case LB(r,s,k) carries the new information that s conveyed to p at k+ 1
about M(r,s, k), that is, the difference between M(r,s,k) and PIVOT(r,p,k).

A.6 The Procedure for Updating NK

Processor p inductively constructs N K[p](p,!) from both NK [p](p,! — 1) and the
messages it receives at round [ as follows:

Base (I = 1): For every (¢,0), LB(g,p,1) «— M(q,p,1). All the other edges in
NK|p](p,1) are not labelled.
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Step: Assume inductively that NK(p,l — 1) was already built. Construct
NK(p,l) by invoking the routine UPDATE_NK(p,!) that is described below.

This routine performs three basic tasks: First, for every ¢ so that M(q,p,l) # 0,
p trusts the information that ¢ conveyed to p at I — 1. Next, for every ¢ so that
M(q,p,l) # 0, p examines the consistency of the message that ¢ transmits to it at
l. Finally, for every processor ¢ so that either (¢,{ — 1) € nc-pseudo-healthy(p,!)
or (g,l — 1) € nc-pseudo-dead(p,!), p checks if there are enough witnesses to prove
that ¢ was in fact ill at [ — 1. :

Procedure UPDATE_NK(p,!)
;This procedure constructs NK(p,l) basgd on NK(p,/ —1) and on
:the messages that p receives at round//.
For every (g,k). k < '
LB(g,k) in NK(p,l) — LB(q,k) in NK(p,l - 1).

: For every ¢ so that M(g,p,l) # 0, trust the information
: that ¢ conveyed at [ —1.
For every ¢ satisfying M(q,p,l) # 0
TRUST(qg,! — 1)

: For every ¢ so that M(q,p,l) # 0, examine the consistency
; of the message M(g,p,!).
For every ¢ satisfying M(q,p,l) # 0
EXAMINE(g, p, 1)

: For every ¢ so that either (¢,/ — 1) € nc-pseudo-healthy(p,!) or
: (g, — 1) € nc-pseudo-dead(p,l), check if there are enough
; witnesses to prove that ¢ was ill at [ —1.
For every ¢ s.t. LB(q,l — 1) = nc-pseudo-healthy(p, )
If CHECK_ILL(g,p,!) then LB(g,l — 1) < nc-ill(p,1)
For every ¢ s.t. LB(q,l — 1) = nc-pseudo-dead(p,! — 1)
If CHECK_ILL(g, p,!) then
LB(g,! — 1) « nc-ill(p,1).
TRUST(g,! — 2).
RETURN

Routine TRUST (g, k)
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: This procedure adopts the information transmitted by (g,k).
If LB(q,k) = nc-healthy(p,!) then RETURN
Else
LB(gq,k) «— nc-healthy(p,l)
For every son r of LB(g,p,k)’s root
LB(r,q,k — 1) < ST(r,q,k — 1|LB((q,p, k))
If LB(r,q,k — 1) # 0 then
If LB(r,k — 1) = nc-pseudo-healthy(p,) then
LB(r,k — 1) « nc-ill(p,1)
If LB(r,k — 1) = nc-pseudo-dead(p,l) then
LB(r,k — 1) « nc-ill(p,1) I
TRUST(r,k — 2) V
For every r s.t. LB(r,k + 1) = nc-pseudo-healthy(p,!)
If r lied about M(q,r,k) at k+ 1, i.e., ST(q,r,k|LB(r,p,k + 1)) # 0.
then LB(r,k + 1) « nc-ill(p,1)
LB(g,p,k) « INPUT(g,k)
RETURN

Routine CHECK_ILL(g, p,!)
;This procedure checks whether there are sufficient witnesses
:for letting LB(g,l — 1) be nc-ill(p,!) instead of either
:nc-pseudo-healthy(p,!) or nc-pseudo-dead(p,l).
Let FAIL = |nc-failing(p, )|
If there are more than ¢t — FAIL processors r, r # p, r # q.
s.t. M(q,r,l - 1|M(r,p,1)) # M(q,r,l — 1|M(q,p,l - 1).
i.e. ST(q,r,l —1|LB(r,p,l)) # 0
then RETURN(TRUE)
else RETURN(FALSE)

Routine EXAMINE(q, p,1)
; Examine the consistency of M(g,p,!) by showing that for every r
iat l—1, q conveyed at [ consistent information about that r.
; Thereafter, set both LB(g,l) and LB(q,p,l).
Check the syntax of the message
LB(g,p,l) — M(q,p,1)
Foreveryr,r# ¢ r#p
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CASE
LB(r,l — 1)= nc-healthy(p,)
If M(T,q,l - 1|M(q,p,l)) = M(T, g, - ].IM(T,p,l - 1))
then LB(q,p,l) — PRUNE(r,q,l — 1|LB(q,p,!))
Else DETECT_ILL(g,p,!); RETURN ‘
LB(r,l — 1)= nc-dead(p, 1)
If M(T’q,l - 1|M(q,p,l) =0
then LB(g,p,l) — PRUNE(r,q,l — 1|LB(q,p,1))
Else DETECTILL(g, p,!); RETURN

Else,
If ~NEW_INFORMATION(r,q,p,1)
then DETECT.ILL(g, p/?): RETURN
TREE « ST(r,q,l — 1|LB(g,p,!))
If ~CONSISTENT(r,l - 2,T REE)
then DETECT.ILL(g,p,{): RETURN
ENDCASE

SET_LABEL(q,p,!)
LB(g,l) « nc-pseudo-healthy(p,!)
RETURN -

Routine NEW_INFORMATION(r, ¢, p,1)
; Check that ¢ conveyed to p at ! only new information about r.

For every atom (... — s — — g,a) € M(g,p,1)

Let (...—s =2 g,B) be the corresponding atom in RV (g,l — 2)

If o« = B then RETURN(FALSE)
: Check that atoms carrying ) content were conveyed only when
; really needed.

For every (pi; — ... — pi, = ¢,0) € M(q,p,1). where p;, =r

If (pi, — s — piy — e g,a) € M(q,p,1)
then RETURN (FALSE)
RETURN(TRUE)

Routine CONSISTENT(r,k,TREE)

; Check the consistency of the information that r claimed to have
: received at k, assuming that the information conveyed in TREFE
:is reliable. Notice that the root of TREFE is labelled r.
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: Find the nc-known(r,k|TREE) processors at k— 1 based on
: RV (r,k — 1) and assuming the information in TREE.
For every s satisfying M(s,r,k|TREE) # 0
If(s,k — 1) € nc-pseudo-healthy(r, k — 1)
then TRUST(s,k — 1)
else RETURN(FALSE)
: Check the consistency of the messages that r received at k.
: First check that if (w,k — 1) € nc-known(r,k|TREE) then there

:is no chain in TREFE of the form ...— w — sEr.
CHECK:
For every (w,k — 1) € nc-known(r,k|TREEY,
If ason of TREE's root has a son labelled w
then RETURN(FALSE)
: Next check that processor r checked at k the consistency of
: the message that it received from every son s of TREE's root.
For every son s of TREE's root
NEW TREE — ST(s,r,k|TREE)
If ~CONSISTENT(s,k — 1, NEW T REE) then RETU RN(FALSE)
RETURN(TRUE)

Routine DETECTILL(g, p,1)
LB(g,l) «— * detected ill”
LB(q,p,l) — " detected ill”
RETURN

Routine SET_LABEL(g, p,!)
Create LB(g,p,!) by first constructing a single node tree, with root v labeled g.
Next, append a son to that node with label INPUT (¢,!|M(q,p,1)).
Finally, for every 7, r # p and r # ¢. s.t. LB(r,l — 1) is neither nc-healthy(p,)
nor nc-dead(p,!). append the root of the tree

M(r,q,! = 1|M(g,p,!)) A PIVOT(r,p,l — 1) ‘

to v. This tree can be computed efficiently using the formula in section A.8.
RETURN
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A.7 The Transmission Procedure

The transmission procedure for processor p at round [+ 1 in a run of NIP involves
two steps: First, p constructs the data structure NK (p,!) by updating NK (p,l—1)
according to the messages that it received at round [. Next, for every s such that
LB(s,l) is either nc-pseudo-healthy(p,!) or nc-detected-ill(p,[), it merges the labels
{LB(q,p,1)}qsp,s thereby creating the transmission tree TT (p,s,l + 1). If, on the
other hand, p has seen ¢ faulty processors by the end of round [, it knows that all
the transmitting processors were healthy. Thus the only information it transmits
at [ + 1 is its INPUT. The transmission procedure follows.

Procedure NIP_MESSAGES(p,! + 1) }
:This procedure generates p’s transmission at [+ 1.
UPDATE_NK(p,?)
For every s
If LB(s,l) = nc-pseudo-healthy(p,!) then TRANSMIT (p,s,l + 1)
If LB(s,l) = nc-healthy(p,l) then TT(p,s,l + 1) — INPUT (p,!)
RETURN

Procedure TRANSMIT (p, s,l + 1)

:This procedure generates M(p,s,l +1).
Create TT (p,s,! + 1) by first constructing a single node tree, with root v
labelled p. Next, append a son to that node with label INPUT (p,l).
Now, for every r, 7 # p and r # s, make the root of LB(r,p,l)
a son of v.
RETURN

A.8 Routine SET LABEL

In this section we indicate roughly how to evaluate the tree LB(g,p,l) used in
routine SET_LABEL. Notice first that

ST(s,r,1 - 2|LB(g,p,!)) = M(s,r,l — 2|M(q,p,1)) A M(s,r,l — 2|M(r,p,l — 1)).

We consider the two terms on the right hand side.
By definition,

M(s,r,1—-2|M(q,p,1)) = ST (s,r,l—2|M(q,p,l)v PIVOT (s,q,1—2|M(q,p,l - 1)).
Assume for the moment that

PIVOT(s,q:l = 2|M(Q7pal - 1)) = M(31Qal - 2)'
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The case where the two terms above are different is treated similarly.
Recall that

M(saq>l - 2) = LB('S’qal - 2) v PIVOT(S,p,l - 2)a
and using the associativity of 7,
M(s,r,l — 2|M(q,p,l)) =
(ST(89 T’l - ZIM(Q1p’l) v LB(s,q,l - 2))V PIVOT(S,p,l - 2)

Also,
M(s,r,l — 2|M(r,p,l — 1)) = ST (s,r,l — 2|LB(r,p,l — 1)) v PIVOT (s,p,l — 2).
But we have the following relation, A.I{’
(M v M) A (Mz v M) =M AM,,
thus,

ST(s,r,l — 2|LB(q,p,l)) =
{ST(s,r,l — 2|M(q,p,1)) v LB(s,q,l — 2)} A ST(s,r,l — 2|LB(r,p,l — 1)).

The time and space used in evaluating this formula is estimated in the proof
of lemma 13 in appendix E.2.

B The Consistency Test in NIP

In this section we prove that the consistency test of messages performed in NIP is
as effective as the most general consistency test. More specifically, let p be healthy
at ! in a run of NIP. Suppose that p tries to determine whether ¢ was ill at [ by
examining the message that ¢ transmitted to it at [. It is fairly simple for p to
check whether ¢ forwarded correctly the messages that ¢ received at | — 1 from
each 7, so that p knows at ! that r was either healthy or dead at [ — 1. When p
does not know at ! that r was either healthy or dead at [ — 1, then the only facts
that p may and will check, are that ¢ transmitted only new information about r
and that g checked at [ — 1 the reliability of the message that r transmitted to it.

In lemma 2 we prove that p need only check that ¢ checked the consistency of
the new information that ¢ conveyed to p at [ about r. To this end consider an
Extended New Information Protocol called ENIP. The routines that define ENIP
are identical to the routines of NIP with one exception: In ENIP the routine
CONSISTENT checks all the atoms that are conveyed instead of checking just the
new information. '

Here is the routine CONSISTENT used in ENIP:
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Routine CONSISTENT(r,k,TREE)
: This is routine CONSISTENT in ENIP.
: Check the consistency of the information that r claimed to have

» received at k, assuming that the information conveyed through
: TREFE is correct.

: Find the nc-known(r,k|TREE) processors at k— 1 based on
: RV(r,k — 1) and assuming the information in TREE.
For every s satisfying M(s,r,k|TREE) # 0
If(s,k — 1) € nc-pseudo-healthy(r,k — 1)

then TRUST(s,k — 1) t

else RETURN(FALSE) v-’:’
: Check the consistency of the messages that r received at k.
; First check that if (w,k — 1) € nc-known(r,k|TREE), then no

: atom of the form (...— w— s 5 r,0) was conveyed by s to
: r through M(s,r,k|TREE) that is inconsistent with
: (w,k — 1) € nc-known(r,k|TREE).
; In NIP the following test is performed instead:
; If a son of TREE's root has a son labelled w
then RETURN(FALSE).
CHECK:
For every (w,k — 1) € nc-known(r,k|TREE)
If some s conveyed to r at k an atom of the form
(-..—w— s r a) through M(s,r,k|TREE)
that is inconsistent with (w,k — 1) € nc-known(r,k|TREE)
then RETURN(FALSE)
: Next check that processor r checked at k the consistency
; of all the messages that it received.
: In NIP the following ‘‘for’’' statement is performed instead:
; For every son s of TREE's root
For every s
NEW TREE «— ST(s,r,k|TREE)
If ~CONSISTENT(s,k — 1, NEW T REE) then RETURN(FALSE)
RETURN(TRUE)

In lemma 2 we state that this strong consistency check is no more effective
than the consistency check in NIP. In fact, p detects at [ that ¢ is ill at { in ENIP
iff it does so in NIP.
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Lemma 2 For given INPUT, CA and appropriate ADV, let p and pE be runs
of NIP and ENIP with these parameters. Then EX(p) = EX(pF).

Proof: For typographic reasons denote CONSISTENT and TREEFE by CN and TR
respectively.

We prove by induction on the round number [/ that all the processors transmit
exactly the same messages in both p and p~.

Base | = 1: Trivial since CN is never invoked.

Inductive step: Assume that the processors transmit exactly the same messages
up to and including round ! in both runs. We now prove that they will also transmit
the same messages at [ + 1.

This claim is trivial for ill processors at [4 1 as well as for dead processors
there. We are therefore left with the healthy processors at I + 1. For every such
healthy processor at [ 4+ 1 we must show that at [ that processor had precisely the
same reduced view in p and in pE.

Let p;,,, be such a healthy processor at [ + 1, and assume that processor i,
transmits to p;,,, at l. If p; was either healthy or dead, there are no problems.
The case that does require careful examination is when p;, is ill at I. In fact
we must show that (pi,,!) € nc-detected-illp](pi,,,,!) iff (pi,,!) € nc-detected-
ill[p*] (Pirgrr1)-

The “if” case is trivial. We concentrate therefore on the “only if” part. We
prove the following slightly involved claim by induction on j, the depth of the
recursive invocation to CN.

1. For every depth j sequence of recursive invocations to CN with parameters
(pik_l al - 27TRk—l)’ (pik..27l - 3’TRk—2)a sy (pik_jal - .7 - 17 TRk—j)
in p there exists exactly the same sequence in p%.

2. CN(Pik_,-,l — J — 1,TRg_;) returns FALSE in p at step CHECK iff
CN(pi,_,;»! — 5 — 1,TRg_;) does in p%.

3. If there exists a depth j sequence of recursive invocations to CN with
parameters

(pik_l,l - 2)TRk—1), (pik_zal - 3aTRk—2)a sy (pik_j’l - .7 - la TRlc—j)
in pE, and if there is no such sequence in p, then CN(p;k_J., l—7—1,TRj)
returns TRUE in p%.
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We now present the proof of the inductive hypothesis.

Base 5 = 0: NIP and ENIP are identical before invoking CN.

Inductive step: We proceed to prove 1, 2 and 3.

Proof of 1: By 1 in the inductive hypothesis, if there exists a depth 7 — 1
sequence of recursive invocations to CN in p then there exists exactly the same
sequence in p¥. By 2 in the inductive hypothesis, the call to CN at depth j — 1
in that sequence in p returns FALSE at step CHECK iff it does so in pZ. By 3
in the inductive hypothesis, if there exists a recursive invocation to CN within the
depth j — 1 call in that sequence in pF that does not appear in p, then it returns
TRUE in p®. The statement now follows since whenever CN is recursively called
in p, it is also called in pF.

’
Proof of 2: This is the crux of the inductivé claim. Obviously, if (w,l—7—-2) €

nc-known(p;,_;,l — 7 — 1) then CN returns FALSE at step CHECK in p when
examining the atom
I-j-1
(c..@w—os = p_,0)
in T Rg_; iff it does so when examining the same chain in pE.
Problems may arise therefore only while examining in p¥ some atom

((..—w— st Pir_;>Q)
that does not appear in T Rg_j and so that (w,l—7—2) € nc-known(p,-k_j J—7-1).
In pF this atom might create an inconsistency, whereas in p it is not checked at
all. We now show that this atom need not be checked.

More formally, assume that in p the call to CN at depth j did not return
FALSE at CHECK, whereas in p¥ that same invocation returned FALSE. Thus,
for some w such that (w,l — j — 2) € nc-known(p;,
that the atom

_j»! =7 —1) and for some s so

(..—mw— s Pir_j»@)

is not in T Ry_;, this atom carries new information to pi,_; at I — 7 — 1. Carrying
new information means that the atom
I—j-2
(c.mw STpi_,B)

satisfies B # a.

We show this to be impossible by considering the following three cases:

Case 1: M(w,p;,,l —j — 1) # 0 (in both p and pF).

Then (w,l — j — 2) € nc-healthy(pi,,! — 7 — 1) and s conveyed correctly to p;,
the information it received from w. Further, since the atom

(.. w— st Pi_j>@)
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is not in T'Rg—j, s conveyed the same atom to p;,_; and to p;, at I —j — 1 (in
RV (pi,,l — 1)). By assumption the call to CN at depth j in p did not return
FALSE at CHECK, thus p;,_; conveyed

(...—w— st Pir_j»@)

at l — j — 1, which is not new information — a contradiction.

Case 2: M(w,pi,,l —j — 1) =0 and M(w,p;,_;,l —7— 1) # 0.

Since M(w,pi,_;,l —j — 1) # 0 and since the call to CN at depth j in p did
not return FALSE at CHECK, then atoms of the form

it
- l"ﬁt[k—j’a)

cannot carry new information to p;,_; — a contradiction.

Case 3: M(w,pi\,l —j — 1) =0 and M(w,p;,_;,l =5 — 1) =0.

M(w,pi,_;,! = j — 1) = 0 implies that (w,l - j — 2) € nc-dead(p;,_,,! — 5 — 1),
and the meaning of the atom that makes CN return FALSE at CHECK in pF
is that s conveyed to p;,_. (and also to p;,) at I — k — 1 that it received some
nonempty message from w. We proceed to show that this leads to a contradiction.

If for some f < 1—j—2, (w, f) € nc-dead(p;,_;,l — j — 3), then Pi,_; conveyed
that fact to p;, at { — j — 2, and therefore p;, believed it at | — 7 — 1. Thus, p;,
also knew at [ — 7 — 1 that w was dead at [ — 7 — 2. Now s conveyed that same
atom also to p;,, therefore the healthy p;, at [ — 5 — 1 should also have discovered
that s was ill at { — 5 — 1, which it did not — a contradiction.

Otherwise, there is no such f, and in particular, Pi_,; did not know at [ —j5—3
that w would be dead at [ — 7 — 2. Assume next that pi,_; discovered at [ — 7 — 2
that w was dead at | — j — 2, that is, (w,l — j — 2) € nc-dead(p;,_;,! — 7 — 2).
Thus p;,_; discovered only at | — j — 2 that w was ill at [ — 5 — 3. This could
have happened only after invoking the procedure CHECK_ILL within procedure
UPDATE_NK. It follows that there are more than ¢ — FAIL messages that are
different from M(w,pi,_;,! — j — 3) that were transmitted to p;,_; at I — 5 — 2. At
least one of the processors that transmitted such a message, say v, was healthy at
l—7—2andalsoat!—j— 1. Thus p;, knew at l — 5 — 1 at least two different
versions of the messages that w transmitted at [ — j — 3: One from Pip_jatl—7-2
and the other from v at | — 5 — 2.

Recall now that p;, knew at | — 7 — 1 that both Pi—; and v were healthy at
l — 7 —2, therefore it also must have known that w was ill at [ — 7 — 3 and therefore
dead at [ — 7 — 2. Thus p;, should have detected at [ — 7 — 1 that s was ill at
l — 7 — 1 — a contradiction.

(..‘.—rw—>sl
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We are left with one more case: (w,l—j — 2) & nc-dead(p;,_;,! — j — 2). Thus
Pi,_; discovered only at{ —j—1 that w wasill at { — 7 — 3. Another look at routine
UPDATE_NK reveals that there must have been at least one call to procedure
TRUST, and therefore there must have been some v so that M(v,p;,_,,l—j—1) #
0. Thus p;,_; trusted M(v,pi,_;,! — 7 — 2) and inferred thereby that w was ill at
l—j5-3.

Recall that by assumption the call to CN at depth 7 in p did not return FALSE
at CHECK, thus the atom

(..mw—os L Pir_j>@)

cannot carry new information to p;,_; —a conj;gadiction.
This completes the proof of item 2 of the inductive hypothesis.

Proof of 3: Assume there was a depth j sequence of recursive invocations to
CN with parameters

(pik_pl - 2’TRk—l)’ (p!'k_z’l - 3’ TRk—?), ceey (pi,,_jal - .7 - laTRk—j)

in pE, and that this sequence is absent from p. Thus there exists a minimal
f, 0 < f < jsothat CN(p;,_;,! = f — 1,TRi—y) is invoked in pE, but not in
p. Therefore CN(p;,_.,,,! = f,TRx—s41) (or EXAMINE(p;,,p;,,,,0) if f=0) is
called in both runs. Since there was no recursive call to CN(p;,_,,{— f—1,T Rx—y)
in p, the subtree that p;,_. , transmitted about p;,_. (in RV (p;,,l — 1)) was
either empty, “detected ill” or a single node labelled p;,_, carrying an INPUT.
The interesting case is the third. If f = 1, then p;,_, and p;, receive the same
messages at [ — 2 in RV [p®](p;,,! — 1), up to the weak information symmetry of
NIP. Thus, the recursive call to CN(p;, _ pol=f—=1,TRiy) in p¥ returns true iff
pi, checks the consistency of the messages that it receives at I — 2 in pF. But since
M[p®)(piy > Pir_y5l) # 0, pi, is healthy at | — 1 in pF, and therefore it certainly
checked the consistency of the messages that it received at [ — 2. The argument
for f >-1 is similar. Just notice that p;,_, and p;, receive the same messages at
k—f—1in RV [pF](p;,,l — 1), up to differences due to weak information symmetry.
This completes the proof of item 3 of the inductive hypothesis. |

C CK Characterization in NIP

In this section we introduce the critical round of a run p at a round ! which we
denote CR[p|(l). It plays a central role in the classification of the facts that are
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common knowledge at round [ in the run p of NIP or of other protocols. Refer
to [DM] and [MT] for a similar definition in the crash and the omission models
respectively.

Let N[p](k) be the number of processors that fail at k£ in p. Let the segment
critical round of run p at round l, sg-C R[p](l), be the smallest round number j
such that the following threshold inequalities are satisfied:

t— N[j(k) 21—k for j<k<L.
The critical round of p at !, CR[p|(l), is defined by :

CRIp|(1) = minsg-CRIF)()-
pl~p N
Roughly speaking, the basic property of C' R[p](l) is that the states, INPUT's
and transmissions of each processor ¢ at k, so that k > CR[p](!) and ¢ does not
fail at CR[p](l), are not common knowledge at ! in p. Refer to [MT] for more
details on the relation between facts that are common knowledge at a round and
the critical round corresponding to that round.

C.1 CK Evaluation in NIP

In this section we develop a procedure that allows every processor that is healthy
at a round in a run of NIP to evaluate the critical round.

The definition of the critical round indicates that evaluating C'R[p](l) might
involve checking all the runs in the l-similar equivalence class of p. Surprisingly,
each processor p that is healthy at a round ! in p need only consider runs that
are (p,l)-equivalent to p for performing that evaluation. Fortunately, the data
structure NK|[p](p,!) naturally engenders a method for calculating the critical
round at [.

The idea behind the procedure that p uses in order to evaluate the critical
round is as follows: After having assigned nc-states(p,!) to every pair (processor,
round), p assigns at [ another type of state which we call the pr-state(p,!). There
are basically three different types of pr-state(p,!): pr-healthy(p,!), pr-ill(p,!) or
pr-dead(p,!). The crux of the problem is the choice of pr-state(p,!) for pairs that
are either nc-pseudo-healthy(p,!) or nc-pseudo-dead(p,!).

C.2 A Procedure for Evaluating the CR

The procedure that processor p uses at round ! for evaluating the critical round
at [ follows:
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Procedure CR(()
For every (g,k)
(g,k)’s pr-state(p,!) « (g, k)’s nc-state(p,!)
EVAL_CR()
end

Procedure EVAL_CR(k)
k — JUMP(k)
If there exists some m so that (pm, k) € pr-pseudo-dead(p,!)
then LB(pm,k) — pr-ill(p,1)
TRUST (pm, k — 1) /)
EVAL_CR(k — 1) o
Else RETURN(“CR(l) = k")

Procedure JUMP(k)
Let 6§ —t— |{q| (¢,k) € pr-dead(p,l) U pr-pseudo-dead(p,!)}|
If § > I — k then RETURN((JUMP(I — §))
Else RETURN(k)

This procedure for evaluating common knowledge readily generalizes to deter-
ministic protocols other than NIP.

D The Proof of Theorem 1

We begin this appendix by proving the following justification of our definition of
an information symmetric protocol:

Lemma 3 The protocol ¥ = {F(, )} is information symmetric iff for every pair
of runs o and o' of ¥ in which p is healthy at I, for all processors q and r,

M[O‘] (pa q’l) = M[O"] (P, ‘Ial) zﬁ M[U] (pa Tal) = M[U'] (:D, T,l).
Proof: = Assume that M|[o](p,¢,!) = M|o'|(p,q,!). Then

FE o (Vol(p,l - 1) = FE » (VIo'] (0,1 - 1))
implying that

(L) o Fly(VIel(p,l = 1) = (L )" 0 FE  (VIo) (2,1 — 1))
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Since 7 is information symmetric,

(Ffpa) ™ © Fipgy (VIol(psl = 1)) = (o)™ © F (VI (1 = 1),
Now, this implies that

FlonViol(p,! = 1)) = F{, ;(VIo'](p,! - 1))

and therefore M{o](p,r,!) = M[d’|(p,1,1).
< Let Vo](p,! — 1) be a view; thus, by definition, p is healthy at [ in 0. Let

VIl = 1) € (T )™ i (Vlel(p1 - 1)

where again p is healthy at [ in o’. Then A7

FyVIol(p,1 = 1) = F, (V1o'](w = 1)

implying that M(o](p,q,!) = M[o'](p,q,!). Applying the assumption, we have
M(o)(p,r,1) = M[o'](p,,1), which implies in turn that

VIo'l(pl = 1) € (Flpp)) ™" o Fp1y(VIol(p,l - 1)). 1

The following lemma redefines our notion of conveying by replacing each knowl-
edge operator with an universal quantifier.

Lemma 4 Assume that p is healthy at | in p and p |= Kpi-1)p-

. . (pi-1) (a:1)
p conveys o to g atl in p iff, for every p'  ~ " p and for every p" ~ p', so

that p is healthy atl in p”, p" = .
We proceed now to prove theorem 1 by the following lemmas:
Lemma 5 If a protocol 7 is an RCP, then ¥ is ck-informative.

Proof: Following the notations of definition 2, let 7 = {F(, )} be an RCP. Let

w-(p,l)
p be a run of 7, let p' satisfy p’ =~ p, and let ¢ be a basic predicate such

that p' = Cip. We show that p" |= Cjp, where p" differs from p' only in that p
transmits at [ in p" using F, ).

Let 7' and 7" be the protocols in p’ and p" respectively. Pick an arbitrary run
o of 7" satisfying o L p" . Thus, for some runs o; of 7", j =0,1,...,m,

(Pim ) Pimysl)  (Pipd)  (2iy ) "
U=Um ~ O-m_]_ ~ cee ~ 01 ~ 0'0=p-
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We may assume without loss of generality that p;; # p;,,,, for each y = 1,...,
m— 1.

We successively modify each run o; into another run 6;, also of 7", so that the
following conditions are satisfied for 7 = 0,1,...,m:

1. CAand INPUT in §; and o; coincide.

2. All the messages in SEG[0](l) are identical to the corresponding messages
in SEG|o;](l), excluding possibly messages M(q, p, k), where k < I, such
that (g,k) € nc-detected-ill{o}](p,1).

3. If p is healthy at [ in both #;_; and 6;, then p has the same view at [ — 1
in both, i.e., V[8;_1](p,l — 1) = V[b;](p,d+ 1).

(pijsl)
4. 0]‘_1 ] 0"

The salient point of this construction is item 3. Indeed, once the #’s are con-
structed, we will modify the protocol function of p at round [ in these runs. Since
whenever p is healthy at [ in both #;_; and 6;,

V[ej—ll(pal - 1) = V[ef](p’l - 1),
p will transmit Izreci)sely the same messages at [ in the two resulting runs, thus
pi il
maintaining the ~ relations. Here is the inductive construction of the 6’s.

Base j = 0: Let 6y = oyp.

Inductive step: Assume that for ¥ = 0,1,...,7 — 1, runs 6 satisfying the
conditions above were already constructed. We proceed to construct #;. Recall

(pi'al)
that o;_; ~ oj, and consider the following two cases:

Case: p;; # p. Let ¢ stand for p;;. Thus V[o;-1](g,!) = Vg;](g,!). By item
2 of the inductive hypothesis, V'[0;_1](¢,!) = V'[o;-1](g,!). Thus, V[8;-1](g,!) =
Vosl(g,1).

Consider first the case where p is healthy at [ in both #;_; and ;. Since ¥ is
an RCP, RV[6,;_1|(p,! — 1) = RV|o;](p,l — 1). Now construct §; so that all the
messages in SEG|[0;](l) are identical to the corresponding messages in SEG|[o;](l),
excluding possibly messages M[0;](g,p, k), for k < I, so that (¢,k) € nc-detected-
illfoj](p,!). Let each such message M[6;](q,p, k) be M[6;_1](g,p, k). It is apparent
that this construction satisfies 1, 2 and 3.

Next we show that 6; is a legitimate run of 7”. We argue first that p transmits
precisely the same messages up to and including round [ to corresponding proces-
sors in 6;-; and o;. Indeed, this follows from V'[8;_1](¢,!) = V[o;](g,!) and from
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the fact that p conveys its reduced view at each round, and therefore it conveys
all the messages it sends to all the other processors at that round. Second, by the
construction of ;, p transmits, up to and including round I/, precisely the same
messages in both 8;_; and ;. Thus, up to and including I, p transmits the same
messages in both 8; and o;. It follows that each processor other than p receives
precisely the same messages in these two runs, and therefore it also transmits the
same messages. This proves that 6; is a legitimate run of 7”.
Finally, to show 4, recall that

Vioj-1l(g,l) = Viojl(g,1)
Vigil(el) = VipillaD-
(a) /!
Thus, ;-1 ~ 6;.
Up to this point we have assumed that p is healthy at ! in both #;_; and o;.
Consider now the case where p is not healthy at [ in one or both runs. In this
case just let §; = o;. Here conditions 1 to 3 are easily verified. Condition 4 is

. . . (a4) ..
proved as follows: By 2 of the inductive hypothesis, §;_; ~ oj_;. By definition,

) (g:) (a.0)

oj-1 ~ oj. Thus, ;_; ~ o;, and from the way we constructed 6;, 6;_; ~ 6;.
Case: p;; = p. The treatment here is very similar to the one above. In fact,
construct #; exactly as in the previous case. We now show that this construction
is legitimate and that it satisfies 1 to 4.
To show that 6; is a run of 7", we need only state that p transmits in 6;
precisely as it does in o;. This is apparent from 2 of the inductive hypothesis,

(ps)

Whiph implies that p transmits identically in 6;_; and ¢j_;, and from ¢;_; ~ o;.

We proceed to prove 1 to 4. 1 and 2 hold from the way we constructed 6;.
By 2 of the inductive hypothesis, all the messages in SEG[f;_,](l) are identi-
cal to the corresponding messages in SEG[o;-1](l), excluding possibly messages
M(6;](q,p, k), for k < I, so that (g,k) € nc-detected-illjo;_;](p,{). From the
way we constructed 6;, for every such ¢ and k, M[0;](q,p,k) = M[0;-1](¢,p,k),
and all the other messages in SEG[0,](!) and SEG[o,](l) are identical. But by

(p,0)
assumption, oj_1 ~ oj, that is V]o;_1](p,l) = Vl[oj](p,1), thus we also have
V[8;-1](p,1) = V[6,](p,!). This proves 3 and 4.

For each j =0,1,...,m, we successively construct a run Aj of 7' as follows:
e INPUT and CA in 6; and A; coincide.

e All the messages in SEG[);](l) are identical to the corresponding messages
in SEG|[0}](l), excluding possibly the messages that p transmits at .
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e If p is healthy at [ in 6;, then it transmits according to 7' in A;.
e If pisill at ! in 6; (and therefore p # p;; and p # pi,,,) then:

— If p is healthy at [ in 6;_;, then let

M[X;)(p,pi;» 1) = M[Aj-1](p, i 1)
— If p is healthy at [ in 0;41, then let
MX1(p, Pijyrst) = M[Xj+1](Rs Pij1y 1)
— If pisill or dead at ! in 6;,,, then"{ét
M(;)(p, pijyyst) = M[Xja](ps pisy,y» 1) = 0.

Notice that these assignments of messages are always possible since, by
assumption, p;; # Pi;y,-

By item 3 in the construction of the §’s, and by the special treatment in the
case that p is ill at / in some of the A;’s, we conclude,

(Pim ) (Pier) (i) (piy ) ,

Am N Ap-1 R ... & A& A=p.

But p' = Cip, thus A\ |= . Recall that for each j = 0,1,...,m, the CA and
INPUT in oj, 6; and A; are identical. Thus, since ¢ is a basic predicate and
0 = Om, 0 = . Therefore p" = Cp. |

Lemma 6 If an information symmetric protocol ¥ = {F(, 1)} is ck-informative,
then ¥ is an RCP.

Proof: We show by induction on the round number [ that the information sym-
metric and ck-informative protocol # is an RCP.

Base (1=1): By definition, RV (p,0) = INPUT(p,0) for every p € P. The
initial assumption about ¥ implies that every processor that is healthy at 1 must
convey its INPUT and therefore also its reduced view.

Step: Assume inductively that every processor s that is healthy at k in o
conveys its reduced view for k = 1,...,l — 1, and assume by contradiction that p
does not convey its RV to g at ! in o.
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) (p,t-1) (a.0)
By lemma 4 there exist two runs ¢’ and ¢” of F sothat o’ ~ o,0" ~ o',p

is healthy at ! in ¢”, and RV [0"|(p,! — 1) # RV [o](p,! — 1). But V[¢'|(p,l - 1) =
Vlo](p,! — 1), implying that RV [¢"](p,! — 1) # RV[o'](p,l — 1).

(p1-1) (e . (p,1-2) (g,1-1)
The relations 0/ ~ ocand o’ ~ ¢ implyed’ ~ ocandd” =~ o

respectively. Applying the inductive hypothesis and since I > 1, p conveys its RV
to all the other processors at { — 1 in 0. Again by lemma 4, RV [¢"](p,l — 2) =
RV [o](p,! — 2), implying RV [0"](p,l — 2) = RV [¢'](p,! — 2).

How could it happen that

RV[o"|(p,1 — 1) # RV['|(p,1 - 1)
Y &4

/

but ‘ .
RV[o"|(p,! - 2) = RV[o'](p,1 - 2)?

At least one of the following two situations must have occurred:
S1 There exists some processor r satisfying the following two conditions:

R1 M(o"|(r,p,l — 1) # M[o"](r,p,l — 1).

R2 It is not the case that both (r,! — 1) € nc-detected-illjo’](p,! — 1) and
(r,l — 1) € nc-detected-ill[o"](p,! — 1).

S2 INPUT[o"](p,! — 1) # INPUT[o'|(p,! — 1).

We argue that if either S1 or S2 holds, then 7 is not ck-informative.

Consider first the case where S1 holds, but S2 does not.
Let {r;}[2, be the set of processors such that

M[O’”](T,',p,l - 1) # M[O"](T,‘,p,l - 1)'

Assume by contradiction that for some such r;, M[o'|(r;,q,l) # ¢. First, ¢

(a:)
knows at ! in o’ that r; was healthy at | — 1. Second, ¢" =~ o', implying that

M([o"](rj,q,1 — 1) = M[o"](rj,¢,1 — 1). Finally, from the information symmetry of
7 and by lemma 1, M[o"|(r;,p,! — 1) = M([o'|(r;,p,! — 1), a contradiction. .
Thus, M[o"|(ri,q,1) = M[o'](ri,q,l) = ¢, for all : = 1,...,m, implying that
each (r;,l — 1) & nc-healthy(g,!) in both ¢" and o’.
R1 and R2 imply that one of the following two events must have occurred:

E1 For at least one j € {1,...,m}, (rj,/ — 1) € nc-pseudo-healthy(p,! — 1) in
either 0" or o’. Denote by r the r; with smallest j satisfying the above.
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E2 For all ¢ = 1,...,m, M[o'](r;,p,l — 1) = ¢ and (r;,] — 1) € nc-detected-
illfe"](p,! — 1) or vice versa (exchange ¢” and o').

Consider E1 first. Assume without loss of generality that (r,l — 1) € nc-pseudo-

(p.i-1)
healthy[o'](p,l — 1). Thus, there exists arun & =~ ¢’ in which r is healthy at

l-1.
Construct a run p of 7 so that the messages in SEG[p|(l — 1) coincide with
the messages in SEG[5](l — 1) excluding:

1. For ¢ = 1,...,m, let M[p](ri,p,! — 1) = M[o"](ri,p,l — 1). It follows
therefore that Vp](p,! — 1) = V[o"] (p,l}; 1).

2. Some t processors fail at I — 1 in p. All the processors that fail at  — 1 in
p, excluding r, do not transmit to g at [ — 1.

Notice that the CA and INPUT in p can be readily defined to satisfy the
above, and that since ¢ processors fail before [ in p (including r;, for ¢ = 1,...,m),
p is completely specified.

We now prove that 7 is not ck-informative in p. Let p’ be a run that differs from
p only in that the processors that are healthy at ! in p' transmit their corresponding

w-(p,l)
views (at [ — 1). Note that p' has been designed so that p' =~ p. The processors

that are healthy at ! in p' receive ¢ empty messages, thus, they know that the
transmitting processors at ! are healthy.

By the information symmetry of -7, each processor s that is healthy at I in
p' knows that r was ill at I — 1. The intuition is that since M[o"](r,p,l — 1) #
M{o'](r,p,! — 1), r manifests its illness at [ — 1 in p by transmitting messages that
are inconsistent with the information symmetry of its protocol. To be more precise,
note that if s assumes at / that r was healthy at [ — 1, then it may apply lemma 1
for calculating M([p'|(r,p,! — 1) from M{[p'|(r,s,l — 1). Now, M[p'](r,s,l — 1) =
M(G](r,s,1 — 1), and M[p'|(r,p,l — 1) = M[c"](r,p,l — 1). But M[o"](r,p,l — 1) #
M[G](r,p,l — 1); thus, since s knows at [ that p was healthy at [ it also knows that
r must have been ill at [ — 1.

Recall that ¢ conveys to all the processors that are healthy at [ in p’ that it
received ¢ — 1 empty messages, hence each processor that is healthy at [/ in p’
knows that ¢ other processors failed at [ — 1. Thus, the views of the processors
that are healthy at [ in p’ are common knowledge at [ in p'. In particular, the

basic predicate ¢ 4l « was ill at { — 17 satisfies ¢ E Cie.
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Consider now p" which differs from p’ only in that p transmits at [ according
to 7 in p” rather that transmitting its view as in p’. By construction,

V[p"](p,l - 1) = V[O’”](p,l - 1),

implying that M([p"](p,q,!) = M[o"](p,q,1). Recall that V[s"](q,l) = V[o"](g,!)
and V[o'|(p,! — 1) = V[5](p,! — 1), hence,

M[a"](p,q,1) = M[o"|(p, q,1) = M[5](p,q,1).

Thus, ¢ does not know at [ in p"” whether M[p”](r,p,l - 1) is M[5|(r,p,l — 1),
in which case r could have been healthy at I — 1 in p", or M[p"](r,p,l — 1) is
M(o"](r,p,I — 1), in which case r was ill at l!— 1 in p". Therefore, p" | =Cjp,
implying that 7 is not ck-informative. 4!

Consider now E2: Assume without loss of generality that M[o']|(r1,p,l—1) =
and that (71, — 1) € nc-detected-illjo”](p,! — 1). Construct a run p, similar to the
one above, so that the messages in SEG[p|(l — 1) coincide with the messages in
SEG[o'|(l — 1) excluding:

1. For ¢« = 1,...,m, let M[p|(r;,p,l — 1) = M[o"]|(r;,p,! — 1). It follows
therefore that Vp](p,! — 1) = V[o"](p,l — 1).

2. For ¢« = 1,...,m, r; does not transmit at [ — 1 in p to any processor
excluding p.

3. Some ¢ processors do not transmit to ¢ at  — 1 in p.

Notice again that the CA and INPUT in p can be readily defined to sa.tisfy the
above, and that since ¢ processors fail before ! in p (including r;, for ¢ = 1,...,m),
p is completely specified.

Let p' be a run that differs from p only in that the healthy processors at ! in p’
transmi)t their corresponding views. Note again that p’ has been designed so that

w-(p,d
Iy (w p.

The healthy processors at ! in p receive t empty messages, thus, they know that
the transmitting processors at [ are healthy. They know that r; wasillat [ — 1
from the transmissions of p at ! and they know that ¢ processors failed at | — 1.
Thus, the views of the healthy processors at ! in p’ are common knowledge at [ in
p'. In particular, the basic predicate ¢ 4f «r) was ill at | — 17 satisfies o' E Cre.

Consider now p” which differs from p' only in that p transmits at [ according
to 7 in p” rather that transmitting its view as in p'. By construction

V[e')(p,l - 1) = V[o"|(p, 1 - 1),
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implying that M[p"](p,q,!) = M[o"](p,g,!). Recall that V[c"](g,!) = V[o'](g,1),
hence, M[o"](p,q,!) = Mlo'|(p,q,!). Thus, g does not know at ! in p” whether
M[p"](r1,p,! — 1) is M[o'](r1,p,! — 1), in which case r; could have been dead at
I —1in p", or M[p"](r1,p,! — 1) is M[6"](r1,p,! — 1), in which case r; was ill at
[ — 11in p". Therefore, p"” = =Cjp, implying that 7 is not ck-informative.

The case in which S2 holds is treated similarly. |
Thus, we have proved:

Theorem A (weakly) information symmetric protocol ¥ is ck-informative iff 7

isan RCP. }
z7

E The Proof of Theorem 2

E.1 Part1l

We prove the first part of theorem 2 by the following sequence of lemmas:

Lemma 7 Assume that the processor p;, transmits at | the atom

-1
a={pi, = Piy = ... = Diy,)

in a run p of NIP where it is healthy at . Then M|(p](pi;,pi,l — 1) = 0 for all
j=1,.... k-2

Proof: We prove the lemma by induction on the number of processors k appearing
in the chain of the atom transmitted. For £ = 1 and k£ = 2 the lemma is trivial.
Assuming that the lemma is correct for chains with less than k processors, we
prove its correctness for chains with k processors. Assume by contradiction that for
some 7, M[p](pi;,pi,{—1) # 0, where 1 < j < k—2, and let j* be the biggest such
j. We will see in the following lemma that the assertion M([p](pi.,pi\,! — 1) # 0
together with the consistency test in NIP, allow very little freedom to what any
processor p;;_,, for j* < j < k—1, may convey to any other processor at l-k+j5-1

about the content of the atom (p;, — pi, — ... I=ktj=2 i._.,a) without bein
1 2 Pij_, g

detected ill by the receiving processor.
To make this claim more precise let b = (p;, — pi, — ... =kl pi;> @), for
j* < 7 < k, and consider the four one-parameter predicates @;, fort=1,...,4:
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p = p1(b) iff p;; is healthy at I —k + 7 — 1 in p, and p;;_, conveys to p;;
at that round the atom

I—k+j—2
(pi, = ... = Pij_y»@)-

p = p2(b) iff p;; is healthy at I —k + j — 1 in p, and p;;_, conveys to p;;
at that round the atom

l—k+j—-2
(pif’_)'" —g pij..pﬂ)

where j* < f<j—1,and B = “detected' ill” or B = 0.

p = w3(b) iff p;; is healthy at [ — k + j’,’-’ 1 in p and p;; either detects at
l—k+j—1linpthatp;; , wasillatli—k+j—1or

M[p](pi,'_l,pijal -k ‘+] - 1) = @,

p = p4(b) iff p;; is not healthy at I —k+ j — 1 in p.

Finally, let ¢ = V ;. The following lemma specifies some of p;,’s knowledge
atl—1inpif Dije transmits to it at { — 1 a non-empty message.

Lemma 8 Assume that p;, is healthy atl — 1 in p. Let Mp|(pi.,pi,! — 1) # 0
Jor some 3%, 1 < j* < k — 2, and assume that p; ., conveys to p;, atl—Fk+j* the
atom

I-k+j*-1
—

(pil = Pi; ... pijt ’a)'

Then for any processor p;;, j* <j <k -1,

ol ellpy — ... H T pia))

and 1
p '= ‘P((pil .. pikaa))'

Proof: We prove this lemma by induction on k — j*, the length of the subchain
Pijeyy = -oo = Diy- :
Base k = j* + 1: Here we need only show

1-k+j*

pEe(pi, = ... — pi, Pijuy1r @)

This holds by assumption.
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Inductive step: Assume that the lemma is correct for numbers smaller than
k — 5*. Here is the proof for k — j*. If p;,_, is not healthy at { — 2 in p, then

ol eallpn = ... F pi_y,0))

and 1

pEes((piy = ... = piy, ).
Otherwise, let p;,_, be healthy at [ — 2 in p. Since M[p](p;,.,pi,,l — 1) # 0,
also M(p|(pi,asPi,_,>! —2) # 0. By the inductive hypothesis, for all p;; and
J*<i<k-1, 4

I-k+4-1

pEe(pi,— ... T pija))
and s

p I'_': w((pil .. pik_laO‘))‘

We proceed to show

P o(a)

where as above, a = (p;, — ... ) Dig, Q).

First, by assumption, p % p4(a). Second, p;, discovers at I — 1 in p that p;,_,
is ill at I — 1 or that M({p](pi,_,,Pi,,{ — 1) = 0 iff p = p3(a). Assume next that
p [~ w3(a). Thus,

(Pir_,>! — 1) € nc-pseudo-healthy(p](p;,,l — 1).
Applying the inductive hypothesis, p = ¢(a'), where

a = (piy,—... =2 Dir_y, Q).
Thus, p = Vpi(a'). Clearly, p = p4(a’). Consider first the case where p;,_, is
healthy at I — 1 in p. If p |= p1(a’), then p |= p1(a). Similarly, p |= p2(a’) implies
that p = p2(a). Finally, if p = p3(a’), then p |= p2(a). Thus, since p = p(a’) we

have p = o(a).
Next assume that p;,_, is ill at / — 1 in p. Since NIP is ck-informative and

by assumption (p;,_,,! — 1) € nc-pseudo-healthy[p](p;,,! — 1), p;,_, must have
conveyed to p;, at I — 1 in p one of the following two atoms:

-2
1. (pix ... Pik_p’Y)-
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2. {pi; — ... =2 Di,_,5B), where j* < f < k — 1 and B = “detected ill” or

g =0.

In the first case, if v # «, then M[p|(p;i,_,,pi,,l — 1) will fail the consistency
test that p;, runs at / — 1 in p. Since this contradicts (p;,_,,! — 1) € nc-pseudo-
healthy[p](p;,,! — 1), 7 = «; thus p |= p1(a). The second case implies p = p2(a).
Therefore, p |= ©(a). |

We now continue the proof of lemma 7. By assumption, p;, transmits at [ the
atom a = (p;, — ... s Di,, ), thus,
4
(Pit_y»! — 1) € nc-pseudo-hedkthy(p](pi,,l — 1).
By lemma 8 and the consistency test in NIP, Pij. must have conveyed to p;, at
l — k+ 7* the atom

I=k+j*-1
piy = B T g, a).

Clearly, M[p](pi;.,Pi;,l — 1) # @ implies that M{p)(pi;e» Piys! — 2) # 0. Thus, by
lemma 8, p = (@), where

~ -2
a = (pl'l e TP, pik,a)'

We consider the following three cases: First, if p = ¢1(@), then recalling how A
is evaluated, p;, should not have transmitted the atom a at [ in p — a contradiction.
Second, assume that p = p2(@). Recall that

(piy>! — 1) € nc-pseudo-healthy(p;,,l — 1),
and p;,_, conveys to p;, at | — 1 the atom
S o1-2
b= (pi, — ... — Dip_yr Q).

We distinguish between two cases: Assume first that p;,_, conveys to p;, at
I — 1 that p;,_, transmitted to it the atom

-3
c=(pi, = ... = Dip_y, ).

Then by the inductive hypothesis, p;, _, must have conveyed to p;, at ! — 1 that
Pi_, conveyed to it that M(p; ,pi,_,,! —8) = @ for j = 1,...,k — 4. Since p;,
transmits a at [, p;,_, must have conveyed to p;, at !l —1 that

M(pik_gapik._lal - 2) = 0,
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and for the same reason, M(p;,_,,pi\,! — 1) = 0. Thus, M(p;;,p;,,l — 1) = 0 for
J=1,...,k — 2. This contradicts the existence of j*.

Assume next that p;,_, conveys to p;, at [ — 1 that p;,_, conveyed but did not
transmit the atom c to it. Then recalling how A is evaluated, p;, should not have
transmitted a at [ in p — a contradiction.

Finally, the case where p |= 3(@) follows similarly. This completes the
proof. |

Corollary 2 Assume that the processor p;, transmits atl the chain
4
l
Piy = Dip — .. t"l‘} Dip
in a run of NIP where it is healthy at l. Then k < t + 1.

)

Proof: By lemma 7, for j = 1,...,k — 2, M(p;;,pi,,l —1) = 0. Clearly k —2 <t
but we argue that in fact ¥ — 2 < £. Indeed, had p;, seen precisely ¢ processors
failing at [ — 1, it should not have transmitted anything besides its INPUT at
that round. Thus, k¥ < ¢+ 1. |

Corollary 3 Each processor that is healthy in a run of NIP uses at most
(t+1)logn
bits for transmitting a chain.

Proof: The processor uses the trivial binary encoding of that chain. |

Lemma 9 If the processor p;, transmits atl the chain p;, — p;, — ... s Di, n
a run p of NIP where it is healthy atl, for k > 2, then at least one of the following
three must have occurred:

1. pi,_, conveys an actual lie with chain p;, — p;, — ... =2 Di,_, to pi, at
l—11np.

2. pir_, conveys an actual lie with chain p;, — p;, — ... =3 Dir_p t0 Di_, at
l -2 p.

8. pi,_, conveys an actual lie with chain p;, — p;, — ... =3 Diy_, to p;, at
l—21np.
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Proof: Assume by contradiction that none of the above hold. Then the chain
-3 .
Piy — DPip — ... — Di,_, that p;, _, conveys at [ — 2 carries exactly the same

content to both p;,_, and p;,. Moreover, the chain p;, — p;, — ... =2 Pi,_, that
Pi,_, conveys to p;, at [ — 1 also carries that content. Finally, since p;, follows

NIP at I, it will not transmit the chain p;, — p;, — ... = pi, — a contradiction.

We now prove the first claim of theorem 2. The idea is to pick, one at a time,
each chain consisting of at least three processors that p;, transmits at /, and to
mark the last actual lie performed on that cha}n. Lemma 9 implies that the only
actual lies that will be marked are the ones pefpetrated in rounds ! — 1 and [ — 2.
A more careful examination shows that each actual lie at { — 1 is marked at most
once, and that each actual lie at [ — 2 is marked at most n — 2 times.

More precisely, let p;, be healthy at [ and assume that it transmits the chain

Diy —* Dig = ... = pi, at [, where k > 3. Lemma 9 motivates the introduction
of the following marking of actual lies. If p;, , conveys an actual lie with chain

Piy = Dig — -+ =2 Pir_, to pi, at | — 1, then mark it; this actual lie is of type 1.

Otherwise, if p;,_, conveys an actual lie with chain p;, — p;, — ... =3 Dip_p tO
Pi,_, at [ — 2, mark it, and refer to it as type 2. Finally, if none of the above hold,

mark the actual lie corresponding to the chain p;; — p;, — ... =3 Dir_, that p;,_,
must have conveyed to p;, at ! — 2 and call it type .

We now prove the following three lemmas referring to actual lies of types 1, 2
and 3:
Lemma 10 Every actual lie of type 1 1s marked at most once.

Proof: For every actual lie of type 1 with chain p;, — p;, — ... =2 Dip_,» there

exists at most one chain, p;;, — pi, — ... — p;,_, el pi,, that p;, may transmit
at [. |

Lemma 11 Every actual lie of type 2 is marked at most once.

Proof: Similar to lemma 10. |

Lemma 12 Every actual lie of type 8 is marked at most n — 2 times.
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Proof: For every actual lie of type 3 with chain p;; — pi, — ... g p;k_2, there

exists at most n — 2 chains, p;, — pi, = ... = pi,_, — ¢ -1 pirs 4 % pi_, and
q # p;, that p;, may transmit at . |

And now the statement and proof of the first claim of theorem 2:

Corollary 4 The number of bits that the processor p transmits at round l to an-
other processor in a run p of NIP where 1t 1s healthy 1s less than

n((t+ 1)logn + |p|)ALT[p](I — 2,1 - 1).
Proof: It follows from the discussion above thalgd p transmits at [ less than
nAL[p)(l — 2,1 - 1)

atoms whose chains consist of at least three processors. p also transmits less than
n atoms whose chains consist of precisely two processors, and one atom whose
chain consists of a single processor, namely p.

Thus, p transmits less than

nALY[p|(l — 2,1 — 1) = nAL[p](l -2, - 1)+ (n—1)+1
atoms. Now, by corollary 3, each atom that p transmits at [ requires at most
(t+ 1) logn + ||
bits. |

E.2 Part 2

We now prove the second part of theorem 2 which states that:

Lemma 13 The time needed for calculating the messages that p transmits at l in
p using the routines described in appendiz A is

cALY[p](1 - 3,1 - 1)
where ¢ = poly(n,t,|p|). The space used in that calculation is
JALY[p](l -t - 1,1 - 1)

where, as before, ¢! = poly(n,t,|p|).
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Before proving this statement we need the following two lemmas:

Lemma 14 Let p be healthy at round ! in a run of NIP. The sum of the sizes of
the messages that p receives at l is bounded by ALY (I — 2,1) times a low degree
polynomial in n, t and |p|.

Proof: Let L(g,p,!) denote the number of actual lies that ¢ conveys to p at I.
Let RD(p,!) denote the number of actual lies that were conveyed to p at I; thus

RD(p,l) = 3>, L(g,p,1). Let p be a bound on the number of bits that are required
in order to represent any atom in NIP. By lemma 3 we may let

r
p = (t+1)logns |p|.

Using the estimates in appendix E.1
|M(q,p,0)| < u{L(q,p,l)+EL(r,q,l—1 ZL (s,0,0-2)
+> L(s,r,l - 2) + n}
8,r

Summing over ¢, ¢ # p,

Z IM(Q)pJ)l < u {EL(q,p’l) + ZL(Taqal - 1) + (n - Z)ZL(S’Qsl - 2)
q q ar a8

+ > L(s,r,l—2)+ n2}

q,8,r

< w{RD(p,l)+ AL(l- 1,1 = 1)+ (n— 2)AL(l — 2,1 - 2)
+(n - 1)AL(l - 2,1 - 2) + n?}
< n?uAL*T(1-2,0) |

Lemma 15 Let p be healthy at round ! in a run of NIP. The size of
U,LB(r,p,l — 1)
is bounded by AL (I — 2,1 — 1) times a low degree polynomial in n, t and |p|.

Proof: Following the notations of lemma 14 we argue that
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|LB(r,p,l = 1)| < p {L(r,p,l -1) +ZL(s,p,l - 2) +ZL(s,r,l -2)+ I}.
L] 3

Summing over r, r # p,

U, LB(rp i~ 1)] < u{zL(r,p,z-1)+ZL(s,p,z—z)
r r,s '

+ ZL(s,r,;l -2)+ n}
r,s a4 ‘
p{RD(p,l - 1) + (n — 1)RD(p,! - 2)
+AL(l—2,0 - 2) + n)
< npALY(-2,1-1) |

IA

We proceed to prove lemma 13.

Proof: We examine bottom up the complexity of each of the subroutines in NIP.
To this end consider a processor p that is healthy at round / in a run of NIP. We
estimate the time it spends in the different routines.

Subroutine DETECT.ILL is O (1) and subroutine CHECKILL is O (n). Invok-
ing TRUST is O(n) provided that no recursive calls to TRUST are made within
it. Since there may be no more than ¢ such calls, the complexity of TRUST is
O (nt).

The total time that p spends in routine NEW_INFORMATION is bounded by
the size of the messages that it receives at ! times a low degree polynomial in n
and t.

Evaluating the time that p spends in CONSISTENT is a little more involved.
At any given call to CONSISTENT, there are at most n invocations to TRUST,
which is O(n2t), and the time spent at step CHECK is O(t2). Now when CON-
SISTENT is invoked with parameters 7, k and TREE, the number of recursive
calls to CONSISTENT is no more that the number of internal nodes in TREE.

Thus the total time that p spends in CONSISTENT is bounded by the the sum
of the sizes of the messages that it receives at [, times a low degree polynomial in
n and t.

Consider now routine SET_LABEL. The main computational effort in that
routine is spent evaluating the formula

{ST(s,r,l — 2|M(q,p,l)) v LB(s,q,! — 2)} A ST(s,r,l — 2|LB(r,p,l — 1))
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for every s and r. We evaluate that formula by first scanning the transmission tree
ST(s,r,l —2|M(q,p,1))
and next the transmission tree
ST(s,r,l —2|LB(r,p,l — 1)).

Thus the time spent in SET_LABEL(q, p,!) is bounded by the sizes of both M (g, p,{)
and U,LB(r,p,! — 1) multiplied by a factor as above. Thus the total time spent
in calls to SET_LABEL is bounded by the sum of the sizes of the messages that p
receives at [ plus n times the size of U, LB(r, pil — 1), with all this multiplied by
a factor as above.

Therefore the total time that p spends at lin routine UPDATE_NK is bounded
by the sum of sizes of the messages that p receives at [ plus the size of U.LB(r, p,l—
1) with all this multiplied by a low degree polynomial in n and .

Now, by lemma 14 the sum of the sizes of the messages that p receives at |
is bounded by AL*(l — 2,l) times a low degree polynomial in n, ¢t and |p|. By
lemma 15 the size of U,LB(r,p,l — 1) is bounded by AL*(l — 2,] — 1) times a low
degree polynomial in n, ¢t and |p|. This completes the first part of lemma 13.

The second part follows since the number of processors defining any chain that
is forwarded by a healthy processor in NIP is no more than ¢ + 1. |

F The Proof of Theorem 3
In this appendix we prove theorem 3 which states:
Theorem NIP is a communication efficient ck-informative protocol.

Proof: Fix a run o of NIP, a ck-informative protocol ¥ and a round I. We will
construct a run p € DOM(7,0) so that

CcClo](1) < plr, )CCIA](1).

In the process of doing so we will explicitly construct the polynomial p(n,t). We
assume hereafter that ¥ = A = {0,1}.

In order to simplify the construction of p, we first modify o. Let r beill at k£ and
let ¢ be healthy at k+1, both in o. Suppose that g detects at k in o that r is ill at k.
Then we let r transmit to ¢ at k in the modified run the message M'(r, ¢,k) defined
at the end of section 6.2. Thus, in this new run (r,k) € nc-pseudo-healthy(g, k),
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the messages that are transmitted at k + 1 and k + 2 are modified only slightly,
and the messages that are transmitted at other rounds remain as in o. Notice
that each actual lie that r conveys to ¢ at k in this modified run corresponds to
an actual lie in ¢. In p, we will let » convey these actual lies to ¢ at k as well, so
we may assume hereafter that o itself satisfies the above.

We first construct an auxiliary run o, which is very similar to o, but in which
some atoms have the form (ch,z.), where z., is an undetermined content. z.
will be assigned an element in {0,1}* when we construct p from o,.

Let the parameters n, t, ¥, O and CA in o, be as in 6. Thus, for o, to be
fully specified we need to choose an adversary and the inputs. In order to do so
we sequentially scan the processors at rounds % to [ as follows: We start with p;
at round 1, then ps at round 1, up to p, at 1. ’I(Iext we scan p; at round 2, pp at
round 2, etc.

Suppose that we are currently scanning processor ¢ at round k. If q is either
ill or dead at k in o we proceed to its neighbor. Otherwise, ¢ is healthy at kin o.
Consider each of the atoms (ch,c) that ¢ transmits there.

First, if ch = k=1 g, then let that chain carry the content z.p in 0. Second, if

ch = pi; k=] g, pi; isill at k — 1, and ¢ is the processor with smallest index that is
healthy at k, then let that chain carry the content z. in o,. Third, assume that

ch =piy = ... = pi; A=} ¢ and pi; conveyed the actual lie (p;, — ... k=2 Pis> ')
to some processor at k — 1. Then let ch, = p;, — ... — pij S {; Zch, has not
yet been assigned for any r, then let ch carry the content Top 1In 0.

Finally, assume that ch = p;; — ... — p; y k=1 g and p;, did not convey any
actual lie with chain p;, — ... k=t pi; in 0. Thus, by lemma 9, p; -, must have

conveyed an actual lie with chain p;, — ... k=2 Pi;_,- Let

chy = Diy = ... Dy, — P
k-1
chsmr = pi — ... Pig_, =8 — .

If neither zp, nor zcp,_,, have been assigned for any p, or pair s — r, then let ch
carry the content z.; in o,.
For each atom (ch,zcs) in o3, let |[(ch,zch)|co be the co-length of the corre-
sponding atom in ¢. Let X[o;](g, k) be the set of atoms (ch, zs) for ch = p;, —
. = Dij g g. The motivation for this rather cumbersome definition is the
following
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Lemma 16

ccll s X Y. n((t+1)logn + al).

,k)ehealth; X k
(a 3’«5‘ y a€X[oz](q,k)

Proof: We prove that each actual lie with co-length A can force the processors
that are healthy in 6 to transmit at most

n3((t+ 1) logn + X)

bits.
Assume that p;; conveys at k in the run ¢ of NIP an actual lie with chain

- €7
Diy, = --- k=1 pi;. Let g be one of at most n’— 1 processors that are healthy at
k+1in 6. Then ¢ might have to transmit at most n — 2 atoms at k+ 1 in 4. Also,
every processor r other than p;; might have to transmit n — 3 atoms at k + 2 with

chain p;; — ... = pi; = s ktl r, where s # p;,,r. Interestingly; processors that
are healthy at rounds succeeding k + 2 will not transmit any atom due to that
actual lie.
Since
n=1)(n=2)+(n=-1)(n—-2)(n—3) <n®

this actual lie can force the transmission of no more than n® atoms, each of which
involves no more than (¢ + 1) logn + A bits. |

We proceed to construct the run p. Let the parameters n, t, ¥, O and CA in
p be as in o, and therefore also as in 0. Let

X @Mlo= 3 lale.

a€X[o:](g:k)

Our goal is to force g to transmit at k in p at least | X[0;](g, k)|oo bits to some
other processor, say r, by carefully selecting in p a new short content for each of
the atoms in X[o;](g, k). In order to do so we use the natural one-to-one mapping
from atoms in X[o;](¢,k) into actual lies in o, and we assign in p a new content
to each of these actual lies. Thus, the run p that we construct in this way is
in DOM(¥#,0). Suppose that we had satisfied the above. Then, recalling that
|a|eo = 1, we could argue the following:

ccClo](l) < > > n3((t+1)logn + |aleo)

(g,k)ehealthy a€X[o:](q,k)
0<k<l
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< nd((t+1)logn+1) > > lalw
(g,k)€healthy a€X|[oz](q,k)
o<k<l
< n*((t+Dlogn+1) 3 |X[oxl(g, k)l
(g,k)ehealthy
o<k<l
< n3((t+ 1) logn + 1) Z |M[p](q’rak)|

(g,k)€healthy
r, 0<k<!

= n3((t+1)logn+ 1)CClp)(])-

Therefore, we would only have to choose a polynomial p(n,t) so that p(n,t) >
n3((t + 1) logn + 1) in order to prove the theogem.

So we are left with the problem of letting ¢ transmit at least | X[o2](g, k)|co bits
to r at k in p, where we are assuming of course that | X[o4](g,k)|co > 0. The idea
is again to pick carefully a new content for each of the actual lies corresponding
to the atoms in X[o;)(g,k), without disclosing thereby to ¢ at £ — 1 in p that
the sending processor was ill. An application of the pigeonhole principle will then
force ¢ to transmit at least | X[0;](g,k)|co bits at k in p as required.

Let {ch,zp) € X[oz](g,k) for ch = p;, — ... — Pig k=1 g, and let {ch,a) be
the corresponding atom that ¢ transmits in 0. Let o # 0, and consider the more
interesting case where f > 1. Assume first that p;, conveyed an actual lie with

chain p;; — ... k=2 pi;. Then it is a property of the consistency test in NIP that
g would not be able to determine at k — 1 that p; ; was ill at k£ — 1, had p;, instead

conveyed to g the atom (p;, — ... k=2 Pis, B), where 8 # o, 0, “detected ill”.
Assume now that p;, was healthy at k — 1. Then p; s, must have conveyed an

actual lie with chain p;, — ... k=3 Pi;_,- Again it is a property of the consistency
test in NIP that p;, would not be able to determine at k — 1 that p;,_, was ill at

k — 2, had p;,_, instead conveyed to it the atom (p;, — ... k=3 Pis_ysB), where

B # a,0, “detected ill”. Finally, if p;, was ill at k — 1 but did not convey in o

k-2

any actual lie with chain p;; — ... =" p;;, then if p;,_, conveys to p;, the atom

{pi, — ... k=3 Pi;_,»B), with B as above, and p;, forwards it to g at k£ — 1, then ¢

would not be able to determine that p;, was ill at k — 1. Further, the above holds
also if we modify the content of several actual lies simultaneously.
The case where a = 0 is treated similarly. Notice that if ¢ transmits the atom

(piy = ... — pi; k= ¢,0) at k in o, then it does not transmit any atom with chain

k=1
cee T Piy TS T Pip ... Dip — G
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Otherwise, the former atom would be implicit in the transmission of the latter.
As explained above, we may let ¢ receive the atom (p;, — ... k=2 pi;> ) without
creating thereby any inconsistency in the message that p;, transmits to ¢ at k— 1.
To see this, recall that p;, did not convey to g at k¥ — 1 in o any atom with chain
- k-2
cee P Piy —H 8 Piy = ... = Di;

carrying new information to ¢. Thus p;, could certainly have transmitted to p;,
at k — f in o without creating any such inconsistency. Furthermore, we are not
introducing any new actual lie.

Notice that we are implicitly assuming that p processor r that is ill at round &
might choose not to convey that it detected a‘e’l& — 1 that some other processor p

was ill at k£ — 1. Instead, r may selectively forward some of the atoms it received
from p at k — 1 to processors at k.

Finally we apply the pigeonhole principle in order to select a new content in p
for each of the atoms in X[o;](g,k). Let 7 stand for | X[o;](g, k)|co. First, notice
that there are 2”7 — 2 messages that are strictly less than 7 bits long, excluding
of course the empty message which is never transmitted by a processor when it
is healthy. Second, for every atom a € X[o,](g, k) there are 2lolot1 — 1 different
atoms a' carrying the same chain as a and satisfying |a’| < |a|co. But

[I(@el=tt — 1) > [[ 20l = 2Xaloho 5 97 — 2,
a a

where a is an arbitrary atom in X[o;](g, k). Thus there exists at least one choice
of content for the atoms in X[o;](¢,k) that will make ¢ transmit at least 7 =
| X[o2](g, k)|oo bits to r at k in p. This completes the proof. |

G The Proof of Theorem 4
In this appendix we prove theorem 4 which states:

Theorem For every n and ¢ and for every ck-informative protocol with these
parameters, there exists a run p of that protocol with |p| = 1 in which some
processor transmits at least ¢! bits at a round in which it is healthy, for ¢ > 1.

Proof: By virtue of theorem 3, it is sufficient to build a run of NIP in which some
processor transmits at least ¢! bits at a round in which it is healthy.
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We build the following run: Let f = | (¢—1)/2]. Let pg;—;1 and py; be ill at ¢, for
t1=1,...,f, but let them follow NIP there. pysy; will also be ill at f+1 and it will
also essentially follow NIP, but it will also transmit some (and in fact many) actual

lies. posy41 will forge an actual lie at f + 1 for every chain p;; — pi, — ... 4 Digs
satisfying either p;; = pgj_1 or pi; = pgj, for every j = 1,..., f. Of course, there
are exponentially (in £) many such chains.

For k > 2f+1 and every [, let p; be healthy at [. It follows that (p2s4+1,f+1) €
nc-pseudo-healthy(pg, f +1). Therefore for some choice of content for these actual
lies each pr will have to transmit at f 4+ 2 exponentially long messages in order to
convey the message it received from posyq at f 4+ 1. |

4
VZ
H The Proof of Theorem 5

In this appendix we sketch the proof of theorem 5 which states:

Theorem For every n and ¢ and for every sba-informative protocol with these
parameters, there exists a run of that protocol in which some processor transmits
at least ¢’ bits at a round in which it is healthy, for ¢ > 1.

Proof: (sketch) Consider a processor p that is healthy at round [ in a run p of an
sba-informative protocol. We argue that p must convey at [ in p its reduced view if
the following situation holds: If p does not convey at ! in p its reduced view, then
there exists a run p’ that is (p,l)-weakly-equivalent to p, so that CR[o’](l) = 0.
Thus, in that case the notions of ck-informative and sba-informative coincide.
Finally, we argue that the segment in the proof of theorem 4 satisfies this property.
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