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Abstract

LogiCalc: An Environment For

Interactive Proof Development

Denys Duchier
Yale University
1991

LogiCalc facilitates theorem-proving work with typical predicate-calculus formaliza-
tions of Al problems. It follows the LCF model: goals are analysed top-down by
refining them into plans and subgoals. Proofs are synthesized bottom-up by execut-
ing the plans’ validations. LogiCalc is based on a system of Natural Deduction for
the sequent calculus, with a double twist: (1) formulae are skolemized by default and
unification is built into the logic, (2) assumption sets are implemented with an ATMS.
The underlying graph helps make the most of every answer: (1) goals are grouped
in equivalence classes and thus share their answers, (2) related classes are linked to-
gether and communicate their answers to one another. Refinements often reciuire
premises. A transparent DWIM detaching mechanims allows the use of a subformula
of an assertion as a premise. The system automatically determines the auxiliary
goals required to infer it and adds them to the resulting plan; mismatches contribute
equality goals. Proofs are generalized by a technique related to Explanation-Based
- Generalization, but operating on a reification of the logic. Finally, proof summaries
can be automatically generated for publication in IATRX. Heuristics determine how
to compress/omit/in-line uninteresting parts. The thesis also contributes an axiom-

atization of Qualitative Physics.
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Chapter 1
Introduction

Mathematical proofs, as they are traditionally presented in textbooks, borrow a great
deal of their elegance and apparent sirﬂplicity from the fact that they are neither com-
pletely formal nor do they spell out all the details, relying on the reader’s intelligence
to supply, reconstruct, or grasp the obviousness of what was left unspoken. In the
past thirty years, computer-aided experimentation with formal systems has provided

us with a better appreciation of just how much is usually left out.

Proving theorems formally involves a lot of bookkeeping, which can be a dauntingly
tedious and error-prone task, if carried out by hand. Fortunately, it can be entirely
taken over by the computer. However, the problem of discovering the proof remains
and is not so easily dismissed; especially now that it is compounded with the necessity
to spell out every detail. Consequently, considerable amounts of time and ingenuity
havé been invested in the development of techniques to automate and otherwise fa-

cilitate the search for and derivation of proofs.

A large spectrum of approaches have been attempted; from resolution to interactive
proof editors. Since general techniques tend to perform poorly in the absence of

problem- or domain-specific instructions to direct the search, there has been renewed

1



2 CHAPTER 1. INTRODUCTION

interest in interactive systems. Today, the availability of fast personal workstations

makes such systems practical and attractive.

In this thesis, I propose a framework for interactive proof derivation based on graph
editing and Natural Deduction. I also introduce several techniques which make such
an approach practical rather than merely feasible. In particular, I wish to encourage

an exploratory attitude in the user.

In contrast with the traditional stance which regards theorem proving as essentially
an exercise in deduction—automated or otherwise—I believe that it is an activity
with many facets, and that an interactive environment designed for it should reflect
this plurality and provide adequate support in an integrated fashion. In particular,
it should facilitate the process of initial formalization, of proof derivation, and also

of proof editing and publication.

While conducting this research, I developed a rather large LISP program called LOG-
ICALC, which implements the techniques presented in this thesis. Concurrently, I
evaluated these ideas on a number of practical projects ranging from tby-sized prob-
lems, such as the derivation of a solution for a homework examined at the end of the
present chapter, to far more ambitious undertakings in a formal theory of Kuipers-

style qualitative physics described in Chapter 10.

1.1 Motivations and Requirements

The original motivation for the LoGICALC project was to develop a tool to assist our
group in conducting research with, and proving theorems in, typical predicate cal-
culus formalizations of Al problems; including, but not limited to, spatial reasoning,
qualitative physics [Kui86], circumscription [e.g. Yale shooting problem], situation

calculus and planning, etc...
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Since the emphasis was on practical applications to formal Al research, LOGICALC was
designed to facilitate precisely this type of work. In particular, we wanted to retain
the simplicity afforded by the quantifier-free predicate calculus, and also the power-
ful convenience of unification. The reason for the former is that the quantifier-free
predicate calculus is often exactly the right level of abstraction for many problems,
and that it is a representation with which AI researchers are familiar. As for unifica-
tion, it too is a familiar operation—perhaps the mechanism of choice in a significant
fraction of Al programs—and is the expected mode of operation when dealing with

the quantifier-free predicate calculus.

As a consequence, unlike NUPRL [C*86], this project has not attempted to be foun-
dational. Rather, the intent was to arrive at a satisfactory compromise between

adequate formality and manifest ease of use, helpfulness, and perspicuity.

A major requirement was that the system should lend itself not only to proof checking
but to proof discovery as well. In fact, I have tried to encourage an exploratory style
of proof whereby it is not necessary for the user to form a clear a-priori idea of how the
proof should develop [although it is always an advantage to have such a guide], but
will let him experiment, perform interactive searches, and allow the evolving context

to suggest new or continued directions for the proof under construction.

The interface should make it easy to bring the user’s knowledge to bear on the task
at hand. For instance, when the user knows that a particular theorem can be proven
using axiom A4, he should be able to say so simply and let the program figure out, and
take care of, the inferential details. This thesis proposes a “detaching” mechanism

which precisely fills this office.

Research in theorem proving has often taken the narrow view that proof derivation,
in particular the automation thereof, is the only important problem in the field. Such
a view is about as misguided as considering optimizing compilers to be the only

important problem in the field of programming. The reality is that, when doing re-
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search with logical formalisms, perhaps more so in Al, a lot of time must be spent
on developing the axiomatization and getting it right. Attempting to prove theorems
about and within the domain under consideration is an integral part of the process-
of formalization. It is not uncommon, while carrying out a proof, to discover that
additional axioms are needed, or that an alternative representation would make the
process easier. Thus the axiomatization as well as the ontology may be revised as a
result of exploring the proof space. Therefore the system should allow rapid prototyp-
ing and, in so far as it is possible, should accommodate changes to the axiomatization

on the fly.

The argument presented in the preceding paragraph is further evidence that interac-
tive exploration of the proof space is an essential requirement, and also that proofs
must be available for inspection. Which brings me to my last point: the researcher’s
task typically does not end when a proof has been derived; a representation must
often be produced, e.g. for reference or inclusion in a paper. A unified environment
for theorem proving ought to address this need too, and provide facilities to edit a

proof and assist in its publication.

1.2 Preview of the System

LOGICALC offers a goal/plan based approach to incremental proof refinement. Each
goal may have more than one plan attached to it. Thus the user can keep track of

several alternative proof attempts at the same time.

A goal is a sequent of the form A = p, where p is the conclusion to be derived and
A is the assumption set. A proof of this goal not only includes the corresponding
instance of its sequent, but also captures the complete proof tree which validates the

conclusion.
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Assumptions and goals are skolemized, by default, thereby making quantifier-ma-
nipulation rules unnecessary and allowing unification to be used as the fundamental
operation. Thus, the simplicity of quantifier-free predicate calculus may be retained,
and the user will manipulate a familiar representation. However, it is possible to
control the skolemizing behavior, and explicit quantification and skolemization rules

are also available.

The primary mode of interaction with LOGICALC is through plan generators. A plan
generator produces a set of plans on the basis of the current goal, as well as premises
and parameters specified by the user. These plans will be filed under the current goal
and represent admissible refinements, or alternative proof attempts. The idea of a

plan generator is related to that of a tactic in LCF.

Whereas plan gehera.tors serve to refine the conclusion part of a goal sequent, inference
generators operate on the assumption set and may augment it with new conclusions

derived by forward inferencing rather than backward refinement.

The supporting framework is that of a graph of goals, plans, and proofs which is
maintained and managed by the system. It is this structure which permits LoGIcALC
to address certain issues of subsumption in interesting ways: as we shall see, the
system recognizes duplicate goals (modulo alphabetic renaming) and will establish
an equivalence class to centralize bookkeeping for all of them so that they may share
their answers. Also, links are maintained between similar equivalence classes; where
‘similar’ is taken to mean more, or less, specific, and specificity is determined by
relative instantiation and difference in the number of assumptions. Whenever an
answer is found, not only is it recorded with the particular class it pertains to, but
it is also broadcast along its links, and thus propagates to similar classes which can

then decide whether the new answer can be adapted to benefit them too.

Naturally, interaction with this structural framework is implemented through a graph

editor. The editor is specified in an object-oriented fashion: each type of node in the
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graph provides its own display procedure and its own command processor. From the
point of view of the user, the interface is very similar to a line oriented shell such as
is commonly found in the UNIX world, e.g. cSH. The major distinction is that the set

of available commands varies from one type of node to another.

The user is expected to begin by loading in an axiomatization of the domain of
interest, then state a theorem to be proven, at which point the actual session begins.
The user is presented with a goal representing the target theorem, and should invoke
a plan generator to refine this goal into a plan with subgoals, and proceed in the
same manner with the plan’s steps until all leaf goals have been matched to axioms

or assumptions.

As I mentioned earlier, plan generators often expect premises and parameters to
further specify the refinement to be performed, e.g. Modus Ponens expects a major
premise in the form of an implication. Typically a premise is the name of an axiom or
an assumption. However, LOGICALC generalizes this notion and provides a uniform
and powerful extension through the “detaching” mechanism. Thus premises can
be hypothetical, or they can be subformulae of a.ssertions extracted by a procedure
reminiscent of Unit Non-Clausal E-Resolution; in the latter case, additional subgoals
may be required. Interactive broWsing and selection of candidate detachments can be

requested from the command line and will trigger activation of “Find Mode.”

Since propositions are typically converted to their skolemized version, skolem terms
occur frequently. They are well-known for possessing rather infelicitous representa-
tions. For the convenience of the user, an abbreviation scheme has been designed
which considerably clarifies and simplifies both input and output. In this regime, a
skolem term with function foo will ordinarily print as !.foo. This scheme was ex-

tended to allow arbitrary abbreviations of terms, as well as of interactive commands.

Since a proof contains a full trace of the deductive process that resulted in its deriva-

tion, it was possible to implement a mechanism for automatic generalization of con-
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clusions in a manner that is related to Explanation-Based Generalization, but carries
it further. This feature is particularly useful to counteract the over-specializing effects

due to wanton skolemization.

The availability of proofs as self-contained objects also made it possible to produce
textual, Natural Deduction-like representations for them. A specialized proof editor
was implemented to facilitate the process of proof editing and publication. TEX
output can automatically be prepared in this manner for inclusion in a document to

be typeset.

LOGICALC was evaluated on various formal AI problems. Chapter 10 presents the
result of my research on a first-order axiomatization of a Kuipers-style approach to
qualitative physics. In the next section, I include an annoted transcript of a session
with LOGICALC which illustrates, on a realistic example, how a user typically interacts
with this program, and hopefully will give the reader a feel for the system. The chapter

concludes with an outline of the thesis.

1.3 A Session with LOGICALC

This section contains an annotated session with LOGICALC, and serves as a gentle in-
troduction to the system as well as an illustration of the more basic ways of interacting

with it. The proof was derived as a solution for a class assignment.

LOGICALC has the ability to output text with visual enhancements for various kinds
of devices, including TEX.! By merely setting TERM* to tex, I was able to use my
transcript to produce slides, a hand-out, as well as the annotated version which

follows.

The text of the assignment is included here for reference:

In so far as TEX can be construed as a device.
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homework
1. Express the following facts in predicate calculus, using a
concise, clear vocabulary of predicates:

o If z is a part of y, and y is a part of z, then z is a
part of z.

e If a creature has a thumb on its left hand, it has a thumb on its right hand,
and vice versa.

e Every hand is either left or right, but not both.
e A thumb belongs to exactly one hand.

2. We wish to prove the following two statements:

o A creature with just one hand has no thumbs.

e If a creature has any thumbs, it has two distinct thumbs.

What fact must be added to the list above for these two statements to be
provable?

3. Pick one of the two, and give a formal proof, using either the tableau method,
natural deduction, or resolution.

Below I include the axiomatization actually used in the solution. It is a straightfor-
ward restatement of the terms of the problem in a notational variant of first-order
logic. Note that creature-thumb is an additional fact added as an answer to ques-
tion 2: it states that if a creature has a thumb, then it must have a hand to which
the thumb is attached (think of it as a weak statement to the effect that all parts of

a creature must be connected).:

(IN-PACKAGE ’NISP) axiomatization
(DEPENDS-ON NISP)

(DEFDUCKTYPE creature obj)
(DEFDUCKTYPE hand obj)
(DEFDUCKTYPE thumb obj)
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(DEFPRED (PART ?X ?Y - obj))
(DEFPRED (LEFT <?H - hand))
(DEFPRED (RIGHT ?H - hand))

(AXIOM TRANSITIVITY
(FORALL (X Y Z - part)
(IF (AND (PART X Y) (PART Y Z)) (PART X Z))))

(AXIOM THUMBS
(FORALL (C - creature ONE~HAND - hand ONE-THUMB - thumb)
(IF (AND (PART ONE-THUMB ONE-HAND) (PART ONE-HAND C))
(EXISTS (OTHER-HAND - hand OTHER-THUMB - thumb)
(AND (PART OTHER-THUMB OTHER-HAND)
(PART OTHER-HAND C)
(IF (LEFT ONE-HAND) (RIGHT OTHER-HAND))
(IF (RIGHT ONE-HAND) (LEFT OTHER-HAND)))))))

(AXIOM LEFT-OR-RIGHT
(FORALL (H - hand)
(AXD (OR (LEFT H) (RIGHT H))
(NOT (AND (LEFT H) (RIGET H))))))

(AXIOM ONE-HAND-PER-THUMB
(FORALL (T - thumb)
(EXISTS (HAND-OF-THUMB - hand)
(AND (PART T HAND-OF-THUMB)
(FORALL (H - hand)
(IF (PART T H) (= HAND-OF-THUMB H)))))))

(AXIOM CREATURE-THUMB
(FORALL (C - creature T - thumb)
(IF (PART T ©)
(EXISTS (ONE~-HAND - hand)
(AND (PART T ONE-HAND) (PART ONE-HAND €))))))

Question 3 of the problem set offered a choice of 2 propositions for which a formal

proof should be attempted. I selected the second one:
If a creature has any thumbs, it has two distinct thumbs.

The corresponding proposition, expressed in first-order logic, is:
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(FORALL (C - creature ONE-THUMB - thumb)
(IF (PART ONE-THUMB C)
(EXISTS (OTHER-THUMB - thumb)
(AND (PART OTHER-THUMB C) (NOT (= ONE-THUMB OTHER-THUMB))))))

I will presently outline a sketch of the proof so that the reader may know what to

expect and better follow the forthcoming account of this interaction as it proceeds.

1. First, we shall begin by assuming that creature C has ONE-THUMB; thus reflecting
the presupposition “if a creature has any thumbs...” Qur objective will be to
find (or show the existence of) an OTHER-THUMB such that it is a part of creature
C and is distinct from ONE-THUMB. -

2. By axiom CREATURE-THUMB, we know that there is a hand connecting creature
C to its thumb ONE-THUMB.

3. By axiom THUMBS, we know that, if there is a hand connecting a creature to
a thumb on one side, then there there is a hand connecting the creature to a

thumb on the other side.

4. Since it is not specified on which side the hand connecting creature C to ONE-
THUMB is attached, we must perform a case analysis to conclude that there is a

hand on the opposite side connecting creature C to another thumb.

5. Finally, we show that, if both thumbs were equal, then both hands would be
equal too. However, since these hands are on opposite sides, they must be

distinct. Therefore, by contradiction, the thumbs must be distinct.

Let’s assume that the axiomatization presented earlier has been loaded into the LisP
image. To initiate the session, we now invoke LOGICALGC and state the theorem to be

proven. The system responds by presenting us with a view of the top level goal.
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> (LOGICALC) transcript
Theorem to be proven? (FORALL (C - creature ONE-THUMSB - thumb)
(IF (PART ONE-THUMB C)
(EXISTS (OTHER-THUMSB - thumb)
(AND (PART OTHER-THUMB C)

(NOT (= ONE-THUMB OTHER-THUMB))))))
Return variables: ?0THER-~THUMB

Which ones are you interested in? -ALL
Goal View <class CLASS.1> (top goal)
Find: (OTHER-THUMB) in:
(IF (AND (IS CREATURE !.c[6])
(IS THUMB !.ONE-THUMB[7])
(PART !.ONE-THUMB[7] t.c[e]))
(AND (IS THUMB ?0THER~THUMB)
(PART ?70THER-THUMB !.cC[6])
(NOT (= !.ONE-THUMB[7] ?0THER-THUMB))))
(no assumptions)
(no answers)
(no local plans)
(no class plans)

We enter the target theorem as a fully quantified formula. Note that each variable is
followed by a type declaration, with the character ‘-’ acting as a separator. Thus C was
declared to be a creature and ONE-THUMB a thumb (see DEFDUCKTYPE specifications
in axiomatization). After reading in this formula, the system applied skolemization
to it and packaged the resulting expression as a goal. A view of this goal is displayed

to the user.

The prefix ‘!.” is a notational convention to indicate a skolem term. !.C is a new
skolem term which stands for an arbitrary and anonymous creature. The display
actually shows !.C[6] where 6 is the skolem term’s “id.” Every time the system
invents a new skolem term, it makes up a new id for it using a monotronically increasing
global counter; this is why ! .ONE-THUMB has id 7. You may read !.C[6] as Cs. The
id is always printed the first time a skolem term is seen; however it is generally
omitted on subsequent occasions, as long as the skolem term’s name by itself (e.g. C)

is unambiguous.

The prefix ‘7’ is the traditional notational convention to indicate a free variable; e.g.
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70THER-THUMB is a free variable to be subsequently instantiated in our search for a
proof—we are looking for a term to serve as a value for 20THER-THUMB and for which

the corresponding instance of the goal obtains.

Note that all type declarations have been transformed into propositions of the form

(IS (type) (object)) and appropriately inserted in the formula.

The fact that the goal is in the form of an implication suggests that we proceed by
invoking the Deduction Theorem: let us assume the implication’s antecedent and

attempt to prove its consequent under the resulting additional assumptions.

(0] w> DEDUCTION transcript

There is 1 fate
1 (PLAN):
PLAN --- (IF-INTRO)
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS THUMB ?0THER-THUMB))
2 (l...] => (PART ?70THER-THUMB !.C))
3 (...l => (NOT (= !.ONE-THUMB ?0THER-THUMB)))
Make it local? YES
Move to it? YES

Plan View <class CLASS.1>
Documentation: "w> +PLAN DEDUCTION-THEOREM"
Supergoal:
(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART ! .ONE-THUMB !.C))
(AND (IS THUMB ?OTHER-THUMB)
(PART ?0THER-THUMB !.C)
(¥OT (= !.ONE-THUMB ?0THER-THUMB))))
Will find:
OTHER-THUMB = ?0THER-THUMB
Steps:
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS THUMB ?0THER-THUMB)) ~- (no local plans, no class plans, 1 answer)
2 (l...] => (PART ?0THER-THUMB !.C)) —- (no local plans, no class plans, 1 answer)
3 (I...] => (NOT (= !.ONE-THUMB ?0THER-THUMB))) -- (no local plans, no class plans, no answe
(no successors)
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The deduction command is interpreted as a request to refine the current goal accord-
ing to the Deduction Theorem. In response, a plan is constructed and proposed to the
user. From proofs of the steps, we expect a proof of the original goal to be derivable
according to the plan’s validation (not shown here)—a validation is a description of

a sequence of inferences expressed in terms of available inference rules.

In the resulting plan, the system automatically expanded the consequent into 3 steps,

one for each conjunct. Each step is displayed in a sequent-like format:
Assumptions = Goal

The elision | .. .| means to repeat the preceding set of assumptions. Thus the system

avoids cluttering the display with redundant repetitions.

Note that steps 1 and 2 each have one answer already associated with them. The
reason is that, whenever a new goal is created, the system attempts to find easy
answers to it; in particular, it checks whether it is a tautology—which neither of
them are, here——-'and whether it unifies with some axiom or assumption—which they

both do: step 1 unifies with the second assumption, and step 2 with the third one.

Unfortunately, neither of these answers is satisfactory since they both involve ! . ONE-
THUMB when we really meant to find another thumb. Therefore, we shall have to
disregard them and proceed to look for other answers. At this point, we must select
a step to work on. Since it is unlikely that we can proceed easily with either step 1
or step 3 without first instantiating P0THER-THUMB, it is probably a better idea to try
our luck with step 2. We simply type 2 to LOGICALC’s shell, and the view is moved

to the node representing step 2.

[1] »> 2 transcript
Goal View <class CLASS.3> '

Find: (OTHER-THUMB) in:
(PART ?0THER-TEUMB !.C)
Assumptions:
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(IS CREATURE !.C) -- 1:IS278

(IS THUMB !.ONE-THUMB) -~ !:IS279

(PART !.ONE-THUMB !.C) -- !:PART280
Answers:

1 OTEER-THUMB = !.ONE-THUMB
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !.ONE-THUMB !.C))
(AND (IS THUMB ?OTHER-THUMB)
(PART ?0THER-THUMB !.C)
(NOT (= !.ONE-THUMB ?70THER-THUMB))))
(no local plans)
(no class plans)

We want to find the creature’s other thumb, i.e. the thumb on the side opposite
! .ONE-THUMB. Clearly, we must use axiom THUMBS; however, THUMBS does not men-
tion a proposition of the form “thumb is part of creature” but it does mention the
two simpler propositions “thumb is part of hand” and “hand is part of creature.”
Therefore, before we can use axiom THUMBS, we must invoke the axiom of transitivity

of parts in order to decompose the goal into these simpler components. |

(2] w> USE TRANSITIVITY transcript

There is 1 fate

1 (PLAN):
PLAN --- (MODUS-PONENS)
1 (PART ?0THER-THUMB ?Y.1)
2 (PART ?Y.1 !.C)

Make it local? YES

Move to it? YES

Plan View <class CLASS.3>
Documentation: "w> +PLAN RESOLUTION TRANSITIVITY"
Supergoal:
(PART ?0THER-THUMB 1.C)
Will find:
OTHER-THUMB = ?0THER-THUMB
Steps:

1 (PART ?0THER-THUMB ?Y.1) -- (no local plans, no class plans, 1 answer)
2 (PART ?Y.1 !.C) -- (no loecal plans, 1 class plan, 1 answer)
(no successors)

We have reduced the problem of finding a thumb that is a part of creature !.C to

that of finding a hand ?Y.1 that is part of !.C and such that the thumb is part of it.
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We can now move to either step and attempt to proceed using axiom THUMBS as we

originally intended. Since step 2 is the more instantiated, it will presumably result

in greater directionality and specificity.

[3] v 2
Goal View <class CLASS.3>
Find: (Y.1) in:
(PART ?Y.1 1.C)
Assumptions:
(IS CREATURE !.C) -- 1:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- {:PART280
Answers:
1 Y.1 = |  ONE-THUMB
Supergoal:
(PART ?0THER~THUMB !.C)
(no local plans)
(1 class plan)

[4] w> USE THUMBS

There is 1 fate
1 (PLAN):
PLAN --- (TAUT-TRANS)
1 (IS HAND ?0NE-HAND.1)
2 (IS THUMB ?0NE-THUMB.1)
3 (PART ?0NE-THUMB.1 ?ONE-HAND.1)
4 (PART ?0NE-HAND.1 !.C)
Make it local? YES
Move to it? YES

Plan View <class CLASS.3>
Documentation: "w> +PLAN RESOLUTION THUMBS"
Supergoal: :
(PART 7Y.1 !.C)
Will find:

Y.1 = !.OTHER-HAND[2] (?ONE-HAND.1 !.C)

Steps:
[-[1 (IS CREATURE !.C)]

transcript

2 (IS HAND 7O0NE-HAND.1) -- (no local plans, no class plans, no answers)
3 (Is THUMB ?ONE-THUMB.1) -- (no local plans, no class plans, 1 answer)

4 (PART ?7ORE-THUMB.1 ?ONE-HAND.1) -- (no local plans, no class plans, 1 answer)
5 (PART ?7O0NE-HAND.1 !.C) ~-- (no local plans, 2 class plans, 1 answer)

(no successors)

In this view, ?Y.1 is the “other” hand, ?ONE-THUMB. 1 stands for the given thumb
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(i-e. ! .ONE-THUMB), and 7ONE-HAND. 1 is the “first” hand that connects 7ONE-THUME. 1
(which we will promptly instantiate with ! .ONE-THUMB) to creature !.C. Step 3
already has an answer which presumably results from unification with the assumption
':15279 that ! .ONE-THUMB is a thumb. We ought to use that answer, thereby further

instantiating this plan in the desired direction.

(51 w> 3 transcript
Goal View <class CLASS.2>
Find: (ONE-THUMB.1) in:
(Is THUMB ?0ONE~THUMB.1)
Assumptions:
(IS CREATURE !.C) -~ 1:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) =-- !:PART280
Answers:
1 ONE-~THUMB.1 = ! ONE-THUMB
Supergoal:
(PART ?Y.1 t.C)
(no local plans)
(no class plans)

[6] w> FOLLOW

When an answer to a goal is “followed,” a “successor” is created to the plan where
the goal appears as a step. The successor plan looks just like the original plan, except
that the goal whose answer was followed is marked as “solved” (indicated by brackets

in the display), and the answer’s substitution was applied to all the remaining steps.

Plan View <class CLASS.3> transcript
Documentation: “>w> +PLAN RESOLUTION THUMBS"
Supergoal:
(PART ?Y.1 {.C)
Will find:
Y.1 = !.OTHER-HAND (?ONE-HAND.2)
Steps:
I-f1 (IS CREATURE !.C)]
2 (IS HAND ?7ONE-HAND.2) -- (no local plans, no class plans, no answers)
(3 (IS THUMB ?0NE-THUMB)]
4 (PART !.ONE-THUMB ?ONE-HAND.2) -- (no local Plans, no class plans, 1 answer)
5 (PART ?0NE-HAND.2 !.C) -~ (no local Plans, 3 class plans, 1 answer)
(no successors)
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Note that the variable denoting the “first” hand was renamed from ?ONE-HAND.1
to ?ONE-HAND.2. Our objective will be to derive an instantiation for this variable.
Axiom CREATURE-THUMB states that, if a creature has a thumb, then there exists a
hand that connects the creature to its thumb. This last observation suggest that we

move to step 5 and tentatively apply the aforementioned axiom.

(71 v 5 tramscript
Goal View <class CLASS.3>
Find: (ONE-HAND.2) in:
(PART ?0NE-HAND.2 !.C)
Assumptions:
(IS CREATURE !.C) -- !:1S278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- !:PART280
Answers:
1 ONE-HAND.2 = ! .ONE-THUMB
Supergoal:
(PART ?Y.1 !.C)
(no local plans)
(3 class plans)

(8] w> USE CREATURE-THUMB

There are 2 fates
1 (PLAN):
PLAN --- (TAUT-TRANS)
1 (IS THUMB ?T.1)
2  (PART ?T.1 !.C)
Make it local? NO
2 (CONCLUSION):
ONE-HAND.2 = ! .ONE-HAND[5](!.C ! .ONE-THUMB)
Move to one of them? Type no.: 2

As expected, using axiom CREATURE-THUMB resulted in the creation of a two-step plan
expressing the need to find a thumb ?T. 1 that is part of creature ! .C. Both steps have
answers found by unification with an assumption, and both answers have compatible
(in fact, identical) substitutions: They both assign ! .ONE-THUMB to ?T. 1. The system
notices the answers can be merged, thereby producing a substitution which satisfies
all the plan’s steps, and proceeds to derive the corresponding conclusion which it then

displays as fate 2.
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In the proposed conclusion, the “first” hand is denoted by skolem term ! . ONE-HAND[5]
(!.C !.ONE-THUMB) which is a function of both the creature and the “first” thumb as
reflected by the list of arguments following ! . ONE-HAND. We select fate 2 by typing 2
to the prompt, thus following the conclusion, and are presented with a new successor

plan.

Plan View <class CLASS.3> transcript
Documentation: ">>w> +PLAN RESOLUTION THUMBS"
Supergoal:
(PART 7Y.1 1.C)
Will find:
Y.1 = ! .OTHER-HAND([2] (! .QONE-HAND !.C)
Steps:
}-C1 (IS CREATURE !.C)]
2 (IS HAND !.ONE-HAND) -- (no local plans, no class plans, no answers)
(3 (IS THUMB ?ONE-THUMB)]
4 (PART !.ONE-THUMB !.ONE-HAND) -- (no local plans, no class plans, no answvers)
[5 (PART ?O0NE-HAND 1.0)]
(no successors)

The brackets indicate those steps which have been solved. Also, the arguments to
' .ONE-HAND, which were displayed earlier when !.ONE-HAND was first introduced,

have been omitted here along with the “id” since the name by itself is unambiguous.

All that remains to be done in this plan is to show that ! .ONE-HAND is a hand
[step 2] and that !.ONE-THUMB is a part of it [step 4]. Remember that !.ONE-HAND
was introduced by our use of axiom CREATURE-THUMB. Since, the latter “defines” the
former, it is most likely that other properties of ! .ONE-HAND will also be found there,
e.g. its type, because théy must have been expressed originally within the scope of the
quantifier that introduced !.ONE-HAND. In fact, a cursory glance at the text of the
axiom confirms that the properties expressed by both remaining steps are explicitly
asserted. Therefore, we should be able to use the axiom again to quickly dispatch

these two steps.

(9] w> 2 transcript
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Goal View <class CLASS.9>
Prove
(IS HAND !.ONE-HAND)
Assumptions:
(IS CREATURE !.C) -- 1:IS278
(IS THUMB !.QONE-THUMB) -- 1:IS279
(PART !.ONE-THUMB !.C) -- !:PART280
(no answers)
Supergoal:

(PART ?Y.1 1.C)
(no local plans)
(no class plans)

{10] w> USE -SKOLEM

The idiom “use -skolem” means: find all assertions mentioning any of the skolem
terms that appear in the goal, and attempt to solve the goal using them. The great
advantage of this idiom is that the user does not have to remember or find out where
the skolem terms originated; the system will make this determination for him. I

have found this feature to be extremely useful in practice, often solving the goal in a

seemingly magical way.

There is 1 fate ﬂ:manscmﬁpﬂ:
1 (CONCLUSION): Yes

Move to it? YES

Goal View <class CLASS.10>
Prove
(PART !.ONE-THUMB !, ONE-HAND)
Assumptions:
(IS CREATURE !.C) -- !1:IS278
(IS THUMB ! .QONE-THUMB) -- !:IS279
(PART !.ONE~THUMB !.C) -- !:PART280
(no answers)
Supergoal:

(PART ?7Y.1 !.C)
(no local plans)
(no class plans)

We just solved step 2, and only step 4 remains. Therefore, the system anticipates

the user, and moves the focus directly to the sole remaining step instead of to the
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successor plan where step 4 is the only unsolved step. Once again, we invoke the

convenient idiom introduced above.

[11] w> USE -SKOLEM transcript

There is 1 fate
1 (CONCLUSION): Yes
"Move to it? YES

Goal View <class CLASS.13>
Find: (OTHER-THUMB) in:
(PART ?0THER-THUMB ! .OTHER-HAND)

Assumptions:
(IS CREATURE !.C) -~ 1:IS278
(IS THUMB !.ONE~THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) =-- !:PART280
(no answers)
Supergoal:

(PART ?0THER-THUMB !.C)
(no local plans)
(no class plans)

As expected, an answer is immediately found, which we proceed to follow. Since
step 4 was the last remaining step in the plan originally created on page 15, the
plan’s validation is executed to produce a conclusion. A validation is a description of

how to derive a plan’s conclusion from proofs of its steps, using inference rules.

This new conclusion is an answer to the plan’s supergoal (see page 15). This su-
pergoal appeared as step 2 in the plan displayed on page 14. Therefore, following
the conclusion creates a successor plan with a single remaining step (where ?Y.1 is
instantiated with ! .OTHER-HAND), and the system moves us directly to that step. It
is a view of that step which is displayed above. !.0THER-HAND is the “other” hand

and was introduced by our use of axiom THUMBS on page 15.

[12] w> USE THUMBS? transcript

There are 3 fates

’I could have typed “USE -SKOLEM”
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1 (PLAN):

PLAN --- (TAUT-TRANS)

1 (IS CREATURE !'.OTHER-HAND)

2 (IS HAND ?ONE-HAND.3)

3 (Is THUMB ?ONE-THUMB.2)

4 (PART 7ONE-THUMB.2 ?0NE-HAND.3)

5 (PART 7ONE-HAND.3 !.OTHER-HAND)
Make it local? YES3
2 (PLAN):

PLAN --- (TAUT-TRANS)

1 (IS THUMB ?0NE-THUMB.3)

2 (PART 7ONE-THUMB.3 !.ONE-HAND)
Make it local? YES
3 (CONCLUSION):

OTHER-THUMB = ! .OTHER-THUMB[3] (!.ONE-HAND !.C)
Move to one of them? Type no.: 3

Plan View <class CLASS.1>
~Documentation: “>w> +PLAN DEDUCTION-THEOREM"
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !'.ONE~THUMB) (PART !.ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB !.C)
(NOT (= !.OKE-THUMB ?0THER-THUMB))))
Will find:
OTHER-THUMB = !.OTHER-THUMB
Steps:
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS THUMB !.OTHER-THUMB)) -~ (no local plans, no class plans, no answers)
(2 (l...1 => (PART ?0THER-THUMB !.C))]
3 (l...1 => (NOT (= !.ONE-THUMB !.OTHER-THUMB))) -- (no local plans, no class plans,
(no successors)

An answer was found and we decided to follow it by typing the corresponding fate
number (i.e. 3) to the prompt. No unsolved step remains in the superplan and its
validation is executed, thereby producing an answer to step 2 of the original plan (see
page 12). Following this answer creates a successor plan and moves the focus to it.

It is a view of this successor which we see above.

Now that 0THER-THUMB has been instantiated with ! . OTHER-THUMB, we can expedite

3] answered YES because at this point it is still unclear that one of the 3 fates is in fact the de-
sired conclusion.
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step 1 with another “use -skolem.”

[13] w> 1 transcript
Goal View <class CLASS.18>
Prove
(IS THUMB !.OTHER-THUMB)
Assumptions:
(IS CREATURE !.C) -- 1:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART ! .ONE-THUMB !.C) ~- !:PART280
(no answers)
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !'.ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?OTHER-THUMB !.C) ,
(NOT (= !.ONE-THUMB ?0THER-THUMB))))
(no local plans)
(no class plans)

{14] w> USE -SKOLEM
There is 1 fate

1 (CONCLUSION): Yes
Move to it? YES

Goal View <class CLASS.17>
Prove
(NOT (= !.ONE-THUMB !. OTHER-THUMB) )
Assumptions:
(IS CREATURE !.C) -- 1:IS278
(IS THUMB !.ONE-THUMB) -- t:IS279
(PART !.ONE-THUMB !.C) -- 1! :PART280
(no answers)
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !.ONE-THUMB !.C))
(ARD (IS THUMB ?7OTHER-THUMB)
(PART ?0THER-THUMB !.C)
(NOT (= !.ONE-THUMB ?70THER-THUMB))))
(no local plans)
(no class plans)

This is a view of step 3 which is the only remaining subgoal in this proof. The
fact that the goal has the form of an inequality suggests that we attempt a proof
by contradiction: assuming that the two thumbs ! .ONE-THUMB and ! . OTHER-THUMB

are identical, we will prove that the two hands must be identical as well (by axiom
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ONE-HAND-PER-THUMB) and consequently must be on the same side; but we know that

they are on oppposite sides by construction (cf. axiom THUMBS). Hence a contradiction.

[15] w> CONTRADICTION (LEFT .ONE-HAND) transcript

There is 1 fate
1 (PLAN):
PLAN --- (NOT-INTRO)
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
(= !.ONE-THUMB !.OTHER-THUMB)
=> (LEFT !.ONE-HAND))
2 (l...| => (NOT (LEFT !.ONE-HAND)))
Make it local? YES
Move to it? YES

Plan View <class CLASS.17>
Documentation: “w> +PLAN CONTRADICTION (LEFT ! .ONE-HAND) "
Supergoal:
(NOT (= !.ONE-THUMB !.OTHER-THUMB))
Steps:

1 ((IS CREATURE !.C)
(Is THUMB !.ONE-THUMB)
(PART {.ONE-THUMB !.C)
(= !.ONE-THUMB !.QTHER-THUMB)
=> (LEFT !.ONE-HAND)) -- (no local plans, no class plans, no answers)
2 (I...1 => (NOT (LEFT !.ONE-HAND))) -- (no local plans, no class plans, no answers)
(no successors)

The plan is to show that, assuming that !.ONE-THUMB and ! .0THER-THUMB (the two
thumbs) are identical, then it follows that ! .ONE-HAND (the first hand) both is and is

not on the left side.

(18] = 1 transcript
Goal View <class CLASS.19>
Prove
(LEFT !.ONE-HAND)
Assumptions:
(= !.ONE~THUMB !.OTHER-THUMB) -~ !:=305

(no answers)
Supergoal:
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(NOT (= !.ONE-THUMB !.QTHER-THUMB))
(no local plans)
(no class plans)

First, we are going to prove as a lemma that the first hand is identical to the other
hand (under the assumption that the first thumb is identical to the other thumb).
Proving this lemma explicitly ahead of time is not strictly necessary since it would
naturally occur as a subgoal when required, but it simplifies the exposition and makes

the proof easier to follow.*

[17] w> LEMMA (= LONE-HAND !.OTHER—HAND) transcrﬁpﬂ;
There is 1 fate
1 (PLAN):

PLAN --- (TAUT-TRANS)

1 (= !.ONE-HAND !.OTHER-HAND)
2 (LEFT !.ONE-HAND)

Make it local? YES

Move to it? YES

Plan View <class CLASS.19>
Documentation: "w> +PLAN LEMMA (= !.ONE-EAND ! .OTHER-HAND)*
Supergoal:
(LEFT !.ONE-HAND)
Steps:
1 (= !.ONE-EAND !.OTEER-HAND) -~ (no local Plans, no class plans, no answers)

2 (LEFT !.ONE-HAND) -- (no local plans, 1 class plan, no answers)
(no successors)

[18] w> 1
Goal View <class CLASS.21>
Prove
(= !.ONE~HAND !.OTHER-HAND)
Assumptions:
(= ! . ONE-THUMB ! .OTHER-THUMB) -- !:=305
(no answers)
Supergoal:
(LEFT !.ONE-HAND)
(no local plans)
(no class plans)

*besides, it simply occurred to me at this point in the proof that it might be a good idea to have
this lemma around.
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Obviously, in order to prove this proposition, we shall need axiom ONE-HAND-PER-
THUMB; not only is it the only one concerned with unicity, but it is also the only one
that has an equality sign in it. I could choose to illustrate the use of the equality

command and type something like:
equality !.one~hand - one-hand-per-thumb

This would “detach” an equality formula of the form (= !.ONE-HAND (term)) from
axiom ONE-HAND-PER-THUMB and would use it to substitute occurrences of term
! .ONE-HAND with (term). Instead, I would rather illustrate another useful feature of
LOGICALC’s interface, which is the ability to perform approximate unification (near
matches). For those terms that do not unify where they should, explicit subgoals are

inserted to prove them equal.

Thanks to this feature, I will be able to continue invoking the simpler ‘use’ command
and let the system figure out exactly what equality substitutions are required. I will

also explicitly limit the number of allowed mismatches to no more than 1.

What I expect to happen is this: the system will try to “detach” the current goal’s
equality from axiom ONE-HAND-PER-THUMB. However, this cannot succeed with regular
unification because the equality formula occurring in said axiom has one operand
which is a free variable (which would be fine) and the other which is a skolem that
unifies with neither the first nor the other hand. Therefore, we ought to permit
1 mismatch. The rest of the proof will involve proving that both hands are equal to

this new term.

(19] w> USE -MISMATCH® 1 ONE-HAND-PER-THUMB transcript

There are 2 fates
1 (PLAN):

S-mismatch 1 can be abbreviated -m 1 or just +m.
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PLAN --- (EQUALITY)
1 (= !.ONE-HAND ! HAND-OF-THUMB{4](?T.2))
2 (IS THUMB ?T.2)
3 (IS HAND !.0THER-HAND)
4 (PART 7?T.2 !.OTHER-HAND)
Make it local? YES
2 (PLAN):
PLAN --- (EQUALITY)
1 (= !.OTHER~HAND !.HAND-OF-THUMB[4](?T.3))
2 (IS THUMB ?T.3)
3 (PART ?T.3 !.ONE-HAND)
Make it local? YES
Move to one of them? Type no.: 2

Plan View <class CLASS.21>
Documentation: "w> +PLAN RESOLUTION -MISMATCH 1 ONE-HAND-PER-THUMB"
Supergoal:

(= !.ONE-HAND !{.OTHER-HAND)
Steps: .

' 1 (= !.OTHER-HAND !, HAND-OF-THUMB(?T.3)) -- (no local pPlans, no class plans, no answers)
2 (IS THUMB ?T.3) -- (no local plans, no class plans, 2 answers)

}-[3 ((IS CREATURE !.C)

(IS THUMB !.ONE-THUMB)
(PART !.ORE-THUMB !.C)
=> (IS HAND !.ONE~HAND))]
4 (PART 7T.3 !.ONE-HAND) -- (no local pPlans, no class plans, 1 answer)
(no successors) ’

Obviously, step 4 already has the answer that the first thumb is a part of the first
hand. It is probably a good idea to follow this answer, thereby further instantiating

our plan.

[20] w> 4 transcript

Goal View <class CLASS.28>
Find: (T.3) in:
(PART ?T.3 !.ONE-HAND)

Assumptions:

(= {.ONE-THUMB ! .OTHER-THUMB) -- ! :=305
Answers:

1 T.3 = | .ONE-THUMB
Supergoal:

= !.ONE-HAND !.OTHER-HAND)
(no local plans)
(no class plans)
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(21] «> FOLLOW

Goal View <class CLASS.30>
Prove
(= {.OTHER-HAND ! .HAND-OF-THUMB[4](!.ONE-THUMB))
Assumptions:
= {,ONE-THUMB !.0OTHER-THUMB) -- !:=305
(no answers)
Supergoal:

(= !.ONE-HAND !.OTHER-HAND)
(no local plans)
(no class plans)

Following the answer instantiated ?T.3 with ! .ONE-THUMB. Step 2 became the goal to
prove that ! .ONE-THUMB is a thumb, which was already known to be true. Therefore,
the successor plan’s only remaining unsolved step was step 1. The system moved us

directly to it.

We shall simply repeat the “mismatch” trick to complete the transitive substitution.

{22] w> USE -MISMATCH 1 ONE-HAND-PER-THUMB transcript

There are 2 fates
1 (PLAN):
PLAN --- (EQUALITY)
1 (= Y.OTHER-HAND !.HAND-OF-THUMB[4](?T.4))
2 (IS THUMB ?T.4)
3 (IS HAND !.HAND-OF-THUMB[4] (!.ONE~THUMB))
4 (PART ?7T.4 !.HAND-OF-THUMB)
Make it local? YES
2 (PLAN):
PLAN --- (SYMMETRY)
1 (IS HAND !.OTHER-HAND)
2 (PART !.ONE-THUMB !.OTHER-HAND)
Make it local? YES
Move to one of them? Type no.: 2

Plan View <class CLASS.30>
Documentation: "w> +PLAN RESOLUTION -MISMATCH 1 ONE-HAND-PER-THUMB"
Supergoal:
(= {.OTHER-HAND !.HAND-OF-THUMB)
Steps:
I-{1 ((IS CREATURE !.C)
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(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS THUMB !.ONE-THUMB))]
2 (IS HAND !.OTHER-HAND) -- (no local plans, no class plans, no answers)
3 (PART !.ONE-THUMB !.OTHER-HAND) -- (no local plans, no class plans, no answers)
(no successors)

Step 2 should be easily handled with a “use -skolem” and, since we assumed that

both thumbs were equal, a quick substitution of thumbs should take case of step 3.

[23] w> 2 transcript

Goal View <class CLASS.24>
Prove
(IS HAND !.OTHER-HAND)
Assumptions:
(= !.ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers)
Supergoal:
(= !'.OTHER-HAND !.HAND-OF-THUMB)
(no local plans)
(no class plans)

[24] w> USE -SKOLEM
There is 1 fate .

1 (CONCLUSION): Yes
Move to it? YES

Goal View <class CLASS.33>
Prove
(PART !.ONE-THUMB ! .OTHER-HAND)
Assumptions:
(= t.ONE-THUMB ! .OTHER-THUMB) -~ !:=30§
(no answers)
Supergoal:

(= !.OTHER-HAND !, HAND-OF-THUMB)
(no local plans)
(no class plans)

(28] w> EQUALITY 1--LOCAL

There is 1 fate
1 (CONCLUSION): Yes
Move to it? YES
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Goal View <class CLASS.19>
Prove
(LEFT !.ONE-HAND)
Assumptions:
= ! ONE-THUMB !.QOTHER-THUMB) -- !:=305
(no answers)
Supergoal:
(LEFT !.ONE-HAND)
(no local plans)
(1 class plan)

Command 25 uses the “~local” designator which indicates that only local assump-
tions should be considered as premises for the requested refinement. Here, the only

local assumption is that both thumbs are identical.

We are now done proving as a lemma that, under the assumption that both thumbs
are equal, then both hands are equal too. We should proceed with the first half of

the contradiction; and we shall do so by case analysis:

1. Axiom LEFT-OR-RIGHT expresses the fact that a hand is either on the left side
or on the right side (but not both). This disjunction will constitute the starting

point of our analysis. Hence the following two cases.

2. Either the first hand is on the left side, in which case the current goal (i.e. that
! .ONE~HAND is a left hand) is trivially true.

3. Or it is on the right side; from which axiom THUMBS allows us to deduce that
the other hand is on the left side. However, since both thumbs are equal by
assumption, then both hands must be equal too, and it follows by equality
substitution, from the conclusion that the other hand is on the left side, that

the first hand is also on the left side.

(26] w> CASE (OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND)) transcript

There is 1 fate
1 (PLAN):
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PLAN ~--- (CASE)
1 (OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND))
2 ((Is CREATURE !.C) :
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
(= 1 ONE-THUMB !.OTHER-THUMB)
(RIGHT !.ONE-HAND)
(NOT (LEFT !.ONE-HAND))
=> (LEFT !.ONE-HAND))
Make it local? YES
Move to it? YES

Plan View <class CLASS.19>
Documentation: "w> +PLAN CASE (OR (LEFT !.ONE-HAND) (RIGHT ! . ONE~HAND))"
Supergoal:
(LEFT !.ONE-HAND)
Steps:
1 (OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND)) ~- (no local pPlans, no class plans, no answers)
[-[2 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
= ! ONE-THUMB !.OTHER-THUMB)
(LEFT !.ONE-EAND)
=> (LEFT !.ONE-HAND))]
3 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !{.C)
(= ! .ONE~-THUMB !.OTHER-THUMB)
(RIGHT !.ONE-HAKD)
(NOT (LEFT !.ONE-HAND))
=> (LEFT !.ONE-HAND)) -- (no local plans, no class plans, no answers)
(no successors)

I expect to be able to easily dispatch step 1 with axiom LEFT-OR-RIGHT, and step 2

is already solved because it is the trivial case as explained earlier.

[27] w> 1 transcript
Goal View <class CLASS.37>

Prove

(OR (LEFT !.ONE-HAND) (RIGHT !.ONE-EAND))
Assumptions:

(= ! .ONE-THUMB ! .OTHER-THUMB) -- !:=305
(no answers)
Supergoal:

(LEFT !.ONE-HAND)
(no local plans)
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(no class plans)
(28] w> USE LEFT-OR-RIGHT

There is 1 fate
1 (CONCLUSION): Yes
Move to it? YES

Goal View <class CLASS.39>

Prove
(LEFT !.0ONE-HAND)

Assumptions:
(RIGET !.ONE-HAND) -- !:RIGHT331
(NOT (LEFT !.ONE-HAND)) -- !:NOT332

(no answers)

Supergoal:

(LEFT !.ONE-HAND)
(no local plans)
(no class plans)

Only the non-trivial case was left, and the system moved us directly to it. As an-
nounced earlier, we shall first use axiom THUMBS to refine this goal into a new one to
show that the other hand is on the right side. Then using our lemma that the two
hands are equal, we should be able to perform an equality substitution and match the
first local assumption !:RIGHT331. However, we can take advantage of the equality

of the two hands right now, by allowing 1 mismatch in our projected refinement.

[29] w> USE -MISMATCH 1 THUMBS transcript

There is 1 fate
1 (CONCLUSION): Yes
Move to it? YES

This was one case where the system magically solved everything for us. Of course,
it is not magical at all: there is simply enough information for the system to realize

that all necessary subgoals are either trivial or have already been solved previously.

We must proceed with the alternative branch of the proof by contradiction which we

initiated on page 23. We could follow the same procedure as before, but we shall see
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that won’t be necessary because one of the side effects of the case analysis we carried

out earlier was to derive the conclusion that the other hand is on the right side.

All we need to do is to first convert the goal of proving that the first hand is not on the
left side into the goal of showing that it is on the right side—this we can accomplish
using axiom LEFT-OR-RIGHT—followed by an equality substitution replacing the first
hand by the other hand, finally resulting in a goal (the other hand is on the right side)

which, as anticipated, matches a conclusion derived during the earlier case analysis.

Goal View <class CLASS.20> transcript
Prove
(NOT (LEFT !.ONE-HAKD))
Assumptions:
= | .ONE~-THUMB !.0THER-THUMB) -- !:=308
(no answers)
Supergoal:

(NOT (= !.ONE-THUMB !.OTHER-THUMB))
(no local plans)
(no class plans)

[30] w> USE LEFT-OR-RIGHT

There is 1 fate
1 (PLAN):
PLAN --- (MODUS-PONENS)
1 (RIGHT !.ONE~HAND)
Make it local? YES
Move to it? YES

Goal View <class CLASS.48>
Prove
(RIGHT !.ONE-HAND)
Assumptions:
(= ! .ONE-THUMB ! .OTHER-THUMB) -- !:=3086
(no answers) '
Supergoal:

(NOT (LEFT !.ONE-HAND))
(no local plans)
(no class plans)

(311 #> USE -MISMATCH 1 THUMBS

There is 1 fate
1 (CONCLUSION): Yes
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Move to it? YES

Answer to top Goal
1 (goal): (IF (AND (IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB !.C)
(NOT (= !.ONE-THUMB ?0THER-THUMB))))
OTHER-THUMB = !.OTHER~-THUMB
(no fates)

The proof is now complete. We can request LOGICALC to show us a view of the top

most inference.

{32] > PROOF . transcript

Proof
Conclusion:
(IF (AND (IS CREATURE ?Y) (IS THUMB ?X) (PART 7X ?Y))
(AND (IS THUMB ! .OTHER-THUMB(3] (! .ONE-HAND[5] (?Y ?X) ?Y))
(PART ! .OTHER-THUMB [3] (! .ONE-HAND[B] (7Y ?X) ?7Y) ?Y)
(NOT (= !.ONE-TEUMB !.OTHER-THUMB))))
(no local assumptions)
Validation:
(IF-INTRO (1 2) ())
follows from:
1 (AND (IS CREATURE !.C) (IS THUMB ! .ONE-THUMB) (PART !.ONE-THUMB !.C))
2 (AND (IS THUMB ! .OTHER-THUMB [3] (! .ONE-HAND[S](!.C !.ONE-THUMB) 1.¢))
(PART ! .OTHER-THUMB (3] (! .ONE-EAND[5] (!.C ! .ONE-THUMB) !.C) !.C)
(NOT (= !.ONE-THUMB
*.OTEER-THUMB(3](!.ONE-HAND[5](!.C !.ONE-THUMB) !.C))))

The surprising feature of this proof’s conclusion is that, where we were expecting to
see the creature !.C and its thumb !.ONE-THUMB, we find instead, and respectively,
the variables ?Y and ?X. This is the result of LOGICALC’s automatic generalization
facility. Since this last conclusion discharges all assumptions about the creature and

its thumb, LOGICALC was able to generalize over them.

Line no. 1 is the assumption being discharged, while line no. 2 is the conclusion which

was derived under this assumption. We could manually explore the proof tree, but
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this would not be very enlightening. Instead, I shall illustrate another feature of

LOGICALC: the proof editor.

(33] w> EDIT transcript
Proof View
12 (LEFT !.O0THER-HAND) [THUMBS 1 2 !:RIGHT331]
13 (LEFT !.ONE-HAND) [11 12]
14 (IF (AND (RIGHT !.ONE-HAND) (NOT (LEFT 7X))) (LEFT !.ONE-HAND)) [!:RIGHT331 !:NOT332 13]
15 (LEFT !.ONE-HAND) [6 7 14]
16 (RIGHT !.OTHER-HAND) [THUMBS 1 2 15]
17 (RIGHT !.ONE-HAND) [11 16]
18 (NOT (LEFT !.ONE-HAND)) [LEFT-0R-RIGHT 17]
19 (NOT (= !.ONE-THUMB !.O0THER-THUMB)) [15 18]

=>20 (IF (AND (IS CREATURE ?Y) (IS THUMB ?X) (PART ?X ?Y)) (AND (IS THUM... [*:PART280 5 19]

The view is now that of a very abbreviated Natural Deduction-like presentation of
the proof. Each line is numbered and represents a conclusion. Only a small window
of lines (12 through 20) is displayed by default. Various editing operations could
be performed such as hiding lines, in-lining certain conclusions, inserting comments,
etc... but the default presentation is usually satisfactory. This presentation maybe
requested with a “DUMP” command. I produced the hand-out by asking for a IATRX
dump to file “proof.tex.” With the aid of the FLOAT command, I also slightly
improved the legibility of the proof summary by moving a couple of lines closer to

the point where they are used.

(34] w> / FLOAT 127 6 / UPDATE transcript
[}

(35] w> DUMP -DOCUMENT -TEX “proof.tex”

The resulting code was included in this document and produces the following format-
ted proof. First comes a reference list of all abbreviations mentioned in the proof.
Second is an alphabetically ordered list of all axioms used in the proof. Finally we
have the proof proper. Each line is numbered as is traditional for Natural Deduction
proofs. Assumptions are not lines in the proof and therefore are not numbered; like

axioms they are referred to by name. Each line’s indentation reflects the level of
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assumptions it depends on. Whenever new assumptions must be introduced a line of

the form:
Assume H, =a; ay...ar + H,

defines a new assumption set named H, which supplements the assumptions made by
H;, with the additional a; through ax. Each a; is then defined by producing its name
followed by its formula. When the same assumption set must be mentioned again at
a subsequent point in the proof, the word “Assume” is replaced with “Assuming,”

and the definitions of the a;’s are omitted.

The justification for each line is not always expressed in terms of the specific infer-
ence rule responsible for the corresponding conclusion; instead, it often says “from
(these premises) conclude,” where (these premises) are names of axioms or assump-
tions or line numbers denoting the corresponding conclusions. The reason for this
deliberate vagueness is twofold: firstly, omitting such details makes the proof eas-
ier to read; specifying too much would detract from the frequent obviousness of the
inference steps, and there is already typically so much to read that brevity must
be a major concern. Secondly, not all conclusions are displayed as lines. Many in-
ferences are too obvious to warrant a numbered line in the proof; instead they are
often in-lined in (these premises), i.e. where they would otherwise be mentioned by
line number, the names or line numbers of their respective justifying premises are
inserted instead. This may sound somewhat confusing but it really tends to produce

justifications which are intuitively easy to understand.

ABBREVIATIONS
! .ONE-THUMB = (SK ONE-THUMB 7)
1.Cc = (SK C 6)
! .OTHER-HAND [2] (7ONE-HARD 7C)
= (SK OTHER-HAND 2 ?0NE-HAND ?7C) -~- THUMBS

! .OTHER-THUMB [3] (7ONE-HAND ?C)
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= (SK OTHER-THUMB 3 ?0NE-HAND 7C) -- THUMBS
t .ONE-HAND[8](7C ?T)
= (SK ONE-HAND 5 ?C ?7T) -~ CREATURE-THUMB
! .ONE-HARD[B](!.C ! ,ONE-THUMB)
= (SK ONE-HAND 5 !.C !.ONE-THUMB) ~-- CREATURE-THUMB
! .OTHER-THUMB[3] (! .ONE~HAND !.C)
= (SK OTHER-THUMB 3 !.ONE-HAND !.C) -- THUMBS
! .OTHER-HAND [2] (! .ONE-HAND !.C)
= (SK OTHER-HAND 2 !.ONE-HAND !.C) -~ THUMBS
! .HAND-OF-THUMB[4] (?T)
= (SK HAND-OF-THUMB 4 7T) -~ ONE-HAND-PER-THUMB
! .HAND-OF-THUMB[4] (! .ONE~-THUMB)
= (SK HAND-OF-THUMB 4 !.ONE~THUMB) ~~ ONE-HAND-PER-THUMB

! .OTHER-THUMB[3] (! .ONE-HARD[6](?Y ?X) ?Y)
= (SK OTHER-THUMB 3 !.ONE-HAND(?X ?Y) ?Y) -- THUMBS

AXIOMS

CREATURE~THUMB .
(IF (AND (IS CREATURE ?C) (IS THUMB ?T) (PART 7T ?7C))
(AND (IS HAND !.ONE-HAND[51(?C ?T))
(PART 7T !.ONE-HAND[5](?C 7T))
(PART !.ONE-HAND[S5](?C ?T) 2C)))

LEFT-OR-RIGHT
(IF (IS HAND ?H)
(AND (OR (LEFT ?H) (RIGHT ?H)) (NOT (AND (LEFT ?H) (RIGHT ?H)))))

ONE-HAND-PER~THUMB
(IF (IS THUMB 7T)
(AND (IS HAND !.HAND-OF~-THUMB[4](?T))
(PART 7T !.HAND-OF-THUMB[4](?T))
(IF (AND (IS HAND ?H) (PART ?T ?H))
(= !.HAND-OF-THUMB[4] (?T) 7H))))

THUMBS (IF (AND (IS CREATURE 7C)
(IS HAND ?0NE~HAND)
(IS THUMB 70NE-THUMB)
(PART ?0NE-THUMB ?0ONE-~HAND)
(PART ?0NE-HAND 7C))
(AND (IS HAND !.OTHER-HAND[2] (?ONE-HAND 7C))
(IS THUMB !.OTHER-THUMB([3](?0ONE-HAND 7C))
(PART !.OTHER-THUMB[3] (7QNE-HAND 2C)
! .OTHER-HAND [2] (70NE-HAND ?7C))
(PART !.OTHER-HAND[2] (?ONE-HAND 7C) ?C) ,
(IF (LEFT ?ONE-HAND) (RIGHT !.OTHER-HAND[2] (?ONE-EAND 7C)))
(IF (RIGHT ?ONE-HAND) (LEFT !.OTHER-HAND[2] (?ONE-HAND 2C1 )
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TRANSITIVITY
(IF (AND (PART ?X ?Y) (PART ?Y ?Z)) (PART ?X ?2Z))
PROOF
Assume H1 = 1:PART280
1:15278
(IS CREATURE !.C)
1:1S279 ,
(IS THUMB !.ONE-THUMB)
! : PART280
(PART !.ONE-THUMB !.C)
1 From CREATURE-THUMB !:PART280 Obviously:

(PART !.ONE-THUMB !.ONE-HAND[81(!.C !.ONE-THUMB))

2 From CREATURE-THUMB !:PART280 Obviously:
(PART !.ONE-HAND !.C)
3 From THUMBS 1 2 Obviously:
(PART !.QTHER-THUMB[3](!.ONE-HAND ! .C) !.OTHER-HAND[2]('.ONE-HAND !.C))
4 From THUMBS 1 2 Obviously:
(PART !.OTHER-HAND {.C)
5 From TRANSITIVITY and 3 4 Conclude:
(PART !.OTHER-THUMB !.C)-
Assume H2 = 1:=3056 + H1
1:=305 (= ! .ONE-THUMB ! .QTHER-THUMB)
6 By equality substitution of !:=305 in 3 Conclude:
(PART !.ONE-THUMB !.OTHER-HAND)
7 From ONE-HAND-PER-THUMB and 6 Conclude:
= { HAND-OQF-THUMB[4](!.ONE-THUMB) !. OTHER-HAND)
8 From ONE-HAND-PER-THUMB and 1 Conclude:
H1 = 1:PART280 |
(= ' .HAND-OF-THUMB !. ONE-HAND)
Assuming H2 = 1:=305 4 Hi
9 By equality substitution of 7 in 8 Conclude:
(= '.ONE-EAND -!. OTHER-HAND)
10 From LEFT-OR-RIGHT Obviously:

Hi = !:PART280 I

37



38 CHAPTER 1.

(OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND))
Assuming H2 = !:=305 + H1

11

Discharging Obviously:
(IF (LEFT ?7X) (LEFT ?X))

Assume H4 = !:RIGHT331 !:NOT332 + H2
1 :RIGHT331
(RIGHT !.ONE-HAND)
1:NOT332

(NOT (LEFT !.ONE-HAND))

12

(LEFT !.OTHER-HAND)

13

By equality substitution of 9 in 12 Conclude:
(LEFT !.ONE~HAND)

14

H2 = !:=306 H1

From THUMBS 1 2 and !:RIGHT331 Conclude:

INTRODUCTION

From 13 Discharging !:RIGHT331 !:N0T332 Conclude:

(IF (AND (RIGHT !.ONE-HAND) (NOT (LEFT ?X))) (LEFT ! .ONE-HAND))

15 By case analysis 10 11 14 Conclude:

(LEFT !.ONE-HAND)

16

From THUMBS 1 2 and 15 Conclude:
(RIGHET !.OTHER-HAND)

17

By equality substitution of 9 in 16 Conclude:
(RIGHT !.ONE-HAKD)

18

From LEFT-OR-RIGHT and 17 Conclude:
(NOT (LEFT !.ONE-HAND))

19

By contradiction 15 18 Conclude:
H1 = !:PART280 +
(NOT (= !.ONE-THUMB ! .OTHER-THUMB) )

20

From 5 19 Discharging !:PART280 Conclude:
HO +

(IF (AND (IS CREATURE ?Y) (IS THUMB ?X) (PART ?X ?Y))

(AND (IS THUMB ! .OTHER-THUMB (3] (! .ONE-HAND[5] (7Y ?X) ?Y))$

(PART !.OTHER-THUMB([3](!.ONE-HAND[5](?Y ?X) ?Y) ?v)
(NOT (= !.ONE-THUMB !.OTHER-THUMB))))

®Proofs of uninteresting facts are suppressed from the summary. A formula predicating the type
of an object is considered uninteresting. For more information, see Chapter 9.
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1.4 Organization of the Thesis

Chapter 2 provides a synthetic overview of the system, covering all major aspects,
features, and mechanisms, but mostly in a superficial manner. These subjects will
be fully developed in subsequent chapters. Chapter 3 is a formal exposition of the
logic. Chapter 4 describes the graph editor and general principles of the command
shell. Chapter 5 is a fairly detailed presentation of the framework’s implementation,
in terms of data-structures and the bookkeeping operations managing the graph.
Chapter 6 discusses plan generators and plan generation. Chapter 7 explains the
“detaching” mechanism and provides high-level descriptions of the algorithms in a
functional programming style with pattern matching. Chapter 8 describes the mech-
anism for automatic generalization of conclusions, and investigates its relation to
Explanation-Based Generalization. Chapter 9 presents the proof editor as well as its
formatting conventions and default heuristics, and explains how to prepare a proof
for publication, in particular for inclusion in a TEX or IATEX document. In practice,
little editing is necessary as the default heuristics give surprisingly good results. Chap-
ter 10 presents an axiomatization of Kuipers-style qualitative physics which served
as the major source of realistic problems for the testing and evaluation of LOGICALC.
Finally, Chapter 11 Concludes this dissertation with a recapitulation of the system
and its constributions, a discussion of related work, an implementation of tactics and
tacticals in our framework; and some suggestions for further research. Appendix A

- briefly discusses the language for writing axiomatizations, while Appendix B describes
Find Mode.






Chapter 2

Overview

LOGICALC follows the LCF paradigm [Mil79a,Pau87]: goals are analysed top-down,
by refining them into plans and subgoals, until all leaves have been identified with
axioms or assumptions. Proofs are synthesized bottom-up by executing the plans’

validations.

The process of analysis is carried out interactively through a graph editor. The user
navigates and extends a graph of goals, plans, and proofs, until a satisfactory answer

has been synthesized for the top-goal (i.e. the theorem to be proven).

In this chapter, I will first discuss skolemization and axiomatic definitions. Secondly,
I will infroduce the conceptual entities of the framework, such as goals and plans.
Thirdly, I will outline the principles of operation and give the reader a sense of how
the various mechanisms, described in the remainder of this thesis, fit together. Finally,
[ will conclude with further details on skolemization and unification, as well as with
a brief presentation of the ATMS database, and the mechanisms for indexation and

retrieval.

Implementation Language and Tools. LOGICALC is written in NISP [McD83,

4]
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McD88] and benefits from tools provided by the DUCK system [McD85]. NISP essen-
tially supplements LISP with type-checking, a powerful and extensible type-system
with polymorphism,! a comprehensive library, and is portable between Common Lisp
and Scheme (T). The DUCK system is writen in NISP and provides tools for manip-
ulating formulae and managing databases of predicate calculus assertions with an

ATMS; LOGICALC takes advantage of these tools and often extends them.

2.1 Introduction

DUCK provides a set of tools to manage and interact with multiple predicate calculus
databases driven and arbitrated by an active reason maintenance system. In this
section, I briefly recapitulate these notions and mechanisms inherited from DUCK
which are relevant to LOGICALC; further details can be found in Appendix A and

[McD85]. My secondary purpose is to anticipate and motivate subsequent sections.

Stating An Axiom. New axioms are introduced by means of the AXIOM special

form whose syntax is (AXIOM name formula).

Formulae are written in a LISPish notation. For instance, py Vp, V... Vp, and p D ¢

are respectively written (or p; p; ... p,) and (if P Q).

Quantified propositions are expressed naturally in a similar fashion; e.g. Vzy P is

written (forall (z y) P)——similarly for 3 (exists).

When a new axiom is introduced, DUCK verifies that its formula is well-formed and
well-typed, then stores it in the database in a form appropriate for efficient subsequent

retrieval. I will now elaborate on the details of this procedure.

'Parametric, ad-hoc, and inclusion polymorphism are all present in one form or another, although,
not necessarily in their full generality.
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Syntax and Type Checking. When DUCK is handed a formula, it makes sure
that it is well-formed and well-typed.? For example, the AXIOM special form enforces
this condition on its formula argument. The procedure implementing this capability
is driven by type declarations. There are two categories of type declarations: (1)

declarations of constants, and (2) declarations of (bound) variables.

The types of constant functions and predicates are declared globally with duclare,
deffun, and defpred [Appendix A]. Thus if has type (prd [prop propl), i.e.
it is a predicate of two propositional arguments. Therefore, DUCK will enforce the
restriction that an implication can only appear where a proposition is expected, and

that it must have exactly two arguments, both propositions.

A variable—introduced by a quantifier—may also be associated with a type declara-

tions, e.g:
(forall (n - integer) (=n (+ n 0)))

In the quantifier’s binding list, variables are interleaved with types. In order to
distinguish variables from types, types are preceded by a dash—all variables between
this type and the previous one (or the beginning of the binding list) are declared to

be of this type. In the formula above, n is declared to be an integer.

Type Definitions. DUCK knows about a number of predefined types. However, it
is often convenient, when axiomatizing a domain, to introduce new types. The form
(defducktype new old) defines new to be a subtype of old. Most commonly, this
is used with old = obj, where obj is at the top of the type lattice (everything is an
obj), e.g: ‘

2Since we are manipulating actual LISP expressions, low-level issues of syntax have already been
taken care of by the LISP reader, and, at this point, well-typing subsumes well-formedness.
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(defducktype quantity obj)

defines quantity to be a new type with no interesting properties.

Querying The Database. The point of having a database is so that we can ask
questions and get answers. Traditionally, facts are stored in the database, e.g. (p a),
and a query often contains free variables, e.g. (p ?x), which stands for the question
“does p hold for certain values of ?x, and, if yes, which ones?”; answers take the form

of substitutions, e.g. {?x « a}.

DUCK also supports backward-chaining rules of the form (<- p (and q1 ... q,))
much like PROLOG’s p:=¢q;, ... ,¢.. LOGICALC takes advantage of this facility to

implement built-in theories.

In order to allow querying the database in this manner, it is necessary to skolemize
queries and formulae in the database, and to use unification during the retrieval

process. Thus, (p ?x) is the skolemized form of the query (exists (x) (p x)).

When a new axiom is introduced with the AXTOM special form, after it has been syntax-

checked, it is automatically skolemized prior to being recorded in the database.

Goals in a Theorem-Prover. In a theorem-proving system, queries become goals
“and the technique for deriving answers using backward-chaining rules is generalized

into the construction of a proof tree by means of inference rules.

Here too, skolemization and unification can be enlisted to considerable advantage; (1)
to search the database for relevant axioms (i.e. containing occurrences of the goal);

(2) to'manipulate goals, and effect refinements.
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Sequents. The traditional technique for proving a proposition of the form PDOqis
to assume p and prove ¢. In order to formalize this technique, it is convenient to use
a notation that makes explicit the set of assumptions under which we are currently

operating.

For example, to indicate that r follows from the set of assumptions {ay,..., an}, we
write:

Qy...,qp =T

and we call such an object a sequent. From A,p = ¢—where A,p = AU {p}—the
DEDUCTION THEOREM [And86, p59] permits us to conclude A = p D q.

In LOGICALC, not only are sequents used in the representations of conclusions, but
in the representations of goals as well. In the context of a goal, the sequent A = p
means that we are trying to derive a proof of an instance of p (which may have free

variables) from the set of assumptions A.

Assumption Sets and Datapools. DUCK provides a particularly suitable concept
to capture the notion of a set of assumptions: datapools [McD79]. The database is
managed by an Assumption-Based Truth Maintenance System (ATMS)? whose task
is to maintain a view of the database according to the current datapool: all formulae
which are assumptions of the current datapool are labelled IN, which means that they
are visible and known to be true in this context. All formulae derived from premises
which are IN are similarly labelled IN as well; and so on by transitive closure. All
other formulae are labelled OUT and are not visible (either they are false, or merely
not known to be true). Thus, by changing the current datapool (such as when we

move from one goal to another) we get a different view of the database.

The more primitive notion is that of a bead. We can mark a formula with one or

more beads. When a bead is selected, all those formulae which have been marked

3See e.g. [Doy79,McA78,McA80,dK84,dK87,dK88,McD79,McD85,McD89].
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with it are labelled IN. A datapool is a set of beads; selecting the current datapool
simultaneously selects every one of its beads. Datapools are more convenient because
they make it easy to capture the notion of hierarchical sets of assumptions: let DP
be a datapool whose set of beads is {b,...,5,}, and let b,,; be another bead; then
DP’ defined by {by,...,bn,bn+1} inherits all the formulae in DP plus those specified

by bnt1.

In a system of Natural Deduction where proofs are constructed by incremental refine-
ments, hierarchical sets of assumptions arise naturally. Therefore datapools turn out

to be particularly well-suited to our purpose.

2.2 Skolemization

Skolemization and unification are fundamental operations in LOGICALC. Much of
the benefits afforded by the system are derived directly or indirectly from their use.
In this section, I provide a brief, non-technical, introduction to skolemization, and

discuss some extensions to the classical unification algorithm.

2.2.1 Introduction

In a practical sense, skolemization can be regarded as an operation which transforms
a formula by removing the quantifiers occurring within and replacing quantified vari-
ables with free variables or skolem terms in a manner that preserves the meaning of
the original formula; e.g. the assertion that (forall (x) (p x)) becomes (p ?x)‘,

where ?x represents the free variable x.

In what sense is the meaning preserved? From the original assertion and for any term

t we were licensed to infer (p t) since the assertion stated that p held for all x’s.
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Similarly, for any assertion which contains free variables, we are allowed to infer an

instance of it by plugging in other terms for these variables.

For existentially quantified variables the transformation is somewhat more involved.
First, consider the statement (exists (x) (q x)). The interpretation is that there
exists some object which satisfies q. The object itself is unspecified, but it is typically
convenient to name it arbitrarily; e.g. we would say: “let a be such an x,” where a
1s a new name we just made up—the name has to be new so that it doesn’t conflict
with another object named a. Skolemization will also make up a new name, usually

notated !.x, and produces the formula (q ! x)

t.x is called a skolem term, and is represented internally by a LISP expression of the
form (sk x n), where n is an integer which is different for every new skolem term.
You can think of (sk x n) as a composite name for the new constant x,. Since n
is increased for every new skolem term, these names can never conflict with existing

constants.

When a formula has both universally and existentially quantified variables, skolem-

ization becomes slightly more complex. Consider for example the assertion:
(forall (x) (exists (y) (< x y)))

Removing the first quantifier, we obtain (exists (y) (< ?x y)). However, we can-
not simply remove the second quantifier and replace y with the new constant ! .y
because the assertion (< ?x !.y) would imply that any ?x is less than this f.y.
Clearly, this is not what was originally intended. Instead, we should construe y—
that is, the y whose existence is asserted by (exists (y) (< ?x y))—as a function
of ?x: given an 7x, it is possible to find a y whose value depends on the particular

value of 7x and such that (< ?x y) is true for those values.

Thus, from the above assertion, skolemization produces the formula (< ?x ! y(?x)),

where !.y(?x) is the printed representation for a skolem term whose function is y
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and whose argument is ?x. Internally, this term is represented by the expression (sk

y m ?7x).

2.2.2 Predicate Calculus Databases

Skolemization is a technique particularly well suited to the tasks of maintaining and
querying databases of propositional assertions. Every formula is skolemized prior to
being recorded in the database; e.g. (forall (x) (p x)) will be recorded as (p 7x).
Subsequently, we can inquire whether (p a) is true by attempting to match it against

each pattern in the database.

Tentative matching of this sort is carried out by a procedure called “unification”
[Rob65]. In the case of (p ?x) against (p a), not only will unifiation succeed, but
it will also return the information that the term a must be plugged into the free
variable ?x; the latter piece of information is usually notated {?x «~ a} and is called

a “substitution.”

Querying a database does not necessarily require successively attempting unification
with every element stored therein; such an approach would be prohibitively expensive
in practice. Instead, some sort of indexing scheme is usually maintained to facilitate
and speed up access to relevant assertions. A widely used technique is to file each
assertion under the heading of its main symbol. Thus, (p ?x) would be indexed
under p (see section 2.7.1 for a discussion of indexing). Answering the query (p a)

simply requires unifying with the patterns indexed under p-

Note that, if we did not skolemize, the technique presented above would place all
formulae of the form (forall (vars...) formula) under the heading forall which
would be useless. Furthermore, we would not be able to use unification to retrieve

information in as free and uniform a fashion. Consider the assertion:
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(forall (x) (exists (y) (if (p x) (q y))))

It is equivalent to (forall (x) (if (p x) (exists (y) (q y)))), yet such a fact
is difficult to recognize automatically simply because of the syntactical difference;
unification, being essentially a syntactical matching operation, utterly fails to identify

the two expressions.

Also, given the query (if (p a) (q ?z)), no useful answer can be derived even
though the above assertion guarantees the existence of a ?z which satisfies the query.
However, here again, the syntactical differences get in the way of successful unification.
Furthermore, even if unification were to be extended to correctly handle the syntax
problem, it remains that the unskolemized assertion does not give a namé to the
object whose existence it guarantees. Consequently, we cannot plug that name into
the free variable 7z to obtain the desired answer. In contrast, the skolemized version

of the assertion is:
(it (p ?x) (q !'.y(?x)))

and an answer can be constructed by unification, thereby producing the substitution
{7z« 1.y}

As we can see, the great advantages of skolemization are that it factors out syntactical
variations in quantification, allows better indexing techiques, makes it possible to
query a database using unification, and gives names to objects whose existence is

asserted.



50 CHAPTER 2. OVERVIEW

2.2.3 Skolemization of Axioms

I will now illustrate skolemization on an example taken from an earlier version of my

axiomatization of Qualitative Physics.4

(AXIOM NEXT-OF-AT
(FORALL ((BEFORE ??T1 FOREVER) - timepoint)
(IF (REACHABLE (AT Ti))
(EXISTS ((BEFORE T1 ?77T2) - timepoint)
(= (NEXT (AT T1)) (BETWEEN T1 T2))))))

In my formalization of Qualitative Physics, there is the notion of a situation. A
situation is either a point situation, and corresponds to a specific time-point, or it
is an interval situation, and corresponds to the interval between two time-points.
The two kinds of situations alternate. In particular, the axiom above expresses the
condition that a point situation must necessarily be followed by an interval situation.

The only way to stop is when the far end of an interval situation is at infinity.

This axiofn illustrates several features of the language. Firstly, it gives the flavor
of its LISPish syntax. Secondly, it shows that type declarations are allowed in the
binding lists of quantifiers—a binding list is the expression that immediately follows
a quantifier, and is usually a list of the variables which are being quantified over; a type
declaration is preceded by a dash and applies to the objects before it (e.g. (forall
(x - integer) (p x))). Thirdly, a binding list may also contain constraints, such
as (before ??t1 forever); the variables being quantified over are identified by the

?? prefix.

When this axiom is presented to the system, it will be skolemized into the following

expression prior to being stored in the database:

4The version presented in Chapter 10 is more recent, and no longer includes axiom next-of-at
which is used as an illustration here.
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(IF (AND (IS timepoint ?T1)
(BEFORE ?T1 FOREVER)
(REACHABLE (AT ?T1)))
(AND (IS timepoint !.T2(?T1))
(BEFORE ?T1 !.T2(?T1))
(= (NEXT (AT ?T1)) (BETWEEN 7T1 !.T2(?T1)))))

The universally quantified variable t1 was replaced with the free variable ?7t1, and
the existentially quantified variable t2 with a skolem term of the form e.g. (sk t2
17 7t1)° that prints as !.t2(7t1).

Type declarations resulted in the addition of type constraints to the formula. Each

type constraint is represented by an IS-expression.

Similarly, constraints occurring in binding-lists are added to the formula: for uni-
versal quantification, a constraint contributes an additional condition, whereas, for
existential quantification, it contributes an additional conclusion. This.is why the
first constraint was added to the implication’s antecedent, while the second one was

conjoined with the consequent.
Negation switches the roles of V and 3. So does implicit negation, such as in the
antecedent of an implication (because p D ¢ = —pV ¢q). Thus, the proposition:

(IF (FORALL (X) (P X)) (FORALL (Y) (P Y))) (1)

is skolemized as follows:

(IF (P t.X) (P ?7Y))

5The number 17 has no special significance; the number which is selected is the value of the
global counter sknum#, which is then incremented. Thus a different number is chosen for each new
skolem term.
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2.2.4 Skolemization of Goals

Queries to the database and goals in a theorem-prover are skolemized in a dual man-
ner, i.e. as if within a negation. Thus, as a goal, the proposition (T) is skolemized as

follows:
(IF (P ?X) (P '.Y))

It is clear that, if we want to show that “there-exists” some z such that the formula,
is satisfied, all we need to do is exhibit such an z; i.e. find a substitution for the free

variable z such that the resulting instance holds.

Conversely, if we want to show that “for all” ys the formula is valid, then all we need
to do is make up a new name and prove that the formula holds of it—the intuition
being that, if the proof obtains for this arbitrary constant, about which we made
absolutely no assumptions, then it would work just as well for any term substituted

throughout in its place. In other words, the conclusion would hold for all terms.

This technique captures the following mathematical practice: to prove that Va:r P(z),

let a stand for an object of type 7, and show that P(a).
Skolemization automatically provides such new.names in the form of skolem terms.

The logical intuition behind the duality of skolemization for axioms and goals can

also be captured by either of the following remarks:

* Proving that p follows from the set of assumptions A can be done by adjoining

—p to A and showing that the resulting set AU {-p} is inconsistent.

e The object is to show that the implication 4 D pis valid, where A is interpreted
as the conjunction of its elements. By virtue of being on opposite sides of an
implication, A and p have opposite polarities and must be skolemized with

reversed conventions.
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2.3 Fundamental Concepts

In this section, I provide brief introductions to those conceptual entities which form

the basis of LOGICALC’s framework.

2.3.1 Goals and Answers

A goal consists primarily of a formula p and a set of assumptions A. Conventionally,
this is represented by the notation A = p. The point is to find a substitution 8 of
the free variables of p such that 8p follows logically from A.

An answer to the goal A = p is such a 0, together with a proof tree demonstrating
how 0p can be inferred from A. A goal may have several answers if different instances
of p can be derived from A. Answers are normally arrived at either by unifying the
goal’s formula with an axiom or an assumption, or by propos'ing, then solving a plan.

Several alternative plans may be attached to the same goal.

2.3.2 Assumption Sets

At the top-level, the assumption set is the global database, which contains axioms for
various domain theories. In the course of developing a proof, it is possible to obtain
subgoals whose assumption sets contain additional hypotheses. Consider a goal of the
form A = p D ¢q. The natural technique for proving such a goal is to assume p and
try to prove ¢q. Plan generator DEDUCTION-THEOREM will do this for you: for the
goal A = p D g, it will propose a plan with the 1 step A;p = ¢, where A; p denotes
the set A U {p}. The plan’s validation will discharge the assumption when the step
has Been solved: from a proof of A;p = ¢, it concludes A = P D q by IF-INTRO.
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For a Natural Deduction style of proof, the ability to make assumptions and subse-

quently discharge them in this manner is essential.

Since the DEDUCTION-THEOREM can be applied to goals that already make assump-
tions, a natural hierarchy (partial order) exists among assumption sets. For example,
A is said to be the parent of A;p. The global database is the ancestor of all assumption

sets.

2.3.3 Plans and Validations

Plans are constructed as a result of invoking plan generators, which will be further
discussed later. A plan is attached to a supergoal, and consists of a set of steps
together with a validation. Each step is a subgoal. A validation is the description
of a procedure to derive a new logical conclusion from premises supplied as inputs.
When all steps have been proven, their proofs are fed to the validation which combines
them, using inference rules, into a new proof. This proof becomes an answer to the

supergoal.

Steps are really of two kinds: éolved and pending. Initially, all steps are pending.
When a step has acquired one or more answers, the user has the option to follow one
of them. Following an answer to a step means this: a copy is made of the plan in
which the step occurs. This copy is called a successor plan. It differs from the original
plan in that the step in question is removed from the pending list, and its answer is
inserted in the solved list instead. The pending list is instantiated using the answer’s

substitution 8.

Following an answer to the last pending step in a plan causes the validation to be

executed and an answer to be derived for the supergoal.
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2.3.4 Proofs

A proof is a sequent A = p indicating that p logically follows from A, together with
a proof tree recapitulating the various inferences required to effect its derivation.
Each node of this proof tree is itself a proof. The leaves of this tree are axioms and

assumptions.

Proofs are created by inference rules. An inference rule derives a conclusion from
premises; both consist of proofs. An inference rule may also require parameters to

further specify the details of the derivation.

A conclusion proof recapitulates its own genesis: it is an aggregate consisting of a
sequent representing the conclusion, the inference rule responsible for its derivation,
the premises it was derived from, and the parameters characterizing the details of

this inference.

Since a proof packages its own premises, it can also be regarded as a tree: a proof
tree. Thus a proof (node) has a dualistic interpretation: (1) it contains a sequent
representing a conclusion; (2) it is a proof tree recapitulating the derivation of this

conclusion.

As I mentioned earlier, when the user follows an answer to the last pending step of
a plan, the plan’s validation is executed. The validation combines the proofs of the
plan’s steps using inference rules. A proof is thereby constructed which solves the

plan’s supergoal. This mechanism is the primary source of new proofs.

Another way of obtaining new proofs is by forward inferencing through the mediation
of inference generators. They allow the user to augment the database with new
conclusions derived from existing assertions. Since the preferred mode of interaction
with LOGICALC is backward chaining using plan generators, inference generators will

not be further discussed in this thesis.
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LOGICALC incorporates a mechanism to automatically generalize proofs. In this con-
text, “to generalize” means precisely this: to replace certain terms with free vari-
ables while preserving validity. For example 4 = p(a) D p(a) is generalized into
A= p(z) D p().

2.3.5 Goal Classes

The picture painted so far is unfortunately inaccurate in that it blissfully ignores a
major contribution of LOGICALC’s graph structure: namely, goal classes. 1 will now

introduce this notion.

It is not uncommon for the same goal, or variants of the same goal (modulo renaming
free variables), to occur in different plans in various places of the growing graph
structure. For example, if we often mention a particular term d, which is of type
7, proving that a is of type 7 may well be a frequently recurring subgoal. It would
be nice if we could just prove it once in a way that would automatically benefit all
occurrences of this goal, rather than to be forced to go through the same tedious
motions for each occurrence. The major source of recurring subgoals, however, is the
mechanism creating successor plans [see above], because it must make new copies of

the plan’s remaining pending steps.

in LOGICALC, goals are grouped in equivalence classes. For example, the two goals
A = p(z) and A = p(y) are said to be (alphabetical) variants of one another: they
are identical modulo renaming free variables (e.g. renaming y to z). Both goals belong

to the same equivalence class.

An equivalence class is represented by an aggregate called a goal class (or class for
short). It serves as a centralized bookkeeping device for answers: whenever a goal—
member of a class C—acquires an answer, it registers this answer in C, thus sharing

it with its fellow members.
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Now that I have eased the‘reader into this notion of goal classes, I will remove the
final layer of deception. Goals do not in fact play the central réle in which I have cast
them so far; classes do. Contrary to what I claimed earlier, plans are not attached to
a supergoal but to a superclass. Correspondingly, when an answer is constructed by

executing a plan’s validation, it is recorded with the superclass, not with a supergoal.

So what is a goal? In a sense, it is nothing more than a funny-shaped window
through which we view its class. Each member of a class C gives us a different view
of C, but it is a different view of the same thing. A goal is simply the representation
of an occurrence of a particular class, with the variables renamed in some way. For
example, when a plan contains the step A = p(z), this step will indicate that it is an
occurrence of a class A = p(u) with the renaming {u — z}. If another plan contains
the step A = p(y), this step will similarly be represented as an occurrence of class

A = p(u) with the renaming {u — y}.

For practical purposes and convenience, goals are a little more complex than just a

pointer to a class plus a renaming. I will say more about this later.

Classes were designed to address the issue of recurring subgoals; but what of related
goals? Consider a class C;: A = p(a), and a class Cp: A = p(u). Clearly, an answer
to C; is also an answer to C, that instantiates u with the constant a. Therefore, it
would be desirable to have a mechanism to automatically communicate this answer
to C; when it is recorded in C;. Conversely, should C, acquire an answer that assigns
a to u, this answer would also work for Cy, and the latter should be told about it. For
precisely this purpose, each class has links to similar classes. When a class acquires
an answer, it broadcasts it along these links. The recipient classes must then each
determine whether the answer is admissible—in which case it is recorded—or not—in

which case it is ignored.

The measure of similarity used to establish these links is based on the notion of

generality. For example, if p’ is an instance of p (i.e. there exists a substitution 8 such
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that 6p = p'®), then A = p is more general than A = p'. Also, if B C A, A=>pis
more general than B => p. Each class has links to all those classes which are more or

less general than itself.

Thus, the underlying graph helps make the most of each answer by handling directly
certain practical issues of subsumption: (1) goals are grouped in equivalence classes
and share their answers; (2) related classes are connected by links, and communicate

their answers to one another by broadcasting them along these links.

In practice, the user can remain completely oblivious to the existence of classes, and

interact exclusively with goals and plans [actually, views of same].

2.4 Principles of Operation

In this section, I am going to introduce a number of underlying mechanisms and
explain how they all fit in the overall framework. I will do this by reviewing typical

interactive operations and outlining what is really ha.ppening behind the scenes.

2.4.1 Initiating a Session

The most important preliminary step is to axiomatize the domain of interest (e.g.
qualitative physics or some such). For example, in Chapter 10, I present an axiomati-
zation of Kuipers-style qualitative physics. Normally, the user will write these axioms
in various files and load these files into the LISP system prior to initiating the session

proper.

The session is started by invoking the logicalc procedure. In response to a prompt,

the user states the theorem to be proven. This formula is syntax/type-checked. Next,

6T am using 2 to express syntactic identity because I will usually write = to denote the equivalence
connective. ‘
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it is skolemized” and a goal class is constructed to represent the resulting pattern.
Then, the system installs the top-level goal which is a member (occurrence) of this

class.

The top-level goal is the only goal which is not a step in some plan. The object of
the session with LOGICALC is to interactively—and monotonically—grow a graph of
goals, classes, plans, proofs and answers, until a satisfactory answer to the top-goal

has been synthesized.

2.4.2 Solving a Goal

A goal is a member of a class. As I explained earlier, a class is essentially a centralized
bookkeeping device for answers. When a goal is created which is a member of a
preexisting class, it is possible that the class already possesses answers. In this case,
the new goal will also have these answers simply by virtue of being a member of the

class. Thus a goal may be solved by inheriting solutions derived earlier.

If a goal is created which cannot be assigned to a preexisting class, then a new class
must be constructed to house it. This new class is initialized by a two step process:
firstly, links are established to and from more/less general classes, and secondly, the

system attempts to derive obvious answers for the new class.
Obvious answers are acquired in the following ways:
® Related classes are examined and admissible answers are borrowed from them.
This step makes up for the fact that the new class was never broadcast to.

e A decision procedure is applied to determine whether the class is a tautology.

"Unless skolemization has been turned off by setting 1c~skolemize* to NIL.
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¢ The assumption set is consulted to find axioms or assumptions that unify with

the class’s conclusion.

¢ Built-in theories or decision procedures are invoked. In LOGICALC, these are

currently implemented by backward-chaining logic programs.

Thus a goal may simply be solved as a consequence of the initialization mechanism. If
a goal does not acquire a satisfactory answer either by inheritance or by initialization

(as the case may be), then one must resort to proposing, then solving, plans for it.

2.4.3 Creating Plans

When viewing a goal (or a class) through LOGICALC’s graph editor, the user may
create one or more (additional) plans for it by invoking a plan generator. This is done
by issuing a command of the form plangen args. .. where plangen names the desired
plan generator, and args... are arguments denoting the premises and parameters

required to perform and/or specify the expected refinement.

Suppose that we are now viewing (we say at) a goal of the form A = ¢(f(z)) and
that foo is an assertion in A of the form p;(u) A pa(u) D g(u) = f(f(u)), then the
command ‘equality £ - foo’ will result in the creation of a plan with the following

3 steps:

L pi(u), 2. pa(u), 3. q(g(u))

Furthermore, the plan’s conclusion imposes the following assignment: z « f(u).

[ am now going to explain how the system goes from the command issued earlier, to

the plan shown above. This is accomplished in 4 successive phases:
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1. Processing the arguments.
2. Constructing plan descriptions.
3. Expanding plan descriptions.

4. Creating plans according to these descriptions.

Processing the Arguments

The plan generator must first make sense of the arguments typed by the user. In the
case of the EQUALITY plan generator, the user must specify both the term(s) to be
substituted by equality, and the equality premise to use for this purpose. To make
parsing the arguments easier, the command line must be an instance of the following

template:

equality (term designators) - (equality designator)

In our example,

(term designators) = £
(equality designator) = foo
Note that in both cases, further processing is required to turn the user’s specifications

into a useful parameter or premise:

e From the symbol £, the system must determine that the user means to denote
the occurrence of the term f(z) in goal A = ¢(f(z)). In general, there is
a procedure that turns (term designators) into a set of pointers® to specific

occurrences of terms in the goal.

8A so-called pointer is actually a list of integers representing a selection path into the formula
and leading to the denoted occurrence, and is ordinarily simply called a path.
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e Irom the symbol foo, ‘the system must determine that the user is interested in
the equality formula g(u) = f(f(u)) occurring in assertion foo. ‘Also, since this
equality is a subformula of foo, in order to become available for use, it must be
inferred from foo. Therefore, the system must come up with a plan to derive
the desired equality from foo. It is the description of this plan which will be
used in place of the equality premise (its projected conclusion is the equality
premise).

The procedure, which here turns the (equality designator) into a plan descrip-
tion, is called detaching. It determines that g(u) = f(f(u)) can be inferred
from foo by MODUS-PONENS, but requires p;(u) A pa(u) as a minor premise.

The resulting plan description is:

(plan g(u) = f(f(u)) modus-ponens (foo (goal p,(u) A pa(u))))

The results of this phase—i.e. the set of specific term occurrences, and the plan
description for inferring the equality—are packaged in a standardized format and

handed over to the next phase.

Constructing Plan Descriptions

The second phase is given a description of the current goal, and the set of premises
and parameters assembled by the previous (parsing) phase. The object is to construct

a description of the plan corresponding to the requested refinement.

In the case of our example, there is one premise whose conclusion is g(u) = f(f(u)),
and one parameter which denotes the occurrence of term f (z) in goal A = ¢(f(z)).
The system must perform the equality substitution backwards on the current goal
to obtain a new subgoal—I say ‘backwards’ because the substitution here is g(u) «

f(f(u)), whereas, when the plan has been solved and its validation is executed to
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infer a conclusion from a proof of the subgoal, the substitution is performed in the

other direction, i.e. g(u) — f(f(u)).

f(f(u)) is unified with subterm f(z), thus establishing the assignment z « f(u), and

the following description is constructed for the subgoal:

(goal q(g(u)))

Note that the subgoal’s assumption set is implicitly the same as that of the current
goal. If additional assumptions had to be introduced, they could be specified as extra

arguments to the (goal ...) construct.

Now, the system must assemble the various parts into a plan description which cap-
tures the idea that the resulting proof is to be inferred by EQUALITY from a proof of

the premise and a proof of the subgoal:

(plan ¢(f(f(u))) equality
((plan g(u) = f(f(u)) modus-ponens
(foo (goal py(u) A pa(u))))
(goal g(g(u))))

(parameter denoting subterm g(u)))

Notice that the respective descriptions of both premise and subgoal were simply

plugged in.

Expanding Plan Descriptions

For the user’s convenience, the system does a little extra work on the plan description.
For example, goals which are conjunctions are expanded into subplans with one step

for each conjunct. Similarly, goals which are double-negations are expanded into
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subplans whose step has the double-negation stripped off. This behavi_or can be

disabled by the user.

During this phase, there is the potential to perform arbitrarily complex plan trans-
formations. However, LOGICALC does not at present attempt to handle anything but

conjunctions and double-negations.

The example description assembled earlier is thus transformed into:

(plan ¢(f(f(u))) equality
((plan g(u) = f(f(v)) modus-ponens
(foo (plan py(u) A po(u) and-intro
((goal py(u))
(goal pa(u))))))

(goal ¢(g(u))))
(parameter denoting subterm g(u)))

Creating a Plan According to a Description

Finally, from the plan description, a plan structure must be constructed, and the
resulting plan and goals aggregates must be appropriately inserted in the existing

graph.

In order to construct a plan, we must be able to determine (1) the steps, and (2) the
validation. Both can be established from the description. The steps are simply the
set of goal descriptions, and names of assertions used as premises. Inspection of our

example description yields the following set of steps:

0. foo, 1. (goal py(u)), 2. (goal py(u)), 3. (goal q(g(u)))
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foo is assigned step number 0: steps which correspond to assertions do not have to
be proven since they are elements of the assumption set. They are assigned numbers
starting from 0 downwards, which makes it easy to not display them when a plan

node is being examined by setting variable show-plan-negative-steps* to NIL.

Similarly, the plan description encodes- the inferential structure in a fairly straight-

forward way. The following validation is extracted:
(equality ((modus-ponens (0 (and-intro (1 2)))) 3) (param...))

The integers denote proofs of the corresponding steps.

For each goal description, a goal structure must be constructed; I went over this
procedure in section 2.4.2. As I explained then, goals so constructed may already
possess answers. A useful notion to introduce here is that of a yes answer. This is
an answer which does not assign any of the goal’s free variables; i.e. its substitution

is empty. A yes answer is as general as an answer can get.

If the newly created plan has steps which have yes answers, these steps do not have
to be further considered since they have been solved in the most general manner
possible. It is useful to make a distinction between those steps which still require

work from those that do not.

As discussed in section 2.3.3, a plan partitions its steps in two sets: those which are
solved, and those which are pending. Steps which correspond to assertions, as well

as steps which have yes answers are immediately assigned to the first set; all others

to the second one.

2.4.4 Initializing a Plan

When a new plan has been constructed, it must be initialized. Part of this process

was just described in the above, but other questions have to be answered too; such
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as: is the plan redundant? Do all of its steps already have satisfactory answers? If

yes, can these answers be combined, and a conclusion be drawn right away?

Checking for Redundancy

The idea here is to avoid inserting a new plan in the graph if it is not going to help.
A plan is considered redundant if its projected conclusion is an instance of an answer
already recorded in its superclass. For example, if the plan’s projected conclusion
is ¢(f(f(u))) and its superclass already has an answer that concludes q(f(2)), there
is no point in pursuing this plan since it would only derive an instance of a known

answer.?

Another possibility is that there exists another plan for the same class, or a related
class, and which subsumes the new plan in some sense which I won’t detail here. The
idea is that, if there is some other plan which will do the same job, or better, there is
no point in adding a new one. The issue, however, is a little more subtle than it looks
at first because, for practical reasons (such as meeting with the user’s expectations
about progress—concerning successor plans, for instance), it may be desirable to allow

some amount of redundancy.

If a plan is found to be redundant, it is discarded and a fate is constructed sum-
marizing this redundancy. Fates are what the user gets back after invoking a plan
generator. They state what happened, hence thé name “fates.” For instance, some
say “a plan was derived, but was found redundant because of this answer” or “a plan
was derived, but was found to be redundant because of this other plan” or, usually,

“a plan was derived, and here it is.”

®Now that the generalization technique has been added to LOGICALC, it is possible for the answer
effectively obtained to be more general than the projected conclusion. Thus, the decision to not
pursue a plan because its projected conclusion is an instance of a known answer may in fact rule
out a plan whose conclusion would have been generalizable into a more general solution than was
available before.
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Checking for Overall Solutions

The first case is when all steps have yes answers; i.e. there are no remaining pending
steps. In this case, a conclusion can be immediately derived by executing the plan’s
validation; and the plan is discarded. A fate is returned indicating that this conclusion

was derived.

The second case is when all steps have answers, but they do not all have yes answers.
The object here is to determine if it is possible to use these existing answers to derive
alternative conclusions for the plan. The difficulty is that, if we pick an answer for each
step, these answers may make incompatible assignments to free variables; for instance,
T «— a for one and z « b for another. The system determines which combinations of
answers are compatible, if any, and executes the validation for each one of them. This
process is called pushing a plan. Fates are constructed for the resulting conclusions.

There is also a fate for the plan itself, since it cannot be discarded.

Finally, if some steps do not have answers, a fate is returned that simply accounts for

the new plan.

In all cases, unless the plan is discarded, it is added to the set of plans for its class.

2.4.5 Informing the User of the Results

Initializing a plan results in one or more fates. Furthermore, there may have been more
than one plan to initialize: for example, the user might have specified two premises,
instead of just one (namely foo), in the earlier example of equality substitution; the
same procedure would have been followed for each one, presumably resulting in the
construction of two plans, each requiring initialization, and each yielding its own set
of fates. All these fates are collected and displayed to the user who must then chose

one to proceed with.
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In addition, for each fate that represents a plan, the user is asked whether he wants
to make the plan local. Here is what this means: a class not only serves to store
answers, but also plans. All members of a class have equal access to either. However,
it would be very confusing if the display of a goal listed all the plans recorded in its
class; it is better to list only those plans which the user has specifically designated as
being relevant to the goal. These plans have to be imported from the class;!? they

have to be made local to the goal.

When the user has selected a fate, the graph editor moves the current view to the
corresponding node, which is either an answer or a plan. If it is a plan and the plan

has only one pending step, then, the current view is moved directly to that subgoal.

2.4.6 Following an Answer

In this section, and the next, I discuss the question of how plans become solved.

When the current view is that of a plan with one or more pending steps, the user
should select one of them and proceed to solve it. When that step has acquired a
satisfactory answer, the user should follow this answer. Following an answer moves
the current view to the node representing the answer, and displays the fates associated

with it. I am now going to explain where these fates come from, and what they are.

The point of following an answer is to construct a successor plan for the plan in which
the answer’s goal'! is a step. The successor is a copy of the plan, with the following
difference: the step in question is removed from the list of pending steps and its
answer is inserted in the list of solved steps; furthermore, the remaining pending

steps are instantiated according to the answer’s substitution.

10The command ““plan can be used to import a plan from a class, while the command -plan
can be used to drop a local plan (it still remains available in the class, and can be imported again
later). :

"'The goal which the answer is an answer to.
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Since a step may have more than one answer, and the user is at liberty to follow any

number of them, a plan may have more than one successor.

The new successor plan must be initialized in the manner described in section 2.4.4,
thus resulting in the collection of a set of fates. These fates are then recorded with
the answer; following the same answer again will not cause them to be recomputed,

instead the system will use the cached values.

2.4.7 Concluding From a Plan

Following an answer to a plan’s last pending step causes the plan’s validation to be
executed and an answer to the plan’s class to be constructed. Here is how it works:
we have a set of answers—one for each step—and a validation which is an expression
describing how to infer the plan’s conclusion from these answers. A validation has

the form:
(inference-rule (prémises...) (parameters...))

where a premise is either a step number, and denotes the proof of the corresponding
step (available through the answer), or is a validation, and must be recursively inter-
preted. Interpreting such an expression yields a proof: first, each premise is evaluated
and yields a proof. Then, the inference-rule is called with two arguments: the list of

these proofs, and the parameters. It returns a proof.

Now, the system must decide whether this proof provides an answer which is worth
recording in the class. If the new conclusion is an instance of an existing answer,
then it is redundant and is discarded; a fate is returned that mentions the subsuming

answer.
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Otherwise, the proof is packaged as an answer and recorded in the class. Further-
more, it is broadcast to all related classes through the system of links introduced in

section 2.3.5.

2.4.8 Creating a New Proof

New proofs can only be created by inference rules. More precisely, an inference rule
is a function which takes premises and parameters as input and returns a description

of a conclusion as output. This description is then generalized by the system.

The point of this generalization is to replace as many terms as possible with new free
variables while preserving validity. For example, the tautology p(f (a),b) D p(f(a),bd)
will be generalized into p(z,y) O p(z,y) (the greater gains come from generalizing
over discharged assumptions). The technique used for this purpose is an extension
of Explanation-Based Generalization: a variabilized skeleton of the conclusion (ie. a
~ formula which has the same propositional shape, but in which all terms have been

replaced by new free variables) is regressed through the recorded inference tree.

The system then checks if there exists a proof whose conclusion is an (alphabetic)
variant of this new conclusion. If such is the case, the old proof is returned—this
technique is known as uniquifying proofs—otherwise a new proof is constructed to

package the conclusion together with the inference tree of its derivation.

If a new proof is constructed, it is also inserted in the database. More precisely, if the
proof corresponds to the sequent A = p, then the formula p is given a new arbitrary
name and is added to the datapool of assumption set A. Thus new conclusions become

assertions and can be used as premises in subsequent refinements.
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2.5 Exceptions to Skolemization

The decision to apply skolemization to assertions and goals is only the default policy.
This policy may be explicitly revoked and reinstated at any time to affect subse-
quent behavior—past decisions are not reconsidered. Plan generators are available

for quantification and skolemization.

I will now discuss a situation where skolemization is unable to remove certain quan-

tifiers from a formula. The situation arises with the use of A-expressions.

| 2.5.1 Lambda Expressions

The language includes the notion of A-expressions. A A-expression is a term of the

form:
(LAMBDA (z; ... Tn) tlzy...z.])

and denotes either an anonymous function if ¢ is a term, or an anonymous predicate if
t is a proposition. Therla,ngua,ge reserves the operator % to represent application of a -
A-expression to arguments. The operator ¥ takes an indefinite number of arguments
(> 1). The first argument is supposed to denote a function (or a predicate), and the

following arguments are the parameters the function is to be applied to. For example:
(% (LAMBDA (z; ... z,) t[z;... Ta]) ay ... ay)

If the 1st argument is n-ary and there are exactly n parameters, then it is possible
to use the rule of A-reduction and replace the % term with the term (or proposition)
that results from applying the function (or predicate) to the parameters. For instance,

B-reducing the above example yields t[a; ... Q).
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The unifier does not attempt higher-order unification [Hue72, Hue75, Pie73]; rather,
it limits itself to the straightforward extension to the classical unification algorithm

[see section 2.6]. This is a restriction in the implementation, but not one of principle.

The introduction of A-expressions in the language was motivated by practical con-
" siderations. For example, for reasoning by induction it is often convenient to have a
second-order axiom expressing Mathematical Induction which we can instantiate at

will to derive specific first-order induction formulae.

This dissertation does not address the issues raised by the formal treatment of A-

expressions. In particular, all the classical problems remain. See Chapter 3.

2.5.2 Skolemizaﬁon of Lambda Expressions

Since an anonymous predicate can be expressed as a A-expression, the body of said
expression may contain quantified formulae. Skolemization, however, is unable to
remove the corresponding quantifiers: to remove a quantifier, one must determine
whether it has universal or existential force in order to decide whether the quantified
variables should be replaced by free variables or skolem terms. This determination
cannot be made for the body of a A-expression because it cannot be ascribed a polarity.

Consider the formula:
(Q (LAMBDA (X) (EXISTS (Y) (< X Y))))

The A-expression appears as an argument to the (second-order) predicate Q. It is not
possible to decide on a polarity for the body of this expression. If you feel tempted
to say ‘positive’, then consider that Q might be equivalent to Ap Ay —p(y).

A A-expression that appears as an argument to a (higher-order) predicate cannot be

skolemized. Skolemization must be postponed until after [B-reduction.
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I shall now illustrate this discussion with an example of mathematical induction. In

standard notation, the second-order axiom expressing mathematical induction is:
(VP : N prop) [P(0) A (Yn € N) P(n) D P(n +1)] D (Vm € N) P(m)
In LOGICALC, it is written thus:

(FORALL (P - (PRD [integer]))
(IF (AND (% P 0)
(FORALL (N - integer)
(IF U PN (AP (+N 1)
(FORALL (M - integer) (% P M))))

Note that P(m) has positive polarity, while P(0) and P(n + 1) have negative polarity
because they appear in the antecedent of the implication. P(n) is nested in the
antecedent of two implications: the effect of the two implicit negations cancel each
other, and P(n) has positive polarity. Clearly, the A-expression to be substituted in

for P cannot be skolemized in advance.
After skolemization, the formula expressing Mathematical Induction becomes:

(IF (AND (IS (PRD [integer]) ?7P)
(% 7P 0)
(IF (AND (IS integer !.N(?P))
(% 7P L.N(?P)))
(A 7P (+ 1.NCZP) 1))
(IF (IS integer ?M) (% 7P 7M)))

Suppose now that we wish to produce an instance of this formula by plugging the

following /\-expression.for the free varia.ble.?P:
(LAMBDA (X - integer) (EXISTS ((< ?X ?7Y) - integer)))

After carrying out the substitution, p-reducing the redexes, and skolemizing, we

obtain:
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(IF (AND (IS (PRD [integer])
(LAMBDA (X)
(AND (IS integer X)
(EXISTS (Y) (AND (IS integer Y) (< X Y))))))
(AND (IS integer 0) (AND (IS integer ?Y.1) (< 0 ?Y.1)))
(IF (AND (IS integer !.N)
(AND (IS integer !.N)
(AND (IS integer !'.Y[1]) (< '.N !'.Y[11))))
(AND (IS integer (+ !'.N 1))
(AND (IS integer ?Y.2) (< (+ '.N 1) ?Y.2)))))
(IF (IS integer 7M) '
(AND (IS integer ?M)
(AND (IS integer !'.Y[21(?M)) (< ?M !.Y[2](?M))))))

2.6 Extensions to Unification

The motivation for skolemizing formulae by default was to allow unification as a
fundamental operation. Unification is a very powerful, and, I claim, natural operation
[but see below]. It frees the user from having to decide on, and apply, substitutions,

and facilitates search through the database.

Some would argue that the details of unification are often too complex to be carried
out by people, and therefore would object to unification being called a “natural”
operation; after all, where is the naturalness in it if people can’t do it? This objection,
however, misses the point: it is not the “carrying out” which is predicated to be
natural, but rather the principle of the operation. People can easily identify “similar”
patterns; based on this presumption of similarity, they may.then request that the
machine carry out unification; the result, assuming the operation succeeds, makes
sense to people in exactly the right ways: (1) it confirms their expectations that
those things indeed match, (2) it fills in the blanks, and (3) they don’t have to figure
out the details.
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There are two topics which I would like to dicuss briefly here: first, the extensions
to unification necessary to handle quantified formulae and A-expressions, and second,

the notion of segment variables.

2.6.1 Quantified Formulae and Lambda Expressions

We have seen that, eventhough the default policy is to skolemize all formulae, there
may be circumstances when it is either necessary or desirable to manipulate explic-
itly quantified formulae. It would be convenient if, when confronted with quantified
formulae, we did not suddenly lose all the advantages of unification. For example,
Vz p(z) and Vyp(y) should unify—in the sense that the operation should succeed,

eventhough the two expressions being unified do not become identical in the process.

Similarly for A-expressioﬁs: Az f(z) and Ay f(y) should unify. In fact unifying A-
expressions is no different from unifying quantified formulae; both are instances of

the more general idea of unifying expressions of the form:
(binder (variables. .. ) expression)

The algorithm I adopted is a straightforward extension of Robinson’s unification
procedure rather than a higher-order approach (Pie73, Hue72, Hue75], and can be
interpreted as the unification of the corresponding de Bruijn formulae [dB72], with
the restriction (to preserve soundness) that free variables can only be assigned well-

formed de Bruijn terms (i.e. closed).

2.6.2 Segment Variables

In PROLOG, it is possible to denote the tail of a list using the vertical bar notation.

For example, the term [XIL] denotes a list with X as its first element and L as its tail
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(or remainder). In LOGICALC, the corresponding idiom is [?X !?L]. The term !?L is
called a segment variable, which is a generalization of a tail variable: it stands for an
unspecified number of adjacent terms. A segment variable is not restricted to appear

at the end of a list. For example, here is how the member predicate might be defined:

(DEFPRED (MEMBER ?X - obj ?L - (LST obj))
(MEMBER ?X [!?L1 ?X !7L2]))

The above formula expresses the idea that ?X is an element of a list if said list is
of the form ?X, preceded by a certain number of elements (17L1), and followed by a

.certain number of elements (!?L2).

Of course, the astute reader will have noticed by now that a single unification may
produce more than one solution. Consider unifying [A B C D] with [!?L1 ?X 1?7L2];

4 solutions result from this attempt:

{?L1 « [ , 7X — A, 7L2 « [B C DI}
{?L1 « [A] ,?X B, 7L2 « [C D] }
{?L1 «~ [A B] ,7?X « C, ?L2 « [D] }
{?L1 « [A B C], ?X « D, 7L2 « [] }

From this remark it follows that, in LOGICALC, we can no longer retain the notion of
a most general unifier; rather, unification returns a list of unifiers (i.e. substitutions).
Unfortunately, it is also unreasonable to expect unification to return a complete set
of unifiers. Consider unifying [!?X A] and [A !?X]. The problem is to find a substi-

tution which makes identical the two sides of the following equation:
[17X A] = [A !7X] (®)

Clearly there are 2 cases:

e Either ?X = [J, in which case (®) simplifies to [A] = [A].
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e Or ?X must begin with A, i.e. be of the form [A !7Y]. By substitution, (&)
becomes [A !'?7Y A] = [A A !7?Y], which simplifies to [!?Y A] = [A !'?Y]. In
other words, ?Y is defined by the same equation (®) as ?X, using the name Y

instead of X.

From these remarks we may conclude that the set of unifiers in this example can be
recursively enumerated: {?X = [1}, {?X = [A]}, {?X = [A A]} ... Since this set is
infinite, it is probably not a good idea to try and compute it all; instead, LOGICALC

simply returns the first two elements (i.e. ?X = [] and 7Y = [] ).

2.7 Database Management

2.7.1 Indexation and Retrieval

Simply adding a new node to the ATMS is not sufficient; we also need means to query,
or, more generally, search the database. To support this capability efficiently, it is

necessary to cleverly index the contents of the database.

Indexing was mentioned earlier. I stated then that, in order to speed up access to the
database, the simplest technique is to file each formula under its principal symbol,
e.g. (p 2) under p. When presented with a query (p ...), the system doesn’t have

to search the whole database, but can lookup the relevant formulae indexed under p.

Indexing can be and usually is done somewhat more cleverly than the simple-minded
one-level technique suggested above. For example, PROLOG systems often use a two-
level indexing scheme: the first level of indexing is done using (predicate name/arity)
as a key, while the second level might be based on the nature of the first argument—

whether it is a constant, a list, a functional term, or a variable, say.
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In LOGICALG, indexing is done using a discrimination tree. The simple-minded tech-
nique presented earlier corresponds to a discrimination only 1 level deep; the PROLOG
technique to a discrimination 2 levels deep. In LOGICALC, we can discriminate to lev-
els as deep as required by considerations of specificity against space/time efficiency.
The current implementation allows multiple indexing, i.e. it is possible to index the
same piece of data in more than one way. It is self-reorganizing: if discrimination
according to a particular key turns out to not work very well at a certain point in the
tree, the system will automatically select another key that works better; thus, whereas
PROLOG may be stuck using a predicate’s 1st argument as a secondary key, LOGI-
CALC might pick another argument when it becomes obvious that the 1st one results
in poor discrimination. Also, our implementation is data-driven so that the objects

themselves (e.g. syntactic constructs) may dictate how they wish to be indexed.

Simply adding a new node to the graph managed by the reason maintenance system
isn’t enough. Convenient and efficient means of retrieval have to be provided as well.

To this end, several indexation schemes are maintained concurrently.

The principal means of access to the database is through DUCK’s multiply-indexed
discrimination tree. I will not go into the details here (but see e.g. [McD85]). The
general idea is that one can use FETCH to retrieve all solutions in the current datapool
that unify with the argument pattern. FETCH will also return the solutions that can

be derived by backward-chaining rules [Ibid.].

It is often useful in theorem proving to be able to search the database for assertions
containing occurrences of a specific formula that is of interest. In particular, I will
later introduce the idea of detaching formulae from assertions (this idea is related to
non-clausal resolution). For an efficient implementation of this idea it is crucial that

we be able to find out quickly all the assertions a particular formula occurs in.

The naive way to achieve this sort of cross-indexation (and indeed this was how the

first implementation worked) is to produce additional assertions of the form:
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(LOGICALC_INDEX formula assertion sign)

where formula is a subformula occuring in assertion (which is the name of a node)
with the corresponding sign. Thus, finding candidate assertions from which to
detach a given formula is simply a matter of calling FETCH with the appropriate
LOGICALC_INDEX pattern. Of course this wastes a lot of memory because each sub-
formula has to be copied into its own LOGICALC_INDEX assertion.

The current scheme is a simplification of the above. Instead of the first argument to
LOGICALC_INDEX being a formula, it is now the principal symbol in the formula (1.e.

connective or predicate). This scheme is a lot more economical in terms of memory.

The interface is implemented by function CONSULT-INDEX. It is given a pattern as
argument and returns a list of assertions that may possibly detach the given pattern
(i.e. contain a subformula that unifies with the pattern modulo its sign). Initial selec-
tion is done according to the pattern’s principal symbol. Then filtering is performed
based on the connectives and predicates naturally occurring in the pattern; those

candidates that do not also mention them are discarded (modulo some care).

The original scheme is more specific because the pattern must unify with the recorded
formula, however, not only does it waste storage, it also wastes time and memory
performing unification, the result of which will be discarded anyway since “detaching”
has to start again from scratch. The current scheme performs no other unification
than those implicit in the retrieval of LOGICALC_INDEX assertions (which are flat). Yet,
experience shows that the filtering does about just as well as unification would, at a
much lesser cost, and is much faster. Since “detaching” is subsequently applied, the

occasional remaining false positives are then identified when unification is attempted.

There is another indexing scheme which is concerned with skolem terms. Experience
showed that it is very useful to be able to determine what assertion a given skolem

term came from (presumably through unification). The reason this is useful is that
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if you want to prove something about a particular skolem term, the most likely place
to find that information is in the assertion where the skolem term was defined. For

this purpose, I maintain assertions of the form:
(INDEX->SKOLEM id assertion)

where id is this integer that uniquely identifies the skolem term (or rather the cor-
responding bound variable), and assertion is the name of the assertion in which it
is mentioned. It is by this method that the -SKOLEM option [Chapters 1 and 6] is
supported.

2.7.2 Local Assumptions and Datapools

In a system based on natural deduction, in order to prove a goalof theform A= p D ¢
one would ordinarily invoke the Deduction Theorem and attempt a proof of A;p = gq.
In the later sequent, we interpret p as a local assumption. If ¢ is itself an implication,

the process may be repeated resulting in an additional assumption.

In the course of a proof, hierarchical sets of assumptions will thus naturally arise.
Therefore a method is needed to efficiently represent multiple assumption sets orga-

nized hierarchically. This is precisely what datapools have to offer [McD79,McD85].

Beads and Datapools

Datapools allow multiple sets of assumptions, and the conclusions derived from them,
to coexist coherently and consistently in a global database managed by an ATMsS. To
interact with the database, a current view must be selected which specifies which of

these sets will be presently assumed; the ATMS then labels as TRUE (or rather IN
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according to traditional RMS parlance) all formulae which belong to these sets or are
known to be supported by (e.g. because they were derived from) formulae in these

sets.

The trick is accomplished with the aid of beads. To simplify in the extreme, a bead
can be thought of as a distinguished mark. A formula can be marked with a bead.
The bead can be selected or not. When the bead is selected, all formulae marked
with this bead are labelled as TRUE. In other words, a bead can also be thought of

as a set of assumptions: when the bead is selected, the corresponding set is assumed.

A datapool is essentially a set of beads. When the datapool is selected, all the beads
in its set are selected as well. Such an approach makes it very easy to implement
hierarchical sets of assumptions: a new datapool is created by making up a new bead
and adjoining it to the set of beads inherited from the parent datapool. The new bead
created on this occasion is called the datapool’s characteristic bead. All assumptions
specific to the new datapool will be marked with this characteristic bead and will be
labelled TRUE only when said bead is selected, i.e. when this datapool or one of its

descendent is selected.

The complete theory of beads and datapools is much more general since it allows

deletions as well as additions, and supports non-monotonic dependencies. It is fully
documented in [McD79].

Assumption Sets and Datapools

Goals and proofs are represented by sequent-like objects of the form A => p where A
is an assumption set uniquely associated with its own datapool. This approach was
very attractive because it permitted a natural and painless retrofitting of sequents

into a framework we were familar with, using tools readily available in DUCK.
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As [ mentioned earlier, during the course of a proof, a natural hierarchy of assumption
sets will arise, e.g. when the goal A = p D ¢ is refined into A;p = g. The datapool
for A;p has the datapool for A as its parent, i.e. it inherits all the assumptions (and

conclusions) in A. However, p is marked with the characteristic bead of A;p.

Assumptions and Free Variables

The scheme outlined above works like a charm when the assumption p is ground.
Unfortunately, it becomes unsound when p contains free variables. I will now show
how the problem manifests itself in practice, and I will then present two possible
techniques to preserve soundness. LOGICALC does not allow unsound refinements, and

automatically resorts to a policy that combines the two aforementioned techniques.

When a goal sequent is of the form A = p(z) D ¢ where z is a free variable, it is not
legal to “move” p(z) to the assumption set and attempt a proof of A;p(z) = g. The
reason is that moving p(z) to the assumption set really means to assert p(z) in a local
datapool and we lose the notion that the variable z was somehow connected to the
goal; this happens because “fetching” from the assumption set conceptually involves
making copies (in particﬁlar renaming free variables) of those assertions which are

extracted.!?

Let me illustrate this with a example. Suppose you wanted to prove the following

proposition:
(EXISTS (X) (IF (P X) (P 4)))

You would then attempt to prove the skolemized version (IF (P ?X) (P A)). If

you were allowed to simply move (P ?X) to the assumption set, you would now have

12 Another way to look at the problem is to realize that, in a goal, a free variable represents an
existentially quantified variable, whereas, in an assumption set, it represents a universally quantified
variable. 4
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a local assumption which can be unified with the remaining goal (P A), and you
would correctly conclude that you have a proof that (P A) follows from this set of
assumptions. However, after discharging the local assumption, you would erroneously
conclude that you derived a proof of (IF (P ?X) (P A)). Clearly this conclusion is
wrong since substituting ?X with B yields (IF (P B) (P A)), which is not a valid

formula.

Making a local assumption that contains free variables is therefore disallowed in LOG-
ICALC. When it is desirable to move to the assumption set a proposition that contains
free variables, 2 options are available: (1) either instantiate the variables in question
with ground terms, or (2) capture those variables by quantification using a preliminary
refinement step reintroduing a quantifier—e.g. replace (if (p ?x) (p a)) with (if
(forall (x) (p x)) (p a)). The user may either perform such operations manu-
ally, or let the system resort to its default policy which is to instantiate those variables
shared by the antecedent (p) and the consequent (¢) with arbitrary new constants (in
the form of skolem terms), and capture by quantification the remaining free variables
of the antecedent. When this preliminary procedure has been carried 6ut (either
manually by the user, or automatically by the system), the resulting antecedent no

longer contains free variables and can be safely moved to the assumption set.






Chapter 3

Logical System

In this chapter I describe LOGICALC’s axiomatic structure. First I recapitulate the
classical formulation of 7=. Then I discuss each inference rule, showing how it is either
a primitive or a derived inferenée rule in the classical formulation (thus establishing
soundness). I introduce the notion of “skolemizing axioms” to support skolemization
and quantification as inference rules, and show how my system captures the axiomatic
structure of the classical formulation (thus establishing completeness). Finally, I

discuss the treatment of A-expressions, and also unification and substitution.

3.1 Introduction

LOGICALC is typically used as a natural-deduction proof system, which makes the
idea of a sequent-based logic [Gen35] very attractive because the notation explicitly
captures the notion of a conclusion following from a set of assumptions. A sequent
1s written A => p, where A is a set of assumptions and p is a formula; the sequent is

“true” iff p logically follows from A.

85
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There is perhaps greater elegance in the syrﬁmetric formulation of sequents [Smu68§]
where both sides are taken to be sets of formulae: in U = V, U plays the role of a
conjunction and V of a disjunction. However, LOGICALC can also be used to derive
conclusions in a forward manner; and, whereas is easy to interpret p as the conclusion
in A = p, it is less clear what meaning should be ascribed to V in the symmetric

formulation U = V.

[ will generally write A, p = q to mean that ¢ can be derived from an assumption set
containing the formula p. I will occasionally write A; p = q to mean more specifically
that ¢ can be derived from an assumption set whose “local assumption” is p. The
notion of a local assumption arises from the following theorem-proving technique:
when attempting to prove p D g, assume p and try to prove q under this additional
assumption; i.e. given the goal of proving A = p D ¢, try to show A;p = ¢ instead.
This technique is justified by the Deduction Theorem.

The reader may wonder why I make this distinction between an assumption and
a “local” assumption. The reason is that, because of the way assumption sets are

implemented [see chapter 5], only “local” assumptions may be discharged.

An inference rule prescribes what conclusion may be derived from given premises.
For instance, Modus Ponens states that, from the premises A = p D g and A = p,
one may validly conclude A = ¢. Therefore, an inference rule may be viewed as
a procedure taking sequent premises as input and returning a conclusion sequent.
LOGICALC generalizes this notion and implements inference rules as functions taking
a list of premises and a list of parameters, and returning a list of conclusions [more
about this later]. Parameters serve to further specify the particular inference to be
performed. For instance, Equality Substitution requires a “path” to identify the

subterm to be replaced.

In the classical formulation of Modus Ponens, i.e. from p D g and pinfer ¢, the implicit

condition is that p in the major premise and p in the minor premise are syntactically
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identical. LOGICALC is more powerful because it relies on unification rather than
syntactic identification. Therefore, when I state that one may infer A = ¢ from
A= p D qand A = p, | really mean that the p in the major premise and the minor
premise are unifiable by 6, and that the ¢ in the conclusion is really 6g. Stating
this explicitly each time would make the exposition difficult to read. Furthermore, I
am going to start out by assuming that syntactic identification is used, so that the
relationships with the classical formulation will be simpler to establish. Later, in
section 3.10, I will argue that substituting unification for syntactic identification only

makes the system more powerful as a tool, but does not change the logic.

LOGICALC also relaxes the process of identification on the side of the assumption
set. In the example above, both major and minor premises were shown as having
the same assumption set A. The actual requirement is that the assumption sets of
the premises may be ordered by hierarchical inclusion. The assumption set selected
for the conclusion is the one that makes the most assumptions. For example, from
A= p D qand A;r = p, Modus Ponens will infer A;r = q. Once again, this will not
be explicitly stated in the following exposition because (1) doing so would obscure the
discussion, and (2) this trick is by no means necessary; just like unification, it simply
enhances the power of the system considerably from the user’s point of view. The
only exception to this rule is when a “local” assumption is explicitly mentioned, e.g.
A;p = ¢, in which case the assumption set for this particular premise is not allowed

to be stronger; it must have p as its local assumption.

3.2 Classical Formulation

I 'am going to start out by giving a brief account of a classical formulation of first-
order logic with equality. For this purpose I chose the F= system of [And86]. All the
notions and results mentioned in this section will subsequently prove useful when I

formally capture and justify LOGICALC’s logic.
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3.2.1 The Language of F=

First, we need to define the primitive symbols of F and specify the formation rules
for terms and well-formed formulae (henceforth wffs). The primitive symbols of F
are:

1. Improper symbols:! () [] -V V.

2. Individual variables: u v wz ¥y z uy v; wy ... uy ...

3. m-ary function variables: f* g™ h™ fI' g% A7 ... for each natural number n > 1.

4. Propositional variables: p ¢ r s p; q; 71 sy ...

9. n-ary predicate variables: P™ Q" R* S™ P! Q} R} St ... for each natural

number n > 1.

There are denumerably many variables of each type. There may also be finitely or
infinitely many individual, function, propositional, or predicate constants. Terms and
wffs are defined inductively as follows:

1. Each individual variable or constant is a term.

2. If t; ... t, are terms and f™ is a m-ary function variable or constant, then

fM(t1y...,t,) is a term.

3. If ¢t; ... ¢, are terms and P" is a n-ary predicate variable or constant, then
P™(ty,...,t,) is a wff.

4. If A is a wff, sois ~A.

!Brackets are only required to disambiguate the “textual” representation of certain formulae. If
we agree that the actual representation of a formula is not a linear text string but a tree (e.g. a LIsP

s-expression), then brackets are only useful to disambiguate the representation of these trees in our
textual metalanguage.
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5. If A and B are wffs, so is [A V B].

6. If B is a wff and z is an individual variable, then Yz B is a wff.

In LOGICALC, free variables are denoted by expressions of the form ?.X; also, if P™ is a
predicate variable, then P"(t,,...,t,) will be written (% ?P" ¢, ... tn) (similarly for
functional variables), while predicate constants will follow the normal LISP convention.

[ will ignore these distinctions for the time being.

It is customary to let [A A B] stand for =[~A V ~B], [A D B] for [~A V B], [A = B]
for [[A D B] A [B D A]], and 3z B for ~Vz -B. In LOGICALC, only ‘=’ is actually

implemented as an abbreviation.

3.2.2 Substitutions

If z; ... z, are individual variables and ¢, ... t, are terms, then Si!~7*A (resp.

wln
T1...Tn

&1 tnA) denotes the result of simultaneously substituting t; for all (resp. all free)

occurrences of z; in A for 1 <: < n.

I will often write § to denote a substitution, and A to represent the application of
this substitution to A. Also A[z] will stand for a wff with 0 or more free occurrences
of the individual variable z; subsequently, A[t] will represent the wff obtained by

substituting ¢ for the free occurrences of z in Alz].

It is occasionally useful to generalize the notation and write SAC to denote the
wff obtained from C by substituting free occurrences of A with B such that the
free variables of B are not captured. Also, sometimes we want to substitute some
occurrences (not necessarily all of them), in which case I shall write e.g. SAC; in
LOGICALC, the particular occurrences to be substituted will have to be specified by

parameters.
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3.2.3 Axiomatic Structure of F=

Modus Ponens: From A and A O B infer B.
Generalization: From A infer Vz A, where z is any individual variable.
Axiom of Reflexivity: z = ¢

Axiom Schemata:

1. AVADA

2. A DBV A, where. indicates an implicit left bracket whose matching
right bracket is placed as far to the right as is consistent with explicit

brackets; often, this means: to the end of the formula.
3. ADB>.CVAD>.BVC
4. Vr A D STA where t is a term free for the individual variable z in A.2
5. Vz[AVB] D.A V Vz B provided that z is not free in A.

6. =y D«S;A D S;A where A is an atomic formula.

3.2.4 Proofs

Here again, I shall follow Andrews:

A proof of a wff B from the hypotheses A; ... A, is a finite sequence B, ... B,,
of wffs such that B,, is B and for each 1 < i < m one of the following conditions is

satisfied:

%t is free for z in A means that no free variable of ¢ is captured by some quantifier in A when
the substitution is performed: if y is a free variable of ¢, there is no free occurrence of z in A which
is in the scope of a Vy. LOGICALC automatically handles this problem by effecting an Alphabetic
Change of Bound Variables whenever required [see later].
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1. B; is an axiom.
2. B; is an hypothesis A ;.
3. B; follows by Modus Ponens from preceding members of the sequence.

4. B; follows by Generalization from a preceding member of the sequence. The

individual variable generalized upon must not be free in any hypothesis.

5. B, follows from some preceding member of the sequence by the Rule of Alpha-

betic Change of Bound Variable [see later].

I will write A;... A, F B to indicate that B has a proof (a derivation) from hypothe-
ses A; ... A,. '

3.2.5 Major Results

The most important result is that = is sound and complete, i.e. every theorem of
F= is valid, and every valid formula of £(F=) is a theorem of F=: the set of theorems
and valid formulae coincide. A formula is a theorem if it has a proof. A formula is
valid if it is true in every model of F=. Since I will examine LOGICALC’s system
by comparing it with Andrews’ F= system, [ will not need the notion of validity for
the following discussion and will say no more about it. The interested reader should

consult any textbook on Mathematical Logic such as [And86].

By showing that LOGICALC’s rules are derived rules of inference in F= and therefore
preserve validity, I will show that LOGICALC is sound. Also, by showing how LOGI-
CALC captures the axiomatic structure of 7= and therefore can produce all of F='s

theorems, [ will establish completeness.

But first, here is a list of derived rules of inference for F=:
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Extended Rule P: If H- A; ... H+ A, andif[A;A... AA, D B] is tautologous,
then H F B.

Substitutivity of Implication: If F A D B then  C D SAC for positive occur-

rences of A in C, and F $5C > C for negative occurrences.
Substitutivity of Equivalence: Similarly, if - A = B and F C, then + SaC.

Rule of Alphabetic Change of Bound Variables: If - C then - S::%AC pro-

vided y is not free in A and is free for z in A (i.e. doesn’t get captured).

Universal Instantiation: If H - Vz A then H | St A provided ¢t is a term free for

T in A.
Deduction Theorem: if H,A F B then H - A > B.

Rule of Substitution: If H - A, and z is an individual (resp. propositional) vari-
able, and ¢ is a term (resp. a wff), then H F STA provided = doesn’t occur free

in H and t is free for z in A.

Rule of Existential Generalization: If H - A, then H + 3z St A provided z isn’t

free in A and ¢ is free for z in A.
Rule of Cases: f H+- AV B and H,A + C and H Bt Cthen HF C.
Indirect Proof: If H,~A + B and H,-A |- -B, then H I A.

Weakening: If H; + A and H;, C H,, then H, - A.

3.3 LOGICALC’s Axioms

Like every sequent system, LOGICALC’s principal axiom schema is Hp=p Itis

also traditional to let every tautology be an axiom: that is, if p is a tautology, A = p
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is an axiom. In LOGICALC, this tradition is acknowledged by the obvious inference

rule, but tautologies can also be derived by means of taut-trans [see later].

LOGICALC also possesses the Axiom of Reflexivity = z = z. From this axiom, it
is possible to infer all instances of it (i.e. = ¢ = t) by the Rule of Substitution;

LOGICALC of course saves you the trouble by relying on unification in the first place.

3.4 LocIcALC’s Inference Rules

I will now list all the basic inference rules available in LOGICALC. A discussion of those
rules related to quantifier-handling will be postponed until later sections. For each
rule, I will give the name by which it is known to the system as well as a diagrammatic
representation of the corresponding inference where premises are presented above a
fraction line and the conclusion lies below. I will also provide a description of purpose,
a justification in terms of the classical system (thus establishing soundness). Finally,
I will include a representation of the validation for the corresponding inference; this

is for reference purposes only and may be safely ignored for the moment.

A=p
Identity A=p

The identity inference rule doesn’t do anything interesting. Its sole purpose is
to serve as a no-op place holder in certain validations.

(identity (premise) ())

A=p
Substitution A =0p

The substitution inference rule requires a substitution 8 to be specified as a
parameter. This rule serves little purpose since LOGICALC uses unification any-
way and was intended primarily as a documenting device in a proof. However,

with the implementation of proof generalization, the status of this inference
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rule has become even more dubious. Proof: Rule of Substitution. The classical
system requires that for each individual assignment ¢/ in 8, ¢ be free for z in p;
in LOGICALC, applying a substitution that violates this requirement will result
in a preliminary alphabetic change of bound variables being effected on p [see
section 3.10]. (substitution (premise) (8))
A =p
Assumption-Intro A;q=p
This inference rule captures the idea of weakening a proof by introducing an
extraneous assumption (¢ in the above schema). It is used internally by the
system: whenever a class receives an answer [cf. broadcasting], it attempts to
“adapt” it to itself; doing so may involve weakening the proof until its assump-
tion set matches the class’s. Proof: by Weakening.
(assumption-intro (premise) (q))
A> 2!
: A => Pn
And-Intro A=pA...Ap,
From n premises, and-intro derives their conjunction. Proof: by Rule P, using
PLA... App Dp1A... Ap, as the tautology.
(and-intro (premise; ... premise,) ())
Aip=> g
If-Intro A =pDyg

If-intro captures the essence of the Deduction Theorem; i.e. given the premise
A;p = ¢, it will discharge the local assumption p and conclude A = p D ¢.2
However, it imposes the restriction that p and g may not share free variables.
The reason for this is discussed later: briefly, it is because free variables in

the assumption set are independent from free variables in the goal, just like

3In the distant past, a technical difficulty forced me to make the assumption to be discharged

an explicit premise; in other words, the rule takes two premises as input: A;p = p and A;p = q.
This problem has since been resolved but the rule was not changed to remove the now-redundant
1st premise.
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in PROLOG variables in the query are independent from those in the database.
Thus, even when p[z]| and ¢[z] both mention a free variable z, they are really
talking about two distinct variables. If we were to infer A = p[z] D ¢[z] from
A;plz] = ¢[z] the two distinct free variables, both called z, would become
confused. I could arbitrarily restrict the applicability of if-intro to only those
cases where p and ¢ do not have free variables with the same names, however it
is more useful to define the rule so that it renames those free variables in p that
would otherwise collide with free variables in ¢q. Such a renaming is justified
simply by the Rule of Substitution: new free variables are substituted for old

ones. . (if-intro (assumption conclusion) ())

A =pDg

If-Elim Ajp=> q

If-elim implements the converse of if-intro. This is not terribly useful in practice,
but is provided for the convenience of proof manipulation procedures: an earlier
version of LOGICALC used it to perform some non trivial footwork in connection
with the case inference rule; a better way, not involving if-elim, has since been
designed. Proof: if AF p D q, then also A,pF p D ¢, and sihce A,pF p, by
Modus Ponens conclude A,p F q. (if-elim (implication) ()

P D q is a tautology
A=6p

Taut-Trans A =0q

This is essentially Andrews’ Rule P. The basic idea is that, if p D q is a
tautology of the propositional calculus and fp and fq are wffs of first-order
logic, if fp is a theorem then fq is also a theorem. Proof: Rule P.

(taut-trans (premise) (p q))

A=pDyg
A= P

Modus-Ponens A= q

From an implication as the major premise and a proof of the implication’s

antecedent as a minor premise, infer the implication’s consequent. Proof: Modus
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Ponens. (modus-ponens (implication antecedent) ())
A=3pDygq

A=> g

Modus-Tollens A= -p

From an implication as the major premise and a proof of the negation of the
implication’s consequent as a minor premise, infer the negation of the implica-
tion’s antecedent. Proof: From t p D ¢ and the tautology p D ¢ D «g D -p,
infer F ~¢ O —p by Rule P, then from  —~¢ by Modus Ponens conclude - -p.
(modus-tollens (implication negated_consequent) ())

A =p(z,y)

, A =p(y,z)
Symmetry - provided p is symmetric

Traditionally, in order to state that a predicate is symmetric, one would have to
write an axiom of the form VaVyp(z,y) = p(y, z). However, such an approach
is not only verbose, it also makes manipulations that require using the property
of symmetry quite tedious. In LOGICALC, the user has the option to simply give
the LISP symbol naming p the property symmetric; this is what the symmetry.
rule checks for. Furthermore, the “detaching” procedure will automatically take

advantage of such declarations [see Chapter 7 p256]. Proof: by Substitutivity

of Equivalence. (symmetry (premise) ())
Aip= ¢

Ajp =g

Not-Intro: A =>-p

If assuming p leads to a contradiction, then —p must be the case. The rule
discharges assumption p and concludes its negation. Proof: Indirect Proof.

(not-intro (premise negated_premise) ())

A= p
A=-p
Not-Elim A= q

Not-elim captures the idea that anything can be inferred from an inconsistent

set of assumptions. The inconsistency is expressed by the ability to derive
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both p and its negation. The rule’s actual conclusion must be provided as a
parameter. Proof: by Rule P, from tautology p A -p D ¢.

(not-elim (premise negated_premise) (q))

A=a=1b

A= pld]

Equality : A= plb]
If a = b, and pla] is a theorem containing occurrences of a, then p[b] (i.e.

S¢pla)) is also a theorem and is obtained by replacing some occurrences of @ in
p by b. Note that some care must be taken with bound variables and potential
captures [see later]. The occurrences to be replaced must be speciﬁéd with a list
of “path” parameters. Proof: let A = 3%p[a] where z is an individual variable
that does not occur in A, by Axiom Schema 6 we have z =y D aS;A D SJA;
by Substitution $Z} we derive a = b O 2SZA D S{A; by Modus Ponens from
a = b we infer SJA D S;A, i.e. pla] O p[b]; finally, again by Modus Ponens,
from pla] we conclude p[b].

(equality (equality target) (pathy ... path,))

A= nV...Vp,
A= P DOq

A= P2 A-p1 Dgq

A=>pn/\"‘pn_1/\.../\"‘p1 ogq
Case A= q

When a proposition can be derived in each one of an exhaustive list of cases,
then it is a theorem. The exhaustive list of cases is represented by a disjunction
p1V...Vpn. Each case has the form A = pr A-pi_1 A...A—-p; D ¢ so as to keep
it disjoint from the others; this is not strictly required by the Rule of Cases but
(1) making each assumption more specific also results in the corresponding case
being easier to prove (which is an important consideration in a proof system),
and (2) in order to derive anything at all from p(a) V p(b), p(a) = p(a), and

p(b) = p(b), one must introduce a new term ¢ defined to be a in the first case and
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bin the second case, and for this definition to be consistent with the assumption
set, it is necessary that the cases be disjoint [more about this in Chapter 6 p204
and p226]. Proof: If we have H- AVB, H+ A>Cand H+--AAB D C,
then by Rule P and the tautology [A > C]A[~AAB > C]>.[AVB]>C,
we infer [A V B] D C and finally conclude C by Modus Ponens.

(case (disjunction case; ... case,) ())

3.5 Skolemizing Axioms

Since skolemization plays such a central réle in LOGICALCGC, it would be convenient
if it could be viewed as an inference rule rather than as an operation on theories.
This is what gave me the idea of “skolemizing axioms.” For every quantified formula
3z A[z], we can imagine there is a corresponding “skolemizing axiom” Iz A[z] =
A[a], where « is a new skolem constant denoting the z which satisfies A. Skolemizing
positive occurrences of the quantified formula 3z A[z] is now simply a matter of using
the corresponding skolemizing axiom and invoking the Substitutivity of Equivalence.
What is needed to formalize this notion and fold it back into the logic is an axiom
-schema that will correctly generate all skolemizing axioms. The following explains

how this can be done.

I restrict myself to a countable formulation of #=. Each wff in L(F=) can be uniquely
associated with a different integer by fixing a particular enumeration. Let ¢ be an

indexing function that maps a wff to an integer in precisely this manner.

A new (infinite and countable) set of functional constants a! is introduced, where
ol has arity n, and n = 0 indicates an ordinary constant, and the following axiom

schema is added:

QrAlz] = A[OtL"(Q,A)(yl, )



3.6. INFERENCE RULE FOR SKOLEMIZATION 99

where Q is a quantifier, A is a wff of £(F~), z is some individual variable, and y,
through y, are all the free variables of Qz A in an order specified by some arbitrary
scheme such as order of occurrence or order of enumeration. A skolemizing axiom is

an instance of the above schema.

The result is a conservative extension of F= (see 3301 pl124 in [And86]). It simply

serves to make the notion of skolemization into an explicit theory.

During a session with LOGICALC, skolemizing axioms are added to the database when
they are needed. Only plan generators and inference generators perform such addi-
tions; inference rules only operate on available premises. a7 is represented by a skolem
function of n arguments. Also, since one direction in the equivalence is always obvious
(by Existential Generalization or Universal Instantiation), only the other direction is

effectively asserted.

Skolemizing axioms are defined only for formulae Qz A[z] of L(F~), i.e. that do not
themselves contain skolem terms. I do not need skolemizing axioms for formulae
containing skolem terms because I am trying to capture only and precisely those
inferences allowed in F= (wherein neither premises nor conclusions mention skolem
terms). On the other hand, it is possible to iterate any number of times the same
process of introducing skolemizing axioms, or to otherwise generalize the principle
of the skolemizing axiom schema which I presented earlier; however, such a more

complex formal apparatus is not needed here.

3.6 Inference Rule for Skolemization

In LOGICALC, skolemization is implemented as an inference rule. In the following I
will use Q to denote a quantifier (either ¥V or 3), and each timie I will specify whether it
has universal or existential force—e.g. ¥ has universal force in p D Vz ¢, but existential

force in [Vz p] D q.
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A = F[Qxz p[z]]

skolemize (universal) A= Flply]]

When the quantifier Q has universal force and the subformula Qz plz] does not

occur within the scope of another quantifier in F, and y is free for z in F,
then the quantifier can be removed and the variable z replaced with the free
variable y. LOGICALC doesn’t have a rule of universal instantiation as such.
It can be simulated by this version of skolemization followed by a substitution
step (typically unification). Proof: by Axiom Schema 4, Vz plz] O ply] is an
axiom (resp. by Existential Generalization and the Deduction Theorem ply] O
3z p[z]). From F(Vz p(z]] (resp. F[3z p[z]]), by Substitutivity of Implication for
positive (resp. negative) occurrences of Vz p[z] (resp. 3z p[z]) infer Fp[y]].
A= F[Qzp[z]]

A = Qz p[z] = pla]
skolemize (existential) A=> Flpla]]

When the quantifier Q has existential force and the subformula Qz p[z] does
not occur within the scope of another quantifier in F, and there is a skolem-
izing axiom for Qx p[z], then the quantifier can be removed, and z replaced

throughout p by a. Proof: by Substitutivity of Equivalence.*

3.7 Inference Rule for Quantification

Quantification is an inference rule that performs a function inverse of skolemization,

Le. it reinserts quantifiers in subformulae. I will use the same conventions as above.

A= Flpld]]
quantify (existential) A = F[Quz p[z]]

When p[a] is a subformula of F not in the scope of a quantifier, and « is some

4Actually, since only the non trivial direction of the equivalence is recorded, the justification
should really be by Substitutivity of Implication, which works out just the same since @ must have
existential force.
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term, then some occurrences of a in p may be existentially abstracted by a
variable and the subformula pla] replaced with the quantified formula Qu p[z],
where @ has existential force, i.e. is 3 if the subformula has positive sign, V
otherwise. Proof: by Existential Generalization (resp. Universal Instantiation)
and the Deduction Theorem infer p D 3z 3%p (resp. Yz 3%p D p); then, by
Substitutivity of Implication for positive (resp. negative) occurrences of p in F'
conclude F[3z $%p] (resp. F[Vz Sip}).

A= Flp[a]]
A = Qz plz] = pla]
quantify (universal) : A= F[Qzp|z]]

Here again, a skolemizing axiom and the principle of Substitutivity of Equiva-
lence are together at work. Note that the premise A = F[p[c]] is often really
of the form A = F[p[z]], where z is a free variable which gets unified with «

for this particular inference step.

3.8 Soundness and Completeness

A logical system is sound iff all its theorems are valid: that is, if its axioms are valid
and its inference rules preserve validity. I have shown that all of LOGICALC’s rules of
inference are derived rules of inference in a conservative extension of =, therefore

they are sound by virtue of the system F= being sound.

The system F= is complete in the sense that every wff of L(F=) which is valid is
also a theorem. I will show that LOGICALC shares this property. However, I will only
be interested in completeness with respect to formulae which are strictly in L(F=).
Remember that LOGICALC’s system is an extension of F=. In particular, its language
has additional symbols (such as skolem terms) which are not in £L(F=). I will not
consider completeness relative to this extended language, but rather to its proper

subset L£(F=) which is all that is required to express sentences in First-Order Logic.
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The result will be established by showing that LOGICALC faithfully captures the
axiomatic structure of 7= and therefore that every theorem of F= is also a theorem

in LOGICALC.

Modus Ponens: is also a rule of inference in LOGICALC.

Generalization: is subsumed by quantification. Proof: if A[z] is a formula, there
must be a skolemizing axiom of the form Vz A[z] = Ala]. From A[z] infer
Alo] by Substitution, then Vz A[z] by Substitutivity of Equivalence from the

skolemizing axiom; this is exactly what Quantify (universal) accomplishes.
Axiom of Reflexivity: is also an axiom in LOGICALC.

Axiom Schemata 1, 2 and 3: if Ais a tautology, so is z = £ D A, therefore infer
A by Taut-Trans.

Axiom Schema 4: Vz A[z] D Vz Alz] is a tautology, therefore a theorem. By
Skolemization into the consequent infer Yz A[z] > A[y], then by Substitution
conclude Vz A[z] O A[t].

Axiom Schema 5: Vz[A V B[z]] D Vz[A V B[z] is a tautology, therefore a theo-
rem. By Skolemization into the cbnsequent infer V2 [A V B[z]] D [A V B[y]].
There is a skolemizing axiom of the form B[a] = Vz B[z]. By substitution infer
Vz [A V B[z]] D [A V B[e]], then by Quantification of the second occurrence of
B conclude Vz [A V B[z]] D [A V Vz B[z]] and by Alphabetic Change of Bound
Variable ¥z [A V Blz]] 5 [A V V2 Blz]].

For this derivation to be acceptable, we rﬁuét show that the rﬁle of Alphabetic
Change of Bound Variable is a derived inference rule of LOGICALC. Proof: From
Vz Alz] infer A[z] by Skolemization, where z is a variable free for z in Alz].
For any variable y, there is a skolemizing axiom of the form Vy Aly] = Ala]. By
Substitution, from A[z] infer A[e]; and finally, by Substitutivity of Equivalence
(or Modus Ponens), conclude Vy Aly].
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Axiom Schema 6: it would seem to be a simple matter to infer ¢ = y D «Afz] D
Al[y] by first assuming z = y, then applying the Equality rule to A[z] D A[z],
and finally discharging the assumption. There is a limitation in LOGICALC
which prevents you from making an assumption in this way (to be subsequently
discharged by the Deduction Theorem) if it has free variables (and more impor-

tantly if it shares free variables with the consequent).

When you must find a proof for A = p D ¢, you typically want to set up a
subgoal of the form A; p = ¢ (the refinement to be validated by If-Intro). If p[z]
and g[z] share the free variable z, then the correct semantics for the subgoal
A; plz] = ¢[z] is that, as you further refine and develop the proof and z becomes
more and more instantiated (remember we rely on unification), the proper and
selfsame substitution is reflected in both the assumption p[z] and the subgoal’s

conclusion ¢[z].

Unfortunately, this cannot be done because when p[z] is asserted in the assump-
tion set (datapool), the free variable z loses its former identity and in some
sense becomes renamed. A similar (mis)feature is present in PROLOG: when
you assert (p(X)) and X becomes subsequently instantiated, this instantiation

will not be reflected in the assertion you made earlier.

Therefore, LOGICALC will not allow you to “move” p to the assumption set if
it contains free variables; these variables will have to be “captured” either by
quantification or by instantiating them with ground terms (the system will offer

to do this automatically whenever necessary).

The if-intro inference rule makes sure to enforce this particular restriction and
will arbitrarily rename all free variables (should there be any for some reason)
in the assumption being discharged. For instance H,p{z] = ¢ would result in

H = p[z] D q, where z is not free in ¢ and is free for z in p[z].

Despite this limitation, it is not very difficult to derive Axiom Schema 6. Let

Aflu,z] be a wff such that z is a variable free in A, and u represents all the
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other variables free in A. There are skolemizing axioms of the form:

VulAls,2] D Alu,2]] =. Afr(2),2] 5 Aly(2), 2] (i)

» a=[DVudAly,a] D Aly, F](ii)

]
Vzy[r =y O VusAlu,z] D Afu, y]]

L. = Aluy, 2] D Afu, 2] is a tautology

2. = Yu«Afu,z] D Ay, 2] by Quantification using (i)
3. a=p=VusAlu,z] D Aly, 2] by Assumption-Intro

4. a=pf=VYudAluy,a] D Aly,q] by Substitution

5. a=pf=VusAlu,a] D Afu, 3] by Equality

6. = a =D VudAluy,a] D Alu, §] by If-Intro

7. = Vzyez =y D YusAlu,z] D Au,y] by Quantification using (ii)
8. ==y D VusAlu,z] D Afu,y] by Skolemization

9. ==y DaAlu,z] D Alu,y] by Skolemization

The simpler case where there are no other free variables u is dealt with simply
by omitting axiom (i) as well as lines 2 and 9, and by removing Vu and any

other mention of u throughout.

I have demonstrated that LOGICALC completely captures the axiomatic structure of
F=, therefore it is complete in the sense that all valid formulae of £(F=) can be

derived.®

3.9 Lambda Expressions

LOGICALC also allows terms of the form Az, ...z, A which denote anonymous pred-

icates or functions. The motivations for introducing this notation were:

e It is occasionally convenient to state a general principle as an axiom in terms of

a free predicate (or function) variable and be able to derive instances tailored to

3The language of LOGICALC covers more formulae since it includes the skolem constants al.
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the current problem by plugging in the appropriate A-expression. Mathematical

Induction is such a principle:
(VP : N prop) [P(0) A (Vn € N) P(n) D P(n+1)] D (Vm € N) P(m)

By substituting Az [Zf=0i = ﬂ%’"—ll] for P, we are able to derive the following

induction theorem:
[Eoi = LU A (Vn € N) Tioi = 25 5 yrig i = (llGriel)

2
D (¥m € N) Tityi = 2ot

e \-expressions are a convenient notation for expressing set theoretic notions. For
instance, Az A[z] can be interpreted as the set of those z which satisfy A. Set

intersection is defined by:
Veaz €S51NS; =€ S AzES,

by viewing z € S as an abbreviation for S(z), once again it is possible to plug

in A-expressions for S; and S; and derive instances of the above definition.

3.9.1 Comprehension Axioms

Naturally, the logical system needs to provide ways of manipulating A-expressions.
For instance, plugging such expressions in the above schemas involved a little more
than mere substitution: it was also necessary to reduce® the resulting redexes—a redex
is an expression of the form (% (Az;...z,.B) t;...t,) denoting the application of
a A-expression to arguments. Reducing the preceding redex means replacing it with
Blt1/z1...ta/2n]—Thus P(m) after substitution became [Az % ,i = ig’—;ﬂ](m)
which was then converted to 7,7 = ﬂ%ill

9

6What LOGICALC calls “reduction” is also known as A-conversion.
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The intuitive way to justify this reduction operation is to assume the existence of

Comprehension Axioms of the form:

Az1...z, Al(ty,... t,) = STwinA

PAz1.. oz s](ty,. ., tn) = SFPns

and then invoke Substitutivity of Equivalence (or Equality); similarly for Abstraction.

Unfortunately, it is well known that the resulting system is inconsistent.

3.9.2 Rules for Reduction and Abstraction

Before agonizing further on the fundamental inconsistency introduced by this treat-
ment of A-expressions, I will state formally the rules of Reduction and Abstraction,

however dubious they may be.

H =>A[(% (/\.’L'l e .’L‘np) tl PN tn)]
Reduction H= AlS7tirp]

Replace a redex with the body of the A-expression with each occurrence of a

formal parameter z; replaced by the corresponding actual parameter ¢;. The ¢'s

are supposed to be free for the z’s in A, and p may be either a term or a wff.

H= Alplty, ..., t]]
Abstraction H =A% Az .. znplzy, ... 20)) 8. 1))

Replace a term or wff pin A with a redex (i.e. the application of a A-expression

to arguments) that reduces to p. ¢, ... ¢, are term or wffs that may or may
not occur in p. z; ... z, are variables which do not occur free in p. Each
z; abstracts out of D zero or more occurrences of ¢;. ¢; must not contain any

variable bound (by quantifier or lambda) within a subterm or subformula of .
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3.9.3 Russell’s Paradox

When applied without discrimination, these rules send soundness down the tube.
In particular, here is the derivation of a contradiction inspired by Russell’s famous

paradox.

The set of all sets which are not member of themselves might be represented by the

expression Ay —y(y).
Py —y(9)]ry —y(y) = [y ~y(w)]Ay ~y(y) (i)
must be an axiom in LOGICALC. By Reduction we conclude
[Ay =y(9)] Ay ~y(y) = ~[Ay ~y(¥)]\y ~y(y) (i)
which is in contradiction with (i). Therefore, by NOT-INTRO, we infer:
= [y ~y(y)] Ay -~y (y)
We can proceed similarly with the negation a.nci infer:
= —[Ay -y (y)] Ay ~y(y)
Hence the paradox.

LOGICALC will give you as much rope as you need to hang yourself, and then some.
Type theory is a rather attractive alternative which does not have these problems
[And86, AINP88c,C*86]; however, it would require all variables and constants to be
explicitly typed (annotated with a type). Implementing such a scheme would not be
terribly difficult but it would necessitate a number of additions and extensions to the

code to make the approach practical:

1. The representation would have to be extended: every variable and every con-

stant must be associated with a type expression.
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2. Unification would have to be revised to properly deal with types, e.g. it should
be replaced with some variant of higher-order unification such as Huet’s or

Elliott’s.

3. Input syntax would have to be extended to allow the specification of type ex-
pressions. Also, if the user had to type in all type annotations, such a task
would quickly become unbearably tedious. Therefore, the system would have
to be able to supply the proper type annotations when they are left out by the

user, e.g. by means of a type inference/reconstruction algorithm.

4. Syntax checking would have to be revised accordingly. In fact it would have to

be part of the type reconstruction procedure.

5. Printing of terms and wffs should indicate type annotations but not overwhelm

the display with them.

For the purpose of mathematical investigations, this would be a worthwhile project,
but, since [ was mostly interested in facilitating experiment.ations with Al formalismé /
problems, it seemed that the benefits to be derived from such an enterprise would
hardly be worth the effort. Instead, I suggest we follow traditional practice in math-
ematics which is to omit type annotations, but be mindful to only perform those

manipulations that would be permissible in a typed system.

LOGICALC allows the user to specify type declarations for variables and constants.
On the strength of such declarations, syntax checking [see Appendix A] will detect

and prohibit the more blatant infractions to the principle of type well-formedness.

Since neither variables nor constants are typed symbols (i.e. they do not have a type
annotation), what good are type declarations after the process of statically checking
the syntax of a formula or expression has been carried out? LOGICALC will typically

translate a type declaration into an IS-expression of the form (IS (type) (term)) and
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insert it in the resulting formula (using either A or D as appropriate) as an additional
constraint. The type theory proper is specified as a theory extension. Note that
this practice serves to limit the scope of certain axioms, but will not prohibit the
derivation of paradoxical results, e.g. when a substitution step violates an implicit

type constraint.

If we represent a type constraint by a proposition of the form z:T', the axiom of

Mathematical Induction will be encoded by a formula such as:

P :Nprop D« P(0) AVn[n:N D «P(n) D P(n+1)] D Vm[m:N D> P(m)]

3.10 TUnification and Substitutions

So far, my exposition of the logic did not presuppose more than the ability to de-
termine syntactical identity in order to apply rules of inference. However, LOGICALC
affords the user considerably more flexibility and power by relying on unification in-
stéad. Thus, Modus Ponens should be understood as stating that from p; O ¢ and p,
and the existence of a substitution 8 such that §p, = 0p; (where = denotes syntactic

identity), one may infer fq.

Naturally, the problem of unifying expressions is made slightly more complicated by
the fact that quantifiers and lambdas have to be properly dealt with. In particular, we
should require that Vz A[z] and Vy A[y] must ﬁnify, but no substitution will make the
two expressions syntactically identical; such an identification could only be effected
through an alphabetic change of bound variables (such as ¢ — y). Should wé then
extend the notion of unification to include not only a substitution but also a renaming?
I suggest that such an extension is unnecessary. Whereas the substitution truly carries
additional information, the renaming does not and is merely a change of notation.
Instead we should broaden the notion of syntactic identity to cover notational variants

as well.
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The classical method for factoring out the choice of names for bound variables is
to use De Bruijn’s notation in which binding lists are omitted and each occurrence
of a bound variable is replaced with the appropriate De Bruijn’s index [dB72]. A~
De Bruijn’s index is an integer denoting the reference depth of the occurrence of the

variable it stands for: ¢ means “the variable introduced by the i** quantifier or lambda

up from here.” Thus Af Ag [f(Ak h(g))](g) would become A A[2(A 1(2)](1).

Two formulae are equivalent modulo an alphabetic change of bound variables iff
they are syntactically identical when written using De Bruijn’s notation [dBT2]. This

observation leads me to formulate the following improved notion of syntactic identity:

T'wo expressions will be declared syntactically equivalent if they are iden-
tical when written using De Bruijn’s notation.

More practically: the only places where they may differ are occurrences of
bound variables, and these occurrences would be assigned the same index
by the process of translation to De Bruijn’s notation.

The justification for using unification rather than mere syntactic identification is that
it simulates substitution steps. Unification does not permit inferences which do not
also have a derivation using syntactic identification and a few additional substitution
steps, but it makes their proofs shorter since these steps do not have to appear

explicitly.

If we decided to make the aforementioned steps explicit, obviously the corresponding
substitutions would have to satisfy the requirements 6f the classical Substitution
Rule: i.e. for a given unifier § = {ti/z1,...,t./2n }, that ¢; be free for z; in the
corresponding formula. As we shall see, this imposes a natural restriction on the

unification procedure.

t is free for z in A, iff for each free variable y in ¢t there is no free occurrence of z ,
in A that is in the scope of a Vy, 3y or Ay. If we consider this requirement in light

of de Bruijn’s notation, we find that what it means is that ¢ is allowed to contain an
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occurrence of a de Bruijn’s index n iff this occurrence appears in the scope of at least
n quantifiers or lambdas in t. In other words, a free variable can only be assigned a
well-formed De Bruijn’s term, i.e. one in which every index n occurs within the scope
of at least n quantifiers or lambdas. I call this the requirement of well-formedness for

substitutions.

Using de Bruijn’s notation, LOGICALC’s extended notion of unification is simply ordi-
nary unification with the addition of the restriction just stated. It is exactly ordinary
unification when the formulae contain no quantifier or lambda. It is also exactly
ordinary unification when they do, except that it will report failure more often. It
will report failure in exactly those cases where the resulting substitution would con-
tain assignments involving non-well-formed De Bruijn’s terms, thereby violating the

requirement of the Substitution Rule.

LOGICALC’s implementation of unification is of the incremental depth-first recursive
algorithm variety. Bound variables are compared by computing their de Bruijn indices
(for this reason I must keep track of binding lists as they are being encountered).
When about to assign a term to a free variable, the algorithm not only performs the
“occur” check, but also makes sure that said term does not contain free occurrences

of bound variables (this again relies on keeping track of binding lists).

Usually, unification of two expressions is done assuming that their respective free
variables are independent (i.e. that z in one expression is distinct from z in the other).
LOGICALC’s unification procedure cleverly keeps track of which side each term or
variable pertains to; for instance unifying f(z) and f(g(z)) would produce a pseudo-
substitution of the form {(z,left) « (g(z),right)} from which it is possible to
extract (compute) a substitution applicable to the left side (which would be something

like: {z « g(y) }) and another one applicable to the right side (empty in this case).

Unfortunately, it is possible that extracting a substitution in this manner might vi-

olate the requirement of well-formedness. Consider the problem of unifying Ay f(z)
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with Az f(g(z)). Clearly, the same pseudo-substitution will be computed by the uni-
fication procedure. However, if extracting a substitution for the left side results in
{z « g(y)} where y was thought to be a “new” variable, we can see that the in-
tended meaning of y in the substitution conflicts with the bound variable in Ay f(z)

and unwittingly violates the requirement of well-formedness.

The solution is to keep in mind that “pseudo-substitutions” are constructed according
to the principle of well-formedness; therefore, any violations of this principle encoun-
tered while applying a “true” substitution must be the result an unfortunate choice of
name when extracting said substitution from the corresponding pseudo-substitution.
One possible fix would be to revise the substitution by chosing other names until it
was admissible again. I opted for a different approach: I rename bound variables

until they no longer conflict with free variables.”

"In fact, since constants and bound varjables are both represented by LIsP symbols, it is also
necessary to rename bound variables so that they do not conflict with constants by the same names.



Chapter 4

A Graph Editor for Theorem

Proving

In this chapter I introduce the idea of theorem proving as graph editing. Each type
of node, such as goals and plans, must define its own interface by means of a display
function and a command processor. I will look at the issues of Display (introducing

the notion of a view), Abbreviations (input and output), Commands, and Help.

4.1 Introduction

A session with LOGICALC begins with the user stating the theorem to be proven,
which the system formats and presents to him as a “goal.” By invoking a “plan
generator,” he should then propose a refinement of the goal into a “plan” whose steps
are themselves goals, and proceed to select one of these subgoals to work on next in
a similar fashion. The process bottoms out when a subgoal matches an axiom or an

assumption.! When one branch has thus been closed, the user will move on to the

Lor is otherwise obvious, e.g. a tautology.
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next remaining open branch, and so on until the proof tree has been completed.

This view of interactive proof development is clearly an instance of the more gen-
eral notion of graph editing. The user works towards constructing a proof tree by

progressively extending a tree of goals and plans until each branch is closed.

Others too have looked at interactive proof construction as a process of graph editing.
NUPRL’s user interface [C*86] is implemented on ted, the Text EDitor, and red,
the Refinement EDitor; both are based on the concept of structure editor. The
Environment for Formal Systems (EFS) [Gri87a] is also based on a structure editor,
but generated by the Cornell Synthesizer Generator [RT87]. The Interactive Proof
Editor (IPE) [RT88] more specifically applies the notion of an attribute grammar to

structure the proof tree and investigates the idea of “proof by clicking.”

IPE lends itself well to an exploratory style of proof. LOGICALC was also designed
precisely with this type of interaction in mind. Unlike systems such as LCF [Mil79a,
Pau37] and the Boyer-Moore theorem prover [BM79] where it is necessary to deter-
mine in advance the key lemmas that will be required in the course of the proof,
IPE é.nd LOGICALC both allow the user to start out and proceed without a-priori
knowledge of what will be required or even what direction the course of the proof will
take. The ability to switch between alternative proof attempts encourages the user
to “try things out.” Also, it is not unusual to realize after a few such attempts that
there are axioms “missing” in the theory; it should be possible (and it is) to extend

the theory “on the fly” without forcing the user to start all over again.

The “detaching” mechanism, which will be discussed in a separate chapter, aliows
LOGICALC to go one step further and provides the user with another degree of free-
dom. The basic idea is that, when confronted with a goal, the user often has the
intuition that a particular axiom should be used to soive it, but the details and the
particulars of the inferential manipulations actually required are difficult to work out.

With LoGiIcALc, the “détaching” mechanism will take care of it automatically by a
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combination of unification and a process that superficially resembles non-clausal res-
olution [Mur82] but is actually justified in terms of regular inference rules [Chapters 3
and T}.

As I mentioned earlier, IPE investigates the possibility of “proof by clicking.” While
this is an attractive model for the non-sophisticate (or casual) user, it only allows
1-dimensional exchange of information and does not support compositionality well.
Furthermore, because of its low bandwidth, the preferred mode of interaction must be
supplemented with other forms of input (e.g. textual). I find that graphical mouse-
based interfaces, while they make for much sexier demos, just don’t have the gener-
ality, simplicity, flexibility, or power of the more traditional command-line-oriented
shells. Also, it is often a lot faster to just type in a command than to pull down a

menu and select an item (and then be prompted for arguments).

LOGICALC offers a model of interaction that is reminiscent of a UNIX-type shell; there
are motion commands to follow parent/child or other kinds of links, just like cd allows
the user to move about the file system by following super/subdirectory or symbolic
links. The system keeps track of a stack of visited nodes which can be “popped” or
“jumped to” in the manner of pushd/popd. There is a command stack which plays
the same role as the UNIX shell “history;” commands can be recalled from this stack
and substitutions applied. Abbreviations can be used to define macro commands,

much in the manner of aliases. Finally there are commands to extend the graph.

In an article on graphic user interfaces for computer algebra systems, Kajler [Kaj]

identifies a number of essential issues; in particular, the following:

o The display of formulae. Subtopic: the display of “long” formulae.

e Abbreviating parts of formulae. Subtopic: provision for a “magnifying glass”

(i.e. display of abbreviation contents).

e History mechanism.
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o Attaching comments to objects.

o Interactive help.

All of these are addressed in LOGICALC.

LOGICALC’s graph editing functionality is implemented in an object-oriented way:
each type of node provides its own specific display procedure and command pro-
cessor. Thus the implementation is natural, modular and extensible. For obvious
ergonomic reasons (principle of least astonishment), it is desirable to impose some
kind of uniformity and consistency of interfaces across node types. In the following
sections, I will discuss the topics of Display, Abbreviations, and Commands, which
are the principal components of this overall “look and feel,” as the catch phrase goes
these days. Other issues, such as “detaching” and “find mode,” subterm and premise
descriptors, etc... which also contribute to uniformity of command specification will

be treated in separate chapters.

4.2 Walk Mode

. LOGICALC’s interface is based on DUCK’s walk mode [McD85]. Many entities in DUCK
can be thought of as graph structures. These include goal hierarchies constructed
during deductions, data type hierarchies, etc. .. The “walker” or “browser” is a sort
of graph editor which allows you to move about these graphs, inspecting, and, in
some cases, altering them. When the walker has control, the system is said to be in
“walk mode,” and prompts with “w>”. You can type commands to move around in

the graph or act on it, or LISP expressions to be evaluated.

In “walk mode,” the system displays the current “focus of attention” which is the

graph’s node currently under scrutiny. We also say that we are at the node.
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When the focus is moved to a new node, or when the PP command is entered, the
system outputs a detailed display of the node, which was designed to be as informative
as possible and consists of helpfully formatted material, often including labeled and/or
numbered items and pointers to other nodes. Simply numbered items are typically
subparts, and typing n to the shell is interpreted as a request to move to the node
representing subpart n. In other words, positive integers act as moving commands

[more about this later].

The system keeps a stack of those nodes which have been inspected. Whenever you
move to a new node, it is pushed on the stack, except when it is already in the stack,
i.e. has already been visited, in which case everything above it is “popped” off. The
stack command displays all elements currently on the stack in an abbreviated form,
prefixing each one with a negative (or null) integer: the current node is prefixed with
0 (zero), the previous node with —1, etc... Typing —n moves you back to the node
prefixed with —n (in essence, n nodes are popped off the stack). Typing 0 (zero) acts

just like pp: the current node is redisplayed in the verbose form.

Each node is really represented by a pair (node, node_descriptor), where node_descriptor

is a 4-uple of the form:

(type, abbreviate, display, command_processor)

Commands such as stack or —n, which are stack commands are intercepted by the
browser’s interpreter and directly executed: stack invokes the abbreviate procedure of
each node on the stack in order to produce the condensed display. pp and 0 (zero) are
similarly intercepted and invoke the display procedure of, and on, the node on top of
the stack. All other commands? are handed to the current node’s command_processor.
However, should the command_processor report failure to handle the command, then
the global command processor (named logicalc) gets a turn; this global processor

centralizes those commands common to all modes, such as abbreviation, execute,

2Except a handful which are also intercepted by the browser.
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xabbrev, commands, history, information. If this too should fail, the command is

then evaluated as a LISP expression.

4.3 Display

Every type of node has its own display function, but they are all constructed along
the same principles. Enough information must be provided to identify and permit
useful work on the node. Also, since the paradigm is that of graph editing, sufficient
information must be provided to navigate to other nodes. A typical display includes

the following:

A title which indicates type and identity of this node.

e A representation of the node itself. For instance, a goal would display its for-

mula.

¢ Numbered subparts. For example, a plan will output an enumerated display of

its steps. The user can move to subpart n simply by typing n to the shell.

¢ Other links. They are typically grouped by category. A subtitle indicates the
name of the category, and it is followed by an enumeration as above. For
example, in the display of a goal, we can find the subcategory “answers;” each
answer is numbered and an abbreviated description is provided. The user will

be able to move to answer n by typing answer n.
e Other information, such as the number of class plans for a goal, or the number

of successors for a plan.

Many examples of displays have already been encountered in the introductory example

[pp. 7-38]. Here is another illustration:
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Goal View <class CLASS.3>
Find: (X) in:
(< (F?xX) '.©)
Assumptions:

(¢ (F t.A) 1.C) == 1:<198
Answers:
1 X
2 X
Supergoal:

(IF (< (F '.A) '.C) (AND (< '.A 7?X) (< (F ?X) '.C0))»
Local Plans:

PLAN --- (TAUT-TRANS)

1 (< 7Y1.3 (F 7X.4))

2 (< (F 7X.4) .1.0C)

3 (< 1.X1(?X.4 7Y1.3) ?X)

4 (< 7X !'.X2(?X.4 ?Y1.3))
(2 class plans)

! MID_A_XX2
'.A

As I hope you begin to see, all this is organized to facilitate movement about the
graph; recall that —n moved back n nodes; 0 or pp redisplays the current node; n

moves to subpart number n; and answer n moves to n'h

answer—more generally
foo n moves to n'? element in the enumeration of subcategory foo, or nt® link of
type foo. Proof construction may occasionally look like an adventure game, but

navigation should not be the difficulty!

Node display is terminal-oriented rather than graphical,® but the most widely used
terminals are supported (i.e. xterm, vt100, hpterm), as well the TI Explorer, and
TEX. The global variable term* controls which kind of device output is prepared for.
In particular, I produced all examples included in this thesis by setting term* to
tex. What term* controls is how certain kinds of textual enhancements are effected,
such as selecting boldface or reverse-video. For regular terminals, this is achieved by
escape sequences, on the Ti Explorer a :set-current-font message must be sent to

the stream, while for TgX, appropriate control commands must be inserted (e.g. \bf).

3The project started out before X was available.
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The code is easily extensible, but nowadays it would make more sense to invest in a
graphical interface (maybe based on CLX). Note that setting term* to nil disables

all enhancements.*

All formulae are displayed using a more powerful version of the traditional LISP pretty-
. printing procedure. This version is data-driven (therefore easily extensible) and can
handle abbreviations (these will be described in the next section). Today, the XP
proposal [Wat89] might be a viable alternative although I believe that in certain

respects it is not quite as powerful.

In every display and for each category of formulae, there is a corresponding global
variable that controls whether and how much of the formula to display. These vari-
ables have uniform semantics (and namings) across all node types and are documented

in The LOGICALC Manual [Duc88]. Thus the user is able to customize all displays

according to his preferences.

The truth abouth LOGICALC is that what you see is not what you get. For most type
of nodes, LOGICALC provides an extra level of packaging, namely “views.” You may
have noticed that the title of a goal display stated Goal View rather than just Goal.
The reason is that I lied to you: you weren’t really looking at a goal, but rather at a

view of that goal. The fact is that you never get to see goals, but only views of them.

The principal distinction between a goal and a view of same, is that the view has a
table which specifies a renaming of the goal’s variables. The reason for wanting to do
such a thing is rather subtle: in a complex graph, the same node may be accessible
from different places. However, these various places may have wildly differing variable
namings. Therefore, in order to produce the least astonishment in the user, it is often
desirable to carry over the naming conventions of the current node when moving to

another. Thence views!

*Preferred setting when running under EMACS for instance.
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When the pretty-printing procedure must output the representation of a free variable,
it will compute a renaming for it by regressing its translation through a list of tables.’
For instance, printing a goal involves posting the goal’s table (i.e. correspondance
between the class variables and the names by which they are known in the goal) to
this global stack of tables and then pretty-printing the goal’s class’s formula according
to the renamings that can be computed through this stack. For a view, it is the same

same thing with the additional posting of the view’s own table.

4.4 Abbfeviations

A major concern in an interactive system must be to make displays as legible as
possible. Similarly, input should allow short-cuts to spare the user tedious (and error
prone) typing. These requirements suggest the idea of abbreviations to improve the
readability of terms and formulae, and minimize the number of keystrokes required

to type them in.

4.4.1 Definitions in NUPRL

NUPRL has a definition facility whereby one can say, e.g:

DEF GE
<x:int1>>=<y:int2>==((<x><<y>) -> void)

in order to define >= in terms of <; the definition itself is named GE. Subsequently,
occurrences of expressions matching the right-hand side will be displayed as the cor-
responding instance of the definition’s left-hand side. For input however, you cannot

simply typein an instance of the left-hand side; instead you are required to instantiate

3Contained in the global variable namings*.
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a definition. In NUPRL’s text editor, this means typing “I and being prompted for
the name of the definition to be instantiated (e.g. GE). An instance of the definition is
then inserted at the current position in the tree (remember, this is a structure editor)
with place holders for the as yet unspecified parameters. The user must then edit

each place holder and fill them in with the desired values.

EF'S has a similar mechanism: the user would type @GE instead of ~IGE. It goes some-
what further and allows the user to type Q(GE t1 t2) to produce an instantiation
of definition GE with its first two slots filled with t1 and t2. In other words: x gets
replaced by t1 and y by t2. As we shall see, LOGICALC’s abbreviations are more
flexible and easier to use than NUPRL’s definitions or EFS improved version of same,

and, in some respects, more general.

4.4.2 Skolem Terms

In LOGICALC, most formulae are represented by their fully skolemized form. Among
other advantages, this choice of representation permits the consistent use of unification
to drive the construction of the proof tree and retrieve premises from the database.
However, it means that skolem terms will play a major and pervasive role. Unfor-
tunately, they tend to possess large and infelicitous rep'resentations, which is why
skolemization is often portrayed as a human-hostile transformation. I contend that
the judicious use of abbreviations, by succeésfully palliating the obfuscatory nature

of skolem terms, removes this last objection.

A skolem term is represented by a LISP s-expreséion of the form (SK name id args...),
where name is typically the name of the bound variable (presumably existentially
quantified) that gave rise to this term, id is a unique identifier (actually an integer),
and args... are the terms this skolem term depends on (originally these are the
universally quantified variables (or free variables) the corresponding bound variable

name was in the scope of).
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Ordinarily, a skolem term is created as a result of skolemizing a quantifed formula.

For example:
(AXIOM NOFLOOR (FORALL (X) (EXISTS (Y) (<Y X))))
is skolemized into, and represented internally by:
(< (SK Y 103 ?X) 7X)

where 103 is just a value I chose arbitrarily to stand for Y’s id, but would in reality
be whatever value the monotonically increasing global counter sknum* happened to
have at that time. The example above is rather innocuous, but when the skolem term
depends on more variables, the internal form becomes harder to read; and when, in
the course of a proof, these variables become instantiated with arbitrarily large terms,

it quickly turns into an undecipherable mess. Consider for example:

(SK MID 6 (SK A 10) (SK X2 9 (SK A 10) (SK BELOW 7 (F (SK A 10))) (SK
c 11)))

Similarly on input: skolem terms internal forms are hard and tedious to type. Their
size can become arbitrarily large and unnecessarily try the user’s typing skills as well

as his patience.

4.4.3 Short and Long Forms

The solution to both these problems (input and output) is to come up with a more
condensed, more friendly notation for skolem terms, or, at least, a less openly hostile

one. Here is what happens in LOGICALC: a skolem term of the form:
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(SK BAZ 57 A (F B))

which depends only on the two ground terms A and (F B) will be printed in the

abbreviated short form:
1.BAZ
whereas a skolem term depending on non ground terms, such as the following:
(SK BJ.AR 109 A (F ?X) 7Y)
will be printed together with a summary of the variables it depends on:
'.BAR(?X ?Y)

That is the general idea. A couple of considerations slightly complicate the picture.
Firstly, it is good manners to “define” an abbreviation before using it (consider this a
precept of well behaved user interface design). For this reason, the first time a skolem
term is printed, it comes out in a slightly more verbose form: the long form. Thus,
the first time the two skolem terms used for illustration above are introduced, they

would respectively come out as:

! .BAZ[57](A (F B))
! .BAR[109] (A (F 7X) ?Y)

thereby establishing identity (the id is mentioned between brackets), and listing the
actual arguments. In subsequent occurrences, however, they would be displayed in

the “short” forms that I exhibited earlier.

Secondly, two skolem terms may be competing for the same abbreviation. Consider

for instance:
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(SK BAZ 57 A (FOO B))
and (SK BAZ 238 (FOO A) A)

They both compete for ! .BAZ as their short form. If the system were to indiscrimi-
nately print ! .BAZ for both, total confusion would ensue. To prevent such a deplorable
state of affairs, the system abides by the rule that where the short form would be
ambiguous, the long form should be used instead. Of course, the user could always

abbreviate one of them differently to resolve the conflict.

I will now recapitulate the notions introduced above and formally state how skolem
terms are printed. When a skolem term is printed, it may appear in one of two forms,

the short form or the long form:

Short form: if the skolem term is ground (i.e. mentions no free variable in its ar-
guments, cf. args... above), then only its name is printed after the ‘! .’ prefix;

otherwise, the name is followed by a list of the free variables occuring in args. ...

For example:

(SK FOO 3 (F A) B) => {.F0O0
(SK FOO 3 (F ?X) ?Y) = !.FOO(?X ?7Y)
Long form: the ‘!.’ prefix is followed by the skolem term’s name then by its id

surrounded by square brackets, and finally by a list of its arguments args....

For example:

(SK FOO 3 (F A) B) = !.FOO[3]((F A) B)
(SK FOO 3 (F 7X) ?Y) == !.FO0[3]1((F ?X) ?Y)

The decision of whether to chose the short or the long form is based on the following

rule:

If the skolem term has already been printed on some earlier occasion and
no other skolem term by the same name has been printed since, then select
the short form, otherwise the long form.
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A skolem term will be printed in the long form the first time it is encountered; on
subsequent occasions it will be printed in the short form unless it is competing for

the same abbreviation with another skolem term with the same name.

4.4.4 Input Forms

Clearly, a similar mechanism is needed for input, whereby skolem terms can be abbre-
viated and no longer require to be typed in their entirety. In LOGICALC, the simplest
way to input (SK BAZ 57 A (FOO B))—assuming it last printed as ! . BAZ—is to type
! .BAZ.

The general rule is that “!.n name” denotes the n'® most recently printed skolem
term with function name. “!.1 name” can be abbreviated “! . name.” Neither the id

or the args have to or should be sp'egiﬁed.

The system keeps track of printing chronology by means of histories. When you type

“!.n name,” you are designating the n'® entry in name’s history.

Histories

A history is simply a list of skolem terms with identical skolem functions, ordered by
printing recency; the most recently printed first. Each skolem function has its own
history. According to the examples I have used so far, there must be a BAR history, a

BAZ history, and so forth.
Histories can be inspected by means of the history command.

HISTORY names...
HISTORY -ALL

Prints out the histories corresponding to the given names (or prints out all
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histories if the -ALL switch is provided instead). For each skolem term in a

history, the following correspondance is displayed:

(non abbreviated long form) — (abbreviated short form)

An example history might be:

w> HISTORY MID

History for: MID
1 t.MID(?X ?Y)
-=> 1 MID(?X ?Y)
2 '.MID[6]1(?A !.X2[9](?A !.BELOW(?A) 7C))
-=> | MID_A_X2(?A ?C)
3 t.MID[6](!.A '.X2[9](!.A !.BELOW[7]((F 1.4)) 1.C))
--> ! MID_A_XX2

Whenever a skolem term is printed for the first time, it is recorded at the top of its
function’s history. On subsequent printing occasions, it is removed from the history
and reentered at the top. Thus, pretty-printing a formula will generally involve

updating several histories.

Conclusion

It is always possible to input skolem terms by typing their complete internal form,
but doing so is a tedious and error prone process. As an alternative LOGICALC allows

the use of abbreviations:

!.name

Denotes the most recently printed skolem term with function name.
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''.n name
Denotes the n'® entry in name’s history—i.e. the n'h most recently printed

skolem term with function name. !.1 name and !.name are equivalent.

t.(name args...)
This is almost like typing the full internal form, except that the SK function
and the “id” are omitted. Naturally, this notation may be ambiguous—consider
2 skolem terms with same function, same args, but different ids. Fortunately,
when the read-function encounters an ambiguous designator like this, it displays

the possible candidates and prompts the user to select one of them.

Note that, while these candidates are being displayed, the normal updating of
histories is suspended. The rationale for this exception is that if the disambigua-
tion process—interrupting the reading process—was side effecting histories as a
result of printing out candidates, some abbreviations (of the form !.n name)

in the rest of the input might be thrown off.

4.4.5 Generalized Abbreviations

While originally designed to improve the legibility of skolem terms, LOGICALC’s notion
of abbreviations was extended and generalized to non-skolem terms. The principle of
this extension is that the user should be allowed to specify a name for a particular
pattern, say green for (color [blue yellow]), and whenever said pattern is to be

printed it will be shown as if it was a skolem term with the given name (e.g. ! .green).

An abbreviation can be defined through the abbreviation command:
w> abbreviation green (color [blue yellow])

The system responds by printing something like ! .green[258]. What happened is

“that a new skolem term was created with the internal form (sk green 258) and an
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assertion was made that it stood for the expression (color [blue yellow]). Note
that an expression such as (color- [red]) will still print the same as before. More
surprisingly (coleor ?x) won’t be affected either even though it matches (color
[blue yellow]) because of the free variable ?x; LOGICALC is careful to use abbre-
viations only when applicable, and, when several are applicable, to select the most

specific one.- The precise details of this process will be explained later.

It is possible to define an abbreviation for a term containing free variables, in which
case the abbreviating skolem terms would have these free variables as its arguments
(i.e. args). In particular, If the user were now to define an abbreviation for (color
?x):

abbreviation hue (color 7?x)

(color ?x) would, from now on, print as ! .hue(?x),and (color [red]) as!.hue([red]),
but (color [blue yellow]) would remain unaffected and would continue to print

as !.green.

Input works just as you would expect: !.green denotes (color [blue yellow]) and
!.(hue [red]) stands for (color [red]). Of course, on input, it is now no longer
sufficient to determine what skolem term is denoted by “!....,” for that skolem term
itself may be an abbreviation. Each skolem term must be recursively disabbreviated

to ultimately yield the actual referent.

Here is a summary of the functionality provided through the abbreviation command:

ABBREVIATION new old
Defines new—which normally must be a symbol—to be an abbreviation for
old—which is an arbitrary non atomic term. If old is a ground term (i.e. it
contains no variables), then (SK new id), where id is brand new, becomes its
abbreviation. If old contains variables vy, ..., v, and no other, then (SK new

id v1 ... v,) becomes its abbreviation.
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It is also permitted for new to be a functional term instead of just a symbol,
with the proviso that new and old must have identical sets of variables. If new
=(f t1 ... t,),then (SK f id ¢; ... tn) becomes old’s abbreviation.
ABBREVIATION term
ABBREVIATION -ALL
Displays all possible abbreviations of term. The system has heuristics to select
the most specific abbreviations. Normally, one would expect most candidates
to be filtered out by these heuristics, and at most one to pass. However, un-
der certain circumstances there may be several remaining candidates that are
undistinguishable by the heuristics as far as the specificity is concerned. When

that happens on printing, the system arbitrarily selects the first one.

When the -ALL option is given as an argument, all abbreviation templates
are displayed. Whenever an abbreviation is defined, the system asserts an
abbreviation template in a special datapool. The -ALL option makes it possible

to list them.
ABBREVIATION fREMUVEtemn

ABBREVIATION -REMQOVE -ALL
For each abbreviation of term the system asks the user whether the correspond-
ing template should be removed. If -ALL is specified instead, the same thing

~ happens for all abbreviation templates.

4.4.6 Implementation
When the user defines an abbreviation such as:
abbreviation smaller (< ?x ?y)

the system first determines the set of free variables occurring in the term to be

abbreviated (i.e. {?x,?7y}), then it makes up a new skolem term with the name as
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specified by the user, and with the free variables as its arguments; e.g. the system
might come up with (sk smaller 31 ?x ?y). Finally an assertion is made to the
effect that (sk smaller 31 ?x ?y) is an abbreviation for the term (< ?x ?y).
When I say assertion, I mean precisely that. LOGICALC sets aside a special datapool
in which such bookkeeping assertions can safely be made. In the present case the

assertion has the form:
(skolabbreviate (< ?x ?y) (sk smaller 31 ?x ?y))

In general the formis (skolabbreviate (ezpression) (abbreviation)), where (abbreviation)
is always a skolem term, and has exactly the same free variables as (ezpression). The
system also makes 2 additional notes: (1) the first to the effect that < has an abbre-
viation (this is used for speed in the pretty-printer), and (2) the second to the effect
that 31 is an ¢d for a skolem term that is an abbreviation (this is used for speed in

the reader).

Abbreviation Algorithm

The pretty-printing procedure operates in the natural recursive way, and maintains
a cache for the duration of its execution. This cache associates expressions with
their abbreviations; thus, if an abbreviation has already been computed, it can be
speedily retrieved from the cache. For each subexpression,” the system first checks
the cache. If that fails, the system checks whether an abbreviation has ever been
defined for the expression’s main functor (this justifies making note (1) earlier). If

yes, the proper abbreviation must be computed (and recorded in the cache) to replace

SIn this example the abbreviation is actually larger than the term it abbreviates, but we will
ignore this minor detail!

"Here, perforce I must simplify the exposition to an extreme; lest we get bogged down in mostly
irrelevant details.
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this expression. In any case, the pretty-printing procedure then proceeds with the

sub-expressions (e.g. the arguments to the abbreviation).

I will now describe how an abbreviation is effectively computed. Let us assume that

the expression to be abbreviated is (term).

1. First, we will query the bookkeeping datapool for assertions which unify with
(skolabbreviate (term) ?any). This unification will succeed for these asser-
tions:

(skolabbreviate (ugly) (pretty))

for which there exists a substitution 6, such that 6(term) = 6(ugly).

2. We shall then reject all candidates which assign values to free variables of (term):
abbreviating a term should not make it appear to be more instantiated than it

really is.

3. Next we shall rank the candidates according to how close (ugly) is to (term). The
idea is to pick those closest on account that they are more specific. In a first
approximation, if (ugly); has fewer free variables than (ugly)s, it is probably
more specific. On further examination, it appears that the size of the terms
required to instantiate the free variables in each case also bears on the issue
of specificity. The heuristic I use computes the “size” of (ugly) by counting
all atoms but not free variables; it works quite well in practice. Only those

candidates with maximum size are retained.

4. Similarly, we then rank the remaining candidates according to the size of
(pretty). Only those candidates with minimum size are kept. The rationale is

that we want the abbreviation to be as small and simple as possible.

5. Finally, we just pick randomly from the remaining candidates.
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4.5 Commands

The user interacts with LOGICALC through a “shell” which shares a number of simi-
larities with e.g. a UNIX shell. In particular, it is line oriented: a entire line of input
is read and the first expression on this line is considered to be the “command” while

the rest of the line is taken to constitute the command’s arguments.

Unlike a traditional shell however, this one offers a different set of commands depend-
ing on the context (current node or current mode), and is implemented in an object
oriented manner. Such a design is very natural and intuitive in the context of graph
editing, both for the user and the implementor. A further advantage is that context-
specific disambiguation of commands can easily be provided. As a consequence, all
“named” commands can be abbreviated by a prefix; e.g. abbreviation may be in-
voked by abbrev or abb, xabbrev by x, +plan by +. Should the prefix turn out to be
ambiguous, the user would be informed of the candidates, and then be prompted for

further completion until the ambiguity is finally resolved.

Also, a command is not required to be denoted by a name, but can be any arbitrary
expression, as long as the current “command processor” knows what to make of it.
For example, integers often serve as “moving” commands (typing n moves to subpart
number n). I have not found a use for stranger sorts of commands, and any input

that cannot be interpreted as a command is evaluated as a LISP expression.

4.5.1 Command Line Structure

In a regular shell, the user may specify several commands on the same line by inserting
appropriate separators (e.g. a semi-colon *;’). In LOGICALC, a similar segmentation

can be effected by insertion of ‘//’. For instance:

cmd, argsy... // cmdy args,. ..
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would first execute “cmd; args;...,” then “cmd, args,....” In fact, both */’ and ‘//’
are command prefixes which also act as separators. ‘/’ as the additional effect of
“silencing” the next command: e.g. if it is a moving command, the destination node
will not be displayed. Unfortunately, the exact semantics of silencing have not been
completely worked out and some commands may violate your expectations, [e.g. what

to do when interaction with the user would otherwise be initiated?].

Each command is responsible for making sense of its own arguments, but for the sake
of uniformity (and familiarity) I have borrowed yet another convention from the UNIX
tradition. Commands accept “options,” which, by tacit agreement,® are distinguished

by a leading dash ‘~’. For example:
abbreviation -all

lists “all” abbreviations. Note that options too may be abbreviated: -all may be
typed -a; however, unlike in the case of commands, no provision for interactive dis-
ambiguation is made: the first match is selected. This should never be a problem
because options accepted by the same command are unlikely to begin with identical
letters. Making sure this doesn’t happen is the responsibility of the designer [let me

help your here: this means me].

In Chapter 6, I will show how this idea of options was also adopted and extended for

use in subterm and premise descriptors.

As long as each parameter to a command can be represented by one expression on
the command line, parsing arguments is a breeze. Unfortunately, some commands
may expect or admit more complex parameters which may require several expressions
to notate, e.g. -all foo. Also, the command may allow the specification of several

a.rgumentbs of the same type: several premises to successively fill the same role, several

8Not enforced, but respected throughout.



4.5. COMMANDS 135

subterms to act on, etc... Therefore, an additional structuring convention had to be
designed. I chose single dashes ‘=’ as explicit separators to be inserted at strategic
points within the argument list itself to enable the command to correctly partition

this list into groups of arguments. For example:
+plan equality a b - fool foo2 foo3

invokes plan generator equality with 2 groups of arguments: the first group contains
a and b and denotes subterms to be replaced by equality, and the second group
contains fool, foo2, and foo3 which are premises where the necessary equalities are

to be found.

Occasionally, for very complex commands, yet another level of structuring may be
required. In such cases, [ use ‘==’ to denote major breaks and ‘-’ to denote subdivi-
sions. For instance, specifying the arguments to abstraction is rather tricky: you
must specify which subexpressions will become redexes, for each one what variables
to introduce, and for each variable which subexpressions it will abstract away. The
syntax is:

+plan abstraction subfmla - var subterms - var subterms ...

-- subfmla - var subterms - var subterms ...
-= subfmla - var subterms - var subterms ...

The above appears on several lines for clarity, but it must be typed on one line to the
shell. |

4.5.2 Macro Commands

Often, it would be convenient if the user were allowed to abbreviate certain command
lines or certain recurring command patterns. Unfortunately, abbreviations were de-
signed for “expressions,” not whole lines of input. This gave me the idea to extend

LOGICALC’s shell to also accept input of the form:
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(execute +plan equality foo - bar)

and treat it as if the words following execute had directly been typed to the shell as
a line of input. The parentheses make a world of difference, because (execute ...)

is an expression, and therefore can be abbreviated.

Defining Macro Commands

execute is a command implemented by the global command processor logicalc. An
input line of the form execute cmd args... will be interpreted as if cmd args... had
been typed directly to the shell. By special dispensation, (execute cmd args...) is
also permitted. Because of the surrounding parentheses, the preceding is an expres-
sion and can be abbreviated by the mechanism and notation for generalized abbrevi-

~ ations [see earlier]. For instance:
abbreviation fool (execute +plan equality foo - bar)

defines ! .fool as an abbreviation for (execute +plan equality foo - bar). It is

possible to define parameterized macros by including free variables. For example:
abbreviation foo2 (execute +plan equality foo - ?x)

leaves one parameter unspecified by replacing it with a free variable, and defines
!'.£002(?x) which can be interpreted as a macro with one argument. Subsequently,
typing !.(foo2 bar) will have the same effect as typing !.fool; other parameters

can be supplied depending on what the situation calls for.
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Invoking Macro Commands

Macro commands are regular abbreviations and consequently are invoked simply by
using the abbreviation notation characterized by the “!.” prefix, e.g. !. (foo2 bar).
On the other hand, it would be nice, especially for macros with arguments, if they
could be invoked more like regular commands; that is by typing their name followed

by the required arguments. LOGICALC lets you do something that is almost as nice:
xabbrev foo2 bar
is interpreted as if !. (fpo2 bar) had been typed. In general,
xabbrev c¢md arg; ... arg,

is interpreted as !.(e¢md arg; ... arg,). Note also that, since commands can be
abbreviated by a prefix [see next section], the user could simply type x foo2 bar

which is almost as short as if the x had been omitted altogether.

xabbrev is a command implemented by the global command processor logicalc. The
difference between xabbrev and the !. prefix is that the latter performs expansion at
read-time, whereas the command delays the expansion process until execution time.
Like the execute command, an xabbrev command may be enclosed in parentheses.

Therefore, you could define the following macro:
abbreviation foo3 (xabbrev foo2 ?y)

which is not very interesting because the foo3 macro does the same thing as the
foo2 macro. However, suppose you removed the definition of the foo2 macro and
redefined it to do something different, the f003 macro would automatically follow the

new definition. On the other hand, if you had defined foo3 by:
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abbreviation foo3 !.(foo2 ?y)

foo3 would keep following the old definition because expansion of ! . (fo02 ?y) hap-
pened at read-time, instead of being delayed until execution in the case of (xabbrev

foo2 ?y).

4.5.3 Recalling An Earlier Command

A UNIX shell such as cSH offers a mechanism known as “history substitutions,”
whereby the user may use words from previous commands as portions of new com-
mands. A typical application of this facility is to redo an earlier command exactly,
or with one argument changed or corrected. Support for this feature is provided by
the shell in the form of a “history” list which saves a fixed number of the most recent
commands together with their command number. The notation !n is interpreted as
a request to insert at this point the text of command n; the text may be further
processed before insertion through the use of “modifiers,” e.g. 'n:s/foo/baz/ will
insert the text of command n with the first occurrence of foo replaced by baz; several

modifiers can be specified.

A similar facility is available in LOGICALC. Its shell also maintains a list of the more
recent commands. This list can be displayed by typing commands. For example, you

might see:

(5] w> COMMANDS
[1] +PLAN DEDUCTION
[2] USE -FIND
[3] 3
[4] PROOF
[5] COMMANDS

Just as in CSH, you may type !n to recall command n, or !'—n for the n*® most recent

command. What really happens is that 'n denotes the expression (execute (text
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of command n)); thus, according to the list shown above, !2 (or, equivalently !-4)

denotes (execute use -find).

Modifiers can also be applied, but they are not as general as in CSH. You can type
tn:(foo baz) to denote the text of command n with every occurrence of foo replaced
by baz. This is not “textual” substitution, but “symbolic” substitution; in particular,
if the text of command n contains a symbol named fool, it will not be replaced by

bazi, only occurrences of the symbol foo will be affected.

In a modifier such as !'n:({old text) (new tezt...)), (old text) doesn’t have to be
a symbol; it can be any expression. Also, (new tezt...) can be composed .of several

expressions; the effect is to “splice” them in. For example, assuming that {12 denotes:
(execute +plan equality (foo a) - bar)
then, 112: ((foo a) (baz a) (baz b) (baz c)) would denote:
(exe;;ute +plan equality (baz a) (baz b) (baz c) - bar)
Furthermore, it is possible to control which occurrences of (old tezt) are to be affected,

by including as a prefix their respective indices as determined in the left to right, depth

first order; e.g:

112: ((foo a) (baz a) (baz b) (baz c¢)):1 3:(baz moe)

denotes ~ (execute +plan equality (moe a) (baz b) (moe c))

4.5.4 Command Processing

As I mentioned earlier, every type of node provides its own “command processor.”

Thus, the shell’s functionality will depend on context in a natural and intuitive way.
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Furthermore, its implementation is greatly facilitated by this modularity, and the

object oriented approach makes it both flexible and extensible.

In this section, I will recapitulate and/or elucidate the major ideas (structural and

algorithmic) that underlie command processing.

Structuring and Segmentation of Input Lines

There are two levels of concern here:

1. sequences of commands: Both / and // can serve to prefix, and therefore

delimit, several commands given on the same line. / has the additional effect
of silencing the following command—in general this means that it won’t print
what information would otherwise be displayed; this is particularly convenient
for moving commands, because by default they have the effect of verbosely

displaying the node which has become the new focus of attention.

. the structure of argument lists: It is sometimes necessary to insert explicit

separators to indicate natural groupings of parameter specifications. In general

‘~” serves this purpose, e.g:
cmd fool foo2 - bar - bazl baz2 baz3

invokes cmd with 3 groups of parameters. The first group fool foo2 serves
as argument 1, the second group bar as argument 2, and the third group bazi

baz2 baz3 as argument 3.

Certain very complex commands require yet another level of argument segmen-
tation. In such a case, I use ‘~=’ to indicate major groupings within which ‘-’

specifies subdivisions.
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The Shell’s Interpretive Loop

First, a complete line of input is read.® It is then segmented according to top-level -
occurrences of / or //, thus resulting in a list of commands which are successively

and individually interpreted according to the following algorithm.

1. If the command begins with a / (resp. //), turn the silencing switch on (resp.
off) temporarily. strip the prefix off and continue interpreting the rest of the

command.

2. If the command is quit, terminate the shell and return control to the Lisp

interpreter.

3. Intercept stack oriented commands, e.g. stack (list stack contents in a con-
densed format), pp or 0 (display current node), and —n (pop n nodes off the
stack).

4. Try current node’s command processor. If the processor knows how to handle
the command it will either return a new node (which represents the destination
if a motion was involved) or T; otherwise, it will return NIL, thereby indicating
failure. Note that named commands may be specified by just a prefix; there-
fore, each command processor will automatically compute the completion of
that prefix according to the set of commands it knows about; if the prefix is
ambiguous (i.e. more than one completion is possible), the user will be prompted

for additional characters until the ambiguity is resolved.

5. If the current command processor fails to handle the cominand, try the global
command processor named LOGICALC (all command processors are named—
usually after the type of nodes they cater to). It implements those com-
mands that make sense in all contexts, e.g. abbreviation, execute, xabbrev,

commands, history, information.

°It is also recorded in the command history.
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6. Otherwise, if the command is a symbol and there is a global variable by that

name, print its value; else, if it is a list whose first element is a symbol with a

function definition, evaluate the expression and print the result.

7. If all else fails, display an error message.

4.6 Help

In an interactive system, a major design concern must be to achieve an effective

and uniform integration of help facilities with all other aspects of the user interface.

Ideally, the principle should be that wherever you may type something, you should

be able to ask for help too. For a practical implementation, we must first identify the

various kinds of help a user might need.

. First and foremost, since all interactions take place through commands, the

user should be able to ask what commands are available in the current context.
This is all the more essential in LOGICALC since command sets vary from one

type of node to another.

. Secondly, it should be possible to request information about one particular

command, a la UNIX man.

As a further refinement of the above, it is occasionally useful to list the docu-

mentation for one particular option to a given command.

The calling syntax for a command can be thought of as a template; the user
may require help filling in that template. Here again, the needs may be broken

down into several categories:

explanations: It should be possible to ask for an explanation of what type of

parameter or specification is expected.
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defaults: It should be possible to omit the specification of a parameter or

parameter group and have the system supply an appropriate default.

prompts: It should be possible to omit or underspecify a parameter and be
prompted by the system, with a intuitively meaningful message, for more
input [also, see next item]. At this point it should also be possible to ask

for help.

interactive determination and construction of parameter specs: It should
be possible to ask the system for help in interactively constructing the
sbeciﬁcation for a particular parameter. For example, many parameters
are premises (axioms or assumptions). Clearly, if the database is large, the
user will require help in searching for pertinent premises [see Chapter 7
and Appendix B]. Also, other parameters are speciﬁéations of subterms

(see e.g. equality); here too, interactive selection can be helpful.

As we can see, the various kinds of help fall in two broéd categories: (1) information,
and (2) parameter determination and construction. LOGICALC implements support
for both through the respective switches ~help and -find; either may be typed
wherever input is expected. Find Mode, invoked through -£ind, will be documented
separately in Appendix B. For the moment, I will consider the information help

facility built into LOGICALC.

Available Commands: -help
When -help is typed directly to the shell, the system responds with a listing
of all commands available in the current context, together with their respec-
tive documentation. It is possible to control whether information about global
commands (i.e. abbreviation through information) is printed by setting the

global switch HELP-LOCAL-P*.
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Documentation of Command: cmd -help

Lists the documentation about emd. For example:

[2] w> ABBREVIATION -HELP
ABBREVIATION new old
-~ define ‘new’ to be an abbreviation for ‘old’.
‘new’ may be a symbol or an expression of the
form (symbol args...).
ABBREVIATION expr
== show all abbreviations of ‘expr’
ABBREVIATION -ALL
—= show all abbreviations
ABBREVIATION -REMOVE expr
-= for each abbreviation of ‘expr’, prompt the user
to determine whether it should be removed
ABBREVIATION -REMOVE -ALL ’
== for each abbreviation template, prompt the user
to determine whether it should be removed

Documentation of Option: cmd option ~help

Lists the documentation about the specified option. For example:

[3] w> ABBREVIATION -REMOVE -HELP
ABBREVIATION -REMOVE expr
—- for each abbreviation of ‘expr’, prompt the user
to determine whether it should be removed
ABBREVIATION -REMOVE -ALL .
—= for each abbreviation template, prompt the user
to determine whether it should be removed

Documentation on a Plan Generator: +plan plan_generator ~help

List the documentation about the specified plan generator. For example:

[4] w> +PLAN MODUS-PONENS -HELP
MODUS-PONENS (Plan Generator)

A=>q -=-> A=>p~->q, A=>p

Using an implication whose consequent unifies with the current
goal, attempts to prove the corresponding instance of the
implication’s antecedent. eic...
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Getting Help at a Prompt:
When a parameter is omitted, the system will typically prompt the user for it.
At that point, it is possible to type in -help to see the documentation for the

parameter specification syntax. For example:

[5] +PLAN MODUS-PONENS
Major premise? -HELP

You are being prompted for a premise. You are expected to
type in a descriptor to denote premises. A descriptor may be:
...[see chapter on plan generators]

Another way to access information is through the information facility, which pro-

vides a front-end with a categorized index to available documentation.

The problem with this approach is that all commands must be designed to recognize
~ and handle the -help option, not only as their first argument (in which case handling
of ~help could easily be factored out), but also after admissible options; and since
each command is responsible for parsing its own argument list, it must also account
for possible occurrences of -help at meaningful places in the argument list. This
state of affairs is regrettable since providing help is an issue orthogonal to that of
implementing the basic functionality. It would be nice if the two could be specified
independently, or, at least, in a more decoupled fashion. However, I do not, at this

point, have a more satisfactory design, and the two issues have remained conflated.

Similarly for all prompting procedures. ..

4.6.1 Implementation

In this subsection, I wish to afford the reader a glance at the implementation. Those

not keen on such details may safely skip to the next chapter.
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Each node in the browser is represented by a pair (object, descriptor), where the
descriptor provides all the interactive functionality associated with the object. A

descriptor is a 4-tuple:
(type, abbreviate, display, interpreter)

type is a NISP type; abbreviate is a function that maps an instance of type to a
small s-expression by which it can be represented when brevity is required; display
is a procedure that produces a verbose description of an instance of type. Finally,
interpreter is a procedure that takes an instance of type as its first argument, and a
. list of expressions (command line) as its second argument, and returns either a pair
(objects, descriptors) if this was interpreted as a motion to objects, T if this was only

a side-effecting command, NIL if not handled.

What I have outlined above is the structure of the browser as originally implemented
in DUCK. In LOGICALC, all interpreters invoke a command processor that provides
the additional processing (e.g. command completion) and design enhancements (e.g.

help facility) discussed earlier. The interpreter for a goal is defined thus:

(defun goal-interpreter (the-goal the-cmd-line)
(process-command goal the-cmd-line the-goal))

where the role of process-command is simply to invoke the processor named by its 1st
argument, with, as parameters, the command proper (i.e. (car the-cmd-line)), the
command’s parameters (i.e. (cdr the-cmd-line)), and the node itself (the-goal)—

in fact any additional arguments you wish to pass on.

A command processor can be defined by the the def ine-command-processor macro

whose syntax is:

(define-command-processor (name) (cmd args node) (clauses...))
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where each clause is one of the following:

({command name) (command code...))
This defines a named command. However, the preferred way to define named
commands is incrementally using the datafun construct as illustrated later in

this section.

({test) (code...))
A command can be recognized by an arbitrary (test); in which case, the corre-

sponding (code . ..) is executed.

(-else (code...))
A default action may be specified for the case when the command expression is

not recognized by any other clauses.

The semantics is this: if the command is -help then provide information about
.all commands available in the current context. Otherwise, all (test) clauses are at-
tempted first in the order in which they were specified. If they all fail to recognize the
command, then an attempt is made to identify it with one of the named commands
known to this processor—modulo the prefix expansion business. If that too fails and

there is an -else clause, then that clause is finally tried.
The command processor for a goal node is defined thus:

(define-command-processor goal (cmd args node)
((integerp cmd)
(_goal-goal-command cmd (list cmd) node))
(-else
(let ((pg (disabbreviate-plan-generator cmd)))
(and pg (+plan-goal-command ’+plan (coms pg args) node)))))

The first clause shows how an integer can be interpreted as a motion command:

a (test) clause intercepts all integers and directly calls the function implementing
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motion to a subgoal. The -else clause is rather interesting: since invoking plan
generators is probably the major activity at goal nodes, it is convenient to be able
to omit the +plan command altogether and simply name the plan generator directly.
This is what the -else clause does for you: if the command was not otherwise
recognized, maybe it is a plan generator (or prefix thereof), in which case it should

be invoked as if +plan had been typed.

Other named commands can be incrementally defined through the following syntax:

(datafun (processor)-command (command name)
(defun (cmd args node) (code...)))

For example, the command to move from a goal node to its class is defined thus:!°

(datafun goal~command class
(defun (cmd args node)
(match-cond args
(\? (?"-HIELP" . ??ignoring)
(out 0 cmd (t 15) " -- move to goal’s class" t) t)
(t (ignoring args)
(make gwalkstate class-descrip*!! (goal-class goal))))))

This example illustrates 2 things: first, every single command must anticipate possible
occurrences of the option -help and be prepared to respond appropriately. Secondly,

the vertical bar in "-H|ELP" indicates the minimal prefix to the matching code.

I am dissatisfied with the obligation imposed on each command to parse its own
arguments. Since there is a lot of commonality, I have abstracted quite a bit of
functionality into various macros and auxiliary functions, but it still feels like there

ought to be a better way, a general parsing interface. It is very possible that an

10There is a little white lie in the definition, because one doesn’t dea] with goal nodes directly but
with goal views,
" Descriptor for class nodes.
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analysis of the needs and requirements of the current implementation could lead to
the design of compositional parsing tools that would simplify and unify command

definition. Unfortunately, I have not had the time to look into this.






Chapter 5

Implementation

In this chapter I describe the data-structures for the internal representation of a proof
graph. They capture the notions of sets of assumptions, goals and goal classes, plans,

proofs and answers,

5.1 Sequents and Assumption Sets

LOGICALC is based on a system of natural deduction operating on a sequent logic,
with unification built in as a fundamental operation. Proofs and goals (i.e. theorems
to be proven) are represented by sequent-like objects which, for convenience’s sake,
we both denote by expressions of the form A = p, where A4 is a set of assumptions

and p is either the conclusion or the goal formula.

Natural-deduction proofs occasionally require making assumptions local to a sub-
proof. Consider for instance a goal of the form A = p O ¢. The natural approach
is to invoke the deduction theorem, assume the implication’s antecedent p and try

to prove the implication’s consequent g under this additional assumption. In other

151
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words, the new goal has the form A,p = ¢, where A, p is the traditional abbreviation

for AU {p}, and p is now an assumption local to the subgoal.

In the course of a proof, hierarchical sets of assumptions will thus naturally arise.
Therefore, we require an implementation of assumption sets that will reflect this
hierarchical structure and efficiently support multiple assumption sets. There should
be minimal overhead involved with the creation of new assumption sets; in particular,
copying of contents should not be required. It should be easy to switch between
different assumption sets, and querying should have uniformly good performance. I

have argued earlier that datapools satisfy those requirements quite nicely.

Datapools are described at length in [McD79]. They can be created in a hierarchical
manner by means of the function DP-PUSH. Given a datapool P, (DP-PUSH P) creates
a new datapool whose parent is P. The new datapool initially inherits the assertions
of P (no copying is involved), but is independently side-effectable and modifications
made to it do not affect P. In particular, it is possible to add assertions to the new-
datapool that were not (and will not be visible in) its parent. This is how local
assumptions are implemented; a new datapool is created by DP-PUSH and the local

assumption is asserted in it.

Assumption sets are implemented as data structures with the following 4 slots:

Assumption: the formula which is the local assumption

Assertions: making the above assumption results in the creation

of one or more assertions [see below]; these are their names.
Datapool: where the assumption is being made.
Parent: the assumption set without the local assumption.

When an assumption such as a conjunction is being made, it is often convenient to

pretend that each conjunct is being asserted separately. The procedure ASSUME, which
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is the one that actually inserts the local assumption in the new datapool, recognizes
all common cases such as conjunctions, double negations, negated disjunctions, etc...
and asserts the components separately; it returns the list of the resulting assertions,

which is then stored in the corresponding slot of the assumption set.

In the introduction, there was a goal of the form:

(IF (AND (IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?70THER-THUMB !.C)
(NOT (= !.ONE-THUMB ?0THER-THUMB))))

After invoking the deduction theorem the new datapool contains the following local

assertions (this is taken from the display of the goal on page 13):

Assumptions:
(Is CREATUREV!.C) -~ 1:I8278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- !:PART280

As you can see, each conjunct resulted in a different assertion; the funny name to the
right of each formula (e.g. ! :1S278) is the name of the assertion. It is automatically
made up by the system on the basis of the principal symbol in the formula and
the value of a monotonically increasing global counter; this is why the 3 consecutive
assertions are named !:I1S278, !: 15279, and ! :PART280. The reason for the strange
‘1.’ prefix is that these names are not really symbols but symbol-like structures which
become “interned” in some sense only when they are printed; they can essentially be
used like symbols but they are cheaper because, as long as they are not printed, they

can be garbage-collected.

Assumption sets are weakly “uniquified” in the following sense: the assumption set

constructor checks whether there already exists an assumption set with the same
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parent and same assumption slots; if one is found it is returned; otherwise a new one
is constructed and added to the list of existing assumption sets. I use the qualifier
“weakly” because assumptions are compared with a simple syntactic equality test

rather than with some more general subsumption check.

As I mentioned earlier, the natural-deduction way of solving a goal of the form A =
P O ¢ is to attempt a proof of the subgoal A,p = q. However, once such a proof
has been derived, the Deduction-Theorem inference rule must still be invoked via a

validation in order to produce a proof of the original goal.

The Deduction-Theorem rule “discharges” a local assumption. The way it works is
really quite simple: it is given a proof of A, p = ¢, where A, p is an assumption set
whose local assumption is p and whose parent is A, and it returns a proof object for

A=pDaqg.

5.2 Goals and Goal Classes

5.2.1 Goals in Brief

Goals are sequent-like objects which I usually depict using the notation A = p, where
A represents the current set of assumptions implemented as a datapool, and p is the
formula which is to be shown follows logically from A (actually: that there exists
some instance of p which logically follows from A). Although both proofs and goals
are sequent-like objects, both frequently depicted with the same notational device,
I believe that they are distinct notions and should not be conflated. Others have
sometimes introduced the idea of partial proofs; I do not pursue this avenue; instead
I chose a goal/plan based approach. Here is the display of a goal taken from the

extended example of the introduction chapter:
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Goal View <class CLASS.28>
Find: (T.3) in:
(PART ?T.3 !,ONE-HAND)

Assumptions:

(= '.ONE-THUMB !.0THER-THUMB) -- !:=305
Answers:

1 T.3 = | ONE-THUMB
Supergoal:

(= '.ONE-HAND !.OTHER-HAND)
(no local plans)
(no class plans)

When the user initiates a session with LOGICALC, he is asked to state the theorem
to be proven. This theorem is then presented as a goal. In order to solve a goal,
the user will typically invoke a plan generator which will result in one or more plans
being created and indexed under the goal as alternative ways of attempting the proof.
Sometimes other plan generators may be invoked on the same goal to generate further
plans; for instance if those available so far have all proved unsuccessful, or a better

way occurred to the user.

Thus, goals are refined into plans with subgoals and so on recursively in some form of
and-or tree where plans are and-nodes (conjunctions of goals) and goals are or-nodes
(disjunctions of plans). The process essentially bottoms out when a goal can unify

with one (or more) assumptions (or axioms), or otherwise aquire an answer.

5.2.2 Goal Classes

It is pretty common for similar goals to occur in different parts of the proof tree. For
instance, there might be some plan with a step of the form A = p(z) and some other
plan with a step of the form A = p(y); these steps are equivalent modulo a renaming
of variables. When one has been solved, it should not be necessary to duplicate the

work in order to obtain a solution for the other.
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The notion of a goal class was introduced as a bookkeeping device that would support
the sharing of answers between goals. A goal class is an equivalence class for goals;
goals are simply instances of an equivalence class. Plans and answers are actually
recorded with the class, not with the goal. When the user is given the impression
of working on a plan to solve a goal, he is really working on a plan to solve the
corresponding class, but, by working through the goal, he is granted the benefit of
certain cosmetic adjustments which sustain the illusion that he is working on solving

that very goal itself.

So why can’t we do away with goals altogether and use classes directly as steps in
plans? The reason is that variable names must be consistent across all steps of a
plan. Suppose there already exists classes for goal-sequents A = p(z) and A = ¢(y),
and further suppose that we want to create a plan consisting of the steps A = p(2),
A = q(2). It is clear that transforming the plan into A = p(z), A = ¢(y) would not
preserve its (computational) meaning. A goal essentially acts as a view of its class

through the renaming required by the plan of which it is a step.

Here is how a class is implemented:

name: asymbol such as CLASS. 28 that uniquely identifies the class.
A => p: the sequent representative of what is to be proven.

answers: all answers found so far for this class. Each answer is

little more than a packaging of a proof for the above sequent,.

plans: all plans proposed so far for this class. Not only may differ-
ent plans have been tried in successive attempts at deriving an
answer for this class, but different plans may be appropriate

for different goals (different instantiations may be desired).

members: a list of all the member goals in this class.
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stronger: a list of all the classes which are more general than this

one.

weaker: a list of all the classes which are less general than this one.

Related Classes

The last two fields require a little explanation. They serve to maintain links to
“related” classes. The rationale is that a class may occasionally be able to adapt an
answer from a related class and transform it into an answer for itself. Therefore, it
is convenient to keep these links around so that answers may be “broadcast” along

them to other classes that may also benefit from them.

Consider a class C defined by A = p and a class C’ defined by A’ = p'. C is said to be
stronger than C’ if it attempts to prove a more general statement. In principle, this
more or less means that p subsumes p’ and A C A’, i.e. C makes fewer assumptions
than ¢'. In practice, true subsumption is too expensive and hard to check, and
LOGICALC restricts the notion of a stronger class to the case where p' is an instance
of p and A is an ancestor of A’ in the assumption set hierarchy; both these conditions

are easy to check.

So, why is it a good idea to keep links between related classes? Consider the two
classes A = p and A = p’ where p’ is an instance of p, i.e. p’ = oyp. Clearly, any

answer A = g901p to the second class is also a valid answer to the first one.

Conversely, consider the two classes A = p and AU B = o,p, where the first one is
more general than the second one, and suppose an answer A = op is found for the
first one. In the case where there exist o3 such that ¢ = 0501 (composition of substi-
tutions), then the answer A = 0301p can be adapted (by assumption introduction)

into an answer for the second class: AU B = g,0,p.
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Since every class has to figure out for itself whether it can adapt an answer re-
ceived through the broadcasting apparatus, it might be simpler to merge the lists of
stronger/weaker classes into a single one of related classes. I originally thought that
maintaining this distinction might be a useful thing to do for the benefit of the user
(who might want to prove a more general goal for instance); however, in practice
this distinction is never taken advantage of by the user. It survives because there
was no good reason to remove it either, and, who knows, it might yet turn out to be

profitable in some circumstances.

Creation

When a goal is created (at the top level or as a plan step), a corresponding class must
be found in which to insert it. This is accomplished by the function FIND-CLASS
which is given a sequent A = p as argument. First, FIND-CLASS determines whether
there is an already existing class for this sequent as follows: it queries the global
database for assertions of the form (GOAL_CLASS (name) p); for each class there is
an assertion of this form that relates its (name) to its pattern. We want to find those
which at the very least unify with p. For each candidate, we can recover the original
class through the GOAL_CLASS property of its (name). We then compare A = p to
the recovered class A’ = p’. If A= A’ and p = P’ (modulo renarmng variables), then
FIND-CLASS will return this class.

If no appropriate equivalence class is already in existence, we must construct one.
Its “stronger” and “weaker” slots are initialized with related classes identified by a
process similar to the one described above; each one of these related classes is also
updated to record the correct back-pointer to the new class. The new class is recorded
on the GOAL_CLASS property of its name, and a global GOAL_CLASS assertion is made
that relates its na.mé to its pattern p. Note that these side-effecting bookkeeping tricks

force LOGICALC to do some amount of cleaning whenever a new session is initiated.
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Initialization

After a class has been created, it goes through a process of initialization whose purpose
is to find answers to this new class, presumably in the hope that the user won’t have

to be bothered. There are 3 ways answers can be acquired:

1. Consult all related classes and attempt to borrow and adapt their answers.

2. Find all trivial answers. First, check whether the class’s pattern can be regarded
as a tautology of propositional calculus. If such is the case, then the class is
considered to be solved (with a yes answer [see later|). Otherwise, find all

assertions that unify with the pattern.

3. Find all answers that can be derived by back-chaining. For instance, LOGICALC
has a built-in theory of types implemented by DUCK back-chaining rules which

does a really good job of automatically solving IS-goals.

Method 1 is always attempted. Whether method 2 (resp. method 3) is attempted
is controlled by switch class-init-fetch-nobc* (resp. class-init-fetch*). Thus

classes, and a fortiori goals, may acquire answers without user intervention.

5.2.3 Goals Revisited

As I mentioned earlier, a goal is an element of a goal class. Its principal function is to
provide a renaming between the variables of its class and those required by the plan

of which it is a step.

Remember however that a class may have many plans associated with it, not all of
which are relevant to the current goal. Therefore, the duties of a goal are slightly

extended to include performing a little contextual packaging. In other words, a goal
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also serves to record information directly relevant to it (as a step in its plan, or a

subgoal of its supergoal) and suppress the extraneous stuff associated with its class.

For instance, when the user views a goal, he sees only those plans that have been
explicitly associated with this goal; all the other plans of the class remain hidden,
eventhough they are all available and can selectively be brought to the foreground

with a command.

Also, whenever an answer if followed from a goal, it is useful to record with that
goal what the result of following said answer was; typically the result would be the

construction of a successor plan or the derivation of a proof of the supergoal.

Here is how a goal is implemented:

class: the goal’s class.

table: the correspondence between variable names in the class and

variable names in the goal’s plan.

plans: a subset of the class’s plans. A plan is included in this set
either as a result of invoking a plan generator and answering
“yes” to the question “make it local?” or by explicitly request-
ing it from the class (**plan command). Plans can also be

removed from this list (~plan command).

superplan: the plan this goal is a step of. This goal’s supergoal
is the goal that the superplan is attempting to solve. The

top-level goal has no superplan.

rank: an integer numbering this goal as a step within its superplan.
This number is used by the superplan’s validation to refer to

a proof of the corresponding step.
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links: each link is of the form ((answer) (fate)) where (answer) is
an answer that was followed from this goal, and (fate) is what
it led to and is of the form ((status) (successor)); (successor)
is either a successor plan to the goal’s superplan, or an answer
to the goal’s supergoal. (status) indicates whether the actual
fate was found to be subsumed by an already existing fate, in

which case (successor) is really the subsuming fate.

5.3 Plans

The preferred method to solve a goal is to reason backwards and progressively refine
goals into subgoals until the process bottoms out when answers are found by unifying
goals with assumptions or axioms. The process then unravels upwards producing

proofs validating each successive refinement.

The notion of refining a goal into subgoals is captured by the concept of a plan. A
plan is in general constructed as a result of the user invoking a plan generator. For
instance, invoking the deduction theorem plan generator on the initial goal of the

introductory example resulted in the creation of the following plan:

Plan View <class CLASS.1>
Documentation: "w> +PLAN DEDUCTION-THEOREM"
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !.THUMB1) (PART !.THUMB1 !.C))
(AND (IS THUMB 7THUMB2)
(PART ?THUMB2 !.C)
(NOT (= !.THUMB1 ?THUMB2))))
Will find:
THUMB2 = ?THUMB2
Steps:
1 ((IS CREATURE !.C)
(IS THUMB !.THUMB1)
(PART !.THUMB1 !.C)

=> (IS THUMB ?THUMB2)) -- (no local plans, no class plans, 1 answer)
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2 (l...] => (PART ?THUMB2 !.C)) ~-- (no local planms, no class plans, 1 answer)
3 (l...] => (NOT (= !.THUMB1 ?THUMB2))) -- (no local plans, no class plans, no answers)
(no successors)

The user then proceeds to solve the plan’s steps. Whenever a step has acquired
one -or more answers, the user may elect to follow one of them, which typically
results in a successor being constructed. The user then proceeds to deal with the
successor’s remaining steps until all steps have thus been eliminated; at which time,
the plan’s validation is executed to produce a proof of the plan’s supergoal from the

corresponding proofs of its steps.

5.3.1 Validations

No validation was shown in the display of the plan above because I find that such
information unnecessarily clutters my screen, and I set up my environment so that
validations remain hidden. This preference is entirely customizable by the user. Here

is the short story about validations:

Definition

A validation is an expression of the form:
(inference_rule (premises...) (parameters...))

where inference_rule is the name of the inference rule validating this refinement, each
premise is either an integer n denoting a proof of the plan’s n'® step (i.e. of rank
n), or another validation denoting the proof resulting from its recursive evaluation,
and the parameters are arbitrary expressions further specifying the inference to be

derived. For example:
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(MODUS-PONENS (0 (AND-INTRO (1 2) (O)) )

is a validation which means to conjoin a proof of step 1 with a proof of step 2 by
and-introduction, then to use the resulting conclusion as minor premise and a proof
of step 0 as major premise to derive a conclusion by modus-ponens. Assuming the
proofs of these steps are respectively A = p1 Ap; D ¢, A = p1, A = p;, executing
the validation results in a proof of A = q.

Recursive Validations

Why allow a (premise) to be a validation? The idea of recursive validations is not
just for generality. When a simple plan generator such as “modus-ponens” is invoked,
it can be expected to have a trivial validation expressed in term of the inference rule
“modus-ponens.” However, plan generators can be arbitrarily complex. Consider
for instance an hypothetical plan generator that would take a conjunctive goal with
nested conjunctions and flatten it out into individual steps. The goal (p1 A p2) A ps
would be refined into a plan with the three steps p;, p2, ps and a validation of the

form:
(AND-INTRO ((AND-INTRO (1 2) ) 3) )

In fact, something very much like this happens automatically whenever a new plan

is proposed by a plan generator; the system performs *

‘automatic expansion” on the
plan’s description, e.g. conjunctive goals are refined into separate steps, double nega-
tions are stripped off, etc... These automatic refinements (not explicitly requested

by the user or implied by the plan generator) introduce recursive validations.

Another source of recursive validations is the “detaching” mechanism by which premises

for plan generators are often obtained. I will not go into any details here, but the
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idea is that when a plan generator expects a premise as input, the user may instead
point to a subformula in an assertion and let the system figure out what ought to be
done in order to infer this subformula from the indicated assertion. This will result

in some kind of subplan, with a validation determined by the system.

5.3.2 Successor Plans

As I mentioned earlier, a successor plan is created as a result of following an answer
to a plan’s step. Within a plan the complete set of steps is partitioned in two subsets:
the solved steps and the remaining steps. The solved steps are those steps of the

original plan for which answers have been found and followed.

A solved step is represented by a pair (answer, goal) associating the goal that was
solved with the answer that was selected to solve it. Occasionally a solved step may
also be of the form (answer, n), where n is the rank of the corresponding step; this
only happens when step n could be determined to have a “yes”! answer at the time
the original plan was initialized; in such a case, there is no reason to actué,lly construct

a representation for this step; instead, it is abbreviated by its rank.

When an answer A to a step S is followed, a new plan instance is created. The
remaining steps of the new plan are computed as follows: for each remaining step
of the previous plan except S, create a new goal by instantiating the step’s pattern
according to the substitution as specified in A. Doing so may involve creating new
classes. The solved steps in the new plan are simply those of the old plan to which
we add (A,S). The new plan P is then initialized according to a procedure that I

will describe later.

P is described as a fate of A. A note is made in S that following 4 from S resulted

in the creation of P. Such a note is called a link and is added to S’s set of links. I

la yes answer is an answer that binds no variable; this is as general as an answer can get.
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will postpone discussing links further until plan initialization has been presented.

One plan may have many successors acquired either by following different answers
to the same step or answers to different steps. Typically, however, there will be one
straightforward sequence of successor plans ultimately leading to a fate that is an

answer to the supergoal.

Although I will not discuss aspects of the user interface in this chapter, I would like
to mention that each plan has a documentation string associated with it; it is by
default a representation of what the user typed in to create the original plan. Each
successor plan inherits the documentation string from its predecessor prepended with

the string ">" for visual feedback.

5.3.3 Implementation
Here is a description of the data-structure implementing a plan:

class: the class for which this plan attempts to derive a proof.

alist: typically, certain variables in the class have already been in-
stantiated by terms as a result of creating the plan in the first
place. For instance, if the class is A = ¢(z) and we back-chain
by modus ponens using an axiom of the form p D ¢(f(a)), the

resulting plan is known to bind z to f(a).

All free variables in the class have an entry in this alist. Some
entries simply indicate by what name a free variable of the

class is known in the plan.

This alist must also be instantiated according to the appropri-
ate substitution when an answer to a step is followed and a.

successor plan is constructed.



166 CHAPTER 5. IMPLEMENTATION

remaining steps: the plan’s remaining steps.
solved steps: the plan’s solved steps.

validation: an expression describing how to infer a proof of the

supergoal from proofs of the plan’s steps.

5.3.4 Initialization

After a plan has been constructed, it must be initialized. If the supergoal already has
a “yes” answer A, there is no need to search for another answer; therefore, the plan is
deemed superfluous and is deleted, and a fate of the form (plan-subsumed-by-answer, A)

is returned.

Otherwise, the plan’s steps are initialized, which may involve initializing their classes
(i.e. finding trivial answers). I know you may have been led to believe that class
initialization happened immediately after class creation, but it really happens now.
When this is done, some steps may have acquired “yes” answers. Since these steps
have already been solved in the most general way possible, they ought to be considered
solved once and for all; therefore it is clear that they should be put in the “solved”
list. Also, since their representations will never be used, instead of putting them in
the form (answer, goal) in the solved list, we can do better and insert (answer,n),
where n is the corresponding rank. Thus, their representations, which are now no

longer required, can be garbage collected.

Let us first suppose that not all steps have thus been solved: there are a few remaining
steps. It must now be determined whether the plan is redundant. For instance, it is
likely that by following answer 4; to step 1 and then answer 4, to step 2 we will
get a plan similar to the one we would obtain by following .4, first, then .4;,. The

redundancy check will take care of this case. If a plan P is found that is deemed
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to render the new plan redundant, the new plan is deleted and a fate of the form

(plan-subsumed-by-plan, P) is returned.

Another case of redundancy is when the superclass has an answer .4 whose sub-
stitution is more general than the one determined by the plan’s alist. In such
a case, if the plan leads to a conclusion, it will be necessarily less general than
the one available in 4. The plan is considered pointless and a fate of the form

lan-subsumed-by-answer, A4) is returned.
P y

This expectation of redundancy was quite reasonable in the earlier design of LOGI-
CALC. The more recent design includes a proof generalizer which might generalize
the conclusion expected from the plan into one that is more general than A’s. The
redundancy check does not take this possibility into consideration and still functions

accdrding to the old regime. I do not believe this to be a serious problem.

The redundancy check not only examines the superclass, but also its related weaker

classes: a plan may be redundant because of an existing plan for a weaker class.

If the plém P is not found to be redundant, then it is “pushed” according to a
procedure which I will describe next; this results in a list of fates; to this list is added

a fate of the form (plan,P) and the result is returned.

Now, let us consider the case where, after initialization, all steps are discovered to have
been solved. Then, a conclusion is produced by evaluating the plan’s validation with
the list of solved steps to pick the argument proofs from. Thus an answer A to the
superclass is derived and broadcast, and we return a fate of the form (conclusion, A).
If however the answer A is found to be subsumed by a preexisting answer A’, then A is

discarded and a fate of the form (conclusion-subsumed-by-answer, A’) is returned.
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5.3.5 Pushing a Plan

As a result of earlier work and/or through initialization all steps may have acquired
answers, although not necessarily “yes” answers. Sometimes, completing the plan as
it stands then is simply a matter of the user successively selecting and following a
particular answer for each step. LOGICALC alleviates this tedium to some extent by

“pushing” plans.

When all steps of a plan have answers, it is possible that by picking one answer
for each step we may be able to derive a conclusion for the whole plan. All that is
required for this to happen is that the selected answers be compatible. Here is what
compatible means: the selected answers A4, ... A, define corresponding substitutions

01 ...0q. These are compatible if there exists a substitution & such that:
00| =... =00,

Ifp; ... p, are the plan’s steps, then ¢ & (plan p;...p,) is an expression representing
the plan’s sequence of steps, and & is the most general unifier of {oy¢,...,0,¢}.
Pushing a plan involves trying all possible combinations of answers, and for each one

for which there exists a unifier ¢ a conclusion is produced.

My implementation is the straightforward one that picks answers left to right checking
compatibility incrementally after each selection. Thus not all combinations have to
be explored: when an answer for step k is picked that is incompatible with those
selected so far for step 1 through k — 1, there is no need to make any selection to the

right of k; instead another answer must be picked for step .

Conclusions are derived according to the method described next. For each conclusion

a fate is produced. The collected list of all these fates is returned.
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5.3.6 Producing a Plan’s Conclusion

As a result of pushing a plan or following answers to its steps, there comes a time when
an answer has been selected for each step and a conclusion must be derived for the

plan’s superclass. This conclusion is constructed according to the plan’s validation.

As I explained earlier, a validation is an expression of the form:
(inferencerule (premises...) (parameters...))

which is interpreted as follows: the named inference_rule is called with a list of
premises and a list of parameters as arguments. Each premise is either an inte-
ger ¢, in which case it denotes the corresponding proof of step ¢ to be looked up in
the list of selected answers, or it is a (recursive) validation, in which case it denotes
the conclusion to be obtained by recursively interpreting this validation in the same

manner.

The parameters are arbitrary expressions which further specify the inference to be
made. For example, equality substitution requires that a path be provided to denote

the subterm to be substituted by equality.

When an answer has finally been constructed, the algorithm must determine whether
it is redundant or not. An answer A,, whose corresponding substitution is o, is
redundant if there already exists an answer A; to the same class whose substitution
is o, and such that there exists o satisfying o, = oo3. In other words: the class

already has a more general answer. A, is said to be subsumed by A,.

If A, is not redundant, a fate of the form (conclusion, 4,) is returned. If A, is sub-
sumed by Ay, A, is discarded and a fate of the form (conclusion-subsumed-by-answer, A4,)

is returned.
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5.3.7 A Goal’s Links

In conclusion to this section, I want to come back to the notion of a link. Whenever
an answer A to a goal is followed, a list of fates is produced. For each fate F , & new

link (A4, F) is added to the goal’s links. A fate must be one of the following:

(plan, P)

Following A produced a successor plan P which was not redundant.

(plan-subsumed-by-plan, P)
The successor plan was found to be subsumed by the preexisting plan P, and

was discarded.

(plan-subsumed-by-answer, .A’)
It was noticed that the successor plan could not produce a conclusion more

general than the one already available in answer A’. The successor plan was

discarded.

(conclusion, A') »
After following A either there were no remaining steps or they all had acquired
answers either by initialization or through “pushing,” and a conclusion was
produced for the superclass. The corresponding answer A’ was found to be non

redundant.

(conclusion-subsumed-by-answer, A’)
Similarly a new answer was produced which was found to be subsumed by the

preexisting answer .4’. The new answer was discarded.
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5.4 Proofs

A proof is an aggregate comprising a conclusion sequent and a complete trace of the
sequent’s derivation in the form of a proof tree—thus, it is an instance of a recursive
datatype. A proof is usually depicted using the notation A = p, where A represents
a set of assumptions and p is the conclusion which has been shown to logically follow
from this set. For the introductory example [pp. 7-38], the proof of the ultimate

conclusion was displayed as follows:

Proof
Conclusion:
(IF (AND (IS CREATURE ?Y) (IS THUMB ?X) (PART ?X ?Y))
(AND (IS THUMB !.OTHER-THUMB[3](!.ONE-HAND[BI(?Y ?7X) ?7Y))
(PART !.OTHER-TEUMB[3](!.ONE-HAND[B](?Y ?X) ?Y) ?Y)
(NOT (= !.CNE-TEUMB !.OTHER-THUMB))))
(no local assumptions)
Validation:
(IF-INTRO (1 2) ())
follows from:
1 (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !.CONE-THUMB !.C))
2 (AND (IS THUMB !.OTHER-THUMB([3](!.ONE-HAND[S](!.C !.ONE-THUMB) !.C))
"~ (PART !.OTHER-THUMB([3] (!.ONE-HAND[E](!.C ! .ONE-THUMB) !.C) !.C)
(NOT (= !.ONE-THUMB
! .OTHER-THUMB[3] (!.ONE-HAND[5](!.C !.ONE-THUMB) ¢.C))))

Although I often choose to denote a proof by a sequent A = p, a proof captures
more information than just such a conclusion; it is really a node of an inference tree

(actually a dag). Thus, the graph makes available a trace of the whole computation.

5.4.1 Where Proofs Come From

The most elementary kind of proof is an axiom: an axiom is considered to be a
proof of itself. As a matter of convenience, it is truly the name of the assertion

representing an axiom which is taken to constitute a proof of same. Thus, in the
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introductory example, the symbol transitivityis a proof of the axiom of transitivity
of parts. Local assumptions are also elementary, but I will postpone discussing their

representation until later.

Most other proofs come from invoking an inference rule. The only other case consists
of conclusions derived through backward-chaining rules of logic programs implement-
ing built-in theories (such as LOGICALC’s simple theory of types, or of tuples and
lists); these will be discussed in the closing paragraph of this subsection. In LOG-
ICALC, inference rules are functions which capture computationally the meaning of
their logical counterparts. As a function, an inference rule takes two arguments: a
list of sequents and a list of parameters that further specify the inference to be made
(such as a path to a subterm to be substituted by equality); it returns a list of con-
clusion sequents. The system then takes care of packaging these conclusions as proofs

which record all the relevant information.

The common case is that a proof will be constructed as a result of executing a plan’s
validation, thus producing a conclusion for the plan’s superclass. Proofs can also be

derived by performing explicit forward inferences by means of inference generators.

The Justification for Plan Validations

Why are plans validated? For instance, in a PROLOG system, goals are also refined
into subgoals in a backward chaining manner, but, once all subgoals have been sat-
isfactorily resolved, there is no need for an additional process of validation to be
performed bottom-up. There are 4 reasons for having such a process in LOGICALC:
(1) to double check the validity of the plan’s refinement, (2) to perform some post-
processing, after the plan is completed, that is necessary but could not be done ahead
of time, (3) to make the conclusion available to subsequent deductive operations, and

(4) to package the conclusion as an object available for inspection.
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Double-Checking the Validity of the Inference Step

Plan generators are arbitrary procedures which, given the current goal, some premises
and some parameters, create a plan object that we then interpret as a refinement of
the goal. PROLOG search happens as if directed by a built-in “modus-ponens” plan
generator; each refinement is guaranteed to correspond to a valid inference; therefore
an explicit validation mechanism would be completely superfluous. There is no such
guarantee in LOGICALC. A plan generator is no more than a function which maps a
goal to a pair consisting of a list of subgoals and a validation [Mil79a,Pau87]. Once
all subgoals have been solved, the validation is executed in order to produce a pfoof.
In principle, executing the validation might fail to produce a proof and no conclusion
could be drawn from the completed plan, or it might produce a proof that would not

unify with the formula of the plan’s superclass and would thus fail to solve it.

Consider for instance a plan generator that would take a goal of the form A =
p(z) A q(z) and would propose a plan with the two steps A = p(y), A = ¢q(z), where
z, y and z are distinct free variables, and the validation (AND-INTRO (1 2) O).
Suppose further that step 1 acquires a proof A = p(a) and step 2 A = ¢(b), where
a and b are distinct constants. Executing the validation will result in the proof
A= p(a) A q(b) which won’t unify with the original goal. The plan failed to fulfill its

contractual agreement to solve the goal when completed.

By design, the existing plan generators produce plans which are expected to solve
their supergoal on completion. Executing the validation will return a proof which

will unify with the supergoal. LOGICALC will signal an error when this expectation
fails.?

2which hopefully should never happen.
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Post-Completion Processing

Given the preceding design decision and assuming that the implementation is bug-
free, is there any other reason to retain the notion of a validation process? The answer
is “yes.” The reason is that some really tricky plan generators cannot do all the work
in advance, they require that some further processing happen when the plan has been

completed.

Consider solving p(a)V p(b) = p(z), where z is a free variable and a and b are distinct
constants, by case analysis. The resulting plan has the two steps:

p(a) V p(b), p(a) = p(z1)

p(a)V p(b), ~p(a),p(b) = p(za)
where 2, and z; are distinct free variables. Clearly we obtain the two proofs p(a) V
p(d),p(a) = p(a), and p(a) V p(b), -p(a),p(b) = p(b), and the question is “what
should z be bound to?” The answer, which I won’t detail here, involves making up a
new constant ¢ which is defined to be equal to a in the first case and to b in the second

case. Clearly, this cannot be done until bindings have been found for zy and z,.

Making the Conclusion Available

After a conclusion has been derived, it is made publicly available through two chan-
nels. First, the corresponding answer is broadcast from its class to all related classes.
Classes that will be constructed in the future may also benefit from this answer by
borrowing it from some related class at initialization time. Second, the proof is made
available to all deductive operations (proof or plan generation) by inserting it in the
database according to a process to be described in Section 5.4.3. Thus, when subse-
quently invoking a plan generator, the user will be able to use this new conclusion as

a premise.
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Packaging Inferences for Inspection

A proof is a self-contained object. It includes the entire inference tree (graph) that
resulted in the conclusion and makes it available for inspection by the user. I believe
access to this information is essential in an interactive theorem proving system. Some
reasons are: (1) curiosity, to find out how an inference was derived, (2) for debugging
purposes (to debug both the system and the axiomatization), (3) to print, or otherwise

prepare for publication, a representation of the proof, (4) to permit generalization.

LOGICALC affords the user 3 ways to access this information: (1) either by directly
browsing through the proof graph, or (2) by using the old-style proof-dumper to
output a natural deduction like account of the proof, or (3) by invoking the special -
purpose proof editor which also produces a natural deduction style account, but is
much more powerful. The listing of the proof at the end of the introductory example

was produced by the editor.

Proofs Derived Through Backward-Chaining

Not all conclusions are arrived at by executing inference rules: LOGICALC also sup-
ports backward-chaining rules® which represent built-in theories and are usually ac-
tivated during the initialization of a class. How does LOGICALC reconcile the two
mechanisms? When a conclusion has been derived through the office of DUCK’s
backward-chaining facility, LOGICALC converts it to a proof whose steps consists in
all the assertions involved in the derivation, and whose pretend inference rule is
obvious. Needless to say this integration is not exactly seamless; but this turns out
not to be very important (except for generalization), and could be fixed without too

much pain [p181].

3principal symbol is <-; constrast with modus-ponens operating on implications (i.e. principal
symbol IF) '
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5;4.2 Proof Generalization

After a proof has been constructed, it is optionally generalized before it is released by
the system; whether this generalization is actually performed is controlled by variable
proof-generalize* which should be either NIL, in which case no generalization is
attempted, or a function that will map a proof into a list of formulae more general
than its conclusion (the simplest way to achieve this end is to return a list that

contains the proof’s formula as its sole element).

The default generalizer is implemented by #’LC~GENERALIZE which will be described
at length in a separate chapter. The generalization technique is related to Explanation-
Based Generelization (henceforth EBG). Since the whole deduction tree is available,
the idea is to determine the most general conclusion that can be drawn through the
same sequence of inference steps. The generalized conclusion will have the same shape
as the original conclusion, but will be less instantiated, i.e. some of the original terms
will have been replaced by free variables. A proof of A = p(t] which does not depend
on the identity of the term ¢ will typically be generalized into A = p[z], where z is a

free variable,

As a result of generalization, proofs will unify with a wider range of goal sequents.
Reasonably similar goals which would require analogous deduction trees can all be
solved simply by deriving an answer to one of them; generalization will take care of
making this answer applicable to all of them. This feature can often considerably
reduce the amount of work required of the user. For instance, the generalized proof
A => p[z] corresponding to goal A = p[t] will also apply to a goal of the form 4 = p[t'],
thus sparing the user the tedium involved with the recreation of an analogue of the

original deduction.

Also, proving a universally quantified goal A = (Vz)q(2) will typically involve a

subgoal of the form A = ¢(c), where ¢ is a new constant introduced by skolemization.
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Since a proof of the latter goal cannot depend on the identity of ¢ (since it is new),

it will be generalized into A = ¢(z), where z is a free variable not already occurring

in q(c).

5.4.3 Asserting Proofs in the Database

After a proof has been derived, it is a good idea to make it available to all subsequent
deductive operations by asserting it in the database. If the proof is A = p, the
assumption set A is augmented with the additional formula p. p will be visible in
all assumption sets that make more assumptions than A, but not in those that make

fewer (or incommensurable) assumptions.

I require that it be possible for any one assertion to determine whether it is an axiom,
a local assumption, or the result of an inference. In the later case, I also want to be
able to recover the proof which produced it. Therefore, the assertion must be somehow

annotated with the proof.

When a formula is asserted in a datapool, DUCK requires that you specify (1) the
expression representing the formula, and (2) a TMS style justification. Such a jus-
tification is conceptually a pair (in, out) of two lists naming other assertions (or

characteristic beads of datapools).

When a proof is to be inserted in the database, it is necessary to determine by
inspection of the proof structure all the non-discharged assertions mentioned in the
proof tree. These are all the assertions that the proof depends on; they will serve as
the in component of the justification. I said “non-discharged” because the proof tree

may contain proof nodes that perform “if-introduction” inference steps such as:
Ap=>q — A=pDg

After such an inference step, the local assumption p is said to have been discharged.
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Since no non-monotonic reasoning is allowed to occur in LOGICALC, the justification’s
out list would always be empty. I take advantage of this fact to annotate the assertion

with the proof. Here is how:

1. First, I create a dummy node whose formula is (PROOF!! proof), where proof
is the proof object. This node masquerades as an assertion except that it is
never asserted (or indexed) in any way. In reason maintenance terms, the node

will always by “out” by design.

2. The justification’s out list is set to contain this dummy node as its sole element.
Since, the dummy node is always “out,” this trick is essentially a noop as far
as reason maintenance is concerned; and since we know that no non-monotonic
justification is allowed to be specified by the user, when we find one it must
necessarily be an annotation that gives us access to a proof through a dummy

node.

Whenever a deductive operatioh uses an assertion as a premise, what really happens
is that a proof is first recovered for said assertion and then passed on to the operation
proper. The trick outlined above makes it possible to recover proofs for assertions

obtained through inference.

5.4.4 Implementation
Here is how a proof is implemented: |

A = p: a sequent expressing the fact that p logically follows from

the set of assumptions A.

validation: an expression describing this inference. It is of the

form described earlier, except that no recursive validations can
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occur (they are explicitly represented by the sub-proof trees).
The important information here is the name of the inference

rule and the parameters.

steps: typically a list of subproofs from which the inference is being

drawn by the inference rule [but see below].

node: the name of the corresponding assertion in A.

How can LOGICALC distinguish between an assertion that is an axiom, one that is

an assumption, and one that is the result of an inference? The answer is that each

assertion is supported by a set of justifications (this is a TMS technique).

¢ An axiom is distinguished by having one justification of the form (nil,nil).

® An assumption is very much like an axiom except that its “in” list contains the

characteristic bead of the corresponding assumption set, i.e. it is of the form
((b),nil) where b is a bead.

An assumption set is associated with a datapool, and a datapool is essentially
a list of beads. Each bead represents a “context.” Justifications can mention
beads as well as assertion nodes. Thus, only those assertions which belong to
one of the currently active contexts are visible. When a datapool is selected to

become current, its beads are marked “in,” and all other beads become “out.”

Whenever a new assumption set is created, a new datapool is also constructed
by calling (dp-push P) where P is the parent’s datapool. As a result, a new
bead P’ is created, and the union of P’ to the parent’s beads makes up the new

datapool’s set of beads. P’ is called the new datapool’s characteristic bead.

An inference has a justification of the form ((ay,...,a,),(d)) where a through
an are the various assertions the inference depends on, and d is the dummy node

through which the proof object can be recovered.
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e An conclusion derived by DUCK through forward-chaining only has “in” sup-

porters, and an empty “out” list: ((ay,...,a.),()).

Given an assertion, LOGICALC will always translate it into a proof before it will
operate on it. The distinctions made above are reflected in the resulting proofs. For
expository reasons, I will represent a proof object by (A = p, (sq,..., 8n),validation)

for the duration of the following items (s, through s, are the proof’s steps).

e For an axiom, no proof is constructed; its name is used instead. Occasionally,
for obscure reasons the system may have to construct a proof object anyway;

in this case, assuming that the axiom’s name is foo, it will be of the form:

(nil = p, (foo), (obvious (1) ()))

e For an assumption, a similar trick is used. Again, let’s pretend the assertion

representing p is called foo:

(A,p = p,(foo), (obvious (1) ()))

¢ For an inference, LOGICALC will recover the original proof through the dummy

node in the justification’s “out” list. The proof has the expected form:

(A= p,(s1,...,5,), validation)

e For both forward and backward DUCK deductions, the trick with the bogus

inference rule obvious once again suffices. The proof has the form:
(A= p,(as,...,a5),(obvious (1 ... n) ()

Actually, when attempting backward-chaining, DUCK has this built-in rule that

a disjunction may be solved by selecting a disjunct and solving it instead. For
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technical reasons, it is necessary to make a note in the proof when this happens

on a single assertion, and the validation becomes:
(A= p,(ay,...,a,),(obvious (1) (or k))

where k is the index of the selected disjunct.

No inference rule named obvious actually exists. For axioms and assumptions, its is
simply a convenient notational device. It is also used to represent DUCK deduction
chains as if they were the result of executing this hypothetical obvious rule. A more
principled way to represent those chains would be to define explicit inference rules to
operate on backward-chaining rules and translate a DUCK deduction intlo a proof tree
expressed in terms of those rules. All the information required to do this is already
available (well, most of it anyway). I never bothered to implement it because there
never was any reason to do so. All conclusions derived in this manner are in some

sense trivial and uninteresting.

5.5 Answers

As we have seen earlier, answers are typically constructed either during the initializa-
tion of a class (by borrowing answers from related classes or by backward-chaining on
DUCK rules), or when a plan reaches completion and broadcasts its conclusion. Yet
another way to cause new answers to be found is by means of the fetch command;
it essentially executes again the procedure that is performed at class initialization
time. There are two major circumstances in which you might want to invoke fetch:
(1) you added new axioms to the database since the class was initialized, (2) more

conclusions have been added as a result of proving other goals le.g. lemmas].

Answers are merely a convenient package that associate classes with the proofs that

solve them. The data-structure implementing an answer has the following fields:
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class: the class which this is an answer to.

substitution: how the free variables in the class’s formula are in-

stantiated by this answer.

proof: the proof object itself; its conclusion unifies with the class’s

formula modulo the substitution given above.

Checking for Redundancy

Before an answer is recorded with a class, the system checks whether it is redundant,.
This check is performed on the basis of the answer’s substitution. If the class already
has an answer whose substitution is comparable with this one and more general (i.e.
instantiates the formula less), then the new answer is said to be “subsumed” by the
preexisting one. In that case, it is discarded. A substitution oy is more general than

o, if there exists o such that o; = o0y.

The most general substitution possible is the empty substitution, i.e. the one that
binds no variable. An answer whose substitution is empty is called a “yes” answer. A
class which acquires a “yes” answer has been solved in the most general way possible.
No other answer or plan will subsequently ever be indexed under it, as they will all

be found redundant.

Answer Broadcasting

Whenever a class acquires a new answer, it will broadcast it to related classes. Thus,
an answer will propagate to all the classes in the graph that might possibly be inter-
ested in it. Each one of them will attempt to adapt the answer to suit its own needs,
and will then recursively broadcast it to its own related classes. Here is an outline of

the broadcasting algorithm:
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1. Record the answer in the class.
2. Axioms and assumptions are not broadcast.

3. Inferences are broadcast to all related classes by a straightforward recursive
technique that keeps track of all the classes already visited so as to avoid loops

and repeats.

4. Each class attempts to “adapt” the answer to itself. First the proof is extracted
from the answer and it is strengthened, which means that if the proof was
obtained by weakening through assumption introduction, then as many of these
steps are removed from the top as possible. Then the strengthened proof is
tentatively unified with the class’s formula; if unification fails, the answer cannot
be adapted; if it succeeds, we must make sure that the proof makes as many or
fewer assumptions than the class (i.e. the proof’s assumption set is an “ancestor”
of the class’s). If such is the case, an answer is constructed whose substitution is
determined by unifying the proof’s conclusion with the class’s formula. Finally,
it is checked that the answer is not made redundant by one already fecorded

with the class. If all this succeds, we recursively go to step 1.






Chapter 6

Plan Generators

In this chapter I document the mechanism whereby the user can generate alternative
refinements for a goal by invoking plan generators. I begin with a description of
user-level syntax for premises and subterm designators, and then explain the various
steps involved in constructing the resulting plans from the user’s input. The chapter

ends with a reference listing of all plan generators available in LOGICALC.

6.1 Introduction

The preferred method of solving a goal is to refine it into a plan whose steps are
subgoals, and to thus proceed recursively until all fringe goals in a proof tree either

are tautologous or have been identified with axioms or assumptions.

At a goal node, the user may issue a command to invoke a plan generator. This
results in the creation of 0 or more plans to solve the goal. A plan consists of 1 or
more steps together with a validation which explains how to infer a proof of the goal
from proofs of the steps; when all its steps have been solved, the plan’s validation is

executed to compute this proof.

185
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Consider a goal of the form A = ¢, such that the assertion foo of the form pDqis
in A. Invoking plan generator MODUS-PONENS with foo as an argument premise will

result in the creation of the plan:

0. foo ]
. A=p

where step 0 is already solved because it corresponds to the existing premise named by
foo, and step 1 is the expected subgoal resulting from backward-chaining. The plan

is also equipped with a validation. In the present case, it consists of the expression:
(modus-ponens (0 1) ())

The intended meaning is that, in order to derive a proof of the original goal, one
should perform an inference using MODUS-PONENS as the rule, a proof of step 0 as
the major premise (here, this would simply be foo), and a proof of step 1 as the

minor premise. Validations are discussed in detail in Chapter 7.

I will now outline the algorithm which the system follows to go from user input to a

set of new plans. Subsequent sections will provide the details.

Each plan generator really consists of two procedures: one for parsing user input
and one for constructing descriptions of plans. Let’s call them the parser and the
designer, respectively. The designer takes 2 arguments: a list of premises (such as
assertion names; but see Chapter 7 for the true, generalized story), and a list of
parameters (e.g. designators for subterms to be affected by equality substitution).
The parser’s job is to take user input and convert it to a list of argument records,
each one of which comprises a list of premises and a list of parameters. The designer is
repeatedly applied until all argument records have been exhausted. Fach invocation

of the designer produces a list (possibly empty) of plan descriptions.
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For each plan description, the system performs some additional [optional] process-
ing, such as to automatically expand conjunctions into as many steps as there are
conjuncts. Then, from this final description, a real plan is constructed and its valida-
tion automatically assembled from the various pieces. Finally, the plan is initialized,

checked for redundancy, subsumption, etc... (see Chapter 5).

If truth be told, a plan generator consists of three procedures: parser, designer, and
helper. The latter is executed whenever a plan generator is invoked with the option

-help, and, in response, prints documentation about usage and purpose.

6.2 User Level Syntax and Notation

A plan generator plangen may be invoked with arguments to be determined from the

specifications specs by invoking the +plan command thus:
+plan plangen specs

plangen is a name such as MODUS-PONENS, or DEDUCTION-THEOREM, or LEMMA—
for a complete list see section 6.6. Like any name meaningful to LOGICALC’s shell,
it may be abbreviated. For instance, +plan deduction, or even + d, will have the

same effect as +plan deduction-theoren.

For the user’s convenience, the command processors [Chapter 4] for class and goal
nodes have been been written in such a way that, when a command is not otherwise
recognized, the system will check to see if it could be interpreted as the name of a plan
generator, in which case the +plan command will be invoked automatically. Thus,
the name of a plan generator acts as a command to invoke this plan generator in the

regular fashion.
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The specs specify the arguments to the plan generator. For example, MODUS-PONENS
requires a premise which has the form of an implication whose consequent unifies
with the current goal. Thus, +plan modus-ponens foo baz will attempt backward
chaining using assertion foo and also assertion baz. In general this will result in the
creation of two plans. When an argument is omitted, sometimes a sensible default is

provided, but usually the user is prompted for further specifications.

Plan generator EQUALITY requires an equality as a premise, but also needs to be
told which subterms in the current goal should be subjected to equality substitution.
Therefore, the user must provide two kinds of specifications: one kind to determine the
premise(s), and another kind for the targeted subterms. In order to let the “parsing”
function know where in the command line the first kind ends and the second kind

begins, they must be separated by the character ‘~’, For example:
+plan equality a - foo baz

will use assertions foo and baz as premises, and will operate on subterms of the
current goal denoted by a—typically this would be the constant a itself, but see
Section 6.2.2.

For very complex plan generators such as ABSTRACTION and QUANTIFY, the spec-
ifications require an additional level of structuring. At the top level, we use -- to
segment them into related chunks; each chunk is further subdivided by occurrences

of -.

Arguments to plan generators are of 4 kinds: formulae, terms, premises, and subterm
designators. Formulae and terms have the usual syntax [Appendix A]. The notation

for premise and subterm designators will be the subject of the next two sections.
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6.2.1 Premise Parameters

Some plan generators not only operate on the current goal, but also require one or
more premises to completely specify the desired refinement. For example, MODUS-
PONENS expects an implication. The conclusion denoted by a premise is meant to
serve in the sequence of inferences performed when the plan’s validation is finally
executed. The premise’s conclusion may or may not have to be proven: if the premise
Is an assumption, then it does not; if it is a conjecture, it must be. A premise is a
description of the subplan necessary to infer its conclusion. This subplan is inserted

in the refinement.

When the premise’s conclusion is readily available as an assertion in the current
assumption set, it may be denoted simply by naming the assertion. The premise,
as well as the corresponding subplan description, will simply be this name. When
inserted in the refinement, it will turn into a solved step whose recorded proof is the

aforementioned assertion.

Occasionally, the user may want to use a conjecture as a premise. The classical
approach would be to prove a lemma. However it has the limitation that, in order to
use the lemma’s conclusion, the latter must be proven first. LOGICALC’s notion of a
premise removes this limitation: a hypothetical premise is such that its corresponding
subplan description contains the conjectured formulae as its sole subgoal. The user

may use the notation ‘= formuld’ for this purpose.

Most of the time, however, the desired premise is a subformula in an assertion. For
example, supposing that foo is an assertion of the form p D @ = b, the user might
be interested in performing a refinement uéing EQUALITY to substitute a for b in the
current goal. Classically, the user would be required to first prove p, then infer a = b
from foo and p. In LOGICALC, the premise may simply be constructed such that its

corresponding subplan includes foo as its first (solved) subgoal, and p as its second
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(presumably unsolved) subgoal, and such that its validation performs an inference
using MODUS-PONENS as the inference rule, foa as its major premise and the proof
of p as its minor premise. The premise is automatically constructed by the detaching
mechanism [Chapter 7}; the user need only name the assertion which it should be

applied to.

Actually, the detaching mechanism is always active (but see the -raw option). Thus,
the more complex case of the preceding paragraph (detaching a subformula) is not
distinct from fhe simpler case of the opening paragraph (using the whole assertion).
Detaching also occurs with conjectures. Such uniformity is achieved thus: the de-
taching procedure is given a description of a plan to infer a certain proposition; this
is always either the name of an assertion or a plan with one subgoal representing
the conjecture—an arbitrarily complex plan is allowed, but LOGICALC does not take
advantage of this generality. The detaching procedure returns a more elaborate plan

which infers a subformula of the conclusion of the plan it was given as an argument.

Since detaching is often complex and may produce several candidates, it is a good
idea for an interactive system to provide a tool for search, browsing, and selection of
candidate detachments. This is the réle of LOGICALC’s find mode which is discussed

and documented in Appendix B; it may be invoked through the ~find option.

Similar remarks apply to searching the database for assertions to serve as input to the
detaching mechanism. There is no need for the user to memorize the contents of the
assumption set. Instead, he may specify views to be searched for relevant assertions.
The -all view denotes the whole database. This system of views naturally works in
combination with find mode: -find -all lets the user interactively browse through

all possible detachments of the target formula from the database.

Looking up relevant assertions in the database is realized through an indexing scheme
described in Section 2.7.1. Typically the target formula has at least a principal

symbol, e.g. D for MODUS-PONENS, which serves as the primary index. Occasionally



6.2. USER LEVEL SYNTAX AND NOTATION 191

the target is unspecified; e.g. this happens when making forward inferences using
inference generators. In this case (1) every subformula of any proposition yields
a candidate detachment, therefore detaching should only be performed if the user
agrees to it, not by default, (2) searching the whole database would be pointless since
every assertion is relevant, therefore -all should complain and require that the user

explicitly provide a view.

A premise parameter, also called a premise descriptor, must be one of the following:

~HELP

Prints a summary of the expected syntax and prompté the user again.

-ALL
Automatically consults the whole database for relevant assertions. In order for
this to work, the target formula (i.e. the one we are attempting to detach from
assertions in the database) must not be underspecified. Essentially this means
it should have a principal symbol to serve as the primary index. The exact
definition of an underspecified formula is: either it is NIL, conventionally repre-
senting an unspecified target, or it is a variable, which would match anything,
or it is a variable negated an even number of times, in which case the negations

cancel out and this is just like the previous case.

When the target is underspecified, rather than return all formulae detachable
from (i.e. occurring in) the database (a staggering number), the system prompts

the user for a more specific descriptor.

=ALL specs...
Automatically consults the view specified by the specs. Only these propositions

occurring in the view will be considered. Each spec must be one of:

-HELP

Prints a summary of the syntax of view specs.
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assertion
This is the name of an assertion. The system checks that the name corre-
sponds to an existing assertion and also that this assertion is in the current
assumption set. If a problem is noticed (e.g. the name was mistyped and
fails to denote an assertion), the user will be given a chance to effect
corrections interactively. Detaching will be attempted on the proposition

represented by this assertion.

= formula
The pattern is fully ‘quantiﬁed, and contains no free variables. As ex-
plained earlier, it will be set up as an auxiliary goal in the resulting plan.
Detaching is also a.tterhpted on this formula. Naturally, such a spec is not
available to inference generators since they cannot accommodate auxiliary

goals.

~LOCAL
Every assumption set makes one more assumption than its parent. This
assumption results in one or more additional assertions, which are local
to the assumption set and not visible to its parent. It is often convenient
to refer to them as the local assumptions. -local denotes precisely the

local assumptions in the assumption set of the current goal.

-ASET
Denotes the local assumptions for the current assumption set and all its
ancestors. These are all the assumptions in effect at this point in the

proof.

-SKOLEM
Denotes the set of assertions that mention at least one of the skolem terms

occurring in the target. This is decided solely on the basis of skolem terms’

ids [see p80].
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(-SKOLEM names...)

Same as above, but only for those skolem terms whose function is in the

given set of names.

-NIL
The empty set. Because of the recursive nature of various prompting
procedures, it is sometimes convenient to have a denotation for the empty
set just so you can type something that denotes nothing and lets you exit

a particular recursive prompting loop.

-RAW assertions...
The system does not attempt to detach subformulae of the named assertions.
Instead, it simply filters out those that do not unify with the target. This is

particularly convenient when the target is underspecified (is a variable).

~-FIND

Invokes find mode, searching the whole database. The user may interactively

browse through candidate detachments and select those of interest.

=FIND specs...
Invokes find mode, searching the view specified by the given specs, where each

spec is as described in the entry for -all above.

-NIL
Denotes the empty set.

descs. . .

A descriptor may be a sequence of appropriately parenthesized descriptors.

(descs...)
Parentheses may be used for grouping and for limiting the scope of certain

options, e.g. (-find foo) -all bar baz limits the scope of ~find to just foo.
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11 ... iy descs. ..
Integers may be used to further select detachments out of the list produced by
the remainder of the descriptor, i.e. descs. Each integer ¢, may be indifferently
positive or negative—only its absolute value matters—and it selects the ixth

detachment, should there be one, in the list denoted by descs.

specs. ..
A descriptor may be a view denoted by specs as described in the entry for -all.

Typically these are names of assertions.

+MISMATCHES
Allows mismatches during detachment [Section 7.5]. Each mismatch adds an

equality goé,l to the premise’s subplan.

-MISMATCHES spec
Allows mismatches according to spec. Typically spec is an integer indicating the
maximum number of mismatches permitted for any one detachment. spec may
also be NIL, in which case any number of mismatches are permitted. It may
be a symbol, in which case only those subexpressions whose principal symbol
is spec are allowed to mismatch: Finally, it may be a list of symbols, optionally
beginning with NIL or an integer; e.g. -mismatches (3 f g) allows a maximum
of 3 mismatches, and only for those subterms that have either £ or g as their

principal symbol.

As customary in LOGICALC, every one of these options may be abbreviated; e.g. ~f

instead of ~find, or +mis, +m, or just + for +mismatches.

6.2.2 Subterm Parameters

Certain plan generators, such as EQUALITY, require parameters that specify those

subterms concerned by the refinement. Consequently, it was necessary to devise a
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notation for these parameters.

The path to a subexpression of a given formula is a sequence of integers. An empty
sequence denotes the whole formula. Otherwise, let n be the first element of the
sequence; the intended subexpression is the one denoted by the remainder of the
path into the n'® element of the formula considered as a list. (1 2) denotes (g b) in
(p (£ a (g b)) ). Therefore, supposing the current goal has the form just shown,
the user might type ‘+plan equality 1 2 - foo’in order to replace (g b) using an
equality detached from foo.

The sequence ‘1 2’ typed by the user is called a path descriptor. LOGICALC general-
izes this natural notation, and allows a path descriptor to contain not only positive
integers, but also expressions such as !&n denoting the n'® tail, and '&(n m) denot-
ing the segment composed of elements n through m. (g b) could also be denoted by
the path descriptor ‘'&(1 2) 0 '&1 1’. The more complex notation is occasionally

useful for lists and tuples.

It is possible to refer to the same subexpression using various exotic path descriptors.
However, plan generators and inference rules need to be able to compare these paths,
for instance to determine whether one expression is a subexpression of another. To
facilitate these computations, the system will automatically convert all paths to their

normal forms.

Path descriptors are completely general but they require too much typing, and it is
often difficult to get these numbers right. For these reasons, there is an alternative way
to denote subterms, designed for brevity, and better suited to an interactive setting.
Basically, you may type a constant to denote all of its occurrences (not in functional
position); you may also type the name of a function to denote all the subterms
where it appears as the principal symbol. Thus, the earlier example becomes: +plan

equality g - foo.
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A generalization of this last idea is to allow a pattern. It denotes all the subterms
which unify with it. However, in the special case where the pattern is a variable, it
would not be very useful to have it denote the set of all subterms; instead it denotes

all occurrences of this particular variable.

A subterm descriptor must be one of the following:

-HELP
Prints a summary of the syntax of subterm descriptor and prompts the user

again.

-FIND
Enters another incarnation of find mode, which lets the user browse through

subterms and select those of interest.

-FIND descs...
Enters find mode, browsing through the subterms denoted by the remainder of

the descriptor, e.g. descs.

path

A subterm may be denoted precisely with a path as explained earlier.

name
A much more concise notation. Denotes all subexpressions whose principal
symbol is name, i.e. all subexpressions which have name in functional positional,

as well as all occurrences of name in non-functional position.

i1 ... i, descs...
To remedy the possible ambiguity of the above notation (among other things),
a descriptor may be prefixed with negative integers. i selects subterm —ij in
the list of subterms denoted by the remainder of the descriptor, i.e. descs. The
reason that these integers must be negative is so as to avoid confusion with path

descriptors which are sequences of positive integers.
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pattern
Denotes all unifying subterms. A variable, however, denotes all occurrences of

identically this variable.

NIL
NIL (that is ()) means to take the expression as a whole, and corresponds to

the empty path.

-NIL

Denotes nothing [see discussion of ~NIL for premises).

-SKOLEM

Denotes all the skolem terms occurring as subterms.

-SKOLEM names. ..
Same as above, but only for those skolem terms whose function is in the given

set of names.

descs. ..

A descriptor may be a sequence of appropriately parenthesized descriptors.

(descs. ..)
Parenthesized descriptors are also allowed; however, this conflicts with the in-
terpretation of a list as a pattern. The only way to resolve this conflict is to
begin the parenthesized list with an expression that is allowed as a descriptor

and cannot be mistaken for a legitimate function or predicate.

Therefore, descs may begin with an integer or an expression of the form !&n or
'&(n m), or with one of the 4 symbols NIL, -nil, -skolem, or -find. Anything

else will be considered a pattern.
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6.3 Parsing The Command Line

When a plan generator is invoked from LOGICALC’s shell, the rest of the command line
determines its arguments. Each plan generator has its own parser whose purpose is
to convert these specifications into a list of argument records. Each argument record
has two components: a list of premises and a list of parameters. The plan generator’s

designer [p186] will be invoked successively for each argument record.

Why return a list of records rather than merely a single one? For two reasons: firstly,
the specifications may be ill-formed, or otherwise fail to correspond to an admissible
record; in this case, an empty list of records is returned. Secondly, the specifications
may meaningfully correspond to more than one record, e.g. in> modus-ponens foo
baz, if both foo and baz are implications whose consequent unifies with the current
goal, then it is clear that the user’s intention is that one argument record should have
foo as a premise, and another baz. More generally, since “detaching” may produce

several answers, each detachment should go into a separate argument record.

First, the specifications are segmented according to occurrences of -- and -. Each
item is then interpreted according to the kind of argument it is expected to be. For
a formula (e.g. the parameter to LEMMA), it will be syntax and type checked. For
a premise, the item must be interpreted as explained in section 6.2.1. Similarly for
a subterm parameter, it must be interpreted as explained in section 6.2.2. For each
kind of argument, there exists a prompting procedure which will convert the item

into a list of arguments of this kind.

PROMPT-FOR-FORMULA
Syntax and type checks the item. If the item was not provided, or failed the

check, the user is prompted for a formula and the process iterates.

PROMPT-FOR-PREMISE

Given a target proposition (which may be unspecified) and a descriptor, returns
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a list of detachments. This procedure is essentially an interpreter for the lan-
guage described in section 6.2.1. In general, further processing must be applied
to the resulting detachment records: plan generators want them converted to
plan descriptions, while inference generators want them turned into proofs. Con-
sequently, the preferred interfaces are, respectively, PROMPT-DETACHING and
PROMPT-ASSERTING; the latter also makes sure that the detaching procedure
is invoked with the DEEP switch (see p255) set to FALSE, so that detachments
which require a.uxiliary goals are not permitted. The algorithms for turning de-

tachment records into plan descriptions and proofs are described on pages 257
and 259.

PROMPT-FOR-SUBTERMS
Given an expression and a descriptor, returns a list of paths denoting subexpres-
“sions. This procedure is essentially an interpreter for the language described in

section 6.2.2.

Below, I include the code of the parser functions for plan generators MODUS-PONENS
and EQUALITY.

(DEFFUNC PONENS~PARSE-PLANGEN ~ (LST (LRCD (LST <premise_t>) code
(LST sexp)))
(SEQUENT - sequent_t PARMS ~ (LST sexp))
(<# (\\ (P) (LRECORD (LIST P) NIL))
(PROMPT-DETACHING (MAKE sequent_t

!>SEQUENT.ASET
‘(IF 7+ ,1>SEQUENT.CONCLUSION))

PARMS

(\\ () (OUT "Major premise? ")))))

(DEFFUNC EQUALITY-PARSE-PLANGEN ~ (LST (LRCD (LST <premise_t>)
(LST sexp)))
(SEQUENT - sequent_t PARMS - (LST sexp))
(MATCH-COND PARMS
}i=—no parameters: must prompt. do this by defaulting to 2nd clause.
((NULL PARMS)
(EQUALITY-PARSE-PLANGEN SEQUENT ’(-)))
; ;~=both descriptors are given
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(\? (!7DESC - . ?VIEW)
; ;-—DESC == [-FIND] desc...
(LET ((PATHS (PROMPT-FOR-SUBTERMS
{>SEQUENT.CONCLUSION DESC
(\\ () (QUT 0 "Enter descriptor of subterm to be"
T "subtituted by equality: "))))
- (LST (LST tixnum)))
(<# (\\ (PREM - <premise_t>)
(LRECORD (LIST PREM) PATHS))
(PROMPT-DETACHING
(MAKE sequent_t !>SEQUENT.ASET
‘(= ,(SUBTERM !>SEQUENT.CONCLUSION (CAR PATHS)) 7%))
VIEW
(\\ () (OUT "Equality premise? "))))))
i;=—only the subterm descriptor is given
(T (EQUALITY-PARSE-PLANGEN SEQUENT (,@PARMS -)))))

6.4 Designing A Plan Description

A premise record has the form (conc, HOW), where CONC is a conclusion, and HOW
is the description of a plan to prove it. A plan designer takes a list of sﬁch premise
records, as well as a list of parameters, and returns a list of plan descriptions. For a
plan generator such as MODUS-PONENS, or EQUALITY, determination of the necessary
subgoals is effected by a procedure which amounts to running the corresponding
inference rule backwards. For more complex generators, such as CASE, QUANTIFY, or

SKOLEMIZE, the designing procedure is much more elaborate.

In this section, I will first present the plan description language, then I will 111ustrate

plan designing with examples of code and applications.

6.4.1 Premise Description Language

The HOW slot of a premise record is called a premise descriptor. It must be one of:
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assertion name ‘ Type: namddnode

goal

The corresponding conclusion is the formula associated with the named asser-
tion. Since it is in the assumption set, it requires no proof and will result in a

“solved step” when the plan description is converted to an actual plan.

descriptor Type: <goal_t>
Typically, a <goal_t> does not appear by itself, but only as part of a <plan_t>
(see below). A goal descriptor represents a subgoal, and instances are con-

structed with the form:
(make <goal_t> PATTERN [ASSUMPTIONS RENAMED WEAKEN])
where the last three arguments are optional.

PATTERN is the formula to be set up as a subgoal.

ASSUMPTIONS is a list of formulae (NIL by default) indicating additional as-

sumptions to be made for this goal.

RENAMED is a list (usually empty) of renamings. Each renaming is a pair
associating an old variable name with a new variable name. First, let me

explain why some variables may have to be renamed.

Suppose I wished to prove an instance of p(x) from p(a)V p(b). Proceeding

by case analysis, if I set up a plan of the form:

L. p(a) = p(z)
2. p(b) = p(z)

I will not get very far because, as soon as I solve e.g. step 1, z becomes
instantiated with a and the second step, now of the form p(b) = p(a), has

no proof.
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What is needed here, is a way to allow z in step 1 and z in step 2 to be
instantiated independently. This may be achieved simply by renaming z

differently in each step:

However, now another problem creeps in: whenever an answer is found
for a goal, LOGICALC trims it by removing the bindings for non-return
variables. A return variable is a free variable occurring in the goal and
such that its value is relevant: either it also occurs in the supergoal, or it

is mentioned by at least one other sibling goal (i.e. goal in the same plan).

In the above, z; and z; are new, therefore cannot be return variables
according to the definition I gave above. Consequently, LOGICALC would
discard their bindings. On the other hand, they both stand for z which is
a return variable: if the value of a:‘ is considered relevant, then surely so

should be those of z; and z,.

The purpose of the RENAMED list is precisely to overcome this problem.
New variables inherit the status of return/non-return variable from the
corresponding old variable. This feature is almost never used. Only a
plan generator that does very strange things for the convenience of the

user may have to worry about it.

WEAKEN is a boolean that is true iff it is essential that a proof of this goal have

the exact same assumption set as the goal. N ormally, a proof’s assumption
set is the strongest that suffices for its derivation—typically, it is the
weakest (the one that makes the most assumptions) of the assumption

sets of its immediate steps.

For example, a goal of the form p = ¢ > q will have = ¢ O ¢ as its proof

because ¢ D ¢ is a tautology and does not depend on the assumption p.
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However, suppose p = ¢ D ¢ is a refinement of the goal = p D aq D q.
From the stronger proof = q O q we cannot derive = p D .q O ¢ using
IF-INTRO because there is no way to discharge a non-existent assumption;

and the refinement’s validation fails.

To avoid this problem, we must require that the proof be weakened to

have the same assumption set as the goal. [see * hook, Section 6.4.2].

plan descriptor Type: <plan_t>

Instance of plan descriptors are constructed with the form:

(make <plan_t> CONCLUSION RULE STEPS PARAMETERS [ASSUMPTIONS
WEAKEN])

CONCLUSION is a formula representing (as best as can be determined at this
time) what the plan will conclude. The actual conclusion, in general,
will be an instance of this formula (although automatic generalization .

may occasionally intervene to produce something more general than the

projected conclusion).

RULE names the inference rule, to be invoked during validation, to infer the
correct conclusion from proofs of the steps. Note that, for this to work

properly, the steps must appear in the order expected by the RULE.

STEPS 1is a list of premise descriptors which must appear in the order expected

by the RULE.
PARAMETERS is a list of expressions further specifying the inference.
ASSUMPTIONS is optional and has the same interpretation as before.

WEAKEN is optional and has the same interpretation as before.
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6.4.2 Validation Hooks
Case Analysis

Earlier, I discussed the problem of deriving an instance of p(z) by case analysis from
the assumption that p(a) V p(b), and I suggested that a possible approach was to

create a plan of the form:

1. p(a) = p(z1)
2. p(b) = p(z2)

thus allowing the two avatars z; and z; of z to be independently instantiated. How-
ever, the question remains: once we have obtained the two proofs p(a) = p(a) and
p(b) = p(b), what can we conclude from them, and, more specifically, what should z

be instantiated with?

The solution adopted here is to introduce a new constant, say «, which we define to
be equal to a in the first case, and to b in the second case. z becomes instantiated
with a. In order for such a definition to be safe, the cases must be mutually exclusive
(if they overlapped, you could derive €.g. a = b in the intersection). Therefore, the

plan must really be:

1. p(a) = p(z,)
2. =p(a),p(b) = p(z2)

and the proofs become p(a) = p(a) and —p(a),p(b) = p(b). a is defined by the two
formulae p(a) O o = a and —p(a) A p(b) D> o = b.

The idea is that the validation should infer the appropriate equality in each case and

use it to substitute, by EQUALITY, o for the corrésponding term, thereby producing
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~ the two proofs p(a) = p(a) and -p(a), p(b) = p(«). Now, from these (and a proof of
p(a) V p(b)) the CASE rule can easily infer p(a).

Obviously, the necessary definitions of & cannot be introduced when the plan genera-
tor is invoked because, at that time, it is not known that z; will become bound to a or
zy to b. However they are required for the equality substitutions which must be per-
formed before the validation by CASE rule has any chance of succeeding. Therefore,
we need some sort of trapping mechanism that will interrupt the normal execution of

the validation to examine the proofs, construct and assert the necessary definitions.

Furthermore, we don’t always want to introduce a constant a: for instance, when
the various cases all have identical conclusions, it would be silly and unhelpful to
introduce a to stand for the very same term in all of them. In fact, I made the
decision to introduce new constants only for disagreeing subexpressions: if we replace
a and b with f(a) and f(b) throughout the earlier example, I would introduce « to
stand for a and b, not for f(a) and f(b).

Another approach to solving this example would be to capture z by existential quan-
tification, and then reskolemize in each case. However, the first approach is more
useful because it gives you bindings for the goal’s free variables, and such that each

binding retains as much that is the same in all cases as possible.

The point of this discussion is to convince the reader that the validation language and
the language of premise descriptors both must provide a way to specify an arbitrary

computation to be performed on a set of proofs at validation time.

Weakening a Proof

I mentioned earlier that, for the validations produced by certain plan generators (e.g.

DEDUCTION) to perform successfully, it is necessary to make sure that certain proofs
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are weakened down to a particular assumption set. Such weakening is effected by

repeated application of the ASSUMPTION-INTRO inference rule.

In a plan description, WEAKEN slots may be set to TRUE to convey this requirement.
However, ultimately it is necessary to have it reflected in the validation, but we can’t
know in advance the number of ASSUMPTION-INTRO inferences that will be néeded;
therefore, this extra computation cannot be specified directly in terms of inference
rules, but instead, as for Case Analysis above, it must be an arbitrary computation

to infer more proofs in a manner to be determined at validation time.

The Validation Hook

Both in plan descriptors and in validations, ‘*’ is allowed to mascarade as a pseudo

inference rule. For example:
(make <plan_t> CONC ’# STEPS ’(FCN . PARAMETERS))

indicates that, at validation time, FCN should be called with a list of the proofs of
STEPS as its first argument and PARAMETERS as its second argument. It will return

a list of proofs to be used instead of the proofs of the STEPS.

This scheme is not as general as it ought to be: FCN should really return a list of lists

of proofs, for those cases when more than one transformation is applicable.

Lest the reader get the wrong idea, let me state that the hook mechanism is not an
extra-logical hack. New proofs can only be created by application of inference rules.
The hook mechanism merely extends the basic validation language to allow arbitrary
invocations of inference rules to be determined and effected at validation time, instead

of having to be fully specified in advance.
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6.4.3 Examples

In this section, I will present code from LOGICALC’s implementation of plan generators
MODUS-PONENS and EQUALITY, and I will illustrate their behavior and corresponding

output on simple examples.

Modus Ponens

Here is the code for MODUS-PONENS’s designer:

(DEFFUNC PONENS-PLANGEN - (LST <plan_t>) code
(SEQUENT - sequent_t
PREMS. - (LST <premise_t>)
PARMS - (LST sexp))

(MATCE-COND !>(CAR PREMS).CONCLUSIOK
(\? (IF 7P 7Q)
(LIST (MAKE <plan_t> !>SEQUENT.CONCLUSION ’Modus-Ponens
(LIST !>(CAR PREMS) .HOW (MAKE <goal_t> P)) NIL)))
(T NIL)))

The match-cond form does pattern-matching on the premise’s conclusion: if it is not
an implication, no plans are constructed; otherwise, P is set to the antecedent and
to the consequent, and a list of one plan is constructed. The plan will conclude the
desired formula (as expressed in the target sequent), using MODUS-PONENS, from a
proof of the implication (IF P Q) and a proof of P. The plan description of how to
prove the implication is gotten from the HOW slot of the premise record, and is inserted

as the first step. The second step is a goal descriptor to prove P.

The reason I do not bother to unify § with the sequent’s conclusion to determine
the proper instantiation of step P is that this has already been done by the parser.
The premise records’ conclusions are always already properly instantiated [but see

equality later]. -
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I will now illustrate how this code works on an example. Suppose the current goal
is p(a) and foo is an assertion of the form [¢(z) D p(z)] v r(z). The user invokes

MODUS-PONENS thus:
+plan modus-ponens foo

The plan generator’s parser will invoke the detaching procedure to obtain a premise
record for a formula of the form ?? > p(a), where ?? stands for an unknown an-

tecedent. This will result in a list containing the following premise record:

(a(a) > p(a),
(<plan_t> g(a) D p(a) modus-ponens
((<plan_t> -r(a) D «gq(a) D p(a) taut-trans
(foo) ([z1 Daa]Vaz -23Dez; D z3))
(<goal_t> -r(a)))
M)

The first element of the (...,...) record indicates the conclusion; while the second

one provides a description of a plan to prove it.

Now the plan generator’s designer can use the above premise record to construct the

following plan description:

(<plan_t> p(a) modus-ponens

((<plan_t> ¢(a) D p(a) modus-ponens

((<plan_t> -r(a) Dag(a) D p(a) taut-trans
(foo) ([zy D ay] Vs -z3 Dazy D))
(<goal_t> -r(a))) |
0D
(<goal_t> g(a)))
0D
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Equality

- Here is the code for EQUALITY’s designer:

(DEFFUNC EQUALITY-PLANGEN - (LST <plan_t>) code
(SEQUENT - sequent_t : :
PREMS - (LST <premise_t>)
PARMS =~ (LST sexp))

(LET (PREM - <premise_t> EQTY (CONC (!_CONCLUSION SEQUENT)) - sexp)
(DECL (PARMS - (LST (LST fixnum)))
(WBEN (AND (>= (LIST-LENGTH PREMS) 1)
(>= (LIST-LENGTH PARMS) 1)
(MATCHQ (= 7() ?Q))
(SETQ EQTY (!_CONCLUSION (SETQ PREM (CAR PREMS)))))
(NON-INTERSECTING-PATHS PARMS))
(LOOP FOR ((PATH IN PARMS) - (LST fixnum)
(IENVS (LIST (MAKE intenv NIL NIL))) - (LST intenv))
RESULT :
(FOR (E IN (INTENVS-CVT IENVS))
(SAVE (LET* (;;--we have to unzip to the side of the equality
; ;-—-because we don't want to rename variables that
;;—-may occur in (!_HOW PREM). it’s ok if we rename
;;=—vars on CONC’s side though.
(E (UNZIP E ’Right)) - env
(CONC (ENVSUBST CONC E ’Right)) ~ sexp
(EQTY (VARSUBST EQTY (!_RALIST E))) - sexp
(NEW (CADDR EQTY)) - sexp
(GOAL (IF (!_LALIST E) CONC (COPY-TREE CONC))))
(LOOP FOR ((PATH IN PARMS) - (LST fixnum))
(!= GOAL (*SUBTERM-REPLACE GOAL PATH NEW)))
(MAKE <plan_t> CONC ’Equality
(LIST (!_INSTANTIATE (!_HOW PREM) (!_RALIST E))
(MAKE <goal_t> GOAL))
*(, (EXTRACT-VAGUE~-PATTERN GOAL PARMS) - ,QPARMS)))))
WHILE (HAS-SUBTERM CONC PATH)
RESULT NIL
(1= IENVS (LAMBDA-SUB-UNIFY (SUBTERM CONC PATH)
(CADR EQTY)
(LVARS-ON-PATH CONC PATE NIL) NIL
IENVS ’Left ’Right))
WHILE IENVS
RESULT NIL)))))

This is admitedly more complex, but not hopelessly so (unlike those plan generators

dealing with quantifiers and A-expressions). The condition of the when form is pure
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paranoia, and checks that premises and parameters are really what they are supposed
to be: there must be one premise and it must be an equality; the parameters must
be paths (denoting subterms), and these paths must not intersect (denoted subterms

must be disjoint).

All the denoted subterms must be simultaneously unifiable with the expression on
the left hand-side of the equality. The loop determines the corresponding substitu-
tion. Actually [see p76] there may be more than one resulting substitution: they are

represented by the list ienvs of internal environments.

As its result, the loop computes a list of plan descriptions; one for each internal -
environment, a.k.a. substitution. All the denoted subterms must be replaced with the
right hand-side expression of the equality, instantiated according to the substitution.
The actual substitution is computed from the internal environment as explained on

page 111.

A subloop computes the new goal by effecting the appropriate replacements, and a
plan description is assembled whose first step is the instantiated plan description for
inferring the equality, and whose second step is the new goal. The plan’s parameters
consist of the paths, so that the EQUALITY rule knows what subterms to replace when

the validation is executed. It also contains an expression computed by:
(extract-vague-pattern goal parms)

This was a later addition made necessary by the Automatic Generalization mecha- -
nism. Since this mechanism may generalize certain subterms into free variables, there
is no garantee that the subexpression denoted by a path will actually be there when
the validation is executed. The vague pattern is a sort of expression-skeleton which
will be applied at validation time to reestablish enough structure to make sure that

the paths are meaningful and the validation will not bomb. More on this in Chapter 8.
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Notice that plan descriptions know how to instantiate themselves with a substitution:

this operation is performed by the type’s ! _instantiate method.

I will now illustrate how this code works on an example. Suppose the current goal
is p(f(a)) and foo is an assertion of the form ¢(z) O f(z) = h(z). The user invokes
EQUALITY thus:

+plan equality f - foo

The plan generator’s parser calls the detaching procedure to obtain a premise record
for a formula of the form f(a) = 77, where ?? stands for an unknown term: This

results in a list containing the following premise record:

(f(a) = h(a),
(<plan_t> f(a) = h(a) modus-ponens
(foo (<goal_t> ¢(a))) ()))

which the plan generator’s designer uses to construct the following plan description:

(<plan_t> p(f(a)) equality
((<plan_t> f(a) = h(a) modus-ponens
(foo (<goal_t> g(a))) ())
(<goal_t> p(h(a))))
(p(h(2)) = (1))

6.5 Converting A Plan Description To A Plan Ob-
ject

Once a list of plan descriptions has been obtained, the system must convert them into

actual plan objects, perform various initialization and bookkeeping tasks, and return
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a summary of the results in the form of a list of fates [see Section 5.3.4]. For each
plan description, the process unfolds in 4 stages: automatic expansion, computation

of the validation, construction of the plan object, initialization of the plan object.

6.5.1 Automatic Expansion

The process of automatic expansion has two functions. Firstly, it applies further
transformations to the plan description. In particular, by default, it will replace
conjunctive goals with plans, validated by AND-INTRO, with separate steps for each
conjunct, and will similarly replace doubly-negated goals with plans, validated by
TAUT-TRANS, whose sole step has the double-negation stripped off. The reason this
phase is called Automatic Expansion is that these transformations are computed by
calling the designer for plan generator EXPAND. The user may inhibit these transfor-

mations by setting auto-expand* to NIL.

The second function carried out by this phase is to propagate assumptions down to leaf
"<goal_t>’s. Remember that goal and plan descriptors may introduce assumptions
through their ASSUMPTIONS slot. Therefore, a goal descriptor G which occurs within
plan descriptor P; which itself occurs as a step in plan descriptor P; is such that
its assumption set is really determined by the concatenation of P,’s assumptions,

followed by P;’s assumptions, followed by G’s own original set of assumptions.

It would be interesting to make it possible to specify more general transformations
to be applied to plan descriptions. I have not looked into this. At present, the
system simply expands conjunctions and negations (where applicable, i.e. whenever

the principal symbol of the negated formula is another connective).
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6.5.2 Computing The Validation

Each step of the plan must be denoted by an integer index, also called its rank. All as-
sertion names (i.e. axioms/assumptions) are given negative step numbers. One reason
for this is that it makes it easy to selectively hide them by setting show~plan-negative-steps*
to NIL. We shall decrement the counter NEG to keep track of the last negative step
number assigned. Goal descriptors, on the other hand, will be assigned positive step

numbers. For this we increment the counter POS. Here is the algorithm:

validify [DESC]
= POS :=0
NEG:=1
validify’ [DESC]

validify’ [NAME]
= ——NEG

validify’ [(<goal_t> p ASSUMPTIONS RENAMED nil)]
= ++POS

validify’ [(<goal_t> p ASSUMPTIONS RENAMED t)]
= (* (++P0s) (weakened-proofs asetify[ASSUMPTIONS|[ASET]))

validify’ (<plan_t> p RULE STEPS PARAMETERS ASSUMPTIONS nil)
= (RULE map[validify][STEPS] PARAMETERS)

validify’ (<plan_t> p RULE STEPS PARAMETERS ASSUMPTIONS t)
= (* ((RULE map|validify][STEPS|] PARAMETERS) )
(veakened-proofs asetify[ASSUMPTIONS][ASET]))
asetify [] [ASET]
=> ASET’

asetify [FORMULA - REST] [ASET']

= asetify [REST| [make_assumption_set [FORMULA] [ASET]]
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In the above, ASET stands for the current assumption set. ‘asetify’ incrementally
computes the assumption set ASET’ resulting from making the given ASSUMPTIONS
on top of the current assumption set ASET. It is assumed that ‘make_assumption_set’
is a procedure which actually constructs an assumption set given the desired local
assumption and the desired parent. As explained in Chapter 5, this procedure must
uniquify its result: if the procedure is again invoked with the same local assumption
and parent, it will return the previously computed assumption set instead of creating

a new one.

6.5.3 Constructing The Plan Object

The plan generator was invoked at a goal node (or, occasionally, directly at a class
node). The resulting plan objects purport to solve the corresponding class and are

constructed by following the procedure below for each plan description:

1. First, the plan description’s conclusion is unified with the class’s pattern to
détermine an ALIST which indicates how the plan will instantiate the class’s free
variables. Some variables are thus revealed to become instantiated with terms
whose shape is partially known; others are simply mapped to free variables in

the plan. [see Chapter 5.

2. Then, all assertions are gathered which appear as steps in the plan description.
Each one is converted to a solved step [Section 5.3.2] with the appropriate

negative index [see previous section].

3. Similarly, all goal descriptors are gathered to be converted into goal objects.

Here are the three major points of this conversion process:

¢ The assumption set is computed from the goal descriptor’s list of AS-
SUMPTIONS and the current assumption set ASET, as explained earlier

(see function ‘asetify’ in previous section).
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e The return variables are computed as follows: a free variable of the goal is
considered a return variable iff either it corresponds to a return variable of
the plan’s class (either directly through the ALIST correspondence estab-
lished above in item 1, or through the additional indirection of a renaming
specified by the goal’s RENAMED slot [page 201]), or it is mentioned in a
sibling step.

e The goal is assigned the same positive index (a.k.a. rank) as when we

computed the validation.

. From this information a goal object may be constructed as documented in Chap-

ter 5.

4. Finally, given the class, the ALIST, the solved steps, the other steps, and the
validation, a plan object can be assembled, then initialized, as documented in
Chapter 5.

6.6 Available Plan Generators

In this section, I list and document all plan generators available in LOGICALC.

6.6.1 Expand

- The EXPAND plan generator handles all the obvious syntactic transformations. The
plans it is capable of producing are justified in terms of TAUT-TRANS and sometimes
AND-INTRO. Table 6.1 provides a summary of known expansions. In the first case,
the current goal is a conjunction; expanding it produces a plan with one step for
each conjunct. When the steps have been proven, their proofs are combined using

inference rule AND-INTRO to produce a proof of the original conjunction.
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Table 6.1: Summary of Known Expansions

In the second case, the current goal is an implication; expanding it produces a plan

with one step denoting the equivalent disjunction.

So far, invoking EXPAND required no arguments. In the third case, however, the
current goal is a disjunction, and the object of the transformation is to obtain an
equivalent implication. There are many ways of making an ifnplication out of a
disjunction, depending on which disjuncts we wish to put in the antecedent and
which in the consequent. The user must specify by number which disjunct should be
kept in the the consequent all others are assigned to the antecedent. For example,
+plan expand 3 § puts the 3rd and 5th disjuncts in the consequent, and all others

in the antecedent.

In the fourth case, the current goal is also a disjunction, but the object is simply to
drop one or more disjuncts and prove a stronger formula. The user must specify by
number which disjuncts should be kept; all others are dropped. In order to distinguish
this request from the previous one, the list of numbers should be preceded with =

For example, +plan expand = 3 § keeps the 3rd and 5th disjuncts and drops all the

others.

The other cases do the obvious things.
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6.6.2 Deduction Theorem

When the current goal is an implication, the natural way to prove it is to assume the
antecedent and attempt to derive the consequent under this additional assumption.
Therefore, for a goal of the form A = p D ¢, DEDUCTION-THEOREM constructs a plan
whose sole step is A;p = ¢, where A;p is a new assumption set whose parent is A
and whose local assumption is p. The plan is validated by IF-INTRO which discharges

the local assumption and infers the implication once again.

Unfortunately, the simple scheme outlined above noilonger suffices when the an-
tecedent p contains free variables. Indeed the naive approach is no longer sound
in that case because free variables occurring in the assumption set are disconnected
from those occurring in the right hand side of the sequent. Much like in PROLOG, free
variables occurring in an assertion are effectively renamed every time the assertion
is used. I will now show that, because of this property, the naive approach becomes

unsound.

Consider the goal A = p(z) D p(a). According to naive DEDUCTION-THEOREM, we
would proceed to look for a proof of A;p(z) = p(a). From the local assumption p(z)
"~ by LOGICALC’s princi‘pal axiom, we derive A; p(z) = p(u), where I have renamed z to
u to emphacize the fact that the occurrence of the free variable on the right hand side
of the sequent is not the same as the occurrence of z in the local assumption. Then,
by SUBSTITUTION using {u « a}, we can infer A;p(z) = p(a). Finally discharging
the assumption with IF-INTRO, we conclude A = p(z) D p(a) which is clearly not
valid (consider {z « b}). |

Three ways of dealing with this problem suggest themselves: (1) somehow maintain
the connection with a free variable when the formula it occurs in is moved to the
assumption set, (2) instantiate the free variables in the antecedent with arbitrary

ground terms, (3) quantify the antecedent to capture the free variables within.
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Maintaining the connection: This alternative is not practical with LOGICALC’s
approach. As intimated earlier, whenever an assertion is used to derive a con-
clusion, it is as if a new copy of the formula, with all free variables renamed,
was used instead. Thus, different substitutions may apply in different inferences
(e.g. A,p(z) = p(a) and A,p(z) = p(b)).

In the case of DEDUCTION-THEOREM, when the antecedent contains free vari-
ables, the dynamic semantics that results in renaming the free variables when
the assertion is retrieved from the database becomes unsound, as illustrated
earlier.! To prevent this problem, we would need a scheme to annotate certain
variables in such a way that they would not become implicitly renamed when
an assertion mentioning them is retrieved from the database. Also, as further
deductions proceed, these variables would become more and more instantiated.

. We would need a way to keep track of these substitutions.

What this proposal amounts to is to completely reify the sequent logic, and is
not easily reconciled with an implementation of assumption sets as dva.tva.pools.
However, the mechanism for Automatic Generalization does take this approach
[Chapter 8] because it is trivial to reify the deduction tree once it has been

completely determined.

Instantiating with ground terms: The problem would not arise if there were no
free variables in the antecedent. Therefore, a simple fix is to arbitrarily instan-
tiate these variables with ground terms prior to moving the antecedent to the
assumption set. The system can make up new skolem constants to serve as
ground terms; if the user wants more flexibility in the particulars of the instan-
tiation process, he should invoke SUBSTITUTION directly before DEDUCTION-

THEOREM. This approach is not as drastic as it seems because Automatic Gen-

!Free variables are not actually renamed; the unifier constructs internal environments to keep
track of assignments; each internal environment has a substitution for the left side and one for
the right side, with a special notation to allow one side to reference a variable on the other side.
An assertion’s formula is taken to be on the left side, while the target formula provided by the
generator’s parser is considered to be on the right side. [see Chapter 3].
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eralization will typically remove these ground terms and replace them with free
variables when the validation is executed. On the other hand, if an arbitrary
skolem constant will not do, and more specific terms are required, the user must
guess these substitutions in advance and preestablish them with SUBSTITUTION
before invoking DEDUCTION-THEOREM.

Quantifying the antecedent: The more general solution is to requantify the an-
tecedent prior to moving it to the assumption set; e.g. for a goal of the form
A = p(z) D ¢, first convert it to A = (Yyp(y)) O ¢ using a skolemizing ax-
iom (Section 3.5) p(a) = Vy p(y)—which means that z becomes instantiated
with the skolem constant «, and then, since the antecedent no longer con-
tains free variables, apply DEDUCTION-THEOREM and produce the new goal
A;Yy p(y) = q. The latter’s assumption set may be augmented with the for-
mula p(y) by one application of the inference generator SKOLEMIZE to the local
assumption. Thus we get the convenience of free variables without the unsound-

ness (because x was instantiated with «).

Unfortunately, this approach works only for free variables occurring solely in the
antecedent; it cannot apply to free variables occurring both in the antecedent
and in the consequent, e.g. z in A = p(z) D ¢(z). In this case, in order for the
antecedent to be movable to the assumption set, the quantifier would have to
be moved outside the sequent, thus yielding the reifying approach of item 1, or

z would have to be instantiated with ground terms as in item 2.

DEDUCTION-THEOREM examines the goal’s formula. If there are free variables oc-
curring both in the antecedent and in the consequent, it will make up new skolem
constants to instantiate them. Then, if there are free variables remaining in the an-
tecedent, it will capture them by quantification, adding the necessary skolemizing
axiom to the database, and the validation will reflect the fact that a skolemization
step is required to remove the quantifier in order to produce a proof of the original

goal.
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In order for the validation to successfully discharge the assumption resulting from
assuming the antecedent, the proof of the consequent must have as its assumption set
exactly this assumption set which was obtained by assuming the antecedent? (duh?).
Consider the goal A = p D s¢(a) D g¢(z). DEDUCTION-THEOREM produces the
refinement A;p = ¢(a) D ¢(z). Suppose that the user now effects the substitution
{z « a}. The new goal is A;p = q(a) D ¢(a) which is tautological, therefore a proof
is constructed which depends on no assumption: = g(a) O g(a)® Now it is time for
the validation of the plan produced by DEDUCTION-THEOREM to be executed. The
IF-INTRO inference rule is supposed to discharge the local assumption P, except that
the proof’s assumption set doesn’t have p as its local assufnption; in fact, it has no
local assumption. In order to circumvent this problem, we must make sure to weaken
the proof we are given before IF-INTRO attempts to perform its function. The hook
mechanism is used to garantee that inference rule ASSUMPTION-INTRO is applied the
right number of times to reestablish A;p as the proof’s assumption set. When that
has been done, IF-INTRO can safely operate on A;p = q(a) O ¢(a) to discharge p and
'derive A = p D «g(a) D q(a).

6.6.3 Modus Ponens

MODUS-PONENS implements the familiar back-chaining refinement. Given a goal A =
p1 and a major premise A = ¢ D p,, such that § unifies p1 and p; (i.e. Op; = Op,), it
produces the refinement A = 6¢. Typically it is invoked with the name of an assertion
from which an appropriate implication can be detached, e.g. +plan modus-ponens
foo; however, it can also be invoked with a conjecture to be set up as an auxiliary goal,
€.g. *plan modus-ponens = formula. The code implementing this plan generator is

short enough to be included here as an illustration:

*Translator’s note: in order for the validation to discharge the assumption, the assumption has
to be there.

3Actually, Automatic Generalization steps in and generalizes a away, producing = p(y) > p(y).
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(DEFFUNC PONENS-PARSE-PLANGEN ~ (LST (LRCD (LST <premise_t>) code
(LST sexp)))
(SEQUENT - sequent_t PARMS - (LST sexp))
(<# (\\ (P) (LRECORD (LIST P) NIL))
(PROMPT-DETACHING (MAKE sequent_t

'>SEQUENT.ASET
‘(IF 7+ ,1>SEQUENT.CONCLUSION))

PARMS

(\\ () (OUT "Major premise? ")))))

(DEFFUNC PONENS-PLANGEN - (LST <plan_t>)
(SEQUENT - sequent_t
PREMS - (LST <premise_t>)
PARMS - (LST sexp)) _
(MATCHE-COND !>(CAR PREMS).CONCLUSION
(\? (IF 7P 7Q)
(LIST (MAKE <plan_t> !>SEQUENT.CONCLUSION ’Modus-Ponens
(LIST !>(CAR PREMS).HOW (MAKE <goal_t> P)) NIL)))
(T NIL)))

(DEFFUNC PONENS-HELP-PLANGEN - void (X)
(IGNORE X)
(OUT 0 (&IV "MODUS-PONENS") " (Plan Generator)

A=>q --=> A=>p->q, A=>p

Using an implication whose consequent unifies with the current
goal, attempts to prove the corresponding instance of the
implication’s antecedent. In other words, it does one step of
back-chaining. Typically, it is invoked as follows:

)

(MAKE plan_generator_t ’'Modus-Ponens
! "PONENS-HELP-PLANGEN
! "PONENS~PARSE-PLANGEN
! "PONENS-PLANGEN)

The NISP macro <# is a mapping construct much like mapcar in COMMON LISP, \\ is

an abbreviation for lambda, and match-cond is a pattern-matching conditional.

6.6.4 Modus Tollens

MODUS-TOLLENS is very similar to MODUS-PONENS. For a goal of the form A = P1
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and a major premise A = —p, D (j, such that 6 unifies p; and p,, it produces the

refinement A = —6q.

6.6.5 Resolution

Despite its name, this plan generator does not effect a resolution step; instead, it sim-
ply attempts to detach the current goal from the premises denoted by its arguments.
The reason I called it RESOLUTION is that such a refinement bears a strong resem-
blance to what could be obtained by unit non-clausal E-resolution [see Chapter 7).

All the work is handled by the detaching procedure. The code is:

. (DEFFUNC RESOLUTION-PARSE-PLANGEN - (LST (LRCD (LST <premise_t>) code
(LST sexp)))
(SEQUENT - sequent_t PARMS - (LST sexp))
(<# (\\ (P) (LRECORD (LIST P) NIL))
(PROMPT-DETACHING SEQUENT PARMS)))

(DEFFUNC RESOLUTION-PLANGEN - (LST <plan_t>)
(SEQUENT - sequent_t
PREMS - (LST <premise_t>)
PARMS - (LST sexp))
(LET ((PREM (CAR PREMS)) - <premise_t>)
(COND ((IS namddnode !>PREM.HOW)
(LIST (MAKE <plan_t> !>PREM.CONCLUSION 'Identity
(LIST !>PREM.HOW) NIL)))
((IS <plan_t> !>PREM.HOW)
(LIST (BE * !>PREM.HOW)))
(T (EARROR RESOLUTION-PLANGEN NIL
"PREM is a <goal_t>:" T PREM)))))

(DEFFUNC RESOLUTION-HELP-PLANGEN - void x) ...)

(MAKE plan_generator_t ’Resolution
! ’RESOLUTION-HELP-PLANGEN
! "RESOLUTION-PARSE-PLANGEN
! ’"RESOLUTION-PLANGEN)

This plan generator is so frequently useful that the USE command stands for +plan
resolution. Thus the user may simply type the more natural command use foo

instead of +plan resolution foo.
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6.6.6 Lemma

It is occasionally useful to prove a lemma on the side before proceeding with the rest
of the proof. For a goal A = p and a formula q provided as an argument, LEMMA
produces the refinement { A = ¢, A = p}. The validation simply uses TAUT-TRANS
to drop the first conjunct. The formula to be proven as a lemma must be fully

quantified with no free variables and specified as an argument. The code is:

(DEFFUNC LEMMA-PARSE~-PLANGEN - (LST (LRCD (LST <premise_t>) code
(LST sexp)))
(SEQUENT - sequent_t PARMS - (LST sexp))
(LIST (LRECORD

NIL

(LIST (PROMPT-FOR-FORMULA
(AND (COXSP PARMS) (CAR PARMS))
A\ () (OUT 0 "Type a fully quantified formula (containing"

T "no free variables) to serve as the lemma: ")))))))

(DEFFUNC LEMMA-PLANGEN - (LST <plan_t>)
(SEQUENT - sequent_t
PREMS - (LST <premise_t>)
PARMS - (LST sexp))
(LET ((CONC !>SEQUENT.CONCLUSION) - sexp)
(LIST (MAKE <plan_t> CONC ’'Taut-Trans
(LIST (MAKE <plan_t>
¢ (AND , (SKOLEMIZE (CAR PARMS)) ,COKNC)
'And-Intro
(LIST (MAKE <goal_t> (GOAL-SKOLEMIZE (CAR PARMS)))
(MAKE <goal_t> CONC))
NIL))
'((AND 7<P> 7<Q>) 7<Q>)))))

(DEFFUNC LEMMA-HELP-PLANGEN - void (X)
(IGNORE X)
(OUT 0 (&IV “LEMMA") " (Plan Generator)
A=>p -==> A=>lemma,A=>p
Use this to prove a lemma on the side. Typically invoked by:

+PLAN LEMMA lemma

I2 the lemma has not been provided on the command line, the
user will be prompted for it. The lemma should be a fully
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quantified formula, with no free variables whatsoever.
u))

(MAKE plan_generator_t ‘Lemma
1 ’LEMMA-HELP-PLANGEN
! *LEMMA~PARSE-PLANGEN
! *LEMMA-PLANGEN)

Note that, in many cases, it is preferable to specify a conjecture using the notation

= formula rather than specify a lemma to be proven in this manner.

6.6.7 Substitution

SUBSTITUTION alist creates a plan whose sole step is the instance of the current
goal created according to the substitution alist. The parser makes sure that the alist
argument has the proper form (i.e. is a list of pairs (var val)) and has no circularities.

It is validated by IDENTITY since unification is built into the logic.

6.6.8 Contradiction

The principle of a proof by contradiction is to assume the negation of the current
goal and to use this assumption to derive a contradiction. Suppose the current goal
is A = p, then the refinement is of the form { 4; —p = q, A;=p = =¢}. From proofs
of these two steps NOT-INTRO is able to conclude A = p. The formula ¢ Wthh serves

as the contradiction must be specified as an argument,.

In the earlier discussion of DEDUCTION-THEOREM, it was shown that we cannot
move to the assumption set a formula containing free variables. The same is true
here: if p contains free variables, they must first be captured by quantification, and

the validation will have an extra skolemization step.
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For example, if the current goal is A = p(z), the skolemizing axiom p(a) = Jy p(y) is
added to the database, z is instantiated with @, and the refinement has the two steps
{4;-3yp(y) = ¢, A;~Jyp(y) = —¢}. When the validation is executed, NOT-INTRO
infers A = Jy p(y) from proofs of the two steps; then, from this last proof and the
skolemizing axiom, SKOLEMIZE concludes A = p(«).

6.6.9 Equality

Plan generator EQUALITY produces refinements in which designated subterms of the
goal have been replaced by other terms according to an equality provided as a premise.
For example, if the current goal is A = p(a) and foo is an assertion of the form
a = b, then +plan equality a - foo will produce the refinement A = p(b). The
user should first specify the subterms to be replaced, using the notation discussed in
section 6.2.2. Optionally he may also type a ‘-’ followed by premise descriptors (see

section 6.2.1) from which to obtain equalities.

The plan’s validation invokes rule EQUALITY to effect the reverse replacements. The
validation’s parameters contain a list of paths to the subterms in question. As was
discussed earlier, Automatic Generalization may generalize away some of the terms
containing these subterms; in which case the corresponding subterms would no longer
be present, and the validation could not perform successfully. To avoid unwarranted
failure, it is necessary to reestablish enough structure to the proof’s conclusion before
EQUALITY attempts to perform its function. For this reason, the parameters now
also include a skeleton-pattern which is unified with the proof’s conclusion before

EQUALITY begins its official task.
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6.6.10 Case

In order to prove a goal by Case Analysis, the user must specify the cases in the form
of an exhaustive disjunction. For example, +plan case (or (p a) (not (p a)))
proposes exactly two cases: one in which (p a) is true, and one in which it is false. As
a result, one step of the refinement will attempt to prove the goal under the additional

assumption that (p a), and another under the assumption that (not (p 2a)).

The disjunction does not have to be a tautology; it will be included as a step in the
resulting plan. If it is outwardly a tautology, it will be revealed as such and converted

to a solved step by the initialization procedure [Section 5.2.2].

Supposing the current goal is A = ¢ and the user proposes p(a) V —p(a) as the

disjunction of cases, it would be natural to expect a plan of the form:

1. A= p(a)V ﬂp(d)
2. A;p(a) = q
3. A;-p(a) = ¢

However, the actual truth must perforce he somewhat more complex, as we shall see
shortly. Let us further suppose that q is really ¢(z), and that A contains the two
assertions p(a) D ¢(f(a)) and —p(a) D q(f(b)). Obviously, I intend the first assertion
to solve the first case, and the second one the second case, both through the mediation

of MODUS-PONENS. However, if the plan looks like this:

1. A= p(a)V =p(a)
2. A;p(a) = q(z)
3. A;-p(a) = q(z)

as soon as the second step is solved, z becomes instantiated with f(a), and the 3rd

step, now A,-p(a) = ¢(f(a)) cannot besolved as expected because we have ¢(f(a))
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instead of ¢(f()). As discussed earlier, the solution is to let = vary independently
in either case: let it be renamed z; in the first case, and z, in the second case. The

plan becomes:

1. A= p(a)V —p(a)
2. A;p(a) = q(z1)
3. A;-p(a) = q(z2)

Now the proofs will go through, and z; will become instantiated with f(a), and z,
with f(b). At validation time we are handed:

1. A= p(a)V —p(a)
2. A;p(a) = q(f(a))
3. A;-p(a) = q(£(b))

The question is what to conclude from this, and, more specifically, what should
become instantiated with? The practical solution adopted here is to introduce a new
constant o and conservatively extend the theory with the definitions: p(a) D a = a

and —p(a) Da =b.

Now, using MODUS-PONENS in the first case we can infer o = a from the first defi-
nition, and then, by one application of EQUALITY conclude A,p(a) = ¢(f(@)) from
the proof of step 2. Similarly in the second case we derive 4, -p(a) = q(f (a)). Now
it becomes clear that the conclusion of Case Analysis must be 4 = ¢(f(a)).

In general, the disjunction of cases has the form p; V... V Pn; it must be exhaustive,
but the cases are not necessarily disjoint. When a new constant o must be defined to
be a; in the :*! case, we cannot naively define it with n axioms of the form P D a=a;
Doing so is unsound. To see why, suppose A contains the assertion ar # ay and that
case k is not disjoint from case &’ (for instance pj might be equivalent to prr). In the

intersection of case k and %’ we can derive both o = a; and a = ays, and therefore
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ax = awp which contradicts the assertion a; # a. Adding our definitional axioms

caused the assumption set to become inconsistent.

To guarantee that this never happens, we must ensure that the cases are all pairwise
disjoint. Instead of using the individual p;’s as the cases, we use p; for the Ist case,
—p1 A ps as the second case, ..., =p; A...=p,_; A p, as the last case. Unfortunately,
in the case of a simple tautology, such as p(a) V =p(a), this policy has the effect of

generating the plan:

1. A= p(a) V —p(a)
2. A;p(a) = q(f(a))
3. A;-p(a) A —p(a) = q(f£(b))

in which the local assumption for the 3rd step looks somewhat ludicrous.

Another point worth noting is that which conflicting subterms new & constants should
be introduced for, and what their respective definitional axioms should be, cannot
be determined in advance, but must be done at validation time. Once again, the
hook mechanism must be called upon to intercept the proofs before the CASE rule
gets hold of them, to make the necessary determinations, add all required definitional
axioms, and effect the corresponding equality substitutions. When this is done, the
conclusions in ali cases have become identical and the CASE rule will successfully infer

this common conclusion.

The hook calls function CASE-MAGIC which attempts to do the intuitively clever
thing. One heuristic is to introduce a new constant only for innermost disagreeing
subterms; by which I mean that for q(f(e)) and ¢(f(b)), a will be introduced to
resolve the conflict a/b rather than, say, f(a)/f(b).

Note that the conflicting terms may contain free variables ¥, in which case the new

skolem term introduced to resolve the conflict must also depend on these variables,
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le. must have them as arguments: a(7), such that @ C 7. CASE-MAGIC attempts
to minimize the number of free variables T by establishing a correspondence between

free variables in the various cases.

Another point is to try not to introduce a skolem term to resolve a conflict between
free variables, where a renaming would suffice. For example, it would be stupid to
introduce a skolem term defined by p1 D a(z) = z and —p; Ap; D a(y) = y to resolve
the conflict z/y between A;p, = ¢(z) and A;-p; A p; = ¢(y), where the renaming
y — z applied to ¢(y) would suffice.

Note that the rather complex scheme implemented here is all for the convenience of the
user. Instead, before invoking the CASE plan generator, the user could capture all free
variables in the goal by Existential Quantification, to be later followed by independent
Skolemization in each case. Supposing we proceeded thus with the example used as an
illustration in this section, we would first refine the goal A = q(z) into A = 3z ¢(z)
by means of QUANTIFY. Then we would invoke the CASE generator to produce the

following plan:

1. A= p(a)V -p(a)
2. A;p(a) = 3z q(z)
3. A;-p(a) A —p(a) = Fz ¢(x)

Then we could refine step 2 into A4;p(a) = q(z1) by skolernization, derive A; p(a) =
q(f(a)) as a proof, then conclude A;p(a) = Iz g(z) by quantification (as validation
of the skolemization refinement), which would throw away all of the interesting sub-
stitution derived for ;. Similarly for step 3. Case Analysis therefore yields the proof
A = 3z ¢(z) and the validation of our early quantification step concludes 4 = ¢(a)

by skolemization, where a is defined by the skolemizing axiom ¢(a) = 3z ¢(z).

As we can see, this last approach yields less information than the one implemented
automatically by the CASE plan generator: contrast g(a) with q(f(a))—much less

information when all the cases turn out to be indentical, e.g. ¢(a) vs. q(a), say.



230 CHAPTER 6. PLAN GENERATORS

6.6.11 Reduction

A redex is an expression representing the application of a A-expression to arguments;
it may denote either a proposition or a term. In LOGICALC, a redex is an expression
of the form (% (lambda vars body) . args). Reducing a redex consists of replacing
the preceding expression with body[args/vars]; in other words, the redex is replaced
by the body of the A-expression in which actual parameters have been substituted for

formal ones.

REDUCTION ¢y...1, reduces the corresponding redexes in the current goal; where i,

denotes the " redex in the standard depth-first left-to-ri ht enumeration.
k P g

REDUCTION’s parser returns a list of paths to the redex subexpressions. These paths
are then sorted so that the deeper redexes appear first. The reason is that a certain
redex R; might be embedded within another redex R;; if we reduced R, first, the path
to R; would become invalid because 2 levels of structure are removed by reduction
(the % level and the lambda level). By proceeding inside out, all remaining paths stay
valid as the transformations are effected, which greatly simplifies the operation of the

generator’s designer.

Another problem to watch out for is the capture of free variables or constants by
bound variables when formals are replaced by actuals. Suppose the current goal

contains the expression:
(lambda (y) (% (lambda (x) (% (lambda (y) (£ x¥)) 1)) y))

and that we wish to reduce the first redex (% (lambda (x) ...) y). The naive

reduction would yield:

(lambda (y) (% (lambda (y) (£ y y)) b))
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in which the outer y has been captured by the binding for the inner y. The procedure
effecting the substitution is careful to rename those variables of inner bindings which
would otherwise capture an outer variable or a constant. Thus, REDUCTION actually

produces:

(lambda (y) (4 (lambda (y.1) (f y y.1)) b))

6.6.12 Abstraction

ABSTRACTION performs the function inverse to REDUCTION, i.e. it replaces a subex-
pression with a redex, such that reducing the redex yields the original expression
again (modulo possible renamings of bound variables [see earlier]). The plan genera-

tor should be invoked using the following syntax:
+plan abstraction reder; -- reder, -- ... -- redez,
where redex; describes a particular redex to be constructed and has the form:
subformula - var, subterms, -~ ... - var, subterms,,

where subformula is a subterm descriptor denoting the subexpression of the current
goal to be converted into a redex [see section 6.2.2]. Each var; is the name of a variable
for the redex’s A-expression; subterms; are subterms descriptors for occurrences of
the expression to be abstracted as var;. These occurrences should all be identical or
unifiable. The subterms; descriptors are specified with respect to the subformula, not

to the whole goal. For example, if the current goal is:

(p (f 2 a) b)
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then ‘+plan abstraction 1 - x 2’ causes the subterm (£ a a) to be converted to
a redex with the second occurrence of a abstracted as the variable x. The resulting

refinement is:
(p (%4 (lambda (x) (f a x)) a) b)

Occasionally, it is convenient to introduce a variable that does not abstract a subex-
pression of the formula. In that case, it is necessary to provide the redex’s actual
parameter explicitly, and can be done using the notation var; = pattern;. Thus the
command ‘+plan abstraction 1 - x = (h c)’ for the same goal as above would

produce the refinement:
(p (4 (lambda (x) (f a a)) (h c)) b)

The notation can also be used in combination with subterm designators: var; =
pattern; subterms;, in which case the designated subterms must be identical to, or

unify with, pattern;.

ABSTRACTION’s parser is a nightmare (but nothing compared to QUANTIFY’s). From
the descriptions given on the command line, the parser constructs records describing
the desired abstractions; each has the form (PATH, ALIST), where PATH is the path to
a subexpression to be converted to a redex, and ALIST is a list of records describing
the formal/actual parameters, each of which has the form (VAR, PATHS, PATTERN),
where VAR is the name of the variable which is the formal parameter, PATTERN is
the expression playing the réle of the actual parameter, and PATHS are paths to
subexpressions of the formula which are occurrences of PATTERN to be abstracted

away by VAR.

Every path must be normalized to facilitate comparisons [page 195]. Unnecessary

abstractions are removed, i.e. those of terms that will disappear anyway because some
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larger term in which they occur will be abstracted away. Conflicting abstractions, such
as of overlapping sequences, must be dealt with: the earliest one is kept, later ones
are discarded. Then, the requested abstractions are sorted so that the deepest will be
performed earliest; thus, as was the case for REDUCTION, the paths to the remaining
subexpressions to be redexified will remain valid as the successive abstractions are
carried out. However, the PATHS to the subterms within may not necessarily remain

valid because new redexes may be introduced on the way. Consider the goal:

(p (f 2 (ha)) b)

and the command ‘+plan abstraction h = x = ¢ -- £ - y a’. The first abstrac-

tion yields:
(p (f 2 (% (lambda (x) (h a)) <)) b)
while the second one is meant to produce:
(p (% (lambda (y) (£ y (% (lambda (x) (h y)) ¢))) a) b)

When the original command line is processed, the following 2 records are constructed:
(1 2), (x, O, e),and ((1), Uy ,((1) (2 1)), a))). Notice that, once the
first abstraction has been carried out, the path (2 1), mentioned in the second ab-
straction record, and pointing to the second occurrence of a, is no longer valid because
a new redex has appeared along the way. The correct path isnow (2 1 2 1). In or-
der for ABSTRACTION’s designer to function correctly, these path corrections must be
anticipated and performed in advance. I call this path augmentation. It is performed
by the parser and amounts to inserting the sequence 1 2 at those strategic places
where new redexes are expected to appear; the 1 selects the redex’s \-expression,

while the 2 selects the A-expression’s body.

The validation for a plan produced by ABSTRACTION simply performs the correspond-

ing reductions.
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6.6.13 Skolemize

The point of Skolemization is to replace a quantified subformula with a similar formula,
where the quantifier has been removed and formerly quantified variables have been
replaced by free variables or skolem terms as appropriate. Typically SKOLEMIZE is

invoked thus:
+plan skolemize ¢;...1,

where i) denotes the ¢} occurrence of a quantified subformula in the traditional
depth-first left-to-right enumeration. The occurrence descriptors are converted to
paths, which are then sorted outermost first. In LOGICALC, it is not possible to
skolemize a formula which occurs in the scope of another quantifier; this is the reason
for sorting the desired skolemizations outermost first, and also justifies throwing out

those that will remain in the scope of a quantifier.

Since skolemizations are performed outside-in, the paths to later subformulae to be
skolemized may become invalid because quantifiers, which originally were on their
paths, have been removed by earlier skolemizations. This is the opposite problem that
we encountered with ABSTRACTION: there we had to augment paths by inserting the
sequence 1 2 at strategic places, while here we must remove the index 2 from those
places corresponding to quantifiers which we expect to be removed—the 2 served to
pick the body from an expression of the form (forall vars body) or (exists vars
body). These quantifiers are those in whose scope the formula.appears, and they
must all have been requested for skolemization in the user’s command, otherwise
the request for skolemizing the formula would have been discarded [see earlier]. The

parser effects the necessary path reductions.

The quantifier of a formula to be skolemized may have either universal or existential

force. A V in a positive context has universal force, whereas it has existential force
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In a negative context. A quantifier is in a positive (resp. negative) context if it is in
the scope of an even (resp. odd) number of explicit or implicit negations. An explicit
negation is expressed with the connective =. The antecedent of an implication is in
an implicit negation because p O ¢ is equivalent to —p V ¢. It is well known that all
quantifiers can be moved out of a formula by the process of conversion to prenex form
[see e.g. [Man74]]; when this is done, quantifiers which had universal force will have
been converted to V in the prefix, whereas those which had existential force will now

correspond to 3.

When a quantifier has existential force, SKOLEMIZE simply removes it and replaces
all corresponding (and formerly bound) variables with free variables. For example, if
the current goal is A = 3z p(z), SKOLEMIZE will produce the refinement A = p(z).
Thus the free variable z is now allowed to become instantiated. When a proof, say
A = p(a), has been derived, the validation will reverse the refinement and reestablish
the existential quantifier; in other words it will infer A => 3z p(z) from A = p(a) by
rule QUANTIFY.

When a quantifier has universal force, a skolemizing axiom [Section 3.5] is required
for the refinement. For example, if the current goal is A = Vz p(z), the generator
makes up a skolemizing axiom p(a) = Vz p(z) and adds it to the database, and then
uses it to produce the refinement A = p(c). This new goal captures the intuition
that if p can be shown to hold for a totally arbitrary object such as o, then surely
it holds of any object z since the same proof would go through if z were substituted
throughout for «. When a proof of A = p(a) has been derived, the validation, with
the aid of the skolemizing axiom, infers A = Vz p(z).

Another way to invoke SKOLEMIZE is: +plan skolemize k - foo, where & denotes
the k™ quantified subformula (which had better not be in the scope of another quan-
tifier), and foo is a premise designator [see section 6.2.1] presumably denoting a
skolemizing axiom. In this case the generator does not invent a new skolemizing ax-

iom since it was explicitly specified as an argument. Note that, since the detaching
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procedure operates on the premise designator, it is a better idea to type -raw foo

rather than simply foo.

If the current goal is:

(FORALL (X)
(OR (P X)
(FORALL (Y) (Q X Y))
(EXISTS (2) (R X Z))
(EXISTS (U)
(AND (P U) (FORALL (V) (S X V))))))

Then +plan skolemize 1 4 5 produces the following plan

I= =1 (IF (S !'.X '.V) (FORALL (V) (S '.X ¥)))
I-= 0 (IF (OR (P !.X)
(FORALL (Y) (Q !'.X Y))
(EXISTS (2) (R '.X 2))
(EXISTS (U)
(AND (P U)
(FORALL (V) (S '.X V)M
(FORALL (X) '
(OR (P !.X)
(FORALL (Y) (Q '.X Y))
(EXISTS (Z) (R !.X 2))
(EXISTS (U)
(AND (P U)
(FORALL (V) (S '.X V)))N))
1 (O0R (P !'.X) '
(FORALL (Y) (Q !'.X Y))
(EXISTS (Z) (R !.X Z))
(AND (P ?2U) (S !'.X '.V)))

6.6.14 Quantify

The point of Quantification is to replace a subformula with a quantified version of

it, such that, from a proof of the refinement, a proof of the original goal can be
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inferred by Skolemization. For example, it is possible to prove the goal A = p(a) by
first deriving the stronger proof A = Vz p(z), then A = p(z) by Skolemization, and
finally A = p(a) by explicit substitution (typically omitted in favor of the same effect

obtained implicitely through unification).

Introducing a quantifier with existential force requires a skolemizing axiom. For
example, to produce a refinement for the goal A = p(z), QUANTIFY must invent
and add to the database the skolemizing axiom p(a) = Vy p(y). The new subgoal is
A = Vyp(y) and z in the supergoal became instantiated with a. From a proof of
the subgoal and the skolemizing axiom the validation ultimately derives A = p(a)
by Skolemization. Note that this approach cannot apply to a goal of the form p(a),

where a is not a free variable because a won’t unify with the new skolem term c.

Plan generator QUANTIFY should be invoked with the syntax:
+plan quantify spec; -- spec; == ... == spec,

where spec; determines the quantification of a particular subformula of the current

goal, and is typically of the form:
subformula - quantifier - var, subterms, - ... - var, subterms,,

subformula is a subterm descriptor denoting the subformula to be quantified. quan-
tifier is either forall or exists; it may also be -universal or -existential, in
which cases the generator will determine, on the basis of the polarity of subformula in
the goal, whether it should be forall or exists. Each bar; is the name of a variable
to be bound by the quantifier, and subterms; are those subexpressions of formula to

be quantified away by this variable.

When the quantification introduces a quantifier of existential force, the plan generator

constructs and adds to the database a skolemizing axiom to be used to guide the
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refinement and serve as a premise to SKOLEMIZE at validation time. As was the
case in the case of SKOLEMIZE, here too it is possible to provide a premise descriptor
(presumably denoting a skolemizing axiom) to avoid the creation and use of a new

one. In this case, spec; should be of the form:
subformula - quantifier -raw foo

where foo is the name of an existing skolemizing axiom which applies to subformula.

The same remarks made earlier on ABSTRACTION’s parser apply here too, and the
code is essentially the same. Interpretation of the specs, however, is twice as complex
because there are two distinct cases (universal and existential quantification) to con-
sider instead of merely one. It should be noted that this code is written in such a

way that it can also be used as the front end to inference generator QUANTIFY.



Chapter 7

Validations and Detachments

The refinement of a goal into a plan often requires that one or more premises be
specified. In this chapter I describe a novel idea whereby a premise can be acquired
through a non-clausal resolution-like process validated in terms of regular inference
rules. This feature automates low-level inferential manipulations and relieves the
user from the tedium of figuring out the details. It promotes and greatly enhances

interactivity.

7.1 Introduction

In LoGICALC, the user will carry out a top-down analysis of the original goal by -
successive refinements of subgoals into plans. Each refinement is effected by invoking
a plan generator [Chapter 6], and typically requires that one or more premises be
specified. For example, Equality Substitution will replace occurrences of a term by
another according to a given equality which must be provided as a parameter. If said

equality is available in the assumption set as an assertion, then the assertion’s name

239



240 CHAPTER 7. VALIDATIONS AND DETACHMENTS

can be used with no further ado. However, more often than not, the equality is not

yet available as an individual assertion and must be derived.

Consider for instance the problem of establishing the truth of the following sequent:

g2 a=b,q,pa) = pb)

A Natural Deduction proof for the above is:

l.gDda=b,q,p(a) = qDa="b Hypothesis

2.92>a=b,q,p(a) > ¢q Hypothesis
3.¢D>a=b,q,pla)y=>a=b Modus Ponens 1 2
4. ¢ D a=b,q,p(a) = p(a) Hypothesis

5. ¢ D a=b,q,p(a) = p(d) Equality 4 3

For an interactive approach to proof derivation, this linear limitation is very inconve-
nient because not only does it mean that you have to work out the proof before you
can carry it out (instead of being able to adopt a more explora.tory.a.pproach—-which
was the original intent), but also that you must derive the premises required by your
refinements ahead of time as lemmas or perhaps forward inferences, thus negating

the benefits of top-down refinement analysis.

In LOGICALC, if your goal is p(b) and foo names the assertion q O a = b, then you
may simply type:

+plan equality a - foo

to indicate that subterm a should be replaced according to an equality to be found
in assertion foo. The system figures out what inferences are required to conclude the
desired equality and what additional Subgoals are necessary to carry these inferences
out. I call this process “detaching.” The system automatically determines how to

detach a = b from assertion foo.
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Detaching a = b from foo, i.e. ¢ D a = b, can be achieved by Modus Ponens provided
that we can show ¢. I say that @ = b is detachable from foo modulo q. ¢ will
automatically be inserted as an auxiliary step in the resulting plan. The prinéipa.l
step is, as expected, the one which is the result of substituting b for a in our goal, i.e.
p(a). Therefore, the plan will have two steps ¢ and p(a) which immediately match
hypotheses.

Consider another example:
POsgOT,p,-T =g

This is precisely the sort of proof resolution is good at—especially if there are free
variables involved—but a Natural Deduction proof must go through the following

contortions:

1.pDegDr,p,-r=>pDeg Dr Hypothesis

2.pDewqgDr,p,r=>p Hypothesis
3.pDwqDryp,r=qDr Modus Ponens 1 2
4.p Deg D r,p,mr = -r Hypothesis
3.pDagDryp,r =g Modus Tollens 3 4

Clearly, here too we should like the system to take care of these details. If baz names

assertion p D g D r, the user may type:
+plan resolution baz

and LOGICALC will automatically determine that p and —r should be set up as aux-
iliary goals. I chose to name the plan generator resolution because it provides an
apparent functionality close to that of (unit) non-clausal resolution, eventhough the

validation [Section 7.3] is expressed in terms of regular inference rules (not resolution).

The idiom “+plan resolution” is so common that I defined the command use to
mean the same thing. Instead of typing ‘+plan resolution baz’, the user may

simply say ‘use baz’.
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7.2 Resolution and Natural Deduction

Resolution has some advantages which are relevant to interactive theorem proving,
and some which are not. Relevant advantages include: (1) the use of unification to
determine the required substitutions, and (2) the ability to pick any literal to resolve
on in a clause (and not just, say, the first one). Because of the preliminary conversion
to clausal form, the search space becomes very homogeneous, thus making it easy to
build automatic theorem-provers. Also, resolution is refutation-complete. However,
since my interest is in improving the user interface rather than in automating search,

the last two properties are somewhat removed from the issue.

On the other hand, resolution has many disadvantages. I will ignore those related to
automated search, and will concentrate instead on those which are of some import to

interactive proof derivation.

e Resolution requires that all formulae undergo a preliminary conversion to clausal
form. While this has the effect, noted earlier, of making the search space homo-
geneous, therefore better suited to automated search, it also eliminates a con-
siderable amount of structural or pragmatic information encoded in the original,

notationally richer, formulation (e.g. contrast p D ¢q with =pVq).

¢ This same conversion to clausal form introduces a lot of redundancy as a result

of repeated applications of the distributive laws.

e People find clausal form difficult to understand. There are several reasons for
that: (1) skolemization introduces new unfamiliar terms which become increas-
ingly complex as new substitutions are performed—however, I have shown how
the judicious use of abbreviations alleviates this problem—(2) the new repre-
sentation is rather far removed from the original input and no longer possesses

any kind of structure; (3) finally, the same one formula will typically result
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in several clauses; thus, semantically related ensembles become scattered and

difficult to grasp as a whole.

7.2.1 Non-Clausal Resolution

It is possible to remedy the problems listed above by extending the principle and
permitting resolution to occur between formulae not in clause form. This procedure
is known as non-clausal resolution. Non-clausal resolution operates on quantifier-free
well-formed formulae. The procedure can create a resolvent from formulae containing
atoms occurring with opposite polarity. Polarity is determined by the parity of the
number of negations, explicit or implicit (as for the antecedent of an implication),
in the scope of which the atom is located. The following definition is adapted from
[Mur82]: | |

Let A and B be quantifier-free well-formed formulae such that the atom
L occurs with opposite polarity in A and 0B, where 0 is a substitution.
Let { L1,...,L.} be the set of all atoms occurring in A and B such that
0L; = L. The following formulae are non-clausal resolvents of A and B:

StoA vSteB
SLoA vsioB

where SE0A denotes the result of substitu ting all occurrences of L by the
constant T (i.e. TRUTH) in the formula OA (i.e. the formula obtained by
applying substitution 6 to A).

Typically, simplifications are applied to the resolvents to eliminate the truth constants

T and F,e.g. pAT — p.

Stickel [Sti82] also advocates the use of non-clausal resolution, in the context of a
connection-graph driven procedure. However, the restriction that resolution should

occur on atomic subformulae is not suitable for my purpose. My intention is to
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extract premises for use in refinements, and those premises will often be non-atomic,

e.g. Modus Ponens requires an implication.

This limitation can be overcome by extending non-clausal resolution to resolve on

(non necessarily atomic) subformulae. In fact, this was already suggested in [Mur82].

7.2.2 Translating Proofs to Natural Deduction

Resolution, and other automated proof procedures, have the drawback that the rep-
resentations they operafe on as well as the presentation of their conclusions is neither
intended nor adequate for human consumption. This deficiency has prompted a num-
ber of researchers to study ways of translating from proofs expressed in a language

designed for automated search into formats better suited for inspection by people.

For example, Chester [Che76] looked at the translation of formal proofs into english.
Andrews studied the translation of matings into Natural Deduction proofs [And81].
This idea of traﬁslating mechanical proofs to a Natural Deduction format brings up
another point about automated search procedures and user involvement. Miller and

Felty [MF86] make the following remark:

[.-.] On the other hand since the search in such a theorem prover is carried
out in a space which is rather removed from a user’s original input, it is
difficult to get the user to interact with the search process.

To address this issue, and following a result by Pfenning [Pfe84] that a resolution
refutation can be converted to an expansion tree proof, they propose a system which

explicitly represents both kinds of proofs and is able to translate between them.
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7.2.3 Conclusions for LOGICALC

Since user involvement is a primary concern in LOGICALC, the detaching procedure
should be both powerful and intuitive and should operate transparently. Non-clausal
resolution has this to offer: (1) unification, and (2) the ability to perform an infer-
ence based on a subformula. Both these features are highly desirable and should be

retained.

On the other hand, refutation proofs are in a format which is not suitable for human
consumption; refinements based on such resolution steps are harder to understand
and make it progressively more difficult for the user to interact with the system. For
both these reasons, it is often desirable to elucidate a resolution proof (or step) by
translating it into a Natural Deduction format. Since automated search is not the
focus of this work, there is no need to actually represent resolvents, instead, I shall

translate them imediately to Natural Deduction conclusions.

LOGICALC’s detaching procedure (1) will be based on unification, (2) will allow the
user to use a subformula as a premise in a refinement, (3) will use a Natural Deduction
format. In this regime a premise is the description of a plan for inferring the desired

formula; this plan is to be inserted into the corresponding refinement.

7.3 Premises and Validations

In LCF, a goal is analysed top-down, and the corresponding proof is then constructed
bottom-up by composing validations, where a validation is a function which maps
a tuple of theorems to a new theorem. Similarly in LOGICALC, goals are refined
into plans and subgoals until the process bottoms out when all leaf goals have been
matched with assumptions or axioms. Each plan includes a validation which, unlike

LCF, is not a function but rather an expression representing the inferences to be
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performed. When all steps of a plan have acquired answers, the inferences prescribed
by the validation are carried out by a special interpreter. In both LCF and LOGICALC,
executing a validation may fail to produce a conclusion if the conditions for the

successful application of each inference rule are not all satisfied.

7.3.1 The Point of Validations

It is interesting to contrast this approach with backward-chaining systems such as
PROLOG. The later do not incorporate a bottom-up validation phase, nor do they
seem to require it, or are perceived as lacking in this respect. So what do we really
need validations for? I expounded on this topic in Chapter 5, but it is probably a

good idea to go over the main points here again anyway.

The following 4 items argue either for the necessity or the advantage of having vali-

dations and explicit proof objects:

double-check the validity of a refinement: Backward-chaining systems are en-
tirely driven by rules such as Modus Ponens and And Introduction. Such a rule,
when applied backwards, yields a refinement for which the validation is the for-
ward application of the same rule. Obviously, for any given refinement obtained
in this manner, the corresponding validation will always successfully produce a
conclusion. Therefore, validations would provide a superfluous double-check for

these systems. Similarly, PROLOG is driven by SLD resolution, which is sound.

In LoGICALC, however, refinements are obtained through the mediation of plan
generators. A plan generator is essentially a function mapping a goal to a tuple
of subgoals. Such a mapping may be arbitrarily complex or general and there
is no reason to expect that an instance of the goal can be validly inferred from

proofs of the subgoals. The validation makes sure that this inference is legal
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by attempting to perform it. If it succeeds, it also determines the necessary

substitution.

A plan generator corresponds more or less to a tactic in LCF. Here is what

Paulson [Pau87] says on this topic:

There is no guarantee that the validation will prove the goal. LCF cannot
prove a false statement, but a validation can raise an exception, run forever,
or produce an irrelevant theorem. An invalid tactic is worst that useless:
it can lead you down an incorrect path in a proof. The validation fails at
the last moment, when the proof seems to be finished. As Milner says,
‘Such dishonest tactics — those that promise more than can be performed
— are to be avoided.’

LOGICALC follows this advice, and validations are expected to succesfully pro-
duce conclusions for their respective plans. Failure is currently interpreted as a

design flaw in the plan generator responsible for the refinement, and an error is

signalled.

perform post-completion processing: Even after all steps of a plan have acquired
answers, it may not be possible to immediately derive a conclusion. For instance,
it may be known in advance that some further inference steps will have to be
interposed, but the specifics cannot be determined until the steps have been

solved because, say, they depend on the particular substitutions involved.

For instance, case analysis typically requires that the proofs of the steps be
further transformed (by additional inferences) before they can be fed to the
case rule; these transformations are effected by equality substitution. Which
subterms must thus be replaced cannot be determined in advance because it

depends on how free variables become instantiated in the course of the proof.
Validations provide a means to perform arbitary post-completion processing

where necessary.

make conclusions available: (for example, to subsequent deductive operations).

If a conclusion has been derived once, there is no reason to force the user to
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rederive it if he needs it again at some later point. This is an argument for
having explicit proof objects, and therefore for having validations to produce

them.

Having explicit proof objects also allows us to address the issues of subsumption

and answer sharing [see Chapter 5].

Finally, without access to the corresponding complete proof tree, it would not

be possible to generalize conclusions [see Chapter §].

package conclusions for inspection: proofs should be available for human pe-
rusal. In particular, it should be possible to edit and prepare proofs for publi-
cation. For this it is necessary that each proof contain the complete trace of its

derivation.

7.3.2 Representation of Validations

A validation is an expression that describes how to produce the conclusion of a plan

given proofs of its steps. It is of the form:
(inference_rule (premises...) (parameters...))

inference_rule is the name of the rule to be invoked, premises are typically integers—
where n denotes the proof of the plan’s nth step—and parameters further specify the
particulars of the inference to be carried out (e.g. Equality Substitution requires that

you specify which subterms are to be subtituted).

For example, if the current goal is q and foo is an assertion of the form P D q, then

executing ‘+plan modus-ponens foo’ will result in a plan with the following 2 steps:

0. foo
L.p
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Step 0 is already solved since it is an assertion; it is nonetheless included in the plan
because it will be needed when the validation is executed. Step 1 is the goal obtained

by backward-chaining through foo. The validation has the following form:
(modus-ponens (0 1) ())

and it means to apply Modus Ponens to a proof of step 0 as major premise and a
proof of step 1 as minor premise; no parameters are required, and therefore none are

specified.

In general however, a validation’s premises are allowed to be either integers or vali-
dations, to be recursively interpreted in a similar manner. This property of composi-
tionality of validations make them a completely general tool for representing arbitrary

inference trees, and permit the following:

e After a plan generator has produced the representation for a plan, and before
this representation is effectively turned into an actual plan, further transforma-

tions may be applied to it and the validations thereof inserted within.

For example, suppose the current goal is ¢ and foo is an assertion of the form
P1Ap2 O g. The command ‘+plan modus-ponens foo’ will result in the creation
of a description for the plan:

0. foo

L. pr A p;

Clearly, it would often be profitable to replace p; A p; by the two individual
steps p; and p,. This further refinement can be determined by inspection of the
above representation and effected on it directly:

0. foo

1. p;
2. p2
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Also, the validation is correspondingly transformed from (modus~-ponens (0

1) O) to:
(modus-ponens (0 (and-intro (1 2) ())) ())

I dubbed this process “automatic goal expansion,” and described it in Chapter 6.

¢ The ability to compose validations make it possible to write very “intelligent”
plan generators to produce refinements which may be arbitrarily complex and

require arbitrarily large inference trees to validate them.

Except for Case Analysis, plan generators do not currently make much use of
this capability because the “detaching” procedure generally obviates the need

for it.

¢ The compositionality of validations also permits to plug in premises obtained by
detachment. A detachment is really the representation of a plan. Often, it is the
plan to derive as a conclusion a particular subformula of a given assertion and
it may be inserted in the overall refinement where the premise was expected;

the validations will be correspondingly composed.

7.3.3 Premises and Detachments

Plan generators often require premises as parameters. For example, to effect a re-
finement according to Modus Ponens, it is necessary to specify an implication as a
premise. As long as the appropriate implication is available as an assertion in the
assumption set, we can simply name it in order to use it. However, and more often
than not, the desired formula is embedded within a larger assertion and can only be
obtained through tedious additional inferences. Occasionally, it is not even known
whether the desired premise is provable, but the user would like to make the refine-

ment anyway, and only subsequently derive a proof for the postulated premise.
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LOGICALC reconciles all these requirements by making premises be representations of
how to derive the conclusion to be used as a parameter. I will introduce the various

aspect of these representations through the study of several examples.

1. If the goal is p(a) and foo is an assertion of the form a = b, then a refinement

can be effected by the command:
+plan equality a - foo
which produces the following plan description:
(plan p(a) equality (foo (goal p(b))))

from the above description, a plan is finally constructed which has the structure
shown below:
Steps:
[0. foo]
L. p(d)
Validation:
(equality (0 1) ((1)))

This example illustrate the simplest case, where the name of an assertion (e.g.

foo) is used to represent a premise.

2. Now suppose that in fact there are no assertions to the effect that a = b. But we
would like to make this conjecture anyway and perform the refinement, and only

subsequently derive a proof of a = b. This can be achieved by the command:

+plan equality a - = (= g b)!

!Sorry for mixing the standard mathematical notation a = b with the actual LIsp representation
(= a b), but it cannot be avoided here.
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The first ‘=’ indicates that the following specification is a formula to be used as
a premise; but, since it does not come with a proof, it must also be set up as a

subgoal. The plan description generated in this case is:
(plan p(a) equality ((goal (= a b)) (goal p(b))) ((1)))

Here, the premise is a goal description. The resulting plan is:

Steps:
1. (=ab)
2. p(b)
Validation:
(equality (1 2) ((1)))

Finally, suppose that foo is an assertion of the form g D a=b. We would like

- to perform the same refinement as before, and simply indicate to the system

that the necessary equality a = b should be inferred from assertion foo. To this

end, the user may issue the following command:
+plan equality a - foo

The system automatically determines what inferences and subgoals are required
to conclude a = b from foo. This process is called “detaching.” The resulting
plan representation is:
(plan p(a) equality
((plan (= a b) modus-ponens (foo (goal ¢)))

(goal p(b)))
(N

Here, the premise is a subplan description containing the subgoal ¢q. The result-

ing plan is:
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Steps:
[0. foo]
1. g
2. p(b)
Validation:
(equality ((modus-ponens (0 1) ()) 2) ((1)))

7.4 The Detaching Procedure

First, what does it mean exactly for a formula to be detachable from a premise?

P is detachable from A if its underlying unsigned formula occurs in A
with the same polarity.

The underlying unsiéned formula is the formula you get when you strip off P all
explicit top level negations. For example q2 and —p are both detachable from p D
q1 A q2. Furthermore, I say that ¢, is detachable “modulo” p because it is necessary to
prove p in order to infer ¢; from p O ¢; A ¢, by Modus Ponens followed by Taut-Trans.
Similarly, —p is detachable modulo —aq; A gs.

P is detachable from A modulo {qi,...,q,} if it is detachable from A
and actually inferring P from A requires proofs of q; . . . gy.

The notion of “modulo” is pretty intuitive. If I want to detach something from a
conjunction, I can just infer the interesting conjunct and drop the others. No auxiliary
goal is required in this case. On the other hand, if [ want to detach something from
a disjunction, I need to infer the interesting disjunct by proving thé negations of the

others; the negated other disjuncts constitute the modulo.
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Another property of this notion is: if P is detachable from A modulo {q1,...,q.}
then —{¢1 A ... A g,] is tautologically equivalent to the formula you get by replacing
the occurrence in A of the underlying unsigned target by F if its polarity is positive,

T otherwise, and simplifying [cf non-clausal resolution)].

Although I defined detachability in terms of the underlying unsigned formula, the
algorithm really uses the underlying simply signed formula which can be obtained
by stripping as many explicit double-negations off P as possible. The reason this
amounts to the same thing is that as A is being explored, implicit negations (such
as in the antecedent of an implication) will be made explicit to the search process.
The underlying simply signed formula is also called the “target” in the detaching

procedure.

7.4.1 Detachment Records

The detaching procedure produces records which have the following structure:
(FROM, M, PATH, 6)

Where FROM is a premise in the style of Section 7.3.3, i.e. a description of a conclusion
to detach from: it is either an assertion, the description of a goal, or the description
of a plan. In practise, it is always either an assertion or a goal description. M is the
number of double-negations that were stripped off the original formula to produce the
target. PATH is a list of integers describing how to access the subformula in FROM’s
conclusion which this record purports to detach. Finally, 6 is the substitution resulting

from the unification of the target with the subformula denoted by PATH.

I will adopt the following convention: i - PATH denotes the list of integers whose first
element is 7 and the rest is PATH. Conversely, PATH-i denotes a list whose last element
is 7 and the rest (i.e. prefix) is PATH. Also, The notation PATH-! stands for the list

PATH reversed.
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7.4.2 The Detaching Algorithm

We are given a formula ‘P’ and a premise ‘FROM’. The object is to construct a list
of detachment records representing possible detachments of this formula from this

premise.

First, we determine the TARGET by stripping off the formula as many double-negations
as possible. Let M be the number of double negations which were thus removed.
Now, we are going to recursively explore the premise’s conclusion for occurrences of

TARGET, or rather for subformulae which unify with TARGET.

We are also given the boolean parameter DEEP which is false when auxiliary goals are
disallowed. When we are detaching for input to a plan generator, then DEEP is true
because auxiliary goals can be accommodated in the resulting premise. However,
when we are detaching for input to an inference generator [page 55|, it must be
possible to carry out the inference immediately, therefore auxiliary goals cannot be

allowed; in this case, DEEP is false.

The algorithm is expressed in a mixture of mathematical‘ notation and functional
programming with pattern matching. The entry point is ‘detach’; ‘detach’”” imple-
ments the unification step which is tried for every subformula encountered during
explora.tion;‘ and ‘detach” performs a case analysis which keys recursive exploration

off the shape of the current subformula.

Each function returns a set (list) of detachment records. Only ‘detach’” creates new
records. The construct ‘when (test): (result)’ returns (result) only when (test) suc-
ceeds, otherwise the empty set §. For each function, the first argument is a subformula
of FROM’s conclusion, and the second argument is the PATH to this subformula. We

are looking for a subformula which will unify with TARGET.

detach [p] [PATH]
= detach’ [p] [PATH] U detach” [p] [PATH]
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detach’ [p] [PATH]
= when §TARGET Ef p: { (FROM, M, PATH™},4) }?
unity

detach” [p1 A ... A p,] [PATH]
= _Ql detach [p;] [¢ - PATH]

detach” [p1 V... V p,] [PATH]
= when DEEP or n = 1: _Ql detach [p;] [7 - PATH]

detach” [p D g] [PATH]
= when DEEP: detach [-p] [1 - PATH] U detach [q] [2 - PATH]

detach” [~—p] [PATH]
=> detach [p] [1 - PATH]

detach” [~ap1 A ... A p,] [PATH]
=> when DEEP or n = 1: ,Ql detach [p;] [i - PATH]

detach” [-ap, V... V p,] [PATH]
= '91 detach [p;] [¢ - PATH]

detach” [-ap D g] [PATH] |
= detach [p] [1 - PATH] U detach [—q] [2 - PATH]

detach” [p(z,y)] [PATH]
= when p is symmetric: detach’ [p(z,y)] [-3 - PATH]

detach” [-p(z,y)] [PATH]
= when p is symmetric: detach’ [-p(z,y)] [-3 - PATH]

7.4.3 Converting a Detachment into a Premise

A detachment is not directly usable by a generator; it must first be converted to the

appropriate representation. For a plan generator, it should be expressed as a premise,

?Because of segment variables [ref], unification may produce several unifiers fiforl<j<m.In
this case, detach’ should return U {(FROM M,paty, 6;) }.
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e.g. the representation of a plan in the style introduced and illustrated earlier. For an
inference generator, it should be expressed as a proof. In this section I will present
the algorithm for converting a premise record into the representation of a plan, to

serve as premise to a plan generator.

It should be noted that “find mode” will let the user browse through candidate
detachments, and display and select those which are deemed of interest. This requires
yet another conversion scheme: from a record to a format suited for presentation to

a user.

The entry point is ‘premify’ whose argument is a detachment record. The recursive
conversion is carried out by ‘premify” whose first argument is the subformula detached
so far, second argument is a PATH into its first argument to the subformula to be
ultimately detached, and its third argument is a premise describing how to infer the

first argument—this is typically a plan description.

premify (FROM, M, PATH, 6)
= let FORMULA = conclusion of FROM in
let PREMISE = premify’ [JFORMULA] [PATH] [FROM] in
while M > 0 do
let CONC = conclusion of PREMISE in
PREMISE := (plan —-CONC taut-trans (PREMISE)
(z (not (mot z))))

M:=M-1
return PREMISE

premify’ [p] (] (HOW]
= HOW

premify’ [py A ... A p,] [¢ - PATH] [HOW)]

= premify’ [p;] [PATH] [(plan p; taut-trans (HOw) ((and z; ... z,) z;))]

premify’ [Vp] (1 - PATH] [HOW]
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= premify’ [p] [PATH] [(plan p taut-trans (HOW) ((or z) z))]

premify’ [p; V... V p,] [¢ - PATH] [HOW)]
= premify’ [p;] [PATH] [(plan p; modus-ponens
((plan 17\_&‘ —p; D p; taut-trans (HOW)
1<jgn
(Cor 21 ... z,)
(if (and ... (not z;) ...);% z)))
(goal (and ... (not z;) ...);x)))
premify’ [p O g] [1 - PATH] [HOW]
= premify’ [-p] [PATH] [(plan —p modus-tollens (HOW (goal —g)))]
premify’ [p O ¢] [2 - PATH] [HOW)]
= premify’ [¢] [PATH] [(plan ¢ modus-ponens (HOW (goal p)))]

premify’ (——p] [1 - PATH] [HOW]
= premify’ [p] [PATH] [(plan p taut-trans (HOW) ((not (not z)) z))]
premify’ [~ A p] [1- PATH] [HOW]
= premify’ [-p] [PATH] [(plan —p taut-trans (HOW) ((not (and z)) (not z)))]
premify’ [~apy A ... Apa] [i - PATH] [HOW]
= premify’ [~p;] [PATH] [(plan —p; modus-ponens
((plan lsjlj\znpj D —p; taut-trans (HOW)
| ((not (and z; ... z,))
(if (and ... z; ...);% (not z;))))
(goal (and ... z; ...);%)))
premify’ [-ap; V... Vp,] [¢- PATH| [HOW]
= premify’ [-p;] [PATH] [(plan —p; taut-trans (HOW)
- ((not (or z; ... z,)) (not z;)))
premify’ [-ap D q] [1 - PATH] [HOW]
= premify’ [p] [PATH] [(plan p taut-trans (HOW) ((not (if z ¥)) )]

premify’ [-ap D ¢ [2 - PATH] [HOW]
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= premify’ [—q] [PATH] [(plan —¢ taut-trans (HOW) ((not (if z u)) (not y)))]

premify’ [p(x,y)] [—3 - PATH] [HOW)]
= premify’ [p(y, z)] [PATH] [(plan p(y,z) symmetry (HOW))]

premify’ [-p(z,y)] [~3 - PATH] [HOW]
= premify’ [-p(y, )] [PATH] [(plan -p(y,z) symmetry (HOW))]

7.4.4 Converting a Detachment into a Proof

Inference generators [page 55] can also benefit from the detaching mechanism. How-
ever, since subgoals do not make sense when conclusions are derived in a forward
manner, only detachments which require no auxiliary goals should be allowed. This
requirement is enforced by requiring FROM to be an assertion (or more generally a
proof), and by setting DEEP to false in the detaching algorithm. Thus, all constructed

detachments have modulo 0.

When assertion A detaches P modulo 0, we say that A “asserts” P.

The algorithm to convert a detachment satistying the above requirements into a
proof is straightforward and involves only the two inference rules ‘taut-trans’ and

‘symmetry’.

The entry point is ‘proofify’. Remember that FROM is a proof. The recursive inference
of the formula to be detached is carried out by proofify’ whose first argument is the
formula concluded so far, second argument is a PATH into its first argument to the
subformula to be ultimately concluded, and its third argument is a proof of its first

argument.
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proofify (FROM, M, PATH, §)
= let FORMULA = conclusion of FROM in
let PROOF = ﬁrooﬁfy' [fFORMULA] [PATH] [FROM] in
while M > 0 do
PROOF := taut-trans [PROOF] [z (not (not z))]
M:=M-1
return PROOF
proofify’ [p] [] [PROOF]
= PROOF

proofify’ [p1 A... A p,] [i - PATH] [PROOF]

= proofify’ [p;] [PATH] [taut-trans [PROOF] [(and z; ... z,) z;]]
proofify’ [Vp] [1 - PATH] [PROOF]

= proofify’ [p] [PATH] [taut-trans [PROOF] [(or z) z)]
proofify’ [==p] [1 - PATH] [PROOF]

= proofify’ [p] [PATH] [taut-trans [PROOF] [(not (not z)) z]]
proofify’ [~ A p] [1 - PATH] [PROOF]

= proofify’ [-p] [PATH] [taut-trans [PROOF] [(not (and z)) (not z)]]
proofify’ [=ap1 V... V p,] [i - PATH] [PROOF]

= proofify’ [-p;] [PATH] [taut-trans [PROOF| [(not (and ... z; ...)) (not z,)]]
proofify’ [=«p D ¢] [1 - PATH] [PROOF]

= proofify’ [p] [PATH] [taut-trans [PROOF] [(not (if z y)) z])
proofify’ [=ap O q] [2 - PATH] [PROOF] _

= proofify’ [~q] [PATH] [taut-trans [PROOF] [(not (if ¥)) (not y)]]
proofify’ [p(z,y)] [-3 - PATH] [PROOF]

= proofify’ [p(y, z)] [PATH] [symmetry [PROOF]]
proofify’ [~p(z,y)] [~3 - PATH] [PROOF]

= proofify’ [=p(y, z)] [PATH] [symmetry [PROOF]]
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7.5 Detaching Modulo Equalities

Now that the detaching technique enables us to “extract” a subformula from a premise
for use as input to a plan or inference generator, I will extend it further by introducing
a provision for inexact matching. The general idea is this: given a goal, it is often
clear to the user that it should be solved using a particular assertion (say foo), but
attempts at producing detachments fail because some subterms in the goal do not
unify with the corresponding subterms of the targeted subformula in foo. In such
a case, we should like the system to allow mismatches and supplement the resulting
detachment with the necessary equality substitutions; the equality formulae required

for these substitutions will have to appear as auxiliary goals.

Such a mechanism is available in LOGICALC and can be requested by means of the
options +mismatches and -mismatches n. The introductory example of Chapter 1

illustrated this feature.

Several ideas have been proposed in the past to deal with equalities. Most notably
E-Resolution, which is certainly the more natural extension that can be grafted to
the Non-Clausal Resolution rule;® and congruence closure-based systems which are a
rather attractive alternative if the size of equality classes can somehow be controlled

[see Focused Binding in ONTIC [McAS87]].

7.5.1 E-Resolution

Theories with equality offer an additional challenge to theorem-proving programs.
Since reasoning from the equality axioms is difficult, requires very long derivations,
and typically causes many redundant or irrelevant conclusions to be generated, the
paramodulation rule was proposed [RW69] to permit more direct equality substitu-

tions.

3The actual search procedure, e.g. level saturation, is not the issue here.



262 CHAPTER 7. VALIDATIONS AND DETACHMENTS

From two clauses Ala] and o' = 'V B such that 8o = 9o where 0 is a
mgu, infer 6A[3'] v 6B.

Unfortunately, paramodulation is still a very undirected process and E-Resolution
was proposed instead [Sib69,Mor69]: paramodulating decisions should be directed by

unification attempts and corresponding disagreement sets.

From two clauses A V P[t|] and =Plt;] VB conclude AVBV t, # t,

More generally:

From two clauses A V P(t,,...,t,) and =P(t},...,t.) V B such that 0 is
the most general partial unifier (mgpu)* of P(t,,..., ta) and P(t],...,t)
and { (s1,s}),...,(sk,s%) } are the irreducible (innermost) disagreements,
conclude JA VOBV s, #s{ V... Vs # sl ' '

Digricoli [DH86] further extends this approach with his notion of Resolution by Uni-
fication and Equality (RUE). He defines the following two rules:

RUE Rule of Inference (Open Form): The RUE resolvent of P(s1,...,8,) VA
and ~P(t1,...,t,) VB, is cAV ¢ BV D, where o is a substitution and Disa
disjunction of inequalities specified by a disagreement set of the complementary

literals o P(sy,...,s,), o P(ty,...,t,).

NRF Rule of Inference (Open Form): The Negative Reflective Function (NRF)
resolvent of the clause ¢; #t,VAis cAV D, where o is a substitution and D

is a disjunction of inequalities specified by a disagreement set of ot;, ot,.

*The most general partial unifier is obtained by performing regular unification while skipping
over irreducible disagreements.
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7.5.2 Congruence Closure

David McAllester implements a different approach in his interactive system ONTIC
[McA8T]. He proposes the idea of equality constraint graphs. All the terms in his
language are compiled into nodes of a graph. A labelling process colors these nodes
according to the equivalence classes (of the equality relation) they respectively belong
to. This computation is based on a congruence closure algorithm [see e.g. [DSTS0]].

Nodes with the same color are considered equal.

Although very attractive, his approach requires compilation to a special purpose
representation. Also, ONTIC’s inference mechanisms were designed for a different
paradigm of interactive proof derivation, and are not easily reconciled with the prin-

ciple of a Natural Deduction.

7.5.3 Extensions to Handle Mismatches

I believe that E-Resolution offers the alternative which can be more naturally retrofitted
in the framework of a Non-Clausal Resolution inspired detaching procedure as pre-

sented earlier.

Consider: It would often be very convenient if, from the goal p(b) and an assertion

foo of the form ¢ D p(a), one could directly produce the refinement:

Steps:
- [0. foo]
1. ¢
2.a=0b
Validation:
(equality (2 (modus-ponens (0 1) ())) ((1)))
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In order to support this capability, I extended the unification and detaching proce-
dures. The resulting functionality is a reflection of Unit Non-Clausal E-Resolution

into Natural Deduction.

Extension to Unification

I define the most general partial unifier of A and B to be a pair (6, { PATH,, ..., PATH, })
where 0 is a substitution constructed by carrying out regular unification while skip-
ping over irreducible disagreements, and { PATH,, ..., PATH, } represents precisely the
set of those irreducible disagreements. Each PATH; is a list of integers denoting the

subexpressions of §A and B which disagree.

The actual implementation must be prepared to handle disagreements arising during
unification with segment variables [Section 2.6.2]. Segment variables have several
nasty effects on unification: (1) there may be more than 1 mgu, (2) in fact there may
* be infinitely many and unification cannot be complete, (3) the path to a subterm (or
sequence of subterms) on one side may be different from the path to the corresponding
subterm (or sequence of subterms) on the other side. Thus, the disagreement set of
an mgpu muét be represented by pairs of paths. For the purpose of the present

exposition, I will ignore this complication.

The new boolean parameter MISMATCHES is defined, and is set to true when partial
unification is desired. The unification procedure proceeds in the same recursive fash-
ion as before, but if a step fails® and MISMATCHES is true an alternative is attempted:
a procedure is invoked to decide whether to allow this disagreement; if the procedure
answers “no” then this recursive unification step utterly fails; however, if it answers

“yes,” a new disagreement is recorded in the partial unifier under construction—note

SExcept for the case of failure to unify a variable to a term containing an occurrence of this
variable.
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that in order for this to be possible, the unification procedure has to be extended to

keep track of the current “path” into both formulae.

Management of the disagreement set could be made a lot more sophisticated. In
particular, no check is currently done to see if a new disagreement is identical—in
terms of the subexpressions involved—to one already recorded in the partial unifier.
Also, no attempt is being made to take transitivity of equality into account. In

practice, these shortcomings have little incidence on the technique.

The decision procedure which is invoked in order to determine whether to allow a

disagreement is parametrized as follows:

E-RESOLUTION-MAX*:
This may be NIL or a positive integer.. In the later case, if the current partial
unifier already contains this many disagreements, the new one is disallowed,
and consequently unification fails. The default value is 1; it can be dynamically
changed through the premise specification ‘-mismatches n’ which will reset it

to n for the duration of this particular detachment [page 194].

E-RESOLUTION-FCN*:
This may be NIL or another decision procedure. In the later case, this other
procedure is called to make the final determination. The user may program an
arbitrarily complex procedure to suit his own needs; the system’s default has

the following behavior:

o If the disagreement is about a functor,® then fail. Remember that if this
recursive unification step fails utterly, then its parent step will fail too and
similarly will attempt to record a disagreement into the paftial unifier.
The net effect is that an attempt to unify p(f(a)) and p(g(a)) will fail

when f and g are tentatively unified, but no disagreement will be allowed

%I.e. something in functional position.
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at that level, thus unification of f(a) and g(a) also fails and this time the
disagreement will be permitted—corresponding to the equation f (a) =
g(a).

o If disagreements have been limited to expressions whose main symbol is in
the list E-RESOLUTION-AﬁTHORIZED—FUNCTORS *, and neither expression
is of this form, then fail.” The default value is NIL; it can be dynamically
changed through a premise specification; e.g. ‘-mismatches (f g)’ will

only allow mismatches on terms whose main symbols are either  or g

o If the disagreeing subexpressions are propositions, then fail. In this logic,
equality between propositions is not meaningful. For a different approach

see for instance Andrews’ Qg system [And86).

e Otherwise succeed—meaning that the disagreement will be allowed and

dutifully recorded in the partial unifier.

Extending The Detaching Procedure

Now that unification has been extended to return most general partial unifiers as
defined in the previous section, detachment records too must be similarly extended
to include the disagreement set. Therefore a detachment record is now a structure of

th¢ form:

(FROM, M, PATH, 0, { PATHj, ..., PATH,, H

‘detach’”” must be redefined as follows:

detach’ [p] [PATH]

= when 6TARGET = 6p (mod {PATH, ..., PATH, I3E

e-unify

{ (FROM, M, PATH™?, 0, { PATH, ..., PATH,, H1

" Actually, the code is little more intricate because it matters for purpose of interactivity to take
into account whether the expression in question is in the target or in the premise from which a
detachment is being extracted.
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Note that, if MISMATCHES is false, the behavior is identical to that of the earlier

version and n = 0.

Similarly, ‘premify’ must also be modified to take the disagreements into account and
insert appropriate equality substitution steps. I will use the notation p[PATH;] to
represent the subexpression denoted by PATH; in proposition p; and p[t/ PATH;] will
stand for the formula obtained from p by substituting ¢ for the subexpression denoted

by PATH;.

premify (FROM, M, PATH, 0, { PATH; ..., PATH, })
= let FORMULA = conclusion of FROM in
let PREMISE = premify’ [fFORMULA] [PATH] [FROM] in
for::=1ton do
let CONC = conclusion of PREMISE in
let TERM; = TARGET[PATH;] in
let TERM; = CONC[PATH] in
PREMISE := (plan CONC[TERM,/PATH;] equality
((goal (= TERM; TERM;)) PREMISE) (PATH;))
while M > 0 do
let CONC = conclusion of PREMISE in
PREMISE := (plan ——CONC taut-trans (PREMISE)
(z (not (not z))))
M:=M-1
return PREMISE

7.6 Conclusion

In this chapter I presented a uniform mechanism whereby premises to plan (and in-

ference) generators may be assertions or user specified formulae or subformulae of
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same. This I called the Detaching Procedure, and an implementation was presented.
I further extended it to allow mismatches during unification with targeted subfor-
mulae. I characterize the resulting functionality as a reflection of Unit Non-Clausal
E-Resolution into Natural Deduction; Non-Clausal because (1) clausal conversion is
not required and (2) the target may be a complex formula rather than a literal; Unit
because one of the formula, the target, is resolved on, while the other is resolved
into; E-Resolution because mismatches are permitted and result in auxiliary equality

goals.

This mechanism must now be interfaced inwardly with the rest of the system (e.g.
generators and the database) and outwardly with the user. The user interface consists
primarily in the language of premise specifications which is documented in Chapter 6;
it also includes a special purpose browser called Find Mode, which allows the user to

browse throught detachments and select those of interest [Appendix B].

Each plan generator must parse its own arguments; therefore it must also interpret
the premise descriptors which the user specified on the command line. This can be

achieved by calling:
prompt-detaching [4 = p] [(descriptor)] [(prompt)]

where A is the current assumption set and p is the desired formula to be detached,
(descriptor) is the user specified premise specification, and (prompt) is a function pro-
viding context specific prompting should further prompting turn out to be necessary

(such as when (descriptor) is empty). This call returns a list of premises.

Similarly, for inference generators:

prompt-asserting [A = pl [(descriptor)] [(prompt)]
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returns a list of proofs. Both ‘prompt-detaching’ and ‘prompt-asserting’ are imple-

mented using the more general:
prompt-for-premises {A = p] [(descriptor)] [DEEP] [(prompt)]

which returns a list of detachments. ‘prompt-detaching’ sets DEEP to true and con-
verts the detachments using ‘premify’, while ‘prompt-asserting’ sets DEEP to false and

converts the results with ‘proofify’.

The last necessary bit of functionality is an interface to the database that enables
‘prompt-for-premises’ to quickly look up candidate assertions to detach from in the as-
sumption set. This is implemented by the function ‘consult-index’ which is described

in Chapter 2.






Chapter 8

Automatic Generalization

In this chapter I explain LOGICALC’s mechanism for the automatic generalization of
proofs. I discuss the advantage of having such a mechanism and show that it is closely
related to Explanation-Based Generalization. However, EBG’s regression procedure
is not sound within LOGICALC's original framework and I propose a reification of the

logic to get around this problem. Finally the algorithm is presented.

8.1 Introduction

In LOGICALC, the preferred representation of a proposition—whether a goal or an
assertion—is as a skolemized formula. For example, to prove Vz p(z), the system
would set up a goal of the form A = p(a), where a is a new skolem term. Unfortu-
nately, if a proof is derived for this goal, it too will be of the form A = p(a) rather
than the more general A = p(z), even though it is clear, since a was not mentioned in
the original theory, that the proof would have gone through for any term substituted
throughout for a. Obviously, explicit manipulations of quantifiers can get us around

this problem by specifically deriving a proof of A = Vz p(z) and then manually adding

271
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p(z) to the assumption set by forward application of the skolemization rule to the
newly derived conclusion. However, the point of chosing skolemized formulae as the

default representation was precisely to avoid such manipulations in the first place.

Within a framework based on skolemization, it is still possible to get much the same
effect as explicit quantifier manipulations without actually requiring that they be
. carried out. In a skolemized forrhula, occurrences of skolem terms implicitly carry
the original quantification structure. It is possible to recover this structure through
a procedure known as reverse skolemization, which can be automated [BB78,CP80].
For instance, from the proof A = p(a), we might recover A = Vzp(z) and then
further conclude A = p(z2).

I argue, however, that this is simply the wrong way to look at, or even charactérize,
the problem. Consider the tautology p(a) D p(a): clearly, its status as a tautology
does not depend on the identity of the term a. p(b) D p(b) is a tautology for precisely
the same reason: the complete trace of the verification procedure is identical in both
cases, although the data operated on is different. It would be desirable to produce

the more general conclusion p(z) D p(x), where z is a free variable.

Why should we attempt to derive more general conclusions? Aside from the aesthetic
statisfaction of the purist, there is a more practical reason: whenever a proof is
derived for a goal, LOGICALC makes this‘proof available so that it might serve to
solve other goals or be used as a premise in subsequent refinements. This is done
through two mechanisms: firstly the proof is asserted in the database (this is how it
can subsequently serve as a premise), and secondly it is broadcast to related goals

[see Chapter 5] so that they may examine the proof to see if it can solve them too.

Clearly, the more general the proof, the more widely applicable too. Thus a larger
number of goals can be solved with no additional work required from the user (or
the system for that matter). The particular sense of generality used here is the one

implied by unification: a conclusion p is more general than p’ if p’ is an instance of
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p. To generalize a conclusion means to replace some of its subexpressions with free

variables in such a way that the new formula thus obtained is also a valid inference.

The purpose of the reverse skolemization technique proposed earlier was to allow us
to replace certain skolem terms with free variables, but it did not cover the case of
generalizing over non-skolem terms. The characterization of generalization formu-
lated in the previous pa.ra.grap-h, however, treats skolem terms and other terms alike;
furthermore, unlike reverse skolemization, it does not require a preliminary step to

recover quantifiers.

The generalized conclusion must be valid. In fact, for various reasons such as “ex-
pectations of pending validations,” it must be valid in precisely the sense that it can
be derived through the same proof structure (i.e. inference tree) as the original con-
clusion. The object of generalization is to find the least instantiated skeleton of the
latter for which there exists a proof tree isomorphic to the one we were given. This
determination can be made by regressing the conclusion’s skeleton through the proof

structure in the manner of Explanation-Based Generalization.

8.2 Explanation-Based Generalization

The object of Explanation-Based Generalization (henceforth EBG) is to formulate
general concepts from specific training examples by explaining, with the aid of a

domain theory, why the training examples are members of the concepts being learned.
In [MKKC86], the EBG problem is defined as follows:

Given:

¢ Goal Concept: A concept definition describing the concept to be learned
(it is assumed that this concept fails to satisfy the Operationality Crite-

rion).
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¢ Training Example: An example of the goal concept.

e Domain Theory: A set of rules and facts to be used in explaining how the

training example is an example of the goal concept.

¢ Operationality Criterion: A predicate over concept definitions, specifying

the form in which the learned concept definition must be expressed.

Determine:

* A generalization of the training example that is a sufficient concept defi-

nition for the goal concept and that satisfies the operationality criterion.
Then the EBG method is defined thusly:

1. Explain: Construct an explanation in terms of the domain theory that proves

how the training example satisfies the goal concept definition.

¢ This explanation must be constructed so that each branch of the explana-
tion structure terminates in an expression that satisfies the operationality

criterion.

2. Generalize: Determine a set of sufficient conditions under which the explanation

structure holds, stated in terms that satisfy the operationality criterion.

e This is accomplished by regressing the goal concept through the expla-
nation structure. The conjunction of the resulting regressed expressions

constitutes the desired concept definition.

In [KCM87], EBG is presented as an augmentation of SLD-resolution for Horn Clause
Logic, and an implementation is provided in the form of a PROLOG meta-interpreter.

A simple PROLOG meta-interpreter for pure PROLOG is:
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prolog(A) := clause(A,true), E»mwmﬂ¢»gg
prolog((A,B)) :- prolog(A),prolog(B).
prove(A) := clause(A,B),prove(B).

In EBG, a variabilized version of the original query is regressed through the same
proof tree, and the generalization is formed by propagating rule substitutions but
ignoring fact substitutions. Using the meta-interpreter technique, regression through
the proof tree can be performed as the tree is being constructed, i.e. concurrently
with PROLOG execution. This can be realized by adding, to the meta-interpreter,
an argument which is a (less instantiated) reflection of the goal and with which we
perform the same back-chaining steps as with the actual goal, but skip unification
with facts (more precisely, we skip the proofs of operational subgoals). The desired
generalization consists in the set of the images of all operational subgoals in the
resulting proof tree: in order to collect them, we need to add a 3rd argument to the

meta-interpreter.

ebg(true,true,[]). Geﬁmgg
ebg(A,GenA, [GenAl) :~ operational(A),!,A.
ebg((A,B), (GenA,GenB),0p) :-
ebg(A,GenA,0pA),
ebg(B,GenB,0pB),
append(0OpA,0OpB,0p).
ebg(A,GenA,OpA) :~
clause(GenA,GenB),
copy((GenA:~GenB), (A:-B)),
ebg(B,GenB,0p).

The meta-interpreter would typically be invoked by:
ebg(p(f(a),g(b)),p(X,Y),0pDef)

where p(£f(a),g(b)) is the training example, p(X,Y) is the skeleton to be regressed

and is the variabilized image of the training example,! and Opdef is a list of op-

1 Although this implementation requires that the user specify the skeleton to be regressed, the
latter could easily be computed automatically instead.
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erational subgoals defining the concept, and which can be used, e.g., to efficiently

recognize instances of it.

8.3 Application to Proof Generalization

The problem of generalizing a conclusion can be construed as a restricted case of EBG,
in which the operational predicate is always false, and the result we care about is
the 2nd argument of ebg/3 rather than the operational definition collected in the 3rd
argument (empty in this case). In fact, since we are given the entire proof tree (a.k.a.
explanation structure), on the face of it the task should be simpler; however, there

are some complications.

Firstly, EBG’s algorithm was developed for explanation structures constructed with
the aid of back-chaining rules. Any practical system of Natural Deduction, however,
offers a set of inference rules that is much richer and goes beyond mere back-chaining
(a.k.a. Modus Ponens). Since each rule may require arbitrarily complex computations,
regressing through an inference step will typically be correspondingly hardér [see e.g.

Equality].

Another source of complications is the ability to make assumptions using the De-
duction Theorem in the course of a proof. EBG presupposes a fixed, flat domain
theory. The ability to make assumptions means that the effective domain theory of
a subproof may be a superset of the original domain theory. As we shall see shortly,
the straightforward extension of EBG to allow for assumptions no longer preserves

soundness. More generally:

The regression technique of EBG is sound only if the system has the
property that all inferences involving ground terms remain valid when
these terms are replaced with free variables.
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LOGICALC’s logical system does not satisfy the above requirement because of the
built-in copy on fetch effect similar to that of PROLOG. In PROLOG, whenever a rule
of the form p(X) :- q(X). is used, a new X is created so that multiple uses of this
rule in the course of the same program do not conflict; it is as if each time X was

renamed differently.

Similarly in LOGICALC, the typical axiom schema is A4, p(z) = p(?); that is, from any
hypothesis, we are licensed to infer an instance of it. In particular, we may derive
A, p(z) = p(y) where the variable y is free for z in p(z); this is what I meant by copy
on fetch; the free variable z in the hypothesis remains unaffected. Unfortunately,
in general, discharging an hypothesis containing a free variable is not sound: from
hypothesis p(z) I may conclude p(a) according to the axiom sequent A4, p(z) = p(a);
but naively discharging said hypothesis yields A = p(z) D p(a) which is not valid

(consider e.g. z « b).

The idealized characterization of EBG’s algorithm applied to the domain of logical
proofs is: take the conclusion to be generalized, construct the most variabilized skele-
ton corresponding to its propositional shape, regress the latter through the proof
structure. The object is to determine the most general substitution of the skeleton’s
variables such that each inference step of the proof structure remains valid. Because of
the limitation discussed above, the intended generalization cannot always be carried

out within the original logical framework.

Consider for example the following Natural Deduction proof:

,a=b=>z2=1z axiom
,a = b= f(a) = f(a) from 1
b=a= assumption

=b= f(a) = f(b) from 2 and 3 by equality
= a=05D f(a) = f(b) discharging assumption a = b

O WO

B

/] /f f
I

Clearly this proof does not depend on the identity of a or 5. Obviously, the proper
generalization is of the foom A = = =y O f(z) = f(y), where z and y are free
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variables. EBG would attempt to regress the skeleton u; = u; O f(us) = fug)?

through the proof structure, which would result in:

Auy=uy=>z=z2 axiom
A,uy = up = f(ug) = f(uy) from 1
Ajuy = ug = uz = uq assumption

Aur =uz = f(uz) = fluy) from 2 and 3 by equality
A= uy =ug D f(us) = f(u4) discharging assumption u; = u,

SN

This is clearly wrong. One source of the problem is the copy on fetch which occurs
in step 3; another is the invalid discharge of an assumption containing free variables

in step 3.

The actual root of the problem is a conflation of intended meanings for free variables.
Let us consider u; = u; and, in particular, the meaning which it is ascribed by the
logical system when it is inserted in the assumption set. Since, from an hypothesis
we are licensed to infer any instance of it, from the asssumption u; = u; we may
conclude that any term is equal to any other term. Clearly, that is not at all what
we had in mind. What we wanted was to find a substitution for Up... Uy sﬁch that
every inference step in the proof structure remained valid: ;... u4 were meant to be
existentially quantified not at the level of the skeleton, but over the whole proof tree.
In other words, we want to consider the proof tree as a term over which to quantify:

we must reify proofs as well as the logic that serves to validate them.

8.4 A Reified Sequent Logic For Horn Clauses

In this section, I will illustrate the technique extending EBG to handle assumptions by

providing a PROLOG meta-interpreter in the manner of Kedar-Cabelli and McCarty

?Actually, it would start out with u; = u2 D u3 = uj, and regression through step 4 would

determine the assignments u} — f(u3) and u} — f(u4). For the moment, we can ignore this point
of detail.
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[KCM87]. The program extends PROLOG to accommodate the notion of assumptions
in a very simple way: Firstly, goals are redefined to be of the form A = p, where A is 7
a list of assumptions expressed as Horn clauses. Secondly, goals of the form A = p:—q
are allowed and the interpreter implements the following strategy to solve them: g is
assumed (in some well-defined way to be explicitated later) and p is tentatively solved
under this additional assumption; in other words, A => p:— g is turned into A4,q = p
modulo a few details. Note that extending PROLOG with hypothetical implications is

not a novel idea, see e.g. N-PROLOG [CR84] for an in-depth discussion.

The first thing to realize is that this copy on fetch, which one gets for free in PRO-
LOG, is nothing but skolemization in disguise. Every clause in the database can be
understood as having a implicit prefix of universal quantifiers capturing all of its
free variables. Fetching a clause from the database essentially effects an Alphabetic
Change of Bound Variables using brand-new names, then strips away the useless

prefix.

In this new framework where assumptions are allowed, we need to be able to make
the distinction between those free variables for which new copies must be made every
time the corresponding clause is fetched from the assumption set, and those which
are meant to be existentially quantified over the whole computation. These two kinds
of free variables are (1) free variables in the object logic, and (2) free variables at the
meta-level. On the right hand-side of a sequent both kinds may be represented by
PROLOG variables. Whenever an assumption is made, however, it must be processed
so that free variables at the object-logic level are all identified and new copies can be

created for them at fetch-time, while meta-variables remain unchanged.

First, we begin by defining => as an infix operator to represent a sequent. Its left
argument is a list of assertions of the form assertion (head, body, vars), where vars

are the meta-variables. Its right argument is the query.

:- op(1150,xfx,’=>").
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Next, we must define a few auxiliary predicates. member succeeds if its 1st argu-
ment can be unified with some element of the list which is its second argument.
member_exact is similar except that it checks for exact identity and does not at-
tempt unification; it is particularly useful with lists of variables. copy copies its first

argument to its second argument while renaming all variables.

member (X, [YIL]) := X = Y ; member(X,L).
member _exact (X, [YIL]) :~ X ==Y ; member_exact (X,L).
copy(X,Y) :- assert(’copy marker’ (X)) yretract(’copy marker’(Y)).

To prove a query is to prove the sequent, with no assumptions, where this query
appears as the conclusion. While a query is being executed, new skolem terms may
“have to be created. To guarantee uniqueness, I use a monotonically increasing global
counter to generate new skolem ids: I could have implemented it as a distinguished
assertion in the global database, but instead I chose to pass its current value as an ad-
ditional argument to the meta-interpreter. Therefore, prove/3 has three arguments:
the first one is the sequent to be proven, the second one is the input counter value,

" and the third one, the output counter value.

prove(Query) :- prove(([]=>Query),0,_).

Now let’s take a look at the meta-interpreter itself. true always succeeds.

prove((A=>true),C,C).

For any other goal, first try to find a clause in the sequent’s assumption set such that
its head unifies with the goal. Each element of the assumption set is of the form
assertion(head, body,vars). A copy operation is necessary to create new copies of
object-logic free variables: H is copied to P’ which is unified with P, and similarly T
is copied to T’ which is unified with Q. However meta-level variables must remain
unchanged, which is why, after V is copied to V', we unify V' with V thus identifying

the new copies with the corresponding originals.
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prove((A=>P),Ci,Co) :-
member (assertion(H,T,L),A),
copy(assertion(H,T,V) ,assertion(P,Q,V)),
prove((A=>Q),Ci,Co).

Otherwise, we should try clauses in the global database.

prove((A=>P),Ci,Co) :- clause(P,Q),prove((A=>Q),Ci,Co).

A conjunction is handled by proving each conjunct successively.

prove((A=>P,Q),Ci,Co) :- prove((A=>P),Ci,Cm),prove((A=>Q),Cm,Co).

Finally, an implication is handled as follows: variables shared by both the an-
tecedent (body) and the consequent (head) are considered meta-variables. All other
free variables in the antecedent must be captured by quantification. Suppose the
goal is of the form A = p(X) :— ¢(X,Y), then the system will attempt to solve
[assertion(q(X, Z), true, [X])|A] = p(X), where X is considered a meta-variable.3
However, in order to preserve soundness when the assumption is discharged, Y must
be instantiated with a skolem term that depends on X. In essence, the system turns
the goal into 3Xe A = p(X):— VY ¢(X,Y) and the skolem term is introduced by the
skolemizing axiom ¢(X, sk(n, [X])) = VY ¢(X,Y) which lets us reinsert the universal

quantifier.

We determine the free variables L1 of Q, and L2 of P, then we split L1 into L3 = L1NL2
and L4 = L1 — L2. As announced earlier, to preserve soundness, we must instantiate
every variable in L4 with new skolem terms depending on the variables in L3; however,
we also want all the variables of L1 to remain free in the assumption: for this reason
we make a copy R of Q, and we shall use R as the assumption instead; but, since
the meta-variables L3 must remain unchanged, L3 appears on both sides of the copy

operation.

3LOGICALC’S DEDUCTION-THEOREM plan generator would have to instantiate them with arbitrary
constants.
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prove((A=>(P:-Q)),Ci,Co) :-
vars_of(Q,L1), vars_of(P,L2), split_exact(L1,L2,L3,L4),
copy((Q,L3), (R,L3)), skolify(L4,L3,Ci,Cm),
assertify(R,L3,A,B), prove((B=>P),Cm,Co).

Collecting the free variables occurring in a term is done by recursive case analysis on

the input term. member_exact serves to weed out duplicates.

vars_of (X,L) :- vars_of(X,(],L).
vars_of(X,Li,Lo) :-
atomic(X) => Li=Lo;
var(X) -> (member_exact(X,Li) -> Li=Lo; Lo=[X|Li]);
X=[H|T] -> vars_of(H,Li,Lm), vars_of(T,Lm,Lo);
X =..L, vars_of(L,Li,Lo).

In split_exact, the 1st and 2nd arguments are input lists of unbound variables,
the 3rd argument is their intersection, and the 4th argument is the list of all these

variables of the 1st list which are not in the 2nd list (i.e. their difference).

split_exact([],_,[1,0]).
split_exact([XIL1],L2,L3,L4) :-
(member_exact(X,L2) -> :
L3=[X|LL3],L4=LL4 ; L3=LL3,L4=[X]|LL4])
split_exact(Li,L2,LL3,LL4).

skolify is given a list of unbound variables and unifies each one with a new skolem
term. The 2nd argument is the list of free variables that this skolem term must

depend on (typically: the meta-variables).

skolify([],V,Ci,Ci).
skolify([sk(Ci,V)IL],V,Ci,Co) :- Cm is 1+Ci, skolify(L,V,Cm,Co).

assertify takes 3 inputs and returns 1 output. Inputs are: 1) the body of a clause,

2) the list of meta-variables occurring within, 3) the assumption set to add the new
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assertions to. Output is: the augmented assumption set. Typically the body of a
clause consists in a sequence of conjuncts separated by commas: each conjunct will

result in a separate clause.

assertify(X,_,_,_.) :- var(X), !, fail.
assertify((P,Q),L,Ai,A0) :~ !,assertify(P,L,Ai,Am) ,assertify(Q,L,Am,Ao0).
assertify((P:-Q),L,A, [assertion(P,Q,L) |A]) :- !.
assertify(P,L,A, [assertion(P,true,L) |A]).

The technique for augmenting the above meta-interpreter to support EBG proper
is documented in [KCMS87] and was briefly illustrated earlier. Also, as argued in

[VHLB88], the training example is a convenience, not an absolute requirement:

EBG is usually described as needing a training example for the reformula-
tion of the goal concept, but this training concept is not really necessary
for the execution of EBG. The only purpose it serves is to restrict the num-
ber of possible reformulations of the goal concept by guiding the search
through all possible rules from the domain theory.

In the following, I will describe LOGICALC’s generalization procedure which is designed

very much along the lines of the meta-interpreter above.

8.5 LOGICALC’s Generalization Procedure

In this section, I describe the representation of the reified system, then I present the

regression algorithm proper, and finally I discuss various problems.

8.5.1 Reified Representation

There are three levels of reification: (1) object-logic free variables in assumptions

must be distinguishable from meta-level variables, (2) assumption sets can no longer
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be represented by datapools, but must instead become terms, (3) sequents must also

become terms.

Assumption Sets

In the course of the derivation of a proof, an assumption is typically made when the
user invokes the DEDUCTION-THEOREM plan generator [Section 6.6.2, p217]. Let me
briefly recapitulate what happens in the general case. The current goal is of the form
A = p(z,y) D q(z). We cannot simply move p(z,y) to the assumption set for two

reasons:

Firstly, the very process of assérting it in the datapool severs the connection between
the occurrence of = in the antecedent and its occurrence in the consequent. In order
to maintain this connection (1) either we would have to move the implicit existential
quantifier outside the sequent, yielding 3ze A = p(z,y) D ¢(z), which can’t be done in
the original logic, (2) or we must instantiate z with a ground term o (thus artificially

removing the problem) yielding A = p(a,y) D ¢(a)

Secondly, for reasons of soundness, if we want to interpret y as a free variable in the
assumption, then we must explicitly capture it with a universal quantifier around
the antecedent prior to moving this antecedent to the assumption set. There is a
skolemizing axiom [Section 3.5, p98] p(a, 4) = V= p(@, z) which we can use to generate

the subgoal A = Vzp(a,z) D ¢(a) and the substitution {y « B}.

Finally, we may move the antecedent to the assumption set and, by skolemization,

remove the newly introduced quantifier: A, p(a,2) = q(a).

Note that making up new skolem constants to instantiate shared variables (e.g. zin
the above example) is equivalent to solving the stronger goal where the existential
quantifier outside the sequent (see above) is changed to a universal quantifier, then

skolemized away.



8.5. LOGICALC’S GENERALIZATION PROCEDURE 285

In the reified system, the problem is turned around: we no longer have to instantiate
shared variables with constants because the connection between variables occurring
on the left hand side of the sequent and those on the right hand side is maintained
(they are part of the same meta-term). In fact, it is now the effect of copy on fetch

which we no longer get for free [see below].

For reified assumption sets, we do not need such mechanisms as indexing, which
are provided by datapools, because we know exactly what assumptions we need and
where: such information is recorded in the proof tree. This makes reification of
assumption sets very simple: whereas the ASSERTIONS slot of a normal assumption
set holds a list of names denoting assertions in the assumption set’s datapool, the same

slot of the reified assumption set directly holds the corresponding list of formulae.

Just as was the case with assumption sets, reified assumption sets are uniquified. In
other words, the operation which maps an assumption set to its reification always
returns the same value given the same input. An associative cache is maintained for

the duration of a complete regression.

Free Variables

When an assumption is made during the course of a proof, all free variables are
captured either by drbitrary instantiation or by explicit universal quantification, i.e.
the local assumption has the form Vz p(a, z) [see above]. This local assumption is then
processed to yield a more useful set of assertions: for instance, if it has the form of
a conjunction, then each conjunct is asserted separately; also, unless 1c-skolemize*

is false, skolemization will be applied automatically.

During generalization, if the assumption contains free variables, these must have been

introduced by the generalization procedure; they do not have to be captured; instead,
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they should be considered meta-variables. In this implementation, I represent them

by ordinary free variables and I simply leave them alomne.

But what of these free variables which are introduced by the process of skolemizing an
assumption? Clearly these are object-logic free variables and should exhibit the copy
on fetch effect. In order to distinguish them from meta-variables (which should not be
cdpied), I represent them differently: whereas ordinary variables are represented by
terms of the form (\? (name)), they are represented by (*xmvar (name)). Note that
this distinction is only necessary on the left hand side, i.e. in reified assumption sets;
on the right hand side, meta-variables and object-logic variables are both represented

by ordinary variables.

Whenever a (reified) assertion is fetched from a reified assumption set, the copy on
fetch effect must be explicitly simulated: all *xmvar-type variables are replaced (in

the copy) by newly created ordinary variables; meta-variables are untouched.,

Sequents

Originally, I thought that a reified sequent should carry along the corresponding reified
assumption set. However, it turns out that doing so is completely unnecessary since
the latter can be recovered from the proof [training example] that is being passed
along (i.e. by mapping the proof’s assumption set to its reification). Therefore reified
sequents are pairs of the form (CONC, ), where CONC is the conclusion and 4 is the
corresponding substitution. For practical reasons, CONC must be kept as instantiated
as possible—i.e. fCONC = conc. However, this does not mean that 4 is superfluous.
Indeed it is needed to instantiate the reified tree of assumption sets which, as was

just mentioned, is not carried along.
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8.6 The Regression Algorithm

8.6.1 Regressing A Proof

The procedure regress-proof is given a proof PROOF and a substitution 6 specifying
assignments to meta-variables in the reified tree of assumption set corresponding to
the PROOF’s assumption set. regress-proof returns a list of reified sequents, i.e. of
elements of the form (CoNcC, #') where CONC unifies with and subsumes the proof’s

conclusion and 6 C ¢'.

PROOF is an axiom
Let CONC be the axiom’s formula in which all free variables have been renamed
to new variables (cf. copy on fetch). Return a list consisting of the single element

(coNc, 8).

PROOF is an assumption
Let ASET be PROOF’s assumption set. PROOF is the n'® element in ASET’s
ASSERTIONS slot. Let ASET’ be the reification of ASET, and FMLA be the ntt
formula in ASET”’s ASSERTIONS slot. Now, let FMLA’ be the result of explic-
itly simulating copy on fetch by replacing all *xmvar-type variables with new

ordinary variables. Return a list consisting of the single element (FMLA’, 6).

PROOF is a tautology

Invoke the special tautology regressor [Section 8.6.3, p290].

PROOF is the result of DuCck backward-chaining rules
As explained elsewhere, it is possible to build-in theories by encoding decision
procedures as DUCK backward-chaining rules. At this time, LOGICALC does not

preserve a full trace of the computation, which makes it impossible to regress
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through such a derivation (since we don’t know what it is). See later for a dis-
cussion of this problem. The regression procedure punts. The precise meaning

of punting will be provided shortly.

PROOF is an inference
First, we must regress the steps. We do not regress the steps independently
because, supposing there are n PROOF’s steps, we would be left with n lists
Uk (pi, 05,) for i = 1 to n. Then we would have to somehow merge these back
together, e.g. by picking one element in each list and determining whether the
substitutions were compatible and how they should be collapsed. Instead, we

proceed incrementally:

o If there is only 1 step, we regress it normally, thus collecting a list of ele-
ments of the form (p, §'). Then we transform each element into ([p],8),i.e.

we replace the conclusion with a list whose sole element is the conclusion.

o Otherwise, the list of steps is PROOF, for k = J to n. We recursively
regress PROOF ;41 ... PROOF, in the manner which is presently being de-
scribed and obtain a list of elements of the form ([Phyy - PL],6°) fori =1
to m. Then, for each ¢ we regress PROOF; using 6' as the substitution and
collect a list of reified sequents (pf", 6%) for £ =1 to u; As the result we

return the list ([pg‘,pf;H . ph],0%) for £ =1 to viand i =1 to m.

In other words, the algorithm above proceeds right to left and returns lists
of pseudo-reified sequents of the form ([pr...pn), 8). 1say “pseudo” because
instead of a single conclusion, it has a list of the regressed conclusions of the

steps it started with.

Then, the rule’s regressor is invoked with 3 arguments: (1) the proof, (2) the list
of regressed steps [p; .. . Pn); (3) the substitution 6. The regressor is essentially

identical to the procedure implementing the inference rule, but operates on the
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reified representation and returns a list of reified sequents. It would be nice if

the exact same code could serve both purposes; this is discussed later.

The lists obtained by successively invoking the regressor for each one of the
pseudo-reified sequents computed above are concatenated and returned as the

result.

Otherwise
If the proof does not have a regressor, or, for some reason, this regressor fails

to return anything, then punt [see below].

8.6.2 Punting

When all else fails, this is the default regression strategy to fall back on. The idea
is simply to use the proof’s conclusion as its own generalization, i.e. to do nothing.
Unfortunately, the substitution is now out of synch because it does not reflect all
the assignments which would be necessary to actually make this very instantiated
conclusion on the basis of the reified representation. Soundness goes out the window
because it is possible to augment the substitution with assignments that would not

be possible (i.e. in contradiction) with the true substitution.

Consider the example where p(f(z)) D ¢(f(z)) is an axiom, p(f(a)) is an assumption,
and ¢(f(a)) is derived from them by MODUS-PONENS. Suppose the reified representa-
tion has p(u) as the assumption (with u a meta-variable) and ¢(v) as the conclusion
to be regressed, and the substitution 6 does not so far assign u or v. If I decide to
punt naively, and merely unify ¢(v) with ¢(f(a)), I will correctly derive the additional
assignment v — f(a) but u will remain unassigned (which in itself is unsound), or

even could later on be assigned a term which does not unify with f(a).

What this analysis suggests is that all the meta-variables participating in the deriva-

tion of the proof on which we punt should be fully instantiated. What does this
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mean? It means that we should recursively inspect the proof on which we punt and
for each assumption which occurs somewhere in its proof tree we should unify the
assumption with its reified version in order to instantiate the meta-variables. Per-
forming this rather drastic operation is a sufficient condition to guarantee soundness.
Why? Because the reified proof tree (which is not explicitly represented) has in some
sense been unified with the actual proof tree: all the generalization involved in the
reified derivation has been removed, the leaves of the reified proof tree are identical
(modulo variable renamings) to the leaves of the actual proof tree, therefore the same
conclusion falls out and we have determined the substitution that guarantees it. It
might be possible to do better than this, but it is precisely because the more clever

algorithm gave up or failed that we had to resort to punting in the first place.

The actual punting procedure works as described in the preceding paragraph.

8.6.3 Regressing A Tautology

In the case of a tautology, we are given a proof PROOF and a substitution repre-
senting the assignments to meta-variables. The object is to produce a variabilized
skeleton of PROOF’s conclusion instantiated only as much as required to make it a
tautology. Since PROOF’s conclusion is a tautology, this problem is guaranted to have

at least one solution.

Let FMLA be the variabilized skeleton of PROOF’s conclusion, i.e. it has the same
propositional shape, but all terms have been replaced with variables. If FMLA is not a
tautology, then there exists a (consistent) assignment of truth values to its constituent

literals that falsifies it.

Since PROOF’s conclusion is a tautology, the corresponding assignment would be illegal
for it; that is, it would assign opposite truth values to different occurrences of the

same literal. The reason the assignment was legal for FMLA is that the corresponding
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two occurrences of these literals looked different as a result of variabilization. In order
to rule out this falsifying assignment, we must unify the two variabilized literals to

constrain them to be identical.

Consider all pairs of variabilized literals which have been assigned oppbsite truth
values in the assignment falsifying FMLA. For each pair, if they unify resulting in the
substitution §’ (where 6§ C '), then we can attempt to falsify ¢’FMLA again and be

certain that this particular assignment will be ruled out.

By repeatedly proceeding thus, we can determine all the ways to minimally instantiate

FMLA so that it becomes a tautology.

Finally, we filter out irrelevant generalization, i.e. those which do not subsume PROOF’s
conclusion. For example, if PROOF is A = p(a) V —p(a) V ~p(b), the regression proce-
dure will start out with the skeleton p(u)V =p(v)V ~p(w) and will return the following

two answers:

Only the first one subsumes the proof’s conclusion; the second one is discarded as

being irrelevant.

8.6.4 Where Automatic Generalization Fits

Automatic Generalization was a rather late addition to LOGICALC, and its integration
with the rest of the system is not seamless. In the cﬁrrent scheme, the regression
mechanism is invoked by the constructor for proof data-structures: (1) the proof
structure is consed up and initialized, (2) then it is handed over to the regression

procedure which returns a list of formulae generalizing the proof’s conclusion, and
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(3) the system picks the first generalization and destructively replaces the proof’s

conclusion with it.

It might be a better idea to have Generalization mascarade as some sort of inference
rule: given a proof, it would return a list of proofs which can be derived by general-
ization. Note however that Generalization is not an inference rule (at the object-logic

level) because it takes a proof tree as input rather than premises.

The advantage of the current scheme is its simplicity: you cons up a new proof and as
a side-effect it is generalized. In the proposed improvement, consing up a proof would
return a list of generalizations and much of the code would have to be rewritten to

accommodate this extension.

8.7 Regressors

‘Each inference rule has a regressor which is just like the procedure implementing
the inference rule, but operates on the reified representation instead. A regressor
takes 3 arguments: the proof to be regressed, the list of formulae representing the
regressed steps of the proof, and a substitution carrying along the assignments to

meta-variables; it returns a list of reified sequents (of type xsequent_t).

I am going to illustrate the implementation with 3 examples. In each case, I shall
provide both the regressor and the inference rule for comparison. Here is the code for

AND-INTRO:

(DATAFUN REGRESS AND-INTRO and-intro
(DEFFUNC - (LST xsequent_t)
(PROOF - proof_t STEPS - (LST sexp) ALIST - (LST bdg))
(LIST (MAKE xsequent_t ‘(AND ,Q(VARSUBST STEPS ALIST)) ALIST))))

(DEFFUNC AND-INTRO-RULE - (LST sequent_t)
(PREMS - (LST sequent_t) PARMS - (LST sexp))
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(LIST (MAKE sequent_t
(WEAKEST-ASET-0F-SEQUENTS PREMS)
‘(AND ,Q(<# !_CONCLUSION PREMS)))))

The similarity is most obvious in this example because AND-INTRO is one of the more
trivial inference rules. The regressor is slightly simpler because it doesn’t have to deal

explicitly with the assumption set.

Let us now take a look at MODUS-PONENS. Here too the same remarks apply:

(DATAFUN REGRESS MODUS-PONENS modussponens
(DEFFUNC - (LST xsequent_t)
(PROOF - proof_t STEPS - (LST sexp) ALIST - (LST bdg))
(MATCE~COND STEPS
(\? ((IF ?P ?Q) ?R)
(FOR (E IN (SAME-UNIFY P R ALIST))
(SAVE (MAKE xsequent_t

(VARSUBST Q (!_LALIST E))
(! _LALIST E)))))
(T NIL)))) ‘

(DEFFUNC MODUS-PONENS-RULE ~ (LST sequent_t)
(PREMS - (LST sequent_t) PARMS - (LST sexp))
(MATCH-COND !>(CAR PREMS).CONCLUSION
(\? (IF ?P Q)
(LET ((ENVS (UNIFY !>(CADR PREMS).CONCLUSION P NIL)) - (LST env))
(AND ENVS (LIST (MAKE sequent_t

(WEAKEST-ASET-OF-SEQUENTS PREMS)
(ENVSUBST Q (CAR ENVS) 'LEFT))))))

(T ¥IL)))

Finally, here is the regressor for EQUALITY. For reference, the code implementing
the inference rule is also included. Comparison of the two will again reveal the tight
correspondence. The interesting feature of this example is that the regressor looks up
the parameters in the proof’s validation. Here it is necessary to find out the paths to

the subterms to be replaced.

(DATAFUN REGRESS EQUALITY equality
(DEFFUNC - (LST xsequent_t)
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(PROOF - proof_t STEPS -~ (LST sexp) ALIST - (LST bdg))
(MATCH-COND STEPS

(\? ((= ?NEW ?0LD) ?PAT)
(LET (TARGET - sexp PATHS - (LST (LST fixnum))
(PARMS (!_PARAMETERS (!_VALIDATION PROOF))) - (LST sexp)
(VARS NIL) - (LST symboid))
(OR (MATCHQ (?((BE * TARGET)) ~ . ?((BE * PATHS))) PARMS)
(PROG1L *#T
(!'= PATHS (BE * PARMS))
(!'= TARGET (EXTRACT-VAGUE~PATTERN
(! _CONCLUSION (CADR (!_STEPS PROOF)))
PATHS))
(!= VARS (VARS-OF TARGET))))
(LOOP FOR ((PATH IN PATHS) - (LST fixnum)
(XSEQUENTS (FOR (E IN (UNIFY PAT TARGET ALIST))
(SAVE (LET ((ALIST (ENV-ALIST E ’LEFT)))
(MAKE xsequent_t
(VARSUBST PAT ALIST)
ALIST)))))
- (LST xsequent_t))
WHILE XSEQUENTS
RESULT (IF VARS
(LOOP FOR ((XS IN XSEQUENTS))
(t= (!_ALIST XS) (X-CLEAN-ALIST *-#* VARS))
RESULT XSEQUENTS)
~ XSEQUENTS)

(!= XSEQUENTS (<! (\\ (XS) (XPATH-DEMODULATE2 XS OLD NEW PATH)) *-%)))))
(T KIL))))

(DEFFUNC EQUALITY-RULE - (LST sequent_t)
(PREMS - (LST sequent_t) PARMS - (LST sexp))
(LET* ((ONE (CAR PRENS)) - sequent_t
(TWO (CADR PRENMS)) - sequent_t
(PATTERN {>TW0.CONCLUSION) - sexp
(ASET (WEAKEST-ASET-OF-SEQUENTS PREMS)) - aset_t)
(MATCH-COND {>0ONE.CONCLUSION
(\? (= ?NEW ?70LD)
(MATCH-COND PARMS
(\? (?TARGET - . ?REST) _
(LOOP FOR ((PATH IN (BE * REST)) - (LST fixnum)
(PATTERES (<# (\\ (E - env)
(VARSUBST PATTERN (ENV-ALIST E ’Left)))

(URIFY PATTERN TARGET NIL))) - (LST sexp))
WHILE PATTERKS

RESULT (<# (\\ (PAT) (MAKE sequent_t ASET PAT)) PATTERNS)
(!= PATTERNS (<! (\\ (PAT) '

(PATH-DEMODULATE2 PAT OLD NEW PATH))
PATTERNS))))
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(T (LOOP FOR ((PATH IN (BE * PARMS)) - (LST fixnum)
(PATTERNS (LIST PATTERN)) - (LST sexp))

WHILE PATTERNS

RESULT (<# (\\ (PAT) (MAKE sequent_t ASET PAT)) PATTERNS)

(t= PATTERNS (<! (\\ (PAT)
(PATH-DEMODULATE2 PAT OLD NEW PATH))

PATTERNS))))))
(T NIL))))

Regressors are usually simpler than the corresponding inference rules not only because
they don’t have to explicitly deal with assumption sets, but also because they don’t

have to be as paranoid; they can trust in the proof tree.

8.8 Discussion Of Problems

In this section I discuss some problems with the Generalization mechanism. Mostly,
these are due to the fact that generalization was a late addition and is not seamlessly

integrated with the rest of the system.

8.8.1 Disappearing Terms

The very purpose of generalization is to replace certain terms of a newly derived
conclusion with free variables. However, if an existing validation implicitly assumed
that it would be able to find and manipulate these terms, when said validation is
executed, it fails because the terms whose presence it expected have been variabilized

away. Consider the following successive refinements:

1. = a=b>.p(f(a)) > p(f(b))
2. a=b=p(f(a)) D p(f(b)) (if-intro- (0 1) ())
3. a=b= p(f(a)) D p(f(a)) (equality (0 1) ((2 1 1)))



296 CHAPTER 8. AUTOMATIC GENERALIZATION

The right-most column indicates the validation to infer the preceding (parent) goal.
The goal numbered 3 will be recognized as a tautology: a proof is constructed and

handed over to the generalization procedure which yields:
a=b= p(u) D p(u)

Now, the validation (equality (0 1) ({2 1 1))) attempts to produce an inference
from a = b and p(u) D p(u), but path (2 1 1), which used to denote the location for
b, is now bogus because (2 1) is 4 and you you can’t go any deeper than this. The

term denoted by (2 1 1) has been generalized away and the validation fails.

When I added automatic generalization to LOGICALC, I had not anticipated the above
problem, and it caused some rather puzzling bugs until I finally realized what was
going on. The fix I came up with was to slightly complicate the parameters of these
inference rules which look for terms in their premises: the idea is to give them sufficient
information to restore the syntactic structure which they are counting on. Typically,
a skeleton pattern is added to the parameters, and the rule is supposed to first unify
this skeleton with the corresponding premise to derive a substitution that sufficiently
instantiates the premise and thereby permits the desired inference step to proceed

successfully.

Thus, the EQUALITY validation of the above example is really of the form:
(equality (0 1) (zDp(f(y)) - (2 1 1)))

Note how the skeleton has only just enough structure to restore term (2 1 1). When
this validation is executed, the EQUALITY rule, first unifies the conclusion p(u) D
p(u) with the skeleton £ O p(f(y)) and constructs the resulting instance p(f(v)) D
p(f(v)).* Now, the equality substitution of term (2 1 1), i.e. the 2nd occurrence of
v, can proceed successfully assigning a to v and concluding p(f(a)) D p(f(b)).

*The skeleton’s variables are renamed to avoid possible confusion with the conclusion’s variables:
this is the reason why I wrote v rather than y in the resulting instance. Actually, the real trick is to’
use 2-sided pseudo-substitutions [page 111].
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I am rather dissatisfied with this fix because it complicates the inference rules. In
retrospect, it might have been better to extend the validation language and inter-
preter to allow expressions of the form (@ (arg) skeleton)) to appear as arguments
of validations. The validation interpreter would determine the proof corresponding
to (arg) and when it packages it as a sequent (type sequent_t) for the corresponding
rule, it would unify the conclusion with (skeleton) in order to instantiate it further

to meet the implicit expectations built into the desired inference step:

(equality (0 (@ 1 z D p(f(¥)))) (21 1))

8.8.2 Built-In Theories

Conclusions derived by the office of built-in theories are stumbling blocks for the
regression procedure. Built-in theories are coded in the form of DUCK back-chaining
rules, and are designed to relieve the user from .the tedium of having to explicitly and
painstakingly derive proofs for the more obvious subgoals which pop up all the time

when one works within a particular theory.

For example, consider the task of proving that a term is an element of a set specified
by enumeration, e.g. that c is an element of {a b ¢} (whose internal representation
is (1set [a b c])). Clearly, this task is both trivial and uninteresting, but the
actual derivation of the proof is a small nightmare because it requires 3 refinements
through MODUS-PONENS and 3 refinements to drop a disjunct; that’s a minimum of
6 operations. If the set had n elements instead of 3, a minimum of 2n refinements

would be needed (if the element to be checked for membership occurs at the end).

In an interactive system, the more obvious subgoals should be taken care of automat-
ically, so that the user may concentrate on the more interesting/difficult parts of the

proof. For example, LOGICALC defines the rule:
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(AXIOM LSET-SIMPLE-DEF ,
(<- (ELT ?X (LSET ?L)) (MEMBER ?X ?L)))

which automatically takes care of the above example.

On the face of it, it would seem that regressing through a proof obtained by back-
chaining should be simpler than with proofs derived through bona-fide inference rules.

Unfortunately, there are two reasons why this is not so.

Firstly, LOGICALC does not currently save a trace of the back-chaining computa-
tion. Consequently there is nothing to regress through. This shortcoming could be
fixed, but not without considerable hassle. Much work would have to be invested in

modifying, not only LOGICALC, but also the underlying DUCK system.

Secondly, DUCK rules may invoke arbitrary extra-logical operations. The lisp and
call “predicates” make it possible to invoke a LISP procedure to perform part or all
of the work. For instance, LOGICALC define equality of tuples in two ways: axiom
tuple-equality provides the logical axiomatization, while tuple—simi)le-equality

is the back-chaining rule that takes care of the simpler cases:

(AXIOM TUPLE-EQUALITY tuple equality
(IFF (= [?x1 t701] [7Xx2 17L2])
(AND (= 7X1 ?X2) (= 7L1 7L2))))

(AXIOM TUPLE-SIMPLE-EQUALITY
(<~ (= 7L1 7L2)
(AND (IS-LIST 7L1)
(IS-LIST ?7L2)
(SAME-LENGTH ?L1 ?7L2)
(FORALLIN/2 [?X1 ?X2] ?L1 ?L2 (= ?7X1 ?X2)))))

(DEFPRED (IS-LIST ?X - obj)
(CALL (IS-LIST 7X)))

(DEFFUNC IS-LIST - void (X - sexp) ...)




8.8. DISCUSSION OF PROBLEMS 299

The problem, of course, is that there is just no general way to regress through an
arbitrary computation, and, at present, regression punts when it encounters a proof

obtained through back-chaining.

8.8.3 Regressors vs. Inference Rules

Regressors and inference rules perform identical operations on different representa-
tions. Inference rules operate on sequents, while regressors do so on their reification.
It would be desirable to eliminate such duplication of code by folding the latter into

the former.

An ordinary sequent is represented by a structure (ASET, CONC) of type sequent_t.
A reified sequent is represented by a structure (coNC, ) of type xsequent_t; the
reified assumption set is not included because it can be recovered from the proof
which is being passed along, but it could be. These two representations can easily
be merged together and suggest a data-structure of the form (ASET, CONC, §), where
ASET may be either an ordinary assumption or its reification depending on whether

this is an ordinary sequent or a reified sequent.

With a suitable and unifying interface to both ordinary assumption sets and reified
assumption sets, I believe it would be possible to use the very same code both for

regular inferences and for regression.

8.8.4 Regression vs. Inferencing

Despite my arguments to the effect that regression and inferencing can be made to
share the same mechanisms, regression should not be mistaken for an inference rule
in disguise. Inference rules map premises to conclusions. Regression maps proof trees

to conclusions; in a sense, it acts as a meta-inference rule.
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When regression operates, it must inspect the whole proof tree and recapitulate the
inferences therein. Obviously, this entails a lot more work than performing a single
inference. A legitimate question is: is generalization always worth it, and how can

we keep the cost down?

When regression runs, it must instantiate the reified proof all the way down to axioms
and non-discharged assumptions. Consequently, the real payoff happens when an
assumption is being discharged by IF-INTRO. This remark suggests a course of action:
we might want to invoke generalization only when handed a proof whose top inference
is validated by IF-INTRO (actually, we also want to regress tautologies). No such
policy is implemented at the moment, but the code is very flexible and will let the
user experiment easily with various ideas. In particular, the procedure mapping
a proof tree to generalized formulae is held in variable proof~generalize*, whose
default value is #’1c-regress. The user is free to specify any kind of filtering scheme
instead. Also, variable ebg-regress-fail-test* may be set to a predicate which
decides whether to punt or not for any particular inference node in the proof. At

present, no such predicate is in effect and the value of the variable is NIL.

In any case, when generalization is requested, it must regress throughout the whole
tree. The fact that the steps of the top inference node have already been generalized
does not help for two reasons: firstly, if the top inference happens to discharge an
assumption, then more generalizations may be able to take place. Secondly, we still
have to go all the way down to occurrences of assumptions in order to get the bindings

right [see punting earlier].

Even though my implementation of generalization is extremely sub-optimal, and
conses like there is no tomorrow, I have found that in practice it has rather good

performance. This is encouraging and validates the idea.
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o [P(a) Aep(a) D a = 8] D [p(f(a)) D p(£(b))]

(if-intro (1 2) ())

3A=:’p(a)/\-p(a)30=b 8A=>P(f(a)) D p(f(b))

(and~-intro (1 2) ())

| |

1A=:’p(acz 2A=>p(a)3a=g

(equality (1 2) (D f(y) - (21 1)N

A=a=5b . A= p(f(a)) > p(f(a))

6 tautology

(modus-ponens (1 2) ())

A=p(a) Da=b A = p(a)
4 5 &
Figure 8.1: Generalization Example

8.9 Generalization In Action

In this section, I will illustrate the functioning of the generalization procedure by going
step by step through a complete example. We are given a proof of [p(a) Aap(a) D
a = bl D [p(f(a)) O p(f(b))] whose proof tree is displayed in figure 8.1. To avoid
cluttering the pictorial representation, A stands for the assumption set in which
p(a) Aup(a) D a = b is the local hypothesis and the corresponding local assertions

are a: p(a) and f: p(a) D a = b.

The leaf-nodes of the tree have been labeled with their justification: « or 8 if they

are assumptions, or ‘tautology’ if they were proven to be tautologous.

Each proof node in figure 8.1 is also labeled with a number. The numbers reflect the
order in which these nodes are regressed through. To regress through an inference

node, the procedure first regresses its steps (in left-to-right order).
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The first node for which something happens is the one labeled 1. It is an assumption.
In order to regress an assumption, the procedure must obtain the reified assumption
set. The latter is constructed and the variabilized local assertions are p(uy) and

p(uz) D u3 = u4. Sincenode 1 is justified by local assertion «, the regression procedure

returns [(p(u1), {})].

Node 2 is similarly justified by assertion 8, and the regression returns lp(uz) D
uz = ug,{})]. As described earlier, the procedure regressing sibling steps here re-
turns [{[p(u1), p(uz) D us = u4l, {})]. The regressor for AND-INTRO returns [(p(u1) A
+p(u2) D u3 = uy, {})] as the result of regressing through node 3.

Now, we go down the other branch, all the way to node 4. Node 4 and 5 are re-
spectively justified by B and «, and, proceeding as above, the regression of these
steps produces [{[p(u2) D us = us, p(w1)], {})]. Now the regressor for MODUS-PONENS
unifies p(u;) with p(u;), effects the inference and yields [{us = u4, {ua — wu1})] for
node 6.

Then, we must regress node 7 using {u; « w;} as the current substitution. Since this
proof is a tautology, we must invoke the tautology regressor described in section [ref].
The regressor is handed the variabilized conclusion p(us) D p(us) and finds that it
can be falsified with the interpretation {p(us) 4—'TRUE,p(u6) — FALSE}. The only
way to rule this out is to unify p(us) with p(us). The regression returns [(p(us) D

p(us), {uz « uy, us — us ).

Regression of steps 6 and 7 returns [([us = ug, p(us) D p(us)], {uz — uy,ug — us 1],
and the EQUALITY regressor is invoked. First, it renames® the variables in the skeleton
pattern z > p(f(y)) thus obtaining z’ O p(f(y')), then performs unification with
p(us) D p(us) to restore the desired structure. The substitution is {up — uy,ug —
us — f(y')}, and the second premise becomes p(f(y")) D p(f(y')). Now uz (equality’s

left-hand side) is unified with the second occurrence of y" and said occurrence is

3 Actually, see earlier footnote p8.8.1.
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replaced with u4 (equality’s right-hand side). The regression yields [(p(f(us)) D
p(f (), {uz = ur,ue — us — f(y'),us — y'})].

Regression of steps 3 and 8 returns [{[p(u1) A wp(u1) D us = ug, p(f(us)) D p(f(u4)),
{uz & u1,ue — us — f(y'),us — y'})]—notice how the 1st premise, which was the
result of regressing through node 3, has been further constrained by the substitution’s

assignment uz « u;—and the IF-INTRO regressor yields [{[p(u1) Asp(u1) D uz = u4] D
[p(f(wa)) D p(f(wa))], {uz — w1, w6 = us = f(y'),us — y'})].

8.10 Comparison With ONTIC

ONTIC [cite McAllester87] includes Automatic Universal Generalization as one of its
inference mechanisms. It applies when the following conditions are met:

¢ g is a generic individual of type 7.

e The system has labeled the node for a formula ®(g) true.

¢ No assumptions have been made about the individual g other than the assump-

tion that it is an instance of type 7.

¢ No free variable of ®(g) has a type that depends on g.

In this case, the system infers the universal closure:
Vo &(z)
Unfortunately, universal generalization is limited in the following way:

This inference mechanism does not construct new formulas or add new
graph structure. In order for this inference mechanism to be applied, all
of the formulas involved must already be compiled into nodes in the graph
structure. :
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This is in contrast with LOGICALC, where generalizations are added to the database
(and thus become available for subsequent refinements/inferences) and are also broad-

cast throughout the existing network of goal classes.

In addition, whereas ONTIC is limited to generalize only on generic individuals, LOG-

ICALC’s mechanism applies to all terms.



Chapter 9

Proof Editing And Formatting

In this Chapter I discuss the formatting of proofs, with particular attention given to
the automatic generation of documents intended for publication. LOGICALC includes
a proof editor to assist the user in this task. The default heuristics usually produce
satisfactory results and no user involvement is required. Architecture, heuristics, and

display policies are explained, and a few glimpses at the implementation are offered.

9.1 Introduction

Interactive proof development is typically an exploratory enterprise, and the facts
that the graph encoding the on-going work often grows to large proportions, that
both the user and the system contribute to it, and that the focus of attention moves
rapidly from one location in the graph to another, make it difficult to keep track of

the big picture.

Therefore, when a (sub)proof has been derived, it may be useful to pause and study

the details of its derivation in order to better understand its true articulation and

305
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its structure. Since proofs are represented by nodes in the graph, it is possible to
manually navigate through them. However, this method of inspection provides limited
context since only one inference node at a time can thus be observed; and the big

picture remains elusive.

What is needed is a tool that provides a global view of a proof in a format which is
easy to grasp. A possibility is to generate a graphical representation reflecting the
proof structure, e.g. using the ISI grapher. LOGICALC does not at present offer such
a facility. Also, although a graphical representation is often preferable, it may not

always be practical because of the size of the proof tree.

Another alternative is to generate a linear representation inspired of the classical
format of Natural-Deduction proofs which consists in a sequence of lines, each one
representing a conclusion. Every line is numbered and is given a justification which
either states that it is a hypothesis, or an instance of an axiom schema, or is derived
from earlier lines by some inference rule; in the latter case, the inference rule and the
premises’ line numbers are listed. Furthermore each line lists (by line number) the

hypotheses which it depends on. The general form of a line is:

k. [i1...8,) F p RULE J1...Jm

line number hypotheses conclusion justification

For example, here is a simple derivation expressed in this notation:

1. Fa=b hypothesis
2. F f(a) = f(a) axiom

3. [1] F fla) = f(b) equality 12
4. Fa=0D f(a) = f(b) if-intro1 3

An advantage of such a representation is that it is familiar to everyone with an interest
in logic. It is also simple and intuitive enough that a neophyte may quickly achieve a
reasonable level of fluency reading material presented in this fashion. This property

is particularly important in light of my next point.
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Another reason for producing a proof summary is to communicate it to someone else.
After having invested time and effort in the derivation of a proof, the user may want
to prepare it for inclusion in a document for publication. Formatted proofs are also
of interest in the classroom: for the student, to answer a homework, for the tutor, to
produce solutions and slides (e.g. sce the introductory example of Chapter 1). Also,
the user may simply want such a summary for his own benefit, as the printed version

of a proof is easier to study than the graph itself, and may serve as a reference.

Since a proof summary is specifically intended for human consumption, it should be
digested and prepared to make it casier to read. In particular, people are interested
in the highlights of the proof, i.e. those inferences which embody the essential ar-
ticulation of the proof; trivial or incidental subparts should be omitted or otherwise

condensed in non-obtrusive ways. Here are a few cases in point:

e Uninteresting Conclusions. In a given domain of interest, there will be pred-
icates useful for the axiomatization, but whose rdle is not essential. In Al
applications, type predication performed by the IS predicate is typically not of -
great relevance to what is truly going on. Lines concluding propositions of the
form (IS (type) (object)) as well as those participating in their derivation only
clutter and obscure the overall proof summary without contributing anything

to the user’s understanding.

o Uninteresting Inferences. There are categories of inferences which are so obvious
that there is no point in actually showing them. If we don’t show them, the
user will supply the actual inferences without even being aware of doing so and
the clutter in the proof summary will be further reduced, thus enhancing its
readability. For example, any formula concluded by IDENTITY, or AND-IN TRO,
or SYMMETRY.

e Uninteresting Derivations. Some derivations are so simple that it is possible

to get away with not showing them without causing confusion in the reader.
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MODUS-PONENS is not a trivial inference rule, and therefore is not covered by
the previous item. On the other hand, when it is given trivial premises, it is
often reasonable to not allocate a line for the conclusion, and, whenever it is
mentioned, abbreviate it in-line by listing the premises instead. The reader

easily supplies the missing inference from the context.

Built-in theories [page 60] are often designed to take care of the more obvious
queries. They are meant to factor out various tedious aspects of a particu-
lar domain. Consequently, it is often inappropriate to go into the details of

conclusions obtained through their mediation.

LOGICALC provides a tool whose heuristics take the above points into account and can
turn a large proof into a reasonable summary. It is quite flexible, and different policies
can be implemented by ajusting a multitude of parameters. This tool is shelled within
a special purpose editor which allows the user to interact with the summary, edit and

improve it, change or override defaults, insert comments, etc. ..

9.2 The Proof Editor

The proof editor can be entered from a proof node by issuing the edit command.
At that point the entire proof tree rooted at this node is digested and one Iine’is
created for every subproof, assumption, and axiom. Thus the proof tree is effectively
flattened and presented in a linear fashion. This linearized presentation is packaged
as another type of node, known as a proof view, and the user interacts with it in the
same manner as with other nodes, i.e. through the graph editing mechanism mediated
by LOGICALC’s shell. The introductory example of Chapter 1 showed an example of

a proof view which I include again here:

[33] w> EDIT transcript
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Proof View

12 (LEFT !.OTHER-HAND) : [THUMBS 1 2 !:RIGHT331]
13 (LEFT !.ONE-HAND) [11 12]

14 (IF (AND (RIGHT !.ONE-HAND) (NOT (LEFT ?X))) (LEFT !.ONE-HAND)) [+:RIGHT331 !:NOT332 13]
15 (LEFT !.ONE-HAND) [6 7 14]

16 (RIGHT !.OTHER-HAND) ‘ [THUMBS 1 2 15]

17 (RIGHT !.ONE-HAND) {11 163

18 (NOT (LEFT !.ONE-HAND)) {LEFT-OR-RIGHT 17]

19 (NOT (= !.ONE-THUMB !.O0THER-THUMB)) {15 18]

=>20 (IF (AND (IS CREATURE ?Y) (IS THUMB ?7X) (PART ?X ?Y)) (AND (IS THUM... [!:PART280 5 19]

A proof view is mainly a sequence of lines, after the manner of Natural Deduction
proofs. Since there are typically many lines, only a small window is displayed by
default; the size of this window is controlled by parameter edit-context. Within
the sequence of lines, the proof editor maintains the notion of the current line—
indicated by the arrow—and centers the context window around that line. In the
above illustration, the focus is on the last line, which explains why only the preceding

context is non-empty.

Each line is numbered; the corresponding conclusion is prettyprinted (by default, it is
prettyprinted on a single line and only a limited prefix is displayed—see, e.g. line 20—
but other policies can be chosen by setting various parameters); it is followed by a
list of references to others lines which this one depends. on (typically, these are the

premises of the corresponding inference step).

A line is usually referenced by its line number. Axioms and assumptions, however, are
referenced by name (by default). Line 18 concludes that ! . ONE-HAND is not a left hand,
and the list of dependencies shows that this conclusion uses axiom left-or-right,
which states that a hand must be either a left hand or a right hand, but not both,
and line 17 which asserts that !.ONE-HAND is a right hand. |

A proof view also carries a number of editable properties which influence formatting
heuristics and summary generation. The user may implement different policies, or
change the visual appearance of the summary by altering their values with the option

command.
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9.2.1 The Notion of Users

Even though a complete proof is usually visualized as a tree, in practice, it is often a
(acyclic) graph. Through the various mechanisms of answer sharing, answer broad-
casting, proof uniquification, and proof insertion in the database, it is possible for
the very same proof object to participate as a premise in multiple inferences, and

therefore to occur more than once in the overall proof tree.

When the proof graph is converted to a proof view, for each line therein, we keep
track of all the other lines for which this one is required as a premise: they constitute

this line’s users.

Why keep track of users? The answer is twofold. Firstly, the (human) user may take
advantage of this information to better. understand the dependencies, and also may
naviguate along these links from one part of the proof view to another. The reverse
links are of course the steps of a proof line, and the user may naviguate along those

as well,

Secondly, as I have alluded to before, it is possible to omit parts of the proof from the
summary. If all of a line’s users have been omitted, then clearly the line is not required
by anyone and should be omitted too. Therefore, the list of users serves a réle in the

computation of a line’s visibility—a notion which I shall introduce presently.

9.2.2 The Notion of Visibility

In every proof tree there are inference steps which are of no interest to the user
because the conclusion does not play an essential réle in the theory. In typical Al
axiomatizations, type propositions of the form (IS (type) (object)) do not carry a
great deal of information. They can typically be omitted from a proof summary with

no loss of clarity. In fact their omission reduces the clutter and helps clarify the
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summary. Therefore, the editor’s heuristics recognize such lines and arrange for them

to be hidden instead of visible.

Other lines correspond to inferences which are so trivial that it is unnecessary to
display them. For example, if line ¢ is inferred from line ¢ by IDENTITY, it would
be rather silly to show both £ and ¢. In such a case, the editor’s heuristics will
arrange for ¢’ to be in-lined. In other words, ¢ is not displayed, and wherever it is
referenced as a premise, the editor will display a reference to ¢ instead. When reading

the summary, the user is quite unaware that he is supplying a missing inference.

The same technique applies to SYMMETRY. If line £ is a = b and line ¢ is b = a
derived from £ by SYMMETRY, ¢ can be in-lined with no loss of clarity: it is obvious

from the context which side of the equality is used to replace what.

A slightly more complex case is that of conjunctions produced by AND-INTRO. For
example, let’s say line £; is p; lor i = 1 to n, line ¢ is pl A ... A p, obtained by
AND-INTRO from the £;’s, and linc ¢” is p; A ... A p, D q; from ¢ and ¢, MODUS-
PONENS infers ¢ (line £'). Clearly, line £ does not contribute much to the summary,
except that it takes up space with a trivial inference. Instead, the default heuristics
will arrange for £ to be in-lined; which means that the justification of line £” (the
conclusion from MODUS-PONENS) will outwardly reference lines 4; for i = 1 to n
instead of line ¢', and say something like “From ¢ ...4, and £".” Once again, the

missing inference should be quite transparent to someone reading the summary.

This last example brings up interesting questions. Remember that the reference to
line & is the concatenation of references to lines #; for : = 1 to n. Typically, this
would produce the corresponding sequence of line numbers. However, suppose line
for some k, 1 < k < n, is also in-lined. Then, its own list of references would have
to be spliced in where its line number would otherwise have appeared. As a result,
the list of references making up the in-line representation of line #' could grow to very

large proportions and could no longer be considered transparent. Therefore, the size
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of the in-line reference must be taken into account when deciding whether to in-line

or not.

Also, if an in-lined conclusion is used in several places (has multiple users), then its
longuish reference text will have to appear repeatedly in various justifications. It
might be better to not in-line it and be able to reference it simply by its line number.
There is clearly a tradeoff between the number of lines which are actually displayed

and the size of individual justifications. |

To support the sort of functionality outlined above, each line has a visibility property
which can take one of three values: normal, in-line, hide. A normal line is just what
you would expect, and it is referred to by its line number (or maybe by its name if
it is an axiom or an assumption). An in-lined line is not displayed and is referenced
by concatenating the references to its steps. A hidden line is neither displayed nor

referred to (its reference text is empty).

The editor’s heuristics assign appropriate visibility to each line. These decisions
may be explicitly overriden by the user, and can also be altered by tweaking various

parameters.

9.2.3 Editing Operations

In this section I will give a brief synopsis of editing operations supported by the proof

editor.

motion commands: to change the current line (previous, next, line), or go back

to the proof whose view we are presently editing (proof).

bury/unbury: to control what lines are actually shown for editing purposes. This

has nothing to do with which lines are shown in the summary, but merely allows
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the user to restrict the display of the proof view to those lines relevant to the

editing task which he is presently engaged in.

line ordering: lines must be ordered such that none comes after any of its users.
This policy only specifies a partial ordering. By default, the ordering respects
the proof structure: an inference comes after its steps and each step comes after
its left sibling. The float command allows the user to move lines upwards or
downwards in the sequence of lines, as long as this motion remains consistent

with the partial ordering.

dump: produces a summary of the proof. In particular, dump -document -tex file-

name will output the summary to file filename in a format suitable for process-

ing by IATEX.

‘parameters: many aspects of the editor, of its heuristics, and the visual appear-
ance of the summary, are controlled by parameters, also called options. The
command option -set name value may be used to set the proof view’s. name

option to value.

editing a line: from a proof view, it is possible to move to a representation of a line

with the edit command. Here is what you can do to a line:

1. Turn it on/off. This is somewhat like hidding it.

2. Turn some of its steps on/off. Steps are represented by sublines which
point to the actual lines. This extra level of indirection makes it possible to
associate properties with the subline to override those of the corresponding
line without altering the latter. For instance, it is possible to turn off a
step (i.e. it will not be mentioned in the justification of this line) without
turning off the corresponding line (which may still be mentioned in other

justifications).
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9.3

In this section I will describe the data-structures underlying the implementation

CHAPTER 9. PROOF EDITING AND FORMATTING

. Add a comment. It is occasionally a good idea to intersperse comments

with the lines of the summary to explain what is going on. The summary

generator knows that comments should be formatted as text.

. Set the line’s simplicity. The editor’s heuristics take into account the

simplicity of a line to decide whether said line should be in-lined. The
simplicity of a line is also computed by heuristics, but this determination

may be explicitly overridden by the user.

. Set the line’s visibility to explicitly override the default computation.

. Name a line. Typically useful to assign a more meaningful name to an

assumption. For example, if assumption !:=309 is a = &, it might be
a good idea to rename it a-equals-b to improve the readability of the

summary.

. Move to other nodes: user, step, proof, view, hset.

‘Construction of a Proof View

7

outline the process of initialization, and explicitate the algorithm computing a line’s

visibility.

9.3.1 Data-Structures

Proof View

A proof view is essentially a doubly-linked list of lines (see below), together with a

set of properties specifying heuristic policies and visual appearance. For practical
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purposes it is also a good idea to maintain a list of the axioms occurring therein, as
well as a list of all the lines representing assumptions. A list of hsets representing
all the assumption sets is similarly maintained. A proof view is implemented by a

structure of the form:
(PROOF, LINES, AXIOMS, ASSUMPTIONS, HSETS, PROPS)

Constructing a proof view has the side-effect of consing up a line for the proof’s

conclusion; this, in turn, causes lines to be recursively constructed for all subproofs.

Line

Each proof in the proof tree is converted to a line. Lines are maintained as a doubly-
linked list that reflects their natural sequencing in the Natural Deduction summary.
Furthermore, each line includes a list of steps (which are the lines used as premises
by this inference step) and a list of users (those other lines which require this one as a
premise). There is pointer to the hset (see below) representing the proof’s assumption
set, and also a set of properties (e.g. visibility and simplicity). A line is implemented

by a structure of the form:
(PROOF, PREV, NEXT, HSET, STEPS, USERS, KIND,! VIEW, PROPS)

Construction of a line object first requires constructing lines for the proof’s steps,
then packaging these lines into sublines (see below). An hset must also be obtained
to represent the proof’s assumption set. Finally, the new line object is appended to
the view’s doubly-linked list of lines (appending it guarantees that it appears after

the lines representing its steps).

Note that lines are uniquified in the sense that, if the same proof occurs several times

in the proof tree, the same line object will be used for all these occurrences.

! A symbol—one of axiom, assumption, deduction—which indicates what kind of a line this is.
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Subline

A subline represents the use of a line as a premise to infer another line. It is im-
plemented by a pair (LINE, PROPS). When a line ¢ is packaged as a subline (step)
for line &', ¢ must be added to £’s users list. At present, the only useful properties
are pgm-off, which is true when heuristics have determined that the step should be
turned off, and usr-off, which is used to indicate an overriding decision by the user

to turn the step off in any case.

Hset

An hset is the representation of an assumption set, and plays a réle during the dump-
ing of a proof summary: assumptions are not displayed for each line, instead, whenever
two consecutive lines do not depend on the same set of assumptions, a description of
the second assumption set is inserted between the two lines; this description remains
in effect until overriden by another. An hset is implemented by a structure of the

form:
(ASET, ASSUMP’I‘IONS, PARENT, VIEW, PROPS)

which closely resembles the structure of the assumption set ASET. ASSUMPTIONS is
the list of lines coresponding to the local assertions; PARENT is the parent hset; VIEW

is the proof view; and PROPS are the hset’s properties.

Hsets are uniquified in the sense that the hset constructor, when invoked repeatedly
for the same assumption set, will return the same hset object rather than cons up
a new one each time. This is important since, whenever a proof is converted to a
line, its assumption set is also converted to an hset, and proofs may share the same

assumption set; therefore, lines should similarly share the same hsets.
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To convert an assumption set to an hset, the parent assumption set must first be

converted to an hset. Then, the local assertions must be transformed into lines.

As far as the user is concerned, the only interesting property of an hset is usr-name,

whose value is a string that names the hset and overrides the default naming scheme.

9.3.2 Initialization

After the proof view has been constructed, the following initialization steps must be

performed:

1. Set up the proof view’s default properties. Typically, this involves copying
global defaults to local properties.

2. Establish the doubly-linked list of lines.

3. Sort axioms, sort assumptions. The default policy for a summary is to not
display axioms as ordinary lines, but rather to list them all first, then refer to
them by name in the body of the summary. To make it easier to look up an

axiom, they are sorted by alphabetical order.
4. Compute each line’s visihility.
3. Assign line numbers.

6. Assign hset numbers. An hset is typically named by a string consisting of the
prefix H followed by a number. The user may override this default naming

scheme.
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9.3.3 Computing a Line’s Visibility

The algorithm presented in this section determines whether a line should be normal,
in-lined, or hidden. It consists of 2 passes: the first one makes the determination on
the basis of local information, while the second pass merely turns back on certain

lines because of other inferences where they are involved as premises.

First Pass
The first pass is guided by the following principles:

¢ Hide system axioms. This is principally of interest for built-in theories which
are implemented using back-chaining rules. The justifications for deductions
arrived at through this mechanism should usually be hidden from the user. The

following declaration:
(hide-from-1lc ’(name))

will cause assertion (name) to not be mentioned in a summary. The line corre-

sponding to assertion (name) is always hidden.
e Show axioms and assumptions.

* Hide simple deductions obtained from hidden premises. If a line is trivially
derived from premises all hidden, then it probably doesn’t have to be visible
either. The deduction is considered trivial here if the rule is either one of the

hide-rules or one of the in-line-rules.

hide-rulesis a property of the view which consists of a list of inference rules.

Inference steps validated by one of these rules should be in-lined.

in-line-rules is similar, except that the corresponding inferences should be

in-lined only when simple enough.



9.3. CONSTRUCTION OF A PROOF VIEW 319

e Hide lines discharging an assumption on a hidden conclusion. If line # corre-
sponds to A = p D ¢ and is derived from line ¢, corresponding to A;p = ¢, by
IF-INTRO, then, if line ¢ is hidden, line # should be hidden too.

o Identify trivial discharges. This is intended to catch cases such as line ¢, rep-
resenting A = p(a) D p(«), derived from line ¢, representing A;p(a) = p(a),
by IF-INTRO. In this case the sublines of ¢ are turned off because they are not

necessary to understand the conclusion.

Note that when a subline is turned off, a message is sent to the corresponding
line to check on its uscrs; If all users have been turned off, the line should turn

itself off too.

* Hide unessential propositions. If the conclusion’s principal symbol is one of the

hide-predicates, then the line should be hidden.

hide-predicatesis a property of the view which consists of a list of predicates
which are considered to state unessential propositions. At present, the list has

only one element: is, which denotes type predication.

e Show literals. Conclusions which are literals are the basic blocks supporting
the whole deduction; it is generally a good idea to display them as lines regard-
less of other (in-lining) heuristics. This policy is controlled through the view’s

show-literals property.

If show-1literals is true, and the conclusion is a literal, and it is not a trivial
deduction from another literal (e.g. by IDENTITY or SYMMETRY), then the line

should have normal visibility.

e In-line Trivial Propositions. Conjunctions are typically not very interesting as
conclusions. There are two common cases: (1) a conjunction is inferred by
AND-INTRO to serve as a minor premise for MODUS-PONENS, (2) a conjunction

is inferred by MODUS-PONENS and then one of the conjuncts is inferred by
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TAUT-TRANS. In either case, it is often unnecessary to actually display the line

corresponding to the conjunction itself.

If the conclusion’s principal symbol is one of the in-line-predicates, then,
an in-line abbreviation is computed as follows: for each step that is not turned
off, a list of references is computed. The list consist of the line number if the
step has normal visibility (or the name, for an axiom or an assumption); for
an in-lined step, it is recursively computed (and cached) in the manner which
I am presently describing. The resulting lists are concatenated (and duplicate

references are removed).

If the abbreviation thus computed does not exceed the size specified by the
view’s max-in-line-size property, then the line may be assigned visibility
“in-line.”

in-line-predicatesis a property of the view which consists of a list of pred-

icates. At present it has a single element: and.?

¢ In-line Trivial Inferences. This case is similar to the preceding item, but the
triggering condition is that the inference rule validating this line’s conclusion

be one of hide-rules [see above]. The same decision procedure applies.

¢ In-line Simple Deductions. If the line is deemed simple, it should be in-lined.

Simplicity is computed as follows:

— It may be explicitly set by the user.
— Axioms and assumptions are simple.

— A conclusion derived trivially (see hide-rules and in-line-rules) from
simple premises, and such that its in-line abbreviation does not exceed

the maximum permitted size, is simple.

?For the purpose of summary preparation, we shall not distinguish between connectives and
predicates. All that interests us is that either may appear as the principal symbol of a formula.
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— Other cases are not simple.

e All other lines are normal by default.

Second Pass

The point of this second pass is to change the visibility of certain lines from in-line
to normal. This is done when a line plays an important réle as a premise in some
inference step; if it remained in-lined, the result might be a little confusing. For
example, it is a good idea to make sure that the equality involved in an EQUALITY
substitution inference appears as a line. Similarly for the disjunction of cases of the

CASE rule. etc...

The visibility may be changed from in-line to normal only if it has not been overriden

by the user.

If the line is a trivial inference (e.g. by IDENTITY or SYMMETRY) from a single premise,
instead of changing the visibility of the line itself, the program makes sure that the

line corresponding to said premise has visibility “normal.”

When the visibility of a line has thus been changed, the visibility of its users must be

recomputed.

9.4 Generating a Summary

A summary is generated when the user issues the dump command. In particular, dump
-tex -document filename outputs the summary to file filename as a self-contained

document ready to be processed by IATEX.
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In this section I will describe in greater detail the format of a summary; then I
will outline the various algorithms involved in its generation and I will illustrate my

data-driven implementation with snipets of code.

9.4.1 The Format of a Summary

A summary typically consists of 3 sections: abbreviations, axioms, and the proof

itself, i.e. a sequence of lines.

Abbreviations

The first section of the summary consists in a list of definitions for the abbreviations
used in the proof. An abbreviation [Section 4.4] is a skolem term used for notational
purposes only, and which stands for some other term. The list makes it clear what
each abbreviation stands for, and is intended to serve as a reference when reading the
proof summary. This section may be explicitly omitted with the -noabbreviations

option to the dump command.

The example from the Introduction Chapter had the following abbreviations section:

ABBREVIATIONS

! .ONE-THUMB = (SK ONE-THUMB 7)
t.C = (SK C 6)
! .OTHER~HAND [2] (?ONE-HAND 7C)

= (SK OTHER-HAND 2 ?ONE-HAND 7C) -
! .OTHER-THUMB [3] (?ONE-HAND ?C)

= (SK OTHER-THUMB 3 ?7ONE-HAND 7C) -- THUMBS
! .ONE-HAND[5] (?C ?T)

= (SK ONE-HAND 5 7C ?T) -
! .ONE-HAND[5](!.C !.ONE-THUMB)

= (SK ONE-HAND § !.C ! ONE-THUMB) -
! .OTHER-THUMB[3] (!.ONE-HAND !.C)

= (SK OTHER-THUMB 3 !.ONE-HAND !.C) -

THUMBS

CREATURE-THUMB

CREATURE-THUMB

THUMBS
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! .OTHER-HAND [2] (! .ONE-HAND !.C)

= (SK OTHER~HAND 2 !.ONE-HAND !.C) -
! .HAND-OF-THUMB [4] (7T)

= (SK HAND-OF-THUMB 4 7T) -
¢ .HAND-OF-THUMB [4] (! .ONE-THUMB)

= (SK HAND-OF-THUMB 4 !.ONE-THUMB) -
' .OTHER-THUMB [3] (! .ONE-HAND[5] (?Y ?X) ?7Y)

= (SK OTHER~THUMB 3 ! ONE-HAND(?X ?7Y) ?Y) -~ THUMBS

THUMBS

ONE-HAND-PER-THUMB

ONE-HAND-PER-THUMB

An abbreviation and the term it stands for are displayed on either sides of an equality
sign. Notice that only the top-level of the term is expanded; subterms may still be
represented by abbreviations (e.g. ! .C and ! .ONE-THUMB in the 6th definition) which

may be looked up in this same list.

Also, when a skolem term originated in an axiom, the name of that axiom is listed
so that it may be easily looked up. The first two abbreviations above lack a corre-

sponding axiom because they came from the skolemization of the original goal.

Axioms

The second section of the summary consists of a list of all the axioms to be explicitly
referenced in the proof, and is also intended to serve as a reference when reading the
proof. To make it easier to look up an axiom, the list is arranged in alphabetical
order. This section may be explicitly omitted with the -noaxioms option to the dump

command.

The axioms section from the example in the Introduction Chapter begins thus:

AXIOMS

CREATURE-THUMB
(IF (AND (IS CREATURE 7C) (IS THUMB 7T) (PART 7T 7C))
(AND (IS HAND !.ONE-HAND[5](?C ?T))
(PART 7T !.ONE-HAND[5](7C 7T))
(PART !.ONE-HAND[5](?C 7T) 7C)))
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LEFT-OR-RIGHT
(IF (IS HAND ?H)
(AND (OR (LEFT ?H) (RIGHT ?H))
(NOT (AND (LEFT 7H) (RIGHT ?7H)))))

Each axiom is named, and its corresponding formula is prettyprinted.

Proof

The third section of the summary is the Natural Deduction proof proper, and consists

of a sequence of lines. The format of a line is typically:

line number) (justification)

‘/—-j
(indentation) <f0.rmula>

The (indentation) reflects the level of assumption: the more assumptions the inference
depends on, the larger the (indentation). The exact increment is determined by
the view’s hset-indent property. (indentation) is defined as the product of the

assumption set’s number of ancestors with this increment.

Of course, indentation alone is insufficient. We also need to state specifically what
assumptions are being made. I devised a contextual scheme to track and report on
the current set of assumptions as the proof unfolds. The general principle is that, if
the assumption set of line n + 1 is the same as that of line n, then there is no need to
repeat a description of it; line n is simply displayed with the same (indentation) as
line n+1, and the reader should interpret this as indicating that the same assumption

set applies.

If line n + 1 makes different assumptions from line n, the program finds the first
ancestor A common to both assumption sets (by following parent links) and outputs

descriptions of all the sets from A down to the assumption set of line n + 1.
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In particular, this means that if the assumption set for line n + 1 is an ancestor of the
one for line n, no description is output: we are simply exiting levels of assumptions
and the reduced (indentation) tells us exactly what level of assumption. In practice,
however, it may be difficult to correctly interpret the (indentation) without a ruler,
especially across pages. Therefore, in this case a reminder of the form (hset descrip-
tor) & is inserted just before line n’s (formula). See, e.g. line 10 of the introductory

example:

8 From ONE-HAND-PER-THUMB and 1 Conclude:
Hi = !:PART280 |
(

= i HAND-OF-THUMB !.ONE-HAND)

Whenever the description of an assumption set not encountered before must be in-

serted, the program outputs a line of the form:

Assume H, =a, a;...ax + H,,
(indentation)
Where (indentation) reflects the new level of assumptions, H, is the name of this
assumption set, Hp, is the name of its parent, and the a;’s are the names of the local
assertions. Each g; is then defined by producing its name followed by its formula.

For example:

Assume H2 = 1:=305 4+ H1
1:=305 (= !.OIIWE-THUHB ! .OTHER-THUMB)

When a description of the same assumption set must be inserted at some later point
in the proof, the word Assume is replaced with Assuming, and the definitions of

the a;’s are omitted. For example:

Assuming H2 = 1:=305 + H1
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The (justification) is a short piece of text that explains this inference; the premises
are referred to by line number (or by name for axioms and assumptions). Remember
that a premise may be abbreviated in-line, in which case it is represented by the list

of references to the lines it was derived from.

In this design, I made the choice to keep justifications simple and non-distracting.
A justification seldom mentions the inference rule because either (1) it is quite clear
how the conclusion follows from the premises, or (2) because, as a result of in-lining,
it would be rather arbitrary and misleading to designate this rule as the significant

one. Frequent templates are:

From ... Obviously
From ... and ... Conclude

By equality substitution of ... in ... Conclude

9.4.2 Implementation
Dumping a Summary
The algorithm for producing a summary has the following form:
1. Preamble. If the -document option was specified, a IATEX preamble is inserted

so that the resulting summary may be processed as a document.

2. Abbreviations. Unless printing of abbreviations has been disabled with the
- ~noabbreviations option, a reference list of all abbreviations used in the proof
is inserted at this point. This requires inspecting all axioms, assumptions, and

lines which are to be displayed eventually in the summary.

3. Axioms. Unless printing of axioms has been disabled with the -noaxioms op-

tion, a reference list of all axioms explicitly mentioned in the proof is inserted at
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this point. Note that this list is produced only if the proof view’s 1ist-axioms
property has value first; that is, if the user wants axioms to be listed first.

The alternative is for axioms to be listed in the proof.

4. Assumptions. Unless printing of assumptions has been disabled with the -noassumptions
option, a reference list is produced in the same manner as above. This is con-
trolled by the list-assumptions property. By default, assumptions are not
listed first, but rather are introduced by descriptions of assumption sets inter-

spersed with the lines of the proof.

5. Assumption Sets. If property list-hsets requires that hsets be listed first,
a list of their respective descriptions is inserted at this point. By default, hsets
are not listed first, and their descriptions are appropriately interspersed with

the lines of the proof.

6. Lines. The lines with normal visibility are now “dumped” in their natura)] order.

I shall say more about this in the next section.

7. Postamble. If the ~document option was specified, it is necessary to insert some

IATEX code to end the document.

Dumping a Line

If the line is an axiom (resp. assumption), and property 1ist-axioms (resp. list-assumptions)
has value yes (in particular, it is not first, which means that axioms (resp. assump-
tions) where not listed first, before the proof), then a line is output specifying name

and formula.

Otherwise, the line is a deduction and the following procedure executes:

1. The algorithm keeps track of the last assumption set. If the current assumption

set is the same as the last one, we can go on to the next step. Otherwise, it
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may be different in either of 3 ways. Let A be the last assumption set' and B

be the current one.

(a) A C B. The new assumption set B makes strictly more assumptions than
the last one, A, i.e. A is an ancestor of B in the hierarchy of assumption
sets. Descriptions of all the assumption sets between A (not included)

and B (included) are inserted.

(b) B C A. The new assumption set B is an ancestor of the old one, A. This
means we are simply popping out of further levels of assumptions. No

descriptions need be inserted.

(c) A and B are unrelated. We must find the first ancestor common to both
A and B and output descriptions of all the assumption sets between that

ancestor and B.

The last assumption set is updated to be B for the next iteration.

2. Now a description of the line itself must be output. This involves indenting
according to the level of assumptions; the deeper the assumption set is in the
hierarchy, the more indented the line must be (increment specified by property
hset-indent).

Then the line’s reference is inserted; Typically this is the line’s number, but the

user may want to give names to certain lines.

A horizontal rule is added, followed by a justification of the line’s inference.

The synthesis of a justification is discussed in the next section.

If we popped out of a few levels of assumptions, a brief reminder of the assump-

tion set is inserted here, followed by a turnstile .

Finally the line’s conclusion is prettyprinted.
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3. If the line has a comment associated with it, it is inserted at this point. When
IATEX output is being produced, the corresponding text is typeset in a \parbox

and delimited by horizontal rules.

Dumping a Justification

The synthesis of a justification is driven by the corresponding inference rule. Each
inference rule is associated with a justification procedure, which is applied to the line
and is responsible for outputing text interspersed with references to the premises in

a manner that makes intuitive sense to the reader.

For example, the justification procedure for inference rule CASE is coded as follows:

(DATAFUN DUMP-LINE-JUSTIF CASE case analysis
(DEFPROC - void (LINE - line_t)
(OUT (&rm "By case analysis")
(E (DUMP-STEPS !>LINE.STEPS ’'#T))
1 (&rm “Conclude:"))))

A slightly more complex example is MODUS-PONENS, because it must check and
behave differently according to whether either/both of its steps are off/on.

(DATAFUN DUMP-LINE-JUSTIF MODUS~PONENS modus Ppomnmens
(DEFPROC - void (LINE - line_t)
(COND ((<& !_OFF !>LINE.STEPS)
(OUT (&rm "Obviously:")))
((1_OFF (CAR !>LINE.STEPS))
(OUT (&rm "From minor premise")
(E (DUMP-STEP (CADR !>LINE.STEPS) '#F))
1 (&rm "Obviously:")))
((!'_OFF (CADR !>LINE.STEPS))
(OUT (&rm "From major premise")
(E (DUMP-STEP (CAR !>LINE.STEPS) ’#F))
1 (&rm "Obviously:")))
(T (OUT (&rm "From")
(E (DUMP-STEP (CAR !>LINE.STEPS) ’#F))
1 (2rm "and")
(E (DUMP-STEP (CADR !>LINE.STEPS) Y#F))
1 (&rm "Conclude:"))))))
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9.4.3 Example

aint Abint Aa<b Ds(b)int Aa < s(b)Ab < s(b)

if-intro
A= aintAbintAa<b A = s(b)iint Aa < s(b) Ab < s(b)
and-intro [
l
o B Y
and-intro
!
A = s(b):int A= a<s(b)
taut-trans
A= s(b)int Ab < s(b) l modus-ponens ;
TRANSITIVITY A = a:int A b:int A s(b):int A
a <bAb'<s(b)
modus-ponens I l l I and-intro
4
NO-CEILING 8 @ )5} ¥ A =b <s(b)

Figure 9.1: Proof Structure

In this section, I will produce an example to illustrate the generation of a summary.
This example is purposedly trivial; the size of a non-trivial example would overwhelm
the reader and would prohibit a graphical display of the proof structure. Also, proof

generalization was not applied so as not to confuse the issue with irrelevant details.

The proof provides an answer to the goal of showing that for any two integers a and
b, such that a < b, there exists an integer u which is greater than both of them. The

following two axioms are required:

NO-CEILING Vn:int Is:intn < s
TRANSITIVITY Vz,y,ziintez <yAy<zdz<z

where the notation z:int represents the proposition a.ssertihg that z is of type int
(i.e. integer). Skolemization transforms the axioms into the following quantifier-free

formulae:
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NO-CEILING n:int D s(n):int An < s(n)
TRANSITIVITY zintAyintAzintAz<yAy<zdz<z

The notation s(n) is meant to convey the idea of the successor of n.

The proof structure is displayed in Figure 9.1, where A is used to abbreviate the

following assumption set:
A = {a: a:int, B: biint, ¥: a < b}

For each node in the proof structure, a line is constructed. The natural order of

these lines is determined by a depth-first, left-to-right traversal of the structure:

«

B

~
A= aint AbintAa<b

NO-CEILING

A = s(b):int A b < s(b)

s(b):int

TRANSITIVITY

A= b <s(b)

10. A = aiint A biint As(b):int Aa<bAb < s(b)

11. A= a<s(b)

12. A = s(b)iint Aa <s(b) Ab < s(b)

13. aint Ab:int Aa <b Ds(b)int Aa < s(b)Ab < s(b)

© PN o e

By default, axioms and assumptions are not displayed as lines: axioms are listed
before the proof, and assumptions appear in the descriptions of assumption sets.

Therefore, lines 1, 2, 3, 5, and 8 will not appear in the summary.

Line 4 is small conjunction of assumptions; therefore, it is trivial and should be

in-lined.

Line 6 is a trivial inference by MODUS-PONENS from axiom NO-CEILING and assump-
tion J; it should be in-lined.
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Line 7 concludes that s(b) is an integer. Since, by default, type propositions are

considered uninteresting, line 7 will be hidden.
Line 9 is a literal, and the default heuristic is to show lines concluding literals.

Line 10 is concluded by AND-INTRODUCTION from 5 premises. Such a conclusion
should be in-lined if the justification is short enough. Since 3 of the premises are type
propositions, they will not be shown. For the remaining premises: a < b is ~, and
b < s(b) is line 9 which is displayed and can be referred to by number. Consequently,
the in-line justification is of size 2, which is small enough and warrants in-lining

line 10.

Line 11 is a literal and must be displayed (see line 9).

Line 12 is a conjunction with justification of size 2 (see line 10): it is in-lined.
Line 13 is the ultimate conclusion and is necessarily displayed.

On request, the system produces the following summary where the lines actually
displayed are given consecutive reference numbers (i.e. line 9 is assigned the number 1,

line 11 is assigned 2, and line 13 is assigned 3):

ABBREVIATIONS
1A = (SK A 3)
'.B = (SK B 4)
1.sf2](?N) = (SK S 2 ?X)
1.8[2](!.B) = (SK S 2 !.B)
AXIOMS

NO-CEILING (IF (IS INTEGER ?N) (AND (IS INTEGER £.5021(?N)) (< 7N 1.s[21(?N))))

TRANSITIVITY
(IF (AND (IS INTEGER ?7X)
(IS INTEGER ?7Y)
(IS INTEGER 72)
(< 72X 77)
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(< 7Y 72))
(< ?X ?2))
PROOF
Assume H1 = !:IS5245 !:IS246 !:<247
1:1S245
(IS INTEGER !.A)
1:1S5246

(IS INTEGER !.B)
1:<247 (< 1,4 1.B)

1 From NO-CEILING Obviously:
(< 1.B t.s[2](!.B))
2 From TRANSITIVITY and !:<247 1 Conclude:
(< 1.4 1.8) )
3 From 2 1 Discharging !:<247 Conclude:
HO

(IF (AND (IS INTEGER !.A) (IS INTEGER !.B) (< 1.4 !.B))
(AND (IS INTEGER !.S) (< !.A 1.8) (< !.B !.5)))

9.5 Conclusion

McAllester [McA87] defines the notion of expansion factor thusly:

One way of measuring the performance of a verification system is to com-
pare the length of a natural argument with the length of a corresponding
machine readable proof. The ratio of the length of a machine readable
proof to the length of the corresponding natural argument is called the
expansion factor for that proof.

In this chapter, I have described a framework and given algorithms/heuristics for the
dual problem which is to produce a human readable summary from a machine repre-
sented proof. Thus far, the system only outputs Natural-Deduction summaries, and
it is unclear how to characterize the notion of expansion factor; however, Chapter 10

provides some data points: the first proof presented therein required 55 invocations
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of plan generators to derive, involves 71 axioms or assumptions and 130 distinct in-
ference nodes (some of them used multiple times), and resulted in a summary 33 lines

long. Another interesting approach would be to translate proofs into English [Che76].



Chapter 10

An Axiomatization of Qualitative

Physics

In this chapter, I describe an axiomatization of Qualitative Physics inspired by
Kuipers’s theory of Qualitative Simulation. There are several reasons for present-

ing this particular work.

Firstly, it is interesting in its own right. Kuipers’ theory is more formal than most
work in Qualitative Physics, and, as we shall see, can be converted straightforwardly

into an axiomatic theory which permits deductive envisionment.

Secondly, it serves as an illustration of the sort of problems which can be tackled with

LOGICALC.

Thirdly, it shows how LOGICALC can easily be extended with additional rules and plan
generators to facilitate. the study of certain theories. Since the use of the situation
calculus revealed itself to be somewhat inconvenient for certain operations, I decided
to experiment with some ideas. As a consequence, this is more recent work than I

originally intended to present. I wrote specialized inference rules for the situation

335
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calculus, and found them to greatly facilitate theorem proving work in the situation
calculus, and to permit a more concise axiomatization. It took me only two days
to write the additional inference rules, plan generators, and generalizers, formulate a

cleaner axiomatization, and rederive the proof for the U-Tube example.

In this exposition, I will not axiomatize time or the logic of fluents, as this level of
detail will not be needed. I will study two problems in qualitative physics and present
the corresponding proofs derived and prepared with the aid of LOGICALC. The second

problem calls for a slight refinement of the axiomatization which follows presently.

10.1 Qualitative Simulation

In 1986, B. Kuipers described a theory of Qualitative Simulation [Kui86], with the
intention of (1) providing a precise ontology, (2) clarifying and formalizing the qual-
itative mathematics behind the prediction of behavior from qualitative constraint
equations, (3) presenting a complete algorithm genei'a.lizing the best features of ex-

isting algorithms.

My purpose here is to borrow from his ontology and his algorithm to derive a logical
axiomatization appropriate and sufficient for carrying out proofs. Therefore, I will
only describe his approach in so far as it is required to understand the derivation of

my axiomatization.

The mandate of a qualitative simulation algorithm is this: from a description of the
structure of the system, and given an initial state, produce a graph of the possible
future states of the system (a directed edge between state A and state B indicates

that state B is a possible immediate successor to state A).

The structure of a system is described by a set of (physical) parameters (quantities)

and a number of constraint equations between them. FEach parameter is taken to
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HAOQ
HBO b
HA
HB
PA PB
b L
A B

Figure 10.1: U-Tube

be a continuously differentiable real-valued function of time. At any point in time,
the value of a parameter is specified qualitatively in terms of its relationship with a
totally ordered set of landmark values (whose essential properties are their ordinal
relationships). The qualitative state of a parameter is determined by its ordinal
relationship with landmark values and its direction of change. There is a totally
ordered set of distinguished time-points: the current time is either at or between

distinguished time-points.

In order to illustrate this theory, we now turn to Kuipers’ example of the U-tube,
which will later serve as one of the application examples for which a proof was derived
using LOGICALC: two partially filled tanks are connected at the bottom by a thin tube.
In thé initial state, there is more water in tank A than in tank B. QSIM determines
that water flows from tank A to tank B until an equilibrium is reached. Figure 10.1

depicts the initial state and mentions the quantities involved: HA and HB are the
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water-levels in tank A and tank Bj; initially, they are respectively at HAQ and HBO.
The respective pressures at the bottom of each tanks are PA and PB, and FAB is the
flow of water from A to B. The following table recapitulates the quantities together

with their initial values and corresponding set of landmark values:

Quantity | Initial Value | Landmark Values
HA HAO {0,HAQ, +c0}
HB HBO {0, HBO, +o00}
PA PAO {0, PAQ, +o00}
PB PBO {0,PBO, +o0}
PAB PABO {—00,0, PABO, +0}
FAB "FABO {=00,0, FABO, +o0}

These quantities sa.fisfy a number of constraints, e.g. the pressure PA at the bottom
of tank A is a monotonically increasing function of the water-level HA—which is
expressed by the constraint PA = M*(HA). More specific constraints, such as DERIV,
ADD, MULT, and MINUS, are available and can be used to encode more complex

relationships and qualitative differential equations.

These constraints are supplemented with sets of corresponding values. A set of corre-
sponding values is typically an interesting solution for a particular constraint, where
a solution is considered interesting when the values are landmarks. For example,
the pressure PA in tank A becomes 0 when the water-level HA becomes 0. This is

expressed by the set of corresponding values {HA = 0, PA = 0}.

The table below summarizes a possible choice of constraints and corresponding values

for the U-Tube problem:
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Constraint Corresponding Values
{HA =0,PA =0}
PA = M*(HA) {HA = HAO0, PA = PA0}
{HA = +00,PA = +c0}
{HB =0,PB =0}
PB = M*(HB) {HB = HBO, PB = PB0}

{HB = +00,PB = +0}

PA = ADD(PAB, PB)

{PAB = 0,FAB = 0}
{PAB = —c0,FAB = —o0}
{PAB = +00,FAB = +0}

{PAB = PABO, FAB = FABO}

FAB = M*(PAB)

FAB = DERIV(HB)
FAB = DERIV(HA)

The initial state is then specified by listing the qualitative state for each quantity at

the beginning of the experiment:

Quantity | Qualitative State
HA (HAQ,DEC)
HB (HBO,INC)
PA (PAO,DEC)
PB (PBO,INC)
PAB (PABO,DEC)
FAB (FABO,DEC)

With QSIM, it is not necessary to provide explicitly all initial qualitative states and
sets of corresponding values because, given sufficient information, the algorithm can
propagate this information through the network of constraints, and infer the missing

pieces.

The QSIM algorithm proceeds to infer the closure of the ‘next state’ relation, starting
from the initial state. This process of inference is controlled, guided, and pruned in

various ways.

First, a state is either at a distinguished time-point or between two adjacent distin-

guished time-points. Let’s call the former a point situation and the latter an interval
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situation. These two types of situations must alternate: this is the first constraint on
permissible transitions. A transition from a point situation to an interval situation is
called a P-transition, while a transition from an interval situation to a point situation

is called an I-transition.

Secondly, since quantities are assumed to be continuously differentiable, the Interme-
diate Value Theorem and the Mean Value Theorem restrict the way they can change
from one qualitative state to the next. Table 10.1, copied from [Kui86], summarizes
the permissible transitions—¢; and ¢;,; are adjacent landmark values, and ¢, is a new

landmark introduced by the algorithm, and placed between ¢; and ¢;+1. From this

P-transitions State Next
P1 (¢;,sTD) (4;,STD)
P2 (¢;,STD) ((€i,li41),INC)
P3 (¢;,STD) ((€i-1,¢;),DEC)
P4 (¢;,INC) ((€:)€;41),INC)
P5 ((liliz1),INC) | {(€i-biy1),INC)
Pé (¢;,DEC) ((4;-1,¢;),DEC)
P7 ((£i=1,£:),DEC) | {(£i-1.4;),DEC)
I-transitions
I (¢;,STD) (¢;,STD)
I2 ((€iy€i41),INC) (£i41,STD)
I3 ((€iyli+1),INC) (£i41,INC)
I4 ((£iy€i41),INC) | ((£isli1),INC)
I5 ((4:,€;41),DEC) (4;,STD)
16 ((€i,i+1),DEC) (4;,DEC)
I7 ((4i£i41),DEC) | ((4,lit1),DEC)
I8 ((€ili+1),INC) (£.,STD)
I9 {(4i,i41),DEC) (€,,STD)

Table 10.1: Legal Transitions

table, and given a state description, QSIM can generate a set of candidates for the next

state, and then uses the constraints to filter out those states which are inconsistent.
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10.2 Situations

The desired axiomatization must properly capture the notion of states and of tran-

sitions between them. This is precisely what the situation calculus, introduced by
McCarthy [McC57], has to offer.

There are various formulations of the situation calculus, but they all include the
ability to express that certain propositions hold in a given state. For my purposes,
I will require the second-order predicate during. The notion that formula holds in

situation is expressed by the proposition:
(during situation formula)

Like Kuipers, we are committed to the idea of distinguished time-points, and to the
notion that the system is either at a distinguished time point (point situation), or
between two adjacent distinguished time-points (interval situation). Thus we define

two types:

(DEFDUCKTYPE timepoint obj)
(DEFDUCKTYPE situation obj)

A point situation is denoted by (AT t). For example, in the U-Tube example, the
initial situation is (AT T0). The situation following s is denoted by (NEXT s).

(DEFFUN situation (AT 7T - timepoint))
(DEFFUN situation (NEXT ?S - situation))

As announced earlier, the second-order predicate during allows us to state that a

certain formula is true in a given situation.

(DEFPRED (DURING 7S - situation 7P - prop))
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In the situation calculus, actions and events are often construed as functions from
one state to the next—which results in the well-known limitation that the situation
calculus is not well-suited to capturing domains with simultaneous actions, or con-
current processes, or where an explicit ordering (threading) of events is not possible

or desirable.

The ontology required by Qualitative Simulation calls neither for actions nor for
events, but for transitions. In any given situation, the set of candidate transitions
is entirely determined by Kuipers’ table. We shall not consider transitions to be
functions from state to successor state. Instead, we choose to formulate everything
hypothetically and say “if transition t occurs at the end of situation s, then proposition

p holds is the next situation (successor of s).”

For convenience, we define point situations and interval situations as two specialized

subtypes of situations.

(DEFDUCKTYPE p-situation situation)
(DEFDUCKTYPE i-situation situation)

In order to relieve the user from the tedious duty of having to prove that a situation

is of one of these types, we write a short logic program:

(ASSERTION-GROUP SITUATION-TYPES
(<= (IS p-situation (AT ?T)) (IS timepoint ?T))

(<= (IS p-situation (NEXT 78))
(AND (NOT (VARS 7S ALL))

(Is i-situation 7S)))

(<= (IS i-situation (NEXT ?S))
(AND (NOT (VARS 7S ALL))

(IS p-situation 7S))))

For good measure, we include the corresponding axiomatization:
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(AXIOM AT-SITUATION
(FORALL (T - timepoint)
(IS p-situation (AT T))))
(AXIOM NEXT-OF-P-SITUATION
(FORALL (S - p-situation)
(IS i-situation (NEXT S))))
(AXIOM NEXT-OF-I-SITUATION

(FORALL (S - i-situation)
(IS p-situation (NEXT S))))

10.3 Quantities

Each physical parameter is represented by a quantity.

(DEFDUCKTYPE quantity obj)

10.3.1 Landmarks

A landmark is a distinguished value for a quantity, therefore it is a number.

(DEFDUCKTYPE landmark number)

Each quantity is associated with a set of landmark values. The basic idea is to say

something of the form:
(during s (landmarks q [4; £, ... £,1))

to indicate that ¢ has this set of landmark values in situation s. In addition, the list
argument makes ordinal relationships explicit: landmark values are listed in increasing

order.
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However, because of transitions I8 and I9, we need to be able to insert new landmark
values in this list. In order to facilitate these insertions, we split the list in two: one

part below the current value of the quantity, one part above:

(DEFPRED (LANDMARKS ?7Q - quantity ?LEFT ?RIGHT - (LST landmark)))

The precise interpretation is this: if we are steady or increasing at a landmark, that
landmark is the first one on the RIGHT. If we are decreasing at a landmark, it is the
last one on the LEFT. If we are between two landmarks, the smaller one is last on the

LEFT, and the larger one is first on the RIGHT.

We introduce the predicate landmarks< to reason about the ordinal relationship

between landmarks.

(DEFPRED (LANDMARKS< ?Q - quantity ?X ?Y - landmark))

(AXIOM LANDMARKS-ORDER
(IF (DURING ?S (LANDMARKS< ?7Q ?X ?Y))
(DURING ?S (< ?X ?Y))))

and we write a short logic program to automatically prove landmarks< goals by
looking up the set of landmark values associated with the quantity in the given

situation:

(ASSERTION-GROUP LANDMARKS-ORDER-DEF
(<~ (DURING 7S (LANDMARKS< ?Q ?X ?Y))
(OR (DURING ?S (LANDMARKS ?Q [!?L1 ?X !?L2 ?Y 1?70L3] 7L4))
(DURING ?s (LANDMARKS ?Q 7L4 [!?L1 ?X !7L2 ?Y 170L31))
(DURING ?S (LANDMARKS ?Q [!?L1 ?X !?L2] [!7L3 7Y 17L41)))))
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10.3.2 Qualitative States

In Kuipers’ formulation, the qualitative state of a parameter expresses its ordinal
relationship with landmark values and its direction of change. A parameter’s land-
mark values are totally ordered; therefore a parameter is either at a landmark value
or between two adjacent landmark values. Thus, Kuipers takes a qualitative state to
be a pair (¢;, dir) or ((£,4i41), dir), where £; and £;;, are adjacent landmark values,
and dir denotes the direction of change and is one of: STD (steady), INC (increasing),

DEC (decreasing).

We characterize the state of quantity ¢ in situation 8, with a formula of the form:
(during s (state q d v))

where d is a direction (one of INC, DEC, STD), and v is either a list [4;] of one landmark
if the quantity is at this landmark, or a list [¢; €;i+1] of two adjacent landmarks if

the quantity is between them.

(DEFDUCKTYPE direction obj)

(DUCLARE STD INC DEC - direction)

(DEFDUCKTYPE value (LST landmark))

(DEFPRED (STATE ?7Q - quantity ?D - direction ?V - value))

I shall postpone presenting the axiomatization of state changes until after transitions

have been explained.

10.3.3 Values of Quantities

A physical parameter is a real-valued function of time, and it is often convenient to

discuss the value of a quantity. We introduce the function value-of for this purpose.
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(DUCLARE VALUE-OF - (FCN number [quantity]))

Note that this ‘function’ really denotes a fluent. When the quantity q varies between
two values, there is no one single number denoted by the expression (value-of Q).
This should be interpreted as mere notational convenience; fluents are further dis-

cussed in the next section.

If a quantity is at a landmark, then its value is equal to that landmark.

(AXIOM AT-VALUE
(IF (DURING ?S (STATE ?Q ?D [7L]))
(DURING ?S (= (VALUE-GOF ?7Q) ?L)))))

If a quantity is between two landmarks, then all we can say is that its value is neither

less than the smaller one, nor greater than the larger one.

(AXIOM BETWEEN=-VALUES
(IF (DURING ?S (STATE ?Q ?D [?L1 ?L2]))
(AND (DURING ?S (NOT (< (VALUE-OF ?7Q) ?L1)))
(DURING 7S (< (VALUE-OF 7Q) ?L2)))))

Here are two additional axioms (lemmas) which I found useful during the derivation of
the proof for the U-Tube problem. The first one states that if a quantity is increasing

and greater than z, then it is still greater than z in the next situation.

(AXIOM NEXT-QF-INC
(IF (AND (DURING ?S (STATE ?Q INC ?V))
(DURING ?S (< ?X (VALUE-OF 7Q))))
(DURING (NEXT ?S) (< ?X (VALUE-OF ?Q)))))

The second one states that if a quantity is between two landmarks, then, in the next

situation, it is neither less than the smaller one, nor greater than the larger one.!

Because of continuity.
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(AXIOM NEXT-OF-BETWEEN
(IF (DURING ?S (STATE ?7Q 7D [?L1 ?L2]))
(AND (DURING (NEXT ?S) (NOT (< (VALUE-OF 7Q) 7L1)))
(DURING (NEXT ?7S) (NOT (< ?L2 (VALUE-OF ?Q)))))))

10.4 Fluents and The Situation Calculus

As noted earlier, the value of a quantity often changes during an interval situation,

and, therefore, writing something like:
(during s (< (value-of ¢) 0))

where we pretend that value-of is of type (FCN number [quantityl), is a little
odd.

The truth is that the correct type for during’s 2nd argument ought to be (PRD
[timepoint]) rather than prop; i.e. it should be a fluent proposition. The meaning
of a ‘during’ expression would be that the fluent proposition is true at each time point

in the given situation.

Let me outline briefly what a correct axiomatization might look like. F irst, we would

define during to take a fluent proposition as its 2nd argument:

(DEFPRED (DURING ?S - situation ?F - (PRD (timepoint])))

Now we should explicate the meaning of a ‘during’ expression: a fluent is true during

a situation iff it evaluates to true at each and every timepoint in this situation.

(DEFPRED (WITHIN ?T - timepoint ?S - situation))

(AXIOM DURING-DEF
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(FORALL (S - situation F - (PRD [timepoint]))
(IFF (DURING S F)
(FORALL (T - timepoint)
(IF (WITHIN T S) (% F T))))))

Then we would define value-of to take an additional time point argument.

(DUCLARE VALUE-OF (FCN number [quantity timepoint]))
Finally, we would be able to write:
(during s (\\ (t) (< (value-of q t) 0)))

to express the notion that the value of ¢ remains negative throughout situation s.

However, for my purposes, I never need to exploit the precise meaning of during, and
the timepoint argument is always superfluous. Therefore, as a matter of notational -
convenience, I will always omit this timepoint argument, and the syntactic form of
during’s 2nd argument should be intepreted as a short hand for the corresponding

fluent expression.

Another way of looking at this, is to assume that, by convention, inside of a during,
type t is really type (FCN ¢ [timepoint]). For example, numbers are actually real-
valued functions of time; and, when I write 0, I really mean the constant fluent which

is identically zero at every time-point.

When axiomatizing situated logic and situated arithmetic, we must keep in mind that

we are specifying the properties of fluents. For instance, it is not the case that:

(or (during s p) (during s (not p)))



10.5. TRANSITIONS 349

10.5 Transitions

In Kuipers’ formulation, transitions are pairs of qualitative states—legal transitions
are summarized in Table 10.1. In the context of the situation calculus, however, it
seems more appropriate to think of a transitions as an event occurring at the end of

a situation, thus causing the next situation to happen.

Transitions fall into 6 categories:

Continue: The qualitative state of the quantity remains the same.
Start-Up: The quantity was steady, and begins increasing.
Start-Down: The quantity was steady, and begins decreasing.

Pass: The quantity was increasing at 4; (resp. between ¢; and 4;41) and is now in-

creasing between ¢; and £;;; (resp. at £i41). Similarly when decreasing.

Stop: The quantity was increasing between ¢; and £;41, and becomes steady at £;,.

Similarly when decreasing.

Stop-New: The quantity was increasing between ¢; and 441, and becomes steady

at the new landmark ¢, such that ¢; < £, < £;;. Similarly when decreasing.

To express the notion that ¢ undergoes transition Start-Up at the end of situation s,

we write:
(during s (start-up ¢))?2

Here are the predicates for each of the 6 possible transition types.

20n reflection, this encoding is a little strange. (start-up ¢ s) might have been a better choice.
However, it makes the notation more uniform and, since the nature of fluents is not explicitated or
exploited here, this bit of dubious syntax is of little consequence.
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(DEFPRED (CONTINUE ?Q - quantity))
(DEFPRED (START-UP 7?Q - quantity))
(DEFPRED (START-DOWN 7Q - quantity))
(DEFPRED (PASS ?Q - quantity))
(DEFPRED (STOP ?7Q - quantity))
(DEFPRED (STOP-NEW ?7Q - quantity))

Naturally, not all transitions are possible in every situation. For example, when a
quantity is steady, it can either remain steady, or start increasing, or start decreasing.

No other alternative is possible.

(AXIOM P-TRANSITIONS-STD
(FORALL ((REACHABLE ??7S) - p-situation Q - quantity V - !!value)
(IF (DURING S (STATE Q STD V))
(OR (DURING S (CONTINUE Q))
(DURING S (START-UP Q))
(DURING S (START-DOWN Q))))))

In a point-situation, if a quantity is increasing at {;, it can only pass, i.e. become
increasing between ¢; and £;,;. Similarly, if it is already increasing between ¢; and

i41, it can only continue to do so.

(AXIOM P-TRANSITIONS-INC

(FORALL ((REACHABLE ??s8) - p-situation Q - !lquantity
L1 L2 - !!landmark)
(AND (IF (DURING S (STATE Q INC (Lil) (DURING S (PASS D))

(IF (DURING S (STATE Q INC [L1 L2])) (DURING S (CONTINUE Q))))))

The remaining cases are easily obtained in like fashion from Table 10.1.

(AXIOM P-TRANSITIONS-DEC
(FORALL ((REACHABLE ??7S) - p-situation Q - !'quantity
L1 L2 - !i{landmark)
(AND (IF (DURING S (STATE Q DEC [L1])) (DURING S (PASS )
(IF (DURING S (STATE Q DEC [L1 L2])) (DURING S (CONTINUE Q))))))
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(AXIOM I-TRANSITIONS-STD
(FORALL ((REACHABLE ?7S) - i-situation Q - !'quantity V - !!value)
(IF (DURING S (STATE Q STD V)) (DURING S (CONTINUE Q)))))

(AXIOM I-TRANSITIONS-INC
(FORALL ((REACHABLE ?7S) - i-situation Q - !!quantity V - !!value)
(IF (DURING S (STATE Q INC V))
(OR (DURING S (CONTINUE Q))
(DURING S (PASS Q)
(DURING S (STOP Q)
(DURING S (STOP-NEW Q))))))

(AXIOM I-TRANSITIONS-DEC
(FORALL ((REACHABLE 77S) - i-situation Q - !!'quantity V - !!value)
(IF (DURING S (STATE Q DEC V))
(OR (DURING S (CONTINUE Q))
(DURING S (PASS Q)
(DURING S (STOP Q)
(DURING S (STOP-NEW Q))))))

10.6 Qualitative State Changes

We are now in possession of the necessary formal apparatus required to successfully

capture the information embodied in Table 10.1.

Continue. Thanks to the very convenient ‘Continue’ transition, we can summarize
transitions P1, P5, P7, I1, I4 and 17 with jus't one axiom. This axiom simply states
that, if a quantity undergoes the ‘Continue’ transition, then both its qualitative state

and its set of landmarks remain unchanged in the next situation.

(AXIOM CONTINUE-NEXT
(FORALL (S - situation Q - !!quantity D - !!direction V - !!value
LEFT RIGHT - !!(LST landmark))
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(IF (AND (DURING S (STATE Q D V))
(DURING S (LANDMARKS Q ?LEFT ?RIGHT))
(DURING S (CONTINUE Q)))
(AND (DURING (NEXT S) (STATEQ D V))
(DURING (NEXT S) (LANDMARKS Q ?LEFT ?RIGHT))))))

Start-Up (P2). When a quantity is steady at £ and undergoes the ‘Start-Up’
transition, it becomes increasing between ¢; and £;4; in the next situation. ¢; was the
first element in its RIGHT set of landmarks; in the next situation, it is transferred to

the end of the LEFT set of landmarks.

(AXIOM START-UP-NEXT
(FORALL (S - p-situation Q - !!quantity L1 L2 - !!landmark
LEFT RIGHT - !!{(LST landmark))

(IF (AND (DURING S (STATE Q STD [L1]))
(DURING S (LANDMARKS Q LEFT [L1 L2 !?RIGHT]))
(DURING S (START-UP Q)))

(AND (DURING (NEXT S) (STATE Q INC [L1 L21))

(DURING (NEXT S) (LANDMARKS Q [!?LEFT Li] [L2 !?RIGHTI))))))

Start-Down (P3). When a quantity is steady at ¢; and undergoes the ‘Start-Down’
transition, it becomes decreasing between #;_; and ¢; in the next situation. f;_q is
determined by looking up the last element in the LEFT set of landmarks. The set of

landmarks remain unchanged.

(AXIOM START-DOWN-NEXT
(FORALL (S - p-situation Q - !!quantity L1 L2 - !!landmark
LEFT RIGHT - !!(LST landmark))

(IF (AND (DURING S (STATE Q STD [L21))
(DURING S (LANDMARKS Q [!?LEFT L1] [L2 1?RIGHT]))
(DURING S (START-DOWN Q)))

(AND (DURING (NEXT S) (STATE Q DEC [L1 L2]))

(DURING (NEXT S) (LANDMARKS Q [!?7LEFT L1] [L2 '?RIGHT]))))))
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Pass-Up (P4,I3). When a quantity is increasing at a landmark value ¢; in a point
situation and undergoes the ‘Pass-Up’ transition, it becomes increasing between ¢;

and {41 in the next situation. ¢;4; is determined by looking up the element following

Z; in the RIGHT set of landmarks.

(AXIOM P-PASS-UP-NEXT
(FORALL (S - p-situation Q - !!quantity L1 L2 - !!landmark
LEFT RIGHT - !!(LST landmark))
(IF (AND (DURING S (STATE Q INC [L1]))
(DURING S (LANDMARKS Q ?LEFT [L1 L2 !?RIGHT]))
(DURING S (PASS Q)))

(AND (DURING (NEXT S) (STATE Q INC [L1 L2]))
(DURING (NEXT S) (LANDMARKS Q [{?LEFT L1] [L2 !?RIGHT]))))))

Conversely, when a quantity is increasing between ¢; and {4, during an interval
situation, and undergoes the ‘Pass-Up’ transition, it becomes increasing at £;; in the

following point situation. The sets of landmarks remain unchanged.

(AXIOM I-PASS-UP-NEXT
(FORALL (S - i-situation Q - !'quantity L1 L2 - !!landmark
LEFT RIGHT - !!(LST landmark))
(IF (AND (DURING S (STATE Q INC [L1 L2]))
(DURING S (PASS Q)))
(AND (DURING (NEXT S) (STATE Q INC [L2]))
(IF (DURING S (LANDMARKS Q LEFT RIGHT))
(DURING (NEXT S) (LANDMARKS Q LEFT RIGHT)))))))

Pass-Down (P6,I6). When a quantity is decreasing at a landmark value #; in
a point situation and undergoes the ‘Pass-Down’ transition, it becomes decreasing
between £;_; and ¢; in the next situation. {; is the last element in the LEFT set of
landmarks, and 4;_; is determined by looking the element that precedes it. In the

following situation ¢; is moved to the RIGHT set of landmarks.
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(AXIOM P-PASS-DOWN-NEXT
(FORALL (S - p-situation Q - !!quantity L1 L2 - !!landmark
LEFT RIGHT - !!(LST landmark))
(IF (AND (DURING S (STATE Q DEC [L2]))
(DURING S (LANDMARKS Q [!?LEFT L1 L2] ?RIGHT))
(DURING S (PASS Q)))
(AND (DURING (NEXT S) (STATE Q DEC [L1 L2]))
(DURING (NEXT S) (LANDMARKS Q [!?LEFT L1] [L2 !?RIGHT]))))))

Conversely, when a quantity is decreasing between ¢ and ¢, during an interval
situation, and undergoes the ‘Pass-Down’ transition, it becomes decreasing at ¢; in

the following point situation. The sets of landmarks remain unchanged.

(AXIOM I-PASS-DOWN-NEXT
(FORALL (S - i-situation Q - !!quantity L1 L2 - !!landmark
LEFT RIGHT - !!(lst landmark))
(IF (AND (DURING S (STATE Q DEC [L1 L2]))
(DURING S (PASS Q)))
(AND (DURING (NEXT S) (STATE Q DEC [L1]))
(IF (DURING S (LANDMARKS Q LEFT RIGHT))
(DURING (NEXT S) (LANDMARKS Q LEFT RIGHT)))))))

Stop (I2,I5). When a quantity is increasing between ¢; and %41 during an interval
situation, and undergoes the ‘Stop’ transition, it becomes steady at £;,; in the next

situation. The sets of landmarks remain unchanged.

(AXIOM STOP-UP-NEXT
(FORALL (S - i-situation Q - !'quantity L1 L2 - !!landmark
LEFT RIGHT - !!(LST landmark))
(IF (AND (DURING S (STATE Q INC [L1 L2]1))
(DURING S (STOP Q)))
(AND (DURING (NEXT S) (STATE Q STD [L21))
(IF (DURING S- (LANDMARKS Q LEFT RIGHT))
(DURING (NEXT S) (LANDMARKS Q LEFT RIGHT)))))))
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Conversely, when a quantity is decreasing between ¢; and 2,41 during an interval
situation, and undergoes the ‘Stop’ transition, it becomes steady at ¢ in the next
situation. ¢; was the last element in the LEFT set of landmarks and is moved to the

front of the RIGHT set of landmarks in the following situation.

(AXIOM STOP-DOWN-NEXT
(FORALL (S - i-situation Q - !'quantity L1 L2 - !!landmark
LEFT RIGHT - !!(LST landmark))
(IF (AND (DURING S (STATE Q DEC [L1 L2]))
(DURING S (STOP Q)))
(AND (DURING (NEXT S) (STATE Q STD [L1]))
(IF (DURING S (LANDMARKS Q [!?LEFT L1] [L2 !?RIGHT]))
(DURING (NEXT S) (LANDMARKS Q LEFT [L1 L2 !?RIGHTI)))))))

Stop New (I8,I9). When a quantity is increasing between ¢; and 441 during an
interval situation, and undergoes the ‘Stop-New’ transition, it becomes steady at a
new landmark value ¢, which we must insert between ¢; and ¢;,; in the corresponding

set of landmarks.

(AXIOM STOP-NEW-UP-NEXT
(FORALL (S - i-situation Q - !!quantity L1 L2 - !!'landmark
LEFT RIGHT - !!(LST landmark))
(IF (AND (DURING S (STATE Q INC [Li L2]))
(DURING S (LANDMARKS Q LEFT RIGHT))
(DURING S (STOP-NEW Q)))
(EXISTS (L - landmark)
(AND (DURING (NEXT S) (STATE Q STD [L]))
(DURING (NEXT S) (LANDMARKS Q LEFT [L !?7RIGHT])))))))

Similarly when decreasing.

(AXIOM STOP-NEW-DOWN-NEXT
(FORALL (S - i-situation Q - !'quantity L1 L2 - !!landmark
'LEFT RIGHT - !!(LST landmark))
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(IF (AND (DURING S (STATE Q DEC [Li L21))
(DURING S (LANDMARKS Q LEFT RIGHT))
(DURING S (STOP-NEW Q)))
(EXISTS (L - landmark)
(AND (DURING (NEXT S) (STATE Q STD [L]))
(DURING (NEXT S) (LANDMARKS Q LEFT [L !?RIGHT])))))))

10.7 Constraints

Constraints were directly lifted from Kuipers’ formulation. Here is a table summa-

rizing briefly the notations and intended meanings:

M+ q1 ¢3) @ = H(qz),¢2 = G(q1), H>0,G >0
(M- q1 ¢2) @1 =H(q),92 = G(q1),H <0,G <0
(DERIV ¢; ¢2) Q2 =q

(ADD ¢1 92 ¢3) |1 +q2=4¢5

(MULT ¢1 g2 ¢3) | 1 X g2 = ¢3

A constraint is really just a proposition:

(DEFDUCKTYPE constraint prop)
(DUCLARE M+ M- DERIV - (FCN constraint [quantity quantity]))
(DUCLARE ADD MULT - (FCN constraint [quantity quantity quantity]))

Each situation is associated with a set of constraints. What set of constraint is in
effect in any given situation is problem specific and is determined by opérating regions

(ranges of values for physical parameters).

(DEFPRED (CONSTRAINTS 7CL - (SET_QOF constraint)))

In order to establish what the current set of constraint is, we must be able to derive

a proposition of the form:
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(DURING situation (CONSTRAINTS set.of.constraints))

It is up to the problem statement to provide the necessary axioms to make deductions
of this sort possible. The simplest possibility is when the set of constraints never

changes, in which case an axiom of the following form suffices:
(FORALL (S - situation) (DURING S (CONSTRAINTS set_of_constraints)))

The axiomatization must capture the essential properties of these constraints. For
example, if quantities ¢;, g2, and g3 are related by an ADD constraint in situation 3,
then the (fluent) value of g3 is equal to the sum of the (fluent) values of ¢; and g2

throughout s.

(AXIOM ADD-CONSTRAINT
(FORALL (S - !!situation Q1 Q2 Q3 - !lquantity
CL - !'!(SET_OF constraint))
(IF (AND (DURING S (CONSTRAINTS CL))
(ELT (ADD Q1 Q2 Q3) CL))
(DURING S (= (+ (VALUE-OF Q1) (VALUE-OF Q2)) (VALUE-OF Q3N

10.8 Corresponding Values

We depart somewhat from Kuipers in our treatment of corresponding values. If
C(q1,.-.,4n) is a constraint on quantities g, through ¢, a n-tuple of corresponding
values for this constraint is an element (¢!, ... ,€%) in the cartesian product of the

corresponding sets of landmarks such that they satisfy the constraint.

In our view, the purpose of corresponding values is often to qualitatively rule out
transitions which lead to situations which are quantitatively inconsistent with respect

to certain constraints.
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For example, suppose that quantities q;, ¢s, and g3 are related by the constraint
(ADD ¢1 g2 ¢3) (meaning ¢; + g2 = g¢3) and that 1 is a landmark value for q1, and
2 a landmark value for g¢;, then the problem statement should indicate that 3 is a
landmark value for ¢3 and that (1,2,3) is a triple of corresponding values for the

constraint.

In QSIM, corresponding values are treated specially, presumably to better serve the
filtering needs of the simulation algorithm. A logical axiomatization such as ours has
no such requirement. Therefore, we elect to represent corresponding values just like

we do other constraints:

(DUCLARE CORRESPOND - (FCN constraint [(SET_OF (LRCD quantity number))]))

The usage is (CORRESPOND {[q1v1]...[gavn]}), Where ¢; is a quantity and v; a value
for that quantity. '

Note that the definition of corresponding values given above allows two n-tuples of
corresponding values for the same constraint that differ only in one place. In order to
allow more useful conclusions, we shall require a stronger assumption: namely that,
given a constraint C(gs, ..., ¢,) and a n-uple of corresponding values for this constraint
either at least 2 quantities (from the set of n g:’s) are not at their corresponding values,

or they are all at their corresponding values.

(AXIOM CORRESPOND-DEF
(FORALL (S - !!situation
CL - !!'(SET_OF constraint)
L - '!(SET_OF (LRCD quantity number)))
(IF (AND (DURING S (CONSTRAINTS CL))
(ELT (CORRESPOND L) CL))
(OR (FORALL (Q - quantity V - number) :
(IF (ELT [Q V] L) (DURING S (= (VALUE-OF Q) ))))
(EXISTS (Q1 Q2 - quantity V1 V2 - number)

(AND (NOT (= Q1 Q2))
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(ELT [Q1 V1] L)

(ELT [Q2 V2] L)

(NOT (DURING S (= (VALUE-OF Q1) Vi1)))

(NOT (DURING S (= (VALUE-OF Q2) v2))))))))

10.9 Situated Arithmetic

In order to reason about the values of quantities, we need to formalize our knowledge of
arithmetic—more specifically, the arithmetic of fluents (see Section 10.4). The axioms
will all be about propositions of the form (during s p), where p 1s some arithmetic
formula. This is the reason I entitled the present section ‘Situated Arithmetic’. In

order to carry out useful proofs, we only require a few elementary axioms.

Equation Manipulation. A very useful axiom is the one that lets us move a term

from one side of an equation to the other.

(AXIOM EQUATION-MANIPULATION
(IFF (DURING 7S (= ?X (+ 7Y 72)))
(DURING 7S (= (- ?X ?7Z) ?7Y))))

Inequation Manipulation. Similarly, here is the corresponding axiom that en-

ables us to move a term from one side of an inequation to the other.

(AXIOM INEQUATION-MANIPULATION
(IFF (DURING 7S (< ?7X (+ 7Y ?22)))
(DURING 7S (< (- ?X ?2Z) ?Y))))

Identity Equation. Zero (which, as you may recall from Section 10.4, should be
interpreted as a notational abbreviation for the fluent which is identically 0 at every

time point) is the identity element for addition.
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(AXIOM PLUS-ZERO
(DURING 7S (= ?X (+ 0 7X))))

Other axioms can be added in the obvious manner, but, since they won’t be required

in this exposition, I will spare the reader and stop here.

10.10 Situated Inference Rules

In this section I present the more recent and experimental aspects of this reworking

of my axiomatization.

When I first started working with my previous axiomatization, I soon realized that
there were some manipulations which could not be performed easily. For example,

‘Equality Substitution’ is defined to be:

A= €1 = €9
A = ple)]
A = pleg]

When ple,] is really of the form (during s gle;]), it is often the case that instead
of a first premise of the form A = ¢, = ez, we would rather have something like

A = (during s e; = e;).

It is possible to achieve this effect with the help of 2nd order schemas such as:

(AXIOM TIMELESS
(IF (% 7?P) (DURING 7S (% ?P))))

(AXIOM SITUATED-MODUS-PONENS
(IF (AND (DURING ?S (IF ?P 7Q))
(DURING 7S ?P))
(DURING 7S 7Q)))
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However, it is clearly painful to do so. In particular, we lose most of the benefits
which the ‘detaching’ mechanism was supposed to grant us. The problem, of course,
is that LOGICALC was developed for first order logic, while, here, we apply it to a

reification of first order logic (the situation calculus).

One way to work around this limitation is to contrive the axiomatizatiop so that
problematic manipulations never have to be effected. In essence, this requires some-
thing akin to partially evaluating the situated axiomatization to make useful lemmas
readily available (modulo some conditionalization). Also, we must eschew functions

in favor of predicates to avoid the need for equality substitutions.

My previous work was developed according to the approach outlined above, and

resulted in an axiomatization that was often unnatural and overly verbose.

In agreement with the principle that ‘there should be a simple way to do simple
things,’ the new improved approach introduces a few additional] inference rules espe-
cially designed for carrying out inferences in the situation calculus. Eventhough they
are not as well integrated with the detaching mechanism as the regular rules, I believe
it is a credit to LOGICALC’s extensibility that I was able to write the code and graft

it onto the existing system, all in a day’s work.

For the purpose of solving the U-Tube problem, I needed ‘Situated Equality Sub-
stitution’, ‘Situated Symmetry’, and ‘Situated Negation’. For good measure, I also
added the ‘Timeless’ rule which states that, if a proposition is always true, then, in

particular, it is true throughout a given situation.

10.10.1 Situated Negation

There was no need to resort to an inference rule for this one, a simple axiom sufficed.

(AXIOM SITUATED-NEGATION
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(IF (DURING ?S (NOT ?P))
(NOT (DURING 7S ?7P))))

Note that the converse is not true because ?P may change truth value during 7S, thus
failing to hold throughout ?S while still not succeeding in being false throughout it

either.

10.10.2 Timeless Truths

If a proposition is always true, then, a fortiori, it is true throughout a given situation.
Formulating this as an axiom is a little trickier than it was for negation because we
can no longer pretend that the proposition is merely another funny term. In other

words, we are not allowed to write:
(IF 7P (DURING 7S ?P)) (T)

because FOL does not permit free variables where a formula is expected. Instead we
must write:

(IF (% ?P) (DURING 7S (% ?P)))

And perform explicit A-reductions.

Why was this not a problem with ‘Situated Negation’? Because situated logic is
reified in FOL. The 2nd argument of during is a proposition of situated logic; but,
when we axiomatize this logic in FOL, it is represented by a term of FOL. It is merely

a convenient abuse of notation which allows us to identify the two.

Of course, if all you care about is to get the job done, you can write (T), and it will
work as expected; but the theoretical basis of this practical sleight of hand is a little
shaky.
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The better way to overcome these problems is to drop FOL and switch to HOL.
Unfortunately, doing so would require a change of representation (e.g. adding type
annotations) which would not be easily accommodated by our existing tools (in par-

ticular: DUCK).

The ‘Timeless’ rule can be depicted thus:

A=p
A = (IS situation s)
A = (during s p)

Here is the code implementing the inference rule, the plan generator, and the regressor:

(DEFFUNC TIMELESS-RULE - (LST sequent_t) code
(PREMS - (LST sequent_t) PARMS - (LST sexp))
(AND (= (LENGTH PREMS) 2)
(MATCH-COND (!_CONCLUSION (CADR PREMS))
(\? (IS situation 73)
(LIST (MAKE sequent_t

(WEAKEST-ASET-OF-SEQUENTS PREMS)
‘(DURING ,S ,(!_CONCLUSION (CAR PREMS))))))

(T NIL))))

(DEFFUNC TIMELESS~-PLANGEN - (LST <plan_t>)
(SEQUENT - sequent_t
PREMS - (LST <premise_t>)
PARMS - (LST sexp))
(IGNORE PREMS PARMS)
(MATCH-COND (!_CONCLUSION SEQUENT)
(\? (DURING 7S ?7P)
(LIST (MAKE <plan_t> ‘(DURING ,S ,P) ’Timeless
(LIST (MAKE <goal_t> P)
(MAKE <goal_t> ‘(IS situation ,S)))
NIL))) '
(T NIL)))

(DATAFUN REGRESS TIMELESS
(DEFFUNC - (LST xsequent_t)
(PROOF - proof_t STEPS - (LST sexp) ALIST - (LST bdg))
(IGNORE PROOF)
(MATCH-COND STEPS
(\? (?P (IS ?TY 73))
(FOR (E IN (SAME-UNIFY TY ’situation ALIST))
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(SAVE (MAKE xsequent_t
(VARSUBST ‘(DURING ,S ,P) (!_LALIST E))
(' _LALIST E)))))
(T NIL))))

10.10.3 Situated Equality Substitution

This is the interesting rule. If e; and e, are equal throughout situation s and plei]
is true throughout s, then we are licensed to infer that p[e,] also holds throughout s.

The rule can be depicted thus:

A = (during s e; = e;)
A = (during s p[e,])
A = (during s ple,))

Very cleverly, ‘Situated Equality’ simply invokes regular Equality Substitution with
A = e; = e; and A = (during s ple;]) as arguments, and lets it do the bulk of the

work.3

The plan generator cannot quite piggy-back on the plan generator for regular Equality
Substitution in the same fashion. However the code is very similar: I simply copied

the original code and modified it here and there to achieve the desired effect.

Similarly for the corresponding parser. Here, however, [ quickly run into a limitation
of the interface when I tried to use the plan generator. When it is invoked to substitute
a subterm ¢, the plan generator (actually its parser) looks for a premise of the form:

(during s (=t ?7X))

but it won’t find it if the relevant detachable formula is of the form:

3With an additional unification step between the situation argument in the st premise and the
situation argument in the 2nd premise.
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(during s (= ?X t))

For regular FOL, the ‘detaching’ procedure automatically removes this obstacle with
its knowledge of symmetric predicates (when it encounters an symmetric predicate,
it tries the arguments both ways). Here again, the reification introduced by the
situation calculus gets in the way. My temporary solution is not very elegant, but it

works well enough in practice: first, the parser tries to detach:
(during s (=t 7X))

If that fails, it tries it the other way:
(during s (= 7X t))

This is inelegant because we have to have to go through the detaching interface
(and therefore search the database) twice, instead of just once, taking care of trying
symmetric predicates both ways on the fly. Unfortunately, there is no way to fix this
problem short of building some knowledge of the situation calculus into the detaching

procedure.

10.10.4 Situated Syfnmetry

In the previous description, I failed to indicate in what way I justified looking for a
situated equality with the arguments switched. The answer is ‘Situated Symmetry’,

which can be depicted thus:

A = (during s p(e;,e;)) p is symmetric
A = (during s p(es, 1))
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When, for Situated Equality Substitution, I detached situated equality premises with
the arguments reversed, I would then wrap an extra description around each one
requiring an inference using ‘Situated Symmetry’ to reestablish the arguments in the

proper order (see Chapters 6 and 7).

The implementation of Situated Symmetry is trivially derived from regular Symmetry.

10.10.5 Generalization

Generalization too was developed with FOL in mind. Extending it to work properly
for FOL and the Situation Calculus simply requires treating the 2nd argument of

during as propositions in their own right rather than as mere terms.

In practice, here is what this means: there is function which turns a proposition
into a skeleton where connectives and predicates remain, but all other terms have
been replaced with free variables. This function must be extended to treat the 2nd
argument of a during as a proposition (and turn it into a skeleton) rather than a
term (in which case it would have been turned into a free variable). Implementing

this extension required adding 2 lines of code.

You may recall that in Chapter 8, Section 8.8.1 p295, we remarked that certain terms
may disappear, as a result of the generalization mechanism, whose presence is required
for the successful execution of later validations (e.g. for Equality Substitution). My
(admitedly unsatisfactory) fix for this problem was to annotate those validations
having such a requirement with a skeleton pattern: unifying the conclusion with
this skeleton prior to executing the validation guarantees that enough structure is

reestablished by instantiation for the validation to operate successfully.

We have exactly the same problem with ‘Situated Equality’, and it can be fixed in the
same fashion. Implementing this fix required adding 4 lines of code to the procedure

responsible for extracting the skeleton annotation.
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10.11 The U-Tube Problem

The U-Tube problelin was introduced earlier in this chapter. The setup consists of two
tanks, A and B, connected by a thin tube at the bottom (see Figure 10.1). Initially,
the water-level is higher in tank A than in tank B. We should like to prove that the
system reaches an equilibrium, with the water-levels settling at some intermediate

height.

In the interest of simplicity, we will prove a less ambitious goal instead:

¢ Firstly, we shall not try to show that the respective water levels in each tank
settle at the same height (in fact, they might not if they are subjected to different
(constant) atmospheric pressures). Instead, we shall simply show that the water

level in tank A becomes ‘Steady’.

¢ Secondly, we shall make the simplifying assumption that the water-level HA in
tank A does not undergo the ‘Continue’ transition at the end of the interval

situation which follows the initial situation point situation (AT T0).

If HA continues at the end of the second situation, then all other quantities
must also continue. Naturally, a comprehensive axiomatization of the Situation
Calculus must exclude such a possibility.* Typically, this might be done with
an axiom stating that either all quartities continue for ever (i.e. we enter an
interval situation whose far end is at +00), or there exists one quantity which

does not continue.

Ruling out the ‘Continue’ transition for HA would involve proving that, if it were
to occur, all quantities would similarly continue, thus resulting in a contradic-

tion with the axiom enunciated above. It is possible to take this approach, and

“Because otherwise there would be envisionments in which the world grinds down to a halt,
producing sequences of situations during which nothing changes. It seems only right to require that
something must change from one situation to the next.
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we shall do so for the second problem. For the moment, however, we shall make

the above simplifying assumption.

10.11.1 Axiomatization

Here is the short axiomatization which suffices to derive the intended conclusion:®

(DUCLARE TO - timepoint)
(AXIOM INITIAL-SIT (INITIAL (AT T0)))

(DUCLARE PA PB HA HB PAB - quantity)
(DUCLARE PAO PBO HAO HBO PABO +INF - landmark)

(AXIOM HA-INITIAL-LANDMARKS
(DURING (AT TO) (LANDMARKS HA [0 HAO] [1)))

(AXIOM HA-INITIAL-DEC
(DURING (AT TO) (STATE HA DEC [HA0])))

(AXIOM HB-INITIAL-LANDMARKS
(DURING (AT TO) (LANDMARKS HB [0] [HBO +INF])))

(AXIOM HB-INITIAL-INC
(DURING (AT TO) (STATE HB INC [HBO])))

(AXIOM PA-INITIAL-LANDMARKS
(DURING (AT TO) (LANDMARKS PA [0 PA0] [1)))

(AXIOM PA-INITIAL-DEC
(DURING (AT TO) (STATE PA DEC [PAO])))

(AXIOM PB-INITIAL-LANDMARKS
(DURING (AT TO) (LANDMARKS PB [0] [PBO +INF])))

(AXIOM PB-INITIAL-INC
(DURING (AT TO) (STATE PB INC [PB0])))

SIn fact, the axioms about HB and PA are not needed in the proof.
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(AXIOM PAB-INITIAL-LANDMARKS
(DURING (AT TO) (LANDMARKS PAB [0 PABO] [1)))

(AXIOM PAB-INITIAL-DEC
(DURING (AT TO) (STATE PAB DEC [PAB0])))

(AXIOM THE-CONSTRAINTS
(FORALL (S - situation)
(DURING S (CONSTRAINTS {(ADD PAB PB PA)
(CORRESPOND {[HA 0] [PA 0]})
(CORRESPOND {[HA HAO] [PA PAO]})
(CORRESPOND {[HB 0] [PB 0]})
(CORRESPOND {[HB HBO] [PB PBOI})}))))

Axiom THE-CONSTRAINTS is problem specific and indicates that the set of constraints
remains the same in all situations. From the specified constraints, only the first two

are needed in the proof.

The target theorem is:

(IF (NOT (DURING (NEXT (AT TO)) (CONTINUE HA)))
(DURING (NEXT (NEXT (AT TO0))) (STATE HA STD [?7HA1])))

10.11.2 Proof Outline

In the initial situation, the water level HA in tank A must ‘Pass Down’ because it is

decreasing at the landmark value HAO in the point situation (AT TO) (Transition P6).

Therefore, in the second (interval) situation, HA is decreasing between 0 and HAO. By
axiom I-TRANSITIONS-DEC, HA may now either (1) Continue, (2) Pass (Down), (3)
Stop (at 0), (4) Stop at a New intermediate value.

The ‘Continue’ transition is ruled out by our simplifying assumption.
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Pass (Down) and Stop can be ruled out by contradiction: If either of these transitions
occurs at the end of the second situation, then HA must be 0 in the third (point)
situation. By corresponding values, we infer that PA must also be 0, and, since
PAB = PA — PB, we conclude that PAB < 0. However, in the initial situation PAB > 0,
therefore (by continuity) it must be > 0 in the 2nd situation and > 0 in the 3rd.

Thus, we have ruled out every transition but ‘Stop New’, which yields the desired

result.

10.11.3 Proof Summary

I include here the proof summary generated by LOGICALC (see Chapter 9). The
derivation of this proof required 55 invocations of plan generators. It involves 71
axioms and assumptions. A number of these axioms correspond to logic programs.
They are considered low-level and uninteresting (because they implement obvious
deductions), and are not explicitly mentioned in the proof summary. The proof tree
contains 130 distinct inference nodes.® 26 of these nodes occur more than once in
the tree (which, as a consequence, is not a tree but a DAG)—the corresponding

deductions were derived once, but used severa) times.

The default heuristics produce a summary 62 lines long. I used the editor’s commands
to change the visibility of 7 lines, and FLOATed 1 line downward and 4 lines upward
to improve readability. This resulted in the following 33 lines long summary. I offer

a line-by-line commentary after the proof itself.

For brevity, the lists of abbreviations and axioms used in the proof are not included

here.

8Conclusions obtained by backward-chaining through logic programs only contribute 1 node
(rather than I per backward-chaining step).
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1 From P-TRANSITIONS-DEC and HA-INITIAL-DEC Conclude:

HO +
(DURING (AT TO) (PASS HA))

2 From P-PASS-DOWN-NEXT HA-INITIAL-DEC HA-INITIAL-LANDMARKS 1 Obviously:

(DURING (NEXT (AT TO)) (STATE HA DEC [0 HAOI))

3

From P-PASS-DOWN-NEXT HA-INITIAL-DEC HA-INITIAL-LANDMARKS 1 Obviously:
(DURING (NEXT (AT TO)) (LANDMARKS EA [0] [HAO]))

From ADD-CONSTRAINT and THE-CONSTRAINTS Conclude:
(DURING (NEXT (NEXT (AT TO)))
= (+ (VALUE-OF PAB) (VALUE-OF PB)) (VALUE-OF PA)))

4

From EQUATION-HAMPULATION and 4 Conclude:
(DURING (NEXT (NEXT (AT TO))) _
(= (- (VALUE-OF PA) (VALUE-OF PB)) (VALUE-OF PAB)))

5

6 From P-TRANSITIONS-INC and PB-INITIAL-INC Conclude:

(DURING (AT TO) (PASS PB))

7

From P-PASS-UP-NEXT PB-INITIAL-INC PB-INITIAL-LANDMARKS 6 Obviously:
(DURING (NEXT (AT TO)) (STATE PB INC [PBO +INF1l))

From AT-VALUE and PB-INITIAL-INC Conclude:
(DURING (AT TO) (= (VALUE-OF PB) PBO))

8

9

From major premise LANDMARKS-ORDER Obviously:
(DURING (AT TO) (< 0 PBO))

10 By situated equality substitution of 8 in 9 Conclude:

(DURING (AT TO) (< 0 (VALUE-OF PB)))

11

From NEXT-OF-INC and PB-INITIAL-INC 10 Conclude:
(DURING (NEXT (AT TO)) (< 0 (VALUE-OF PB)))

12

From NEXT-QF-INC and 7 11 Conclude:
(DURING (NEXT (NEXT (AT T0))) (< 0 (VALUE-OF PB)))

Assume H1 = !:NOT421
1:NOT421
(NOT (DURING (NEXT (AT TO)) (CONTINUE HA)))
Assume H2 = !:DURING449 + H1
! :DURING449
(DURING (NEXT (NEXT (AT T0))) (= (VALUE-CF HA) 0))

13

From major premise !:DURING449 THE-CONSTRAINTS CORRESPOND-DEF
Obviously:
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(DURING (NEXT (NEXT (AT T0))) (= (VALUE-OF PA) 0))
14

By situated equality substitution of 13 in 12 Conclude:

(DURING (NEXT (NEXT (AT TO))) (< (VALUE-OF PA) (VALUE-OF PB)))
15

By situated equality substitution of PLUS-ZERO in 14 Conclude:
(DURING (NEXT (NEXT (AT TO)))

(< (VALUE-OF PA) (+ 0 (VALUE-OF PB))))
16

From INEQUATION-MANIPULATION and 15 Conclude:
(DURING (NEXT (NEXT (AT TO)))

(< (- (VALUE-OF PA) (VALUE-OF PB)) 0))
17

By situated equality substitution of 5 in 16 Conclude:
(DURING (NEXT (NEXT (AT TO))) (< (VALUE-OF PAB) 0))

18 From 17 Discharging !:DURING449 Conclude:
Hi = !':NOT421 +

(IF (DURING (NEXT (NEXT (AT TO))) (= (VALUE-OF HA) 0))

(DURING (NEXT (NEXT (AT TO))) (< (VALUE-OF PAB) 0)))
19

From P-TRANSITIONS-DEC and PAB~INITIAL-DEC Conclude:
HO

(DURING (AT TO) (PASS PAB))
20

From P-PASS-DOWN-NEXT PAB-INITIAL-DEC PAB-INITIAL-LANDMARKS 19 Obviously:
(DURING (NEXT (AT TO)) (STATE PAB DEC [0 PABO]))
21

From NEXT-OF-BETWEEN 20 Obviously:

(DURING (NEXT (NEXT (AT TO))) (NOT (< (VALUE-OF PAB) 0)))
22

From SITUATED-NEGATION and 21 Conclude:
(NOT (DURING (NEXT (NEXT (AT TO))) (< (VALUE-OF PAB) 0)))

Assuming H1 = !:N0T421
Assume H8 = !:DURINGS13 + H1
! :DURINGS13

(DURING (NEXT (AT TO)) (PASS HA))
23

From I-PASS-DOWN-NEXT 2 !:DURING613 Obviously:
(DURING (NEXT (NEXT (AT TO))) (STATE HA DEC [01))
24

From AT-VALUE and 23 Conclude:
(DURING (NEXT (NEXT (AT TO))) (= (VALUE-OF HA) 0))
25

From 18 and 24 Conclude:
(DURING (NEXT (NEXT (AT TO))) (< (VALUE-OF PAB) 0))
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26 By contradiction 25 22 Conclude:
Hi = 1:NQT421 F

(NOT (DURING (NEXT (AT TO)) (PASS EA)))

Assume H7 = !:DURING623 + H1
1 :DURING623
(DURING (NEXT (AT TO)) (STOP HA))

27 From STOP-DOWN-NEXT 2 !:DURING623 Obviously:

(DURING (NEXT (NEXT (AT TO))) (STATE EA STD [0]))

28

From AT-VALUE and 27 Conclude:
(DURING (NEXT (NEXT (AT T0))) (= (VALUE-OF HA) 0))

29

From 18 and 28 Conclude:
(DURING (NEXT (NEXT (AT T0))) (< (VALUE-OF PAB) 0))

30

By contradiction 29 22 Conclude:
Hi = !1:NOT421
(XOT (DURING (NEXT (AT TO)) (STOP HA)))

31 From I-TRANSITIONS-DEC 2 and !:NOT421 26 30 Conclude:

l(DURING (NEXT (AT TO)) (STOP-NEW HA))

32

From STOP-NEW-DOWN~NEXT 2 3 31 Obviously:
(DURING (NEXT (NEXT (AT T0))) (STATE HA STD [!'.L]))

33

From 32 Discharging !:N0T421 Conclude:
HO b+

_(IF (NOT (DURING (NEXT (AT TO)) (CONTINUE HA)))
(DURING (NEXT (NEXT (AT T0))) (STATE HA STD [!.L1)))

Here is the promised commentary:

[1] Since HA is initially decreasing at HAQ, it must Pass.
[2] and therefore becomes decreasing between 0 and HAQ.

[4] From the definition of ADD and the constraint (ADD PAB PB PA), infer PAB
+PB=PAT

[5] from [4], PAB = PA — PB.

I will use the notation Q to represent (value-of Q).
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[6] Since PB is initially increasing at PBO0, it must Pass.

7] and consequently becomes increasing between PB0 and +co.

(8] Imitially PB = PBO.

[9] And we know that PB0 > 0.
[10] Therefore, initially, PB > 0.
[11] Since, PB is increasing. PB > 0 must also be true in the following situation.

[12] and, by continuity, it must still be true in the point situation after that (the

3rd situation).
[13] Assuming that HA = 0 in the 3rd situation, we conclude that PA =0 as well,
since these are corresponding values for these two quantities.
[14] By equality substitution into [12], i.e. PB > 0, we conclude PB >PA.
(17] Therefore, PAB < 0 (see [5]). |

(18] Discharging the assumption, we conclude that if HA = 0 in the 3rd situation,
then PAB < 0 as well.

[19] Since PAB is initially decreasing at PABO, it must Pass.
[20] and becomes decreasing between 0 and PABO in the 2nd situation.

[21,22] Since 0 < PAB < PABO in the 2nd situation, it cannot suddenly jump below 0
in the 3rd situation. Therefore it cannot be the case that PAB < 0 in the 3rd

situation.

[23] Suppose that HA Passes in the 2nd situation. Then it must become decreasing

at 0 in the 3rd situation.

(24] Therefore HA = 0.
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[25] and, from [18], it follows that PAB < 0.
[26] This is in contradiction with [22], therefore HA cannot Pass in situation 2.
[27-30] Similarly for Stop.

[31] Therefore, assuming that HA does not Continue in situation 2, we have ruled

out all but the Stop-New transition.
(32] Thus, HA must become Steady at a new landmark value.

[33] Finally, discharging the assumption, we conclude that if HA does not Con-
tinue in situation 2, then it must become Steady at a new landmark value in

situation 3.

The inference on line [13] is rather obvious to the reader, but its derivation is quite
lengthy. Axiom correspond-def states that, for all quantities for which there exists
a constraint of corresponding values, either they all are at their corresponding values,

or at least two of them are not.

Here, the corresponding values are HA = 0, PA = 0. We have to show that we can’t
pick two quantities (one of HA or PA) such that they are not at their corresponding
values (i.e. 0). This is obvious, since HA is at the “corresponding” value by hypothesis,
there remains only PA to chose from. However, the proof must go through every way
of picking 2 quantities from the set of quantities involved in the constraint, and show
that at least one of them is at the “corresponding” value. In the present case, there
are only two ways of piéking two quantities from a set of 2, yet the proofs are lengthy

and took up 24 lines in the default summary (prior to editing).
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10.12 The Case of The Leaking Tank

In this section we shall consider the problem of a tank with a hole in its side, and
which is being filled at a constant rate by a steady in-flow of water (see Figure 10.2).
Initially, the tank is empty, and it is known that the leaking capacity of the hole is
greater than the in-flow. We wish to prove that the water-level becomes steady at the

hole. As announced earlier, we no longer want to make the simplifying assumption

IN-FLOW  |FLow
L0
HEIGHT

Figure 10.2: Leaking Tank

ruling out the Continue transition as we did in the case of the U-Tube. Instead, we
will add an axiom stating that either there is some quantity which does not Continue,

or the situation goes on forever (i.e. we never get to the next situation).

10.12.1 Reachable Situations

The reader will have noticed that the axiomatization used earlier contained occur-
rences of formulae of the form (reachable sit), although I didn’t specify at the time

precisely what this meant.

A situation is reachable (given a certain set of assumptions) if it can be attained from

the initial situation through a sequence of permissible transitions. In the earlier proof
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I simply considered all situations of the form (next™ s¢) to be reachable, where s

was the initial situation.

Now, we shall be more careful and spell out exactly in what circumstances a situation

is reachable.

Firstly, what I mean when I say that the next situation is not reachable is that
the current situation goes on forever. Obviously this is not possible for a point-
situation. Therefore, the interval-situation following a reachable point-situation is

always reachable.

(AXIOM P~REACHABLE
(FORALL (S - p-situation)
(IF (REACHABLE S) (REACHABLE (NEXT S)))))

On the other hand, a reachable interval-situation may well extend indefinitely into
the future. This happens precisely when the system achieves a permanent regime,

i.e. all quantities Continue.

(AXIOM I-REACHABLE
(FORALL (S - i-situation L - !!(SET_OF quantity))
(IF (AND (REACHABLE S)
(DURING S (QUANTITIES L)))
(IFF (REACHABLE (NEXT S))
(EXISTS ((ELT 77Q L))
(NOT (DURING S (CONTINUE Q))))))))

Notice that, in order to use this axiom, we need to be able to identify the set of

quantities in the given situation, and the problem statement must provide the means |
for this.®

(DEFPRED (QUANTITIES ?L - (SET_OF quantity)))

81t is conceivable that, in some problems, the set of quantities may not be the same in all
situations. ‘
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The notion of a (non) reachable situation allows us to capture one aspect of time,
namely the possibility that certain intervals may extend indefinitely into the future,
without the need to introduce heavy formal machinery to reason about time, and also

ties this neatly with the notion of a system achieving a stable regime.

10.12.2 Constants And Fluents

Similarly, although we will not develop here a complete axiomatic treatment of fluents,
we can easily manage to capture one particularly important notion: namely, that of

a constant.

(DEFPRED (CONSTANT ?X - number))

Constants, when combined through the usual arithmetic operations, yield constants:

(AXIOM CONSTANT-DEF

(FORALL (S - !!situation X Y - !!number)
(IF (AND (DURING S (CONSTANT X))
(DURING S (CONSTANT Y)))

(AND (DURING S (CONSTANT (+ X Y)))

(DURING S (CONSTANT (- X Y)))

(DURING S (CONSTANT (x X Y)))

(DURING S (CONSTANT ¢/ X Y)))))))

Also, if £ is a constant, then it is equivalent to say that a quantity is steady at £ or

that its value is £ throughout the situation.

(AXIOM I-STD
(FORALL (S - i-situation Q - !'quantity L - !!landmark)
(IF (DURING S (CONSTANT L))
(IFF (DURING S (STATE Q STD [L]))
(DURING S (= (VALUE-OF Q) L))))))
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The reason for requiring that £ be constant is that, even though the fluent value of
a quantity can be equal to another (varying) fluent, the quantity can only be said to

be steady at a constant.

10.12.3 Derivatives

Obviously, the sign of the derivative of the value of a quantity determines how the

latter varies, i.e. whether it is steady, increasing, or decreasing.

(AXIOM DERIV-DEF

(FORALL (S -~ llgituation
F DF - !!quantity
CL - '!'(SET_OF constraint)
D - tldirection .
\' - !lyalue)

(IF (AND (DURING S (CONSTRAINTS CL))
"(ELT (DERIV F DF) CL)
(DURING S (STATE F D V)))
(AND (IF (DURING S (< (VALUE-OF DF) 0)) (= D DEC))
(IF (DURING S (< 0 (VALUE-OF DF))) (= D INC))
(IF (DURING S (= 0 (VALUE-OF DF))) (= D STD))))))

Naturally, we must make it plain that the 3 directions of variation are mutually

exclusive. It suffices to say that they are distinct.

(ASSERTION-GROUP DIRECTIONS
(NOT (= DEC INC))
(NOT (= DEC STD))
(NOT (= INC STD)))

Finally, we need to state the following very important property: if the current situ-
ation extends indefinitely into the future and the derivative of a quantity is greater

than some positive constant throughout the situation, then there is no constant such
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that the value of the quantity does not eventually exceed it. We need the positive

constant to avoid asymptotic limits.

(AXIOM POSITIVE-DERIV
(FORALL (S - i-situation F DF - !!quantity CL - !!(SET_OF constraint))
(IF (AND (REACHABLE S)
(NOT (REACHABLE (NEXT S)))
(DURING S (CONSTRAINTS CL))
(ELT (DERIV F DF) CL)
(EXISTS ((DURING S (CONSTANT ?77C)))
(AND (DURING S (< 0 C))
(DURING S (< C (VALUE-OF DF))))))
(NOT (EXISTS ((DURING S (CONSTANT ?7L)))
(DURING S (< (VALUE-OF F) L)))))))

10.12.4 Arithmetic Revisited

For this problem, arithmetic needed to be fleshed out a little more.

(AXIOM INEQUATION-MANIPULATION
(AND (IFF (DURING ?S (< ?X (+ ?Y ?2)))
(DURING 7S (< (- ?X ?2) ?7Y)))
(IFF (DURING 7S (< (+ ?X ?Z) ?Y))
(DURING 7S (< ?X (- 7Y 2Z))))))

(AXIOM INEQUATION-MANIPS
(IF (DURING 7S (< 0 ?2Z))
(AND (IFF (DURING 7S (< ?X (/ 7Y ?2)))
(DURING 7S (< (* ?X ?Z) ?Y)))
(IFF (DURING 7S (< (/ ?X ?Z) ?7Y))
(DURING 78 (< ?X (* ?Y 2Z)))))))

(AXIOM TIMES-ZERO
(DURING 7S (= 0 (* 0 7X))))

The axiom of density says that for any two numbers z < Y, you can pick a number z

such that £ < z < y. This is true of fluents, but I wanted to be able to say that in
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the case where z and y are constants, then you can pick z constant too. So, I only

stated the axiom for constants.

(AXIOM DENSITY

(FORALL (S - tt!situation)
(FORALL ((DURING S (CONSTANT ??(X Y))) - !!number)
(IF (DURING S (< X Y))
(EXISTS ((DURING S (CONSTANT ??Z)) - !!number)

(AND (DURING S (< X 2))
(DURING S (< Z YD)

10.12.5 The Problem Statement

(DUCLARE TO - timepoint)
(AXIOM INITIAL-SIT (INITIAL (AT TO)))

(DUCLARE HEIGHT SPEED FLOW - quantity

IN-FLOW SURFACE - number
OUT-FLOW HOLE - landmark)

The set of quantities remains the same throughout the experiment.

(AXIOM THE-QUANTITIES
(DURING ?S (QUANTITIES {HEIGHT SPEED FLOW})))

The out-flow capacity of the hole is known to be greater than the in-flow of water.

(AXIOM IN-OUT (DURING ?S (< IN-FLOW OUT-FLOW)))

[nitially, the tank is empty and the water-level is increasing at 0.

(AXIOM HEIGHT-INITIAL-LANDMARKS
(DURING (AT TO) (LANDMARKS HEIGHT []1 [0 HOLE +INF])))

(AXIOM HEIGHT-INITIAL-INC
(DURING (AT TO) (STATE HEIGHT INC [01)))
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During this experiment, there is a constraint that changes: namely that which deter-
mines the flow of water through the hole. When the water level is below the hole, no
water goes through the hole, whereas when the level is above the hole, the flow rate

through the hole is constant and equal to ocut-flow.

We have a choice of whether to state this as a constraint, in which case the set of
constraints will be different below and above the hole, or as couple of separate axioms.

It is more convenient to use the second approach.

(AXIOM FLOW-BELOW-HOLE
(IF (DURING 7S (< (VALUE-OF HEIGHT) HOLE))
(DURING ?S (= (VALUE-OF FLOW) 0))))

(AXIOM FLOW-ABOVE-HOLE
(IF (DURING ?S (< HOLE (VALUE-OF HEIGHT)))
(DURING ?S (= (VALUE-OF FLOW) OUT-FLOW))))

Notice that this axiomatization cleverly avoids saying anything about what happens
at the hole.

Initially, there is no water leaking through the hole, and the corresponding flow is

steady at 0.

(AXIOM FLOW-INITIAL-LANDMARKS
(DURING (AT TO) (LANDMARKS FLOW [] [0 QUT-FLOW])))

(AXIOM FLOW-INITIAL-STD
(DURING (AT TO) (STATE FLOW STD [0])))

We also have the choice of whether to express the relationship among the various
quantities as a set of qualitative equations, or as an arithmetic .equation between

fluents. For convenience again we choose the latter.
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The speed of the water-level is related to the difference between the in-flow and the
flow out of hole in inverse proportion to the horizontal area of the tank, which we

take to be constant from top to bottom and equal to surface.

(DUCLARE SURFACE - number)

(AXIOM SURFACE-POSITIVE (DURING ?S (< 0 SURFACE)))
(AXIOM IN-FLOW-POSITIVE (DURING ?S (< 0 IN-FLOW)))
(AXIOM FLOW-EQUATION

(DURING ?S (= (VALUE-OF SPEED) (/ (- IN-FLOW (VALUE-OF FLOW)) SURFACE))))

The only significant constraint which remains to be expressed is that speed is the
derivative of height. This set of constraints remains the same throughout the exper-

iment.

(AXIOM THE-CONSTRAINTS
(DURING ?S (CONSTRAINTS {(DERIV HEIGHT SPEED)})))

- Finally, we must identify the constants.

(ASSERTION-GROUP THE-CONSTANTS
(DURING ?S (CONSTANT 0))
(DURING ?S (CONSTANT IN-FLOW))
(DURING ?S (CONSTANT OUT-FLOW))
(DURING ?S (CONSTANT SURFACE))
(DURING ?S (CONSTANT HOLE)))

The target theorem is:

(DURING (NEXT (NEXT (AT TO))) (STATE HEIGHT STD [HOLE]))
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10.12.6 Proof Outline

We must show that height Stops in the second situation. By axiom i-trans itions-inc,
the only possiblities are Continue, Pass, Stop, and Stop-New. We shall rule out every
transition but Stop by contradiction, i.e. by assuming that the transition takes place

and showing that this leads to a contradiction.

If height Continues, then it remains below the hole, therefore the speed remains
constant and positive (Continues), and the flow out of the hole remains 0 (Continues).
Since all quantities continue, situation 2 must extend indefinitely into the future and

situation 3 is unreachable.

However, since speed is constant and positive and is the derivative of height, height
must eventually exceed the altitude of the hole. This is in contradiction with the

conclusion that height will remain forever below the hole.

If height Passes, then it is increasing at the hole in point-situation 3 and must
Pass again; which means it must be increasing between the hole and +oco in interval
situation 4. But since height is above the hole, its derivative, which is proportional
to in-flow — out-flow must be negative. Therefore it must be decreasing too.

Contradiction.

Finally, if height Stops-New, it becomes steady at an altitude below the hole. How-
ever, its derivative is still positive (see above), therefore it should be increasing.

Contradiction again.

10.12.7 Proof Summary

Here is the proof summary generated by LOGICALC. The derivation of this proof

required 65 invocations of plan generators (many tedious inferences are in fact required
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to derive line 13 and to manipulate arithmetic formulae and equations). It involves

68 axioms and assumptions. The proof tree containt 163 distinct inference nodes, 46

of which occur more than once in this graph.®

The default heuristics produce a summary 77 lines long. By editing the visibility of 11

lines and FLOATing another upwards, I impoved slightly on appearance and legibility.

For brevity, the list of axioms used in the proof is not included here.

1

-2

3

4

ABBREVIATIONS

1.QL21(?s ?7L)

= (SK Q 2 7S 7L) ~- I-REACHABLE
t.Q[2] ((NEXT (AT TO)) {HEIGHT SPEED FLOW})

= (SK Q 2 (NEXT (AT TO)) {HEIGHT SPEED FLOW}) -~ I-REACHABLE
1.2[9]1(?Y 72X 75)

= (SK Z 9 ?Y ?X 7S) -- DENSITY
1.Z[9] ((VALUE-OF SPEED) 0 (NEXT (AT T0)))

= (SK Z 9 (VALUE-OF SPEED) O (NEXT (AT TO))) -- DENSITY

t.L[3] (?RIGHT ?LEFT ?Q 7S)

= (SK L 3 ?RIGHT ?LEFT ?Q ?S) -

V. L[3] ([HOLE +INF] [0] EEIGET (NEXT (AT T0)))

= (SK L 3 [HOLE +INF] [0] HEIGHT (NEXT (AT TO))) -

STOP-NEW-UP-NEXT

STOP-NEW-UP-NEXT

PROOF
From INITIAL-SIT Obviously:
HO +
(REACHABLE (AT TO))
From P-TRANSITIONS-INC 1 and HEIGHT-INITIAL-INC Conclude
(DURING (AT TO) (PASS HEIGHT))
From P-PASS~UP~NEXT HEIGHT-INITIAL-INC HEIGHT-INITIAL-LANDMARKS 2
Obviously:
(DURING (NEXT (AT TO)) (STATE HEIGHT INC [0 HOLE]))
From 1 Obviously:

(REACHABLE (NEXT (AT T0)))

%See section 10.11.3 for for relevant commentary.
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From BETWEEN-VALUES 3 Obviously:
(DURING (NEXT (AT TO)) (< (VALUE-OF HEIGHT) HOLE))

Assume Hi1 = !:DURINGS10

! :DURINGE10
(DURING (NEXT (AT TO)) (CONTINUE HEIGHT))

Assume H2 = 1:%528 + Hi
1:%528 (Y% {HEIGHT SPEED FLOV} '.Q)

From !:%5628 Obviously:
(OR (= !'.Q HEIGHT) (= !.Q SPEED) (= '.Q FLOW))

6

Assume H4 = !:=531 + K2
1:=831 (= !.Q HEIGHT)

By equality substitution of !:=531 in !:DURINGS510 Conclude:
(DURING (NEXT (AT TO)) (CONTINUE !.Q))

7

From 7 Discharging !:=5631 Conclude:
H2 = !1:%528 H1 +
(IF (= ?X HEIGHT) (DURING (NEXT (AT TO)) (CONTINUE 7X)))

8

9 From FLOW-BELOW-HOLE and 5 Conclude:

HO k-
(DURING (NEXT (AT TO)) (= (VALUE-OF FLOW) 0))

From CONSTANT-DEF THE~CONSTANTS-2 THE-CONSTANTS-1 Obviously:
(DURING ?X.1 (CONSTANT (- IN-FLOW 0)))

10

From CONSTANT-DEF 10 THE-CONSTANTS-4 Obviously:
(DURING ?7X.2 (CONSTANT (/ (- IN-FLOW 0) SURFACE)))

11

By situated equality substitution of 9 in 11 Conclude:
(DURING (NEXT (AT TO)) (CONSTANT (/ (- IN-FLOW (VALUE-OF FLOW)) SURFACE)))

12

From I-STD 12 and FLOW-EQUATION Conclude:

(DURING (NEXT (AT TO))
(STATE SPEED STD [(/ (- IN-FLOW (VALUE-OF FLOW)) SURFACE)]))

13

From I-TRANSITIONS-STD and 4 13 Conclude:
(DURING (NEXT (AT TO)) (CONTINUE SPEED))

14

Assuming H1 = !:DURING510
Assuming B2 = !:%528 + Hi
Assume H5 = !:=633 |:NOT534 + K2
1:=533 (= !.Q SPEED)
!t :NOT534
(NOT (= !.Q HEIGHT))
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15

By equality substitution of 1:=533 in 14 Conclude:
(DURING (NEXT (AT TO)) (CONTINUE !.Q))

16

From 15 Discharging !:=533 {:N0T534 Conclude:
R2 = 1:%528 H1 +

(IF (AND (= 7Z SPEED) (NOT (= 7Y ?X)))
(DURING (NEXT (AT TO)) (CONTINUE ?Z)))

17

From I-STD THE-CONSTANTS-1 and 9 Conclude:
HO +

(DURING (NEXT (AT TO)) (STATE FLOW STD [0]))

18

From I-TRANSITIONS-STD and 4 17 Conclude:
(DURING (NEXT (AT TO)) (CONTINUE FLOW))

Assuming H1 = !:DURING510
Assuming E2 = !:%528 + Hi
Assume H8 = !:=538 !:NOT537 !:NOT534 + H2
1:=536 (= !.Q FLOW)
! :NOT537
(NOT (= !'.Q SPEED))
1:NOT534
(NOT (= !.Q HEIGHT))

19

By equality substitution of !:=536 in 18 Conclude:
(DURING (NEXT (AT TO)) (CONTINUE !.Q))

20

From 19 Discharging {:=536 !:NOT537 !:NOT534 Conclude:
H2 = !:%528 H1 +

(IF (AND (= ?V FLOW) (NOT (= ?U ?Z)) (NOT (= ?Y 7X)))
(DURING (NEXT (AT TO)) (CONTINUE ?V)))

21

By case analysis. 6 8 16 20 Conclude:
(DURING (NEXT (AT TO0)) (CONTINUE !.Q))

22

From 21 Discharging !:%528 Conclude:
H1 = !:DURING510 F

(IF (% {HEIGHT SPEED FLOW} ?X) (DURING (NEXT (AT TO)) (CONTINUE 7X)))

23

From I-REACHABLE 4 THE-QUANTITIES and 22 Conclude:
(NOT (REACHABLE (NEXT (NEXT (AT T0)))))

24

By situated equality substitution of FLOW-EQUATION in 12 Conclude:
HO + ’

(DURING (NEXT (AT TO)) (CONSTANT (VALUE-OF SPEED)))

25

By situated equality substitution of PLUS-ZERG in IN-FLOW-POSITIVE Conclude:

337
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(DURING ?X.1 (< (+ O 0) IN-FLOW))

26

From INEQUATION-MANIPULATION and 25 Conclude:
(DURING ?X.1 (< 0 (- IN-FLQOW 0)))

27

By situated equality substitution of 9 in 26 Conclude:
(DURING (NEXT (AT TO)) (< 0 (- IN-FLOW (VALUE-QOF FLOW))))

28 By situated equality substitution of TIMES-ZERO in 27 Conclude:

(DURING (NEXT (AT TO)) (< (* 0 ?_859) (- IN-FLOW (VALUE-OF FLOW))))

29 From INEQUATION-MANIPS SURFACE-POSITIVE and 28 Conclude:

(DURING (NEXT (AT T0)) (< 0 (/ (- IN-FLOW (VALUE-OF FLOW)) SURFACE)))

30

By situated equality substitution of FLOW-EQUATION in 29 Conclude:
(DURING (NEXT (AT TO)) (< O (VALUE-OF SPEED)))

31

From DENSITY THE-CONSTANTS-1 24 30 Obviously:
(DURING (NEXT (AT TO)) (CONSTART !.Z))

32

From DENSITY THE-CONSTANTS-1 24 30 Obviously:
(DURING (NEXT (AT TO)) (< 0 1.2))

33

From DENSITY THE-CONSTANTS-1 24 30 Obviously:
(DURING (NEXT (AT TO)) (< !.Z (VALUE-OF SPEED)))

Assuming Hi = !:DURING510

34

From POSITIVE-DERIV and 33 32 31 THE-CONSTRAINTS 23 4 Conclude:
(NOT (AND (DURING (NEXT (AT TO)) (CONSTANT ?_868))
(DURING (NEXT (AT TO)) (< (VALUE-OF HEIGHT) ?_868))))

35 From 34 and THE-CONSTANTS-5 Conclude:

(NOT (DURING (NEXT (AT TO)) (< (VALUE-OF HEIGHT) HOLE)))

36

By contradiction 5 35 Conclude:
HO

(NOT (DURING (NEXT (AT TO)) (CONTINUE HEIGHT)))

37

From P-PASS~UP-NEXT REIGHT-INITIAL-INC HEIGHT-INITIAL-LANDMARKS 2
Obviously: ’

(DURING (NEXT (AT TO)) (LANDMARKS HEIGHT [0] [HOLE +INF]))

Assume H7 = !:DURING630
1 :DURING630
(DURING (NEXT (AT TO)) (PASS HEIGHT))

38

From I-PASS-UP-NEXT 3 !:DURING630 Obviously:
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(DURING (NEXT (NEXT (AT TO))) (STATE HEIGHT INC [HOLE]))

From I-PASS-UP-NEXT 3 !:DURING630 and 37 Conclude:
(DURING (NEXT (NEXT (AT TO0))) (LANDMARKS HEIGHT [0] [HOLE +INF]1))

39

40 From I-REACHABLE 4 THE-QUANTITIES and 36 Conclude:

HO
(REACHABLE (NEXT (NEXT (AT TO))))

Assuming H7 = !:DURING630

From P-TRANSITIONS-INC 40 and 38 Conclude:
(DURING (NEXT (NEXT (AT T0))) (PASS HEIGHT))

41

42 From P-PASS-UP-NEXT 38 39 41 Obviously:
(DURING (NEXT (NEXT (NEXT (AT T0)))) (STATE HEIGHT INC [HOLE +INF]))
43 From BETWEEN-VALUES 42 Obviously:
(DURING (NEXT (NEXT (NEXT (AT T0)))) (< HOLE (VALUE-OF HEIGHT)))
44 From FLOW-ABOVE-EOLE and 43 Conclude:
(DURING (NEXT (NEXT (NEXT (AT T0)))) (= (VALUE-OF FLOW) OUT-FLOW))
45 By situated equality substitution of PLUS-ZERO in IN-OUT Conclude:
HO F

(DURING ?X.1 (< IN-FLOW (+ O OUT-FLOW)))

46 From INEQUATION-MANIPULATION and 45 Conclude:

(DURING ?X.1 (< (- IN~FLOW OUT-FLOW) 0))

47

By situated equality substitution of TIMES-ZERO in 46 Conclude:
(DURING ?X.1 (< (- IN-FLOW OUT-FLOW) (* 0 ?7_1428)))

48

From INEQUATION-MANIPS SURFACE-POSITIVE and 47 Conclude:
(DURING 7X.1.1 (< (/ (- IN-FLOW OUT-FLOW) SURFACE) 0))

Assuming H7 = !:DURING630

49

By situated equality substitution of 44 in 48 Conclude:
(DURING (NEXT (NEXT (NEXT (AT T0))))
(< (/ (-~ IN-FLOW (VALUE-OF FLOW)) SURFACE) 0))

50

By situated equality substitution of FLOW~EQUATION in 49 Conclude:
(DURING (NEXT (NEXT (NEXT (AT T0)))) (< (VALUE-OF SPEED) 0))

51

From DERIV-DEF THE-CONSTRAINTS 42 and 50 Conclude:
(= INC DEC)
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52

From DIRECTIONS-1 Obviously:
HO +

(NOT (= INC DEC))
53

By contradiction 51 52 Conclude:
(NOT (DURING (NEXT (AT TO)) (PASS HEIGHT)))

Assume H8 =

! :DURING698
! :DURINGE98

(DURING (NEXT (AT TO)) (STOP-NEW HEIGHT))
54

From STOP-NEW-UP-NEXT 3 37 !:DURING698 Obviously:
(DURING (NEXT (NEXT (AT TO))) (STATE HEIGHT STD .1
55

From AT-VALUE and 54 Conclude:

(DURING (NEXT (NEXT (AT TO))) (= (VALUE-OF HEIGHT) !.L))
56

From STOP-NEW-UP-NEXT 3 37 !:DURINGE9S Obviously:

(DURING (NEXT (NEXT (AT TO))) (LANDMARKS HEIGHT [0] [!.L HOLE +INF]))
57

From LAKDMARKS-ORDER and 56 Conclude:
(DURING (NEXT (NEXT (AT TO0))) (< !'.L HOLE))

58

By situated equality substitution of 55 in 57 Conclude:

(DURING (NEXT (NEXT (AT T0))) (< (VALUE-OF HEIGHT) HOLE))
59

From FLOW-BELOW-HOLE and 58 Conclude:

(DURING (NEXT (NEXT (AT-TO))) (= (VALUE-OF FLOW) 0))
60

By situated equality substitution of TIMES-ZERO in 26 Conclude:
HO F

(DURING ?X.1 (< (* O ?7_1636) (- IN-FLOW 0n

61

From INEQUATION-MANIPS SURFACE-POSITIVE and 60 Conclude:
(DURING ?X.1.1 (< 0 (/ (- IN-FLOW 0) SURFACE)))

Assuming H8 = !:DURING698
62

By situated equality substitution of 59 in 61 Conclude:
(DURING (NEXT (NEXT (AT T0)))

(< 0 (/ (- IN-FLOW (VALUE-OF FLOW)) SURFACE)))
63

By situated equality substitution of FLOW-EQUATION in 62 Conclude:
(DURING (NEXT (NEXT (AT TO))) (< 0 (VALUE-OF SPEED)))

64

From DERIV~DEF THE-CONSTRAINTS 54 and 63 Conclude:
(= STD INC)
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65

From DIRECTIONS-3 Obviously:
HO
(NOT (= STD INC))

66

By contradiction 64 65 Conclude:
(NOT (DURING (NEXT (AT TO)) (STOP-NEW HEIGHT)))

From I-TRANSITIONS-INC 4-3 and 36 53 66 Conclude:
(DURING (NEXT (AT TO)) (STOP HEIGHT))

67

68 From STOP-UP-NEXT 3 67 Obviously:

(DURING (NEXT (NEXT (AT TO))) (STATE HEIGHT STD [HOLE]))

10.12.8 Proof Commentary
[1,4] The initial situation and the one that follows it are both reachable.
(2] Since HEIGHT is initially increasing in a point-situation, it must Pass.

(3] and becomes increasing between 0 and HOLE.

5] and HEIGHT < 0.

Assuming that HEIGHT continues in the 2nd situation, we are going to show that

all quantities must Continue.
(6] Assuming quantities are in the set {HEIGHT SPEED FLOW}, then a quantity
must be equal to one of these 3 elements.
[7] Assuming the quantity is HEIGHT, then, by hypothesis, it Continues.

8] from which we obtain the generalized conclusion that any quantity equal to
HEIGHT Continues.

[9] Given [5], we know that FLOW = 0 by axiom flow-below-hole. 0 is a constant.

[10-12] We thus show that the arithmetic expression representing SPEED is constant.
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[13] Therefore SPEED becomes steady at said constant value.
[14] and, since this is an interval-situation, it has no other choice but to Continue.
[15,16] Therefore, if a quantity is equal to SPEED it must Continue.

[17] From [9] we know that FLOW = 0, which, since 0 is a constant, is equivalent
to saying that FLOW is steady at 0.

(18] Thus, like SPEED, FLOW has no other choice but to Continue.
[19,20] We conclude that if a quantity is equal to FLOW it must Continue.

[21-22] Therefore, by case analysis based on the disjunction of cases specified by [6],

from [8], [16], and [20] we conclude that all quantities must Continue.

[23] and that the 3rd situation is not reachable, i.e. the 2nd situation extends indef-

initely into the future.
(24] From [12] we infer that SPEED is constant.
[25-30] By arithmetic manipulations, we also conclude that SPEED > 0.

[31] Since we know that 0 and SPEED are both constants and SPEED > 0, by
density, we can pick a constant Z such that 0 < Z < SPEED.

[32-34] and, since SPEED is the derivative of HEIGHT, by positive-deriv from [23]
we infer that there can be no constant such that HEIGHT doesn’t eventually

exceed it.

(35] In particular, this is true of HOLE; i.e. it is not the case that HEIGHT remains

below the hole throughout situation 2.

[36] By contradiction with [5], we conclude that HEIGHT will not Continue.

Now, assuming that HEIGHT Passes we derive another contradiction.
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(38] If Height Passes, then it must become increasing at the hole.

[40] Since we know by [36] that HEIGHT does not Continue, we know that the next

situation is reachable.

[41] Therefore, by axiom p-transitions-inc, HEIGHT has no choice but to Pass.
[42] and to become increasing between the hole and +oo in situation 4.

[43,44] Consequently, FLOW = OUT-FLOW,

(45-48] (IN-FLOW — OUT-FLOW)/SURFACE < 0.

[49,50] Therefore SPEED < 0.

[51] [42] indicates that HEIGHT is increasing whereas [50] implies that it is decreas-
ing.

(53] By contradiction conclude that HEIGHT cannot Pass.
Now assuming that HEIGHT Stops-New we derive another contradiction.

(54] By hypothesis, HEIGHT becomes steady at the new landmark value L,

(56,57] such that L < HOLE.
58] Therefore HEIGHT < HOLE.
(59] and FLOW = 0.
(60-63] From which we derive that SPEED > 0.
(64] [54] specifies that HEIGHT is steady, whereas [63] implies that it is increasing.

[66] By contradiction conclude that HEIGHT cannot Stop-New.
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Finally the desired conclusion.

[67] By elimination, only the Stop transition remains.

(68] Therefore, HEIGHT must become steady at the hole.

10.13 Conclusion

In this chapter, I have described an axiomatization of qualitative physics that captures
Kuiper’s theory of Qualitative Simulation in the framework of first-order logic. T also

demonstrated that it is feasible to carry out formal proofs in this axiomatization.

All the mechanisms provided by LOGICALC have proven useful in the derivation of
the two proofs presented here. The detaching mechanism played a major réle, prin-
cipally through the office of the USE command. Equivalence classes and the answer
sharing/broadcasting meachanism also contributed, as evidenced by a number of mul-

tiply occurring inference nodes.

I have shown that LOGICALC can easily be extended with new rules and new plan
generators to facilitate theorem-proving work with certain representations or axiom-
atizations. I illustrated this by implementing additional tools specifically for the

situation calculus.

The proof editor was also exercised to produce the proof summaries included in this
chapter. The default heuristics performed a satisfactory job of condensing the proof
and of providing an initial formatting of its summary. Then, through the editor,
I effected minor cosmetic alterations to enhance appearance and legibility; few are

normally needed, if any.



Chapter 11

Conclusion

What have we wrought?

We have a program that generalizes backward-chaining to a rich system of natural

deduction and frees the user from many uninteresting details.

For the AI researcher, and, we believe, for others as well, the default reliance on
skolemization and the implicit ubiquitousness of uniﬁca.tion>are both convenient and
natural. They relieve the user from having to worry about the details of substitutions
and quantifier eliminations. There is no need to guess the proper instantiations in
advance. Free variables allow us to delay these guesses, and unification supplies the

appropriate values when they are needed.

The éystem manages the proof state as a graph, but also supplies default motions
through this graph to follow the current thread of reasoning. It encourages an ex-
ploratory attitude whereby the user may try things out, and, in particular, need not
apriori form a definitive outline of the proof, but may let the evolving context sug-

gest ways to proceed. For example, the system explicitly represents alternative proof

395
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plans. Most importantly, it facilitates searches of the database guided by contex-
tual requirements (e.g. the shape of the desired premise) and provides an interactive

browser that lets the user examine and select candidates.

Not only does the system facilitate searching the database, but it also takes over the
management of inferential details. In particular, the detaching mechanism encourages
the user to reach into the database and pull out formulae with a shape appropriate
for the proposed refinement. The system will automatically determine what auxiliary
goals you need to prove to infer such a formula from the database, thereby validating

its use in the proof plan.

Thanks to this mechanism, a large fraction of most proofs can be constructed in
a resolution-like fashion by issuing commands of the form ‘USE name’, where name
refers to an assertion in the assumption set. The resulting subgoals are those needed
to infer the current goal from this assertion. In other words, the user merely points
to an assertion and tells the system: “figure out how to use this to refine the current

goal.”

Furthermore, the system tries very hard to minimize the amount of work required of
the user. For example, it will inform the user if é. proof derived for an earlier goal is
applicable to a later one. The user may then select this existing answer rather than
attempt a new proof. In fact, proofs are automatically generalized to broaden their

applicability (i.e. their chances of being reused) as much as possible.

One singularly attractive contribution of LOGICALC is the manner in which plan gen-
erators are interfaced with the user. Unlike many modern systems where refinements
must be effected by calling procedures with well-defined arguments, here these ar-
guments may be provided in a (mostly) free-form fashion. Each plan generator has
its own parsing procedure to make sense of the user’s input. Moreover, our interface

provides for implicit and explicit searches with contextual constraints, for implicit
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detaching, and for the ability to fire up an interactive browser to help fill in an argu-

ment.

Our own experience with LOGICALC has been very positive, especially while investi-
gating the formalization of qualitative physics. The ability to explore the proof space
freely and naturally was crucial in assessing the strengths and the limitations, as well
as the occasional omissions, of our axiomatization. Many features now included in
the system were born from practial experience. For example, the -skolem option, to-
gether with the indexing scheme that makes its operation possibie, was added because
a fair number of goals turned out to be about specific skolem terms originating from |
the database, and we wanted an easy way to locate relevant assertions about them.
The system also proved to be easy to extend, as we demonstrated by implementing
additional rules and plan generators to facilitate reasoning in the situation calculus.
Finally, the proof summaries generated by our heuristics are surprisingly readable,

and can be directly included in typeset documents.

In the following, we will present a summary of the system, emphasizing its contri-
butions. Then we will discuss related work, acknowledge influences and point out

differences. Finally, we will outline future directions of research.

11.1 Summary Of The System

LOGICALC is a system for the interactive derivation of proofs which was developed
from an Al perspective and with the specific intention of facilitating work with formal
Al problems. These circumstances as well as our motivating interests are reflected in
the choice of logic and the architecture of the system which, as a result, is poised at

an interesting juncture between classical logic and traditional Al practice.
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The Logic

Researchers in Al typically specify formal problems using some variant of first-order
logic, and, more often than not, the quantifier-free predicate calculus is adequate.
Furthermore, it is normally expected that the search for a proof will be conducted
with the aid of unification. In LOGICALC, we chose to meet these expectations while

retaining at the same time the full power of first-order logic.

Our logic is first-order, but all formulae (axioms and goals) are skolemized by de-
fault. Occasionally, automatic skolemization becomes undesirable: for example when
the antecedent of a goal is universally quantified and we intend to assume it in a
proof using the Deduction Theorem. In such a case, skolemization can be explicitly

disallowed.

Working with a skolemized representation has several advantages. Firstly, we are
spared the tedium of explicit quantifier manipulations. Secondly, we can rely on uni-
fication as a fundamental operation, both for generating refinements and inferences,
as well as for searching the database (the set of assumptions). Thirdly, skolemized
assumptions can be indexed, so as to to increase the speed and specificity of databasé

searches, in ways that a fully quantified representation does not permit.

A skolemized representation also has disadvantages: skolem terms can easily become
inscrutable, and conclusions are often phrased in terms of specific skolem terms when
in fact they are true in general. We proposed an abbreviation mechanism that elim-
inates the first problem for both input and output. We also implemented a proof
generalization algorithm which generalizes equally over all terms, and, a fortiori,

remedies the second shortcoming.

Our logical system is based on a system of Natural Deduction for a variant of classical
first-order sequent logic. We write A = p for the sequent expressing that proposition p

logically follows from the set A of assumptions. The twist in our approach is that A4
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is implemented by a datapool. There can be no connection between the free variables
appearing in A and those in p. In fact, looking up an assertion in A automatically
gives us a copy with fresh variables just like it would in a logic programming language
such as PROLOG. Datapools, therefore assumption sets, are organized hierarchically,
but the underlying database is truly a flat space of assertions managed by an ATMs:

only those assertions are visible which are ‘in’ the currently selected datapool.

This system was shown to be sound and complete for first-order logic.

The Architecture

LOGICALC allows proofs to be constructed in a forward manner, by applications of
inference rules mediated by inference generators. However, since this is not the pre-

ferred mode of operation, it was not described in this thesis.

Primarily, proofs are developed backwards, by refining goals into plans with subgoals
through the assistance of plan generators. The latter are reminiscent of LCF tactics,
but are not so easily composable (but see p11.3). I discuss them further below. Let
it simply be said that plans, as in LCF, consist primarily of a list of subgoals together

with a validation.

The initial goal, i.e. the theorem to be proven, is analyzed in a top-down fashion. The
process of backward refinement is repeated interactively until satisfactory answers
have been found for all leaf goals, usually by unification with axioms or assumptions.
Then a proof is synthesized bottom-up by combining the proofs of a plan’s steps using

. the plan’s validation.

LOGICALC provides several mechanisms and architectural devices to make this ap-

proach more attractive and more productive.

Firstly, goals are grouped in equivalence classes. The primary motivation for intro-

ducing this notion is to avoid having to repeat the same proof for goals which are
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‘identical to, or alphabetical variants of, one another. When a proof of an instance
of a goal is found, it is recorded in the goal’s class and all members of this class can
benefit from it. Furthermore, we also maintain links between related classes. New
answers are broadcast along these links and are also recorded in those classes where

they are found to be applicable (i.e. they unify with the class’s pattern).

Secondly, when a new equivalence class is created, the system automatically looks for
answers to it in four ways: (1) by attempting to borrow and adapt answers already
recorded in related classes, (2) by checking to see if the class’s pattern is a tautology,
(3) by attempting to match the class’s pattern against assertions in the database, (4)

by running logic programs.

Each plan created as a result of ihvoking a plan generator is recorded with the class it
is attempting to prove. In contrast with most systems, in LOGICALC, each class may
have several plans simultaneously under investigation. There are two main reasons
for allowing this: firstly, two different goal occurrences that are members of the same
class may require distinct analyses resulting in two distinct instantiations of their free
variables. Secondly, the user may wish to pursue alternative proof attempts. Other
systefns often allow the latter only through backtracking; in which case switching to
an earlier proof attempt means you have to redo all the work again. In contrast,

LOGICALC retains all proof attempts at the cost of more memory.

Each goal sees all the answers recorded in its class. When a satisfactory answer is
found for a particular goal occurrence, that answer may be followed, thus resulting in
a successor plan; that is, a plan obtained by making a copy of the one in which the
goal was a step, removing that step, and instantiating the others with the answer’s
substitution. When all steps have been eliminated, their proofs are gathered, passed
as arguments to the plan’s validation: a proof is produced for the plan’s class. This
proof is generalized, then recorded in the class and broadcast along links to related

classes.
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The proof generalization algorithm is another contribution of our system, which is
inspired by Explanation Based Generalization but extends it to our system of natural
deduction for first-order logic. Unlike in traditional EBG where meta-variables (i.e.
quantified over the explanation structure) and object variables (i.e. free variables
of the object logic) may conveniently be conflated (both being represented, say, by
PROLOG variables), our technique must maintain the distinction to preserve soundness
in the presence of (skolemized) assumptions. Our algorithm generalizes equally over

all terms.

In summary, our architecture is organized around the notion of a graph of goals and
plans. We improve on this basic design by grouping goals in equivalence classes,
primarily to promote the sharing of answers. Since answers are broadcast across the
network of classes, and their proofs are asserted in the database, the more general
they are, the wider their applicability, and the less work we need to repeat. Therefore,
in order to make the most of each proof, we generalize them before they are released

system-wide.

The Graph Browser And Editor

Since our architecture is based on the careful management of a complex graph, where
nodes are goals, plans, classes, proofs and answers, it is only appropriate to design
the user interface as a graph browser and editor. This browser maintains the notion
of a current node (or focus of attention), for which it provides an informative display,
and lets the user issue commands to act on it, or to move the focus of attention to

another node (usually by following some sort of link between them).

Communication with the user is effected through a line-oriented shell, with csh fea-
tures such as the ability to recall earlier commands, and to perform substitutions.

Considerable effort was invested in the integration of a facility for providing interac-
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tive help. This help is essentially of two kinds: (1) documentation, and (2) argument

elaboration.

The first kind of help may be requested by the keyword -help. Everywhere a com-
mand or an argument is expected, this keyword may be issued instead. In response,

the system prints appropriate documentation.

The second kind of help may be requested by the keyword ~find. It is a way for
the user to ask the system “help me fill in this argument.” Typically, the system
responds by initiating a subsession with a specialized interactive browser which lets
the user examine possible candidates (or search for them, if the system lacked suf-
ficient information to make an initial selection) and choose those which are deemed
of interest. This functionality is implemented by the Find Mode package, and is
briefly documented in Appendix B. When the interactive subsession is terminated,

all selected candidates are returned to the command, to be used as arguments.

The shell is implemented in a modular fashion using object-oriented techniques. Each
type of node is equipped with its own display function and command processor.
Such an implementation is easily extensible. In particular, it is easy to define new

commands for ‘any given command processor.

As I mentioned earlier, we provide a mechanism for abbreviations. It was originally
motivated by the desire to improve the appearance of skolem terms, and to facilitate
their input. This mechanism was subsequently extended to allow abbreviation of any
term, as well as of commands. We contribute an algorithm for selecting the most

specific abbreviation pattern applicable to a given term.

Plan Generators And Detaching

The graph can be extended in two ways: either by creating new plans through the

invocation of plan generators, or by constructing a successor plan to an existing plan
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by following an answer to one of its steps.

Plan generators are clearly related to LCF tactics: they are meant to obtain plans
consisting of subgoals and equipped with a validation. However, we strived to make
the interactive interface easier, simpler, more helpful and more powerful. As a result,
our design distinguishes three layers: (1) parsing user input, (2) assembling plan

descriptions, and (3) realizing these descriptions.

User input is simplified in the following ways: first, through the use of a flat command
line instead of the function calls required by LCF type systems. Secondly, by allowing
commands and options to be abbreviated by a prefix. Thirdly, by offering powerful
notations for premise and subterm arguments; in particular, the ability to invoke Find

Mode, to fill in some arguments interactively, by specifying the option -find.

A major contribution of our interface is that all premise arguments are obtained
through the detaching mechanism. This technique is remarkably similar in spirit to
non-clausal E-resolution, but, rather than a resolvent, it produces plan. descriptions
appropriate for our system of natural deduction. Thanks to the detaching mecha-
nism, the user can simply name a relevant assertion and the system will figure out

automatically how to use it in this context, setting up auxiliary goals if necessary.

Since our framework expects skolemization to play a major role, we endeavored to
make proving formulae about skolem terms as painless as possible. Therefore, for
th¢ user’s convenience, we maintain an indexing scheme which lets us quickly find
those assertions mentioning a particular skolem term. This selection scheme can be
activated by the -skolem option. Thus, to prove a property of a skolem term, it is
often sufficient to supply -skolem as the premise argument and let the system figure

it out.

Each plan generator has a “designer” component which takes a list of plan descriptions

as arguments (presumably obtained through the detaching mechanism), as well as a
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list of parameters, and assembles new plan descriptions from these premises. Such
a design is very uniform and easily composable, but, so far, we do not provide a
convenient way for the user to take programmatic advantage of it. LOGICALC itself
does not, at present, make use of this composability except, modestly, for “automatic

goal expansion.”

Finally, these descriptions are realized; i.e. they are transformed into real plans whose

validations are also extracted from these very same descriptions.

Occasionally, a validation cannot be completely determined at plan creation time.
For such situations, we proposed the notion of validation hooks. They allow us to

gather information and determine what inferences to make at validation time.

Proof Editing And Formatting

In LOGICALC, proofs are actual objects and can be inspected. We provide a mecha-
nism to prepare summarized representations of a proof tree in a variant of the tradi-
tional natural deduction format. Such a éummary can be output in a variety of ways,

including as TgX and IATRX code for inclusion in typeset documents.

We claim that a good proof summary must strive to achieve the right level of detail.
Some parts of a proof are trivial or uninteresting, and they should be hidden or
abbreviated. Some inferences are sufficiently obvious that they don’t have to be
stated explicitly. Too many details, and we loose sight of the overall structure. Too
few details, and the proof no longer conveys sufficient information to be considered a

satisfactory explanation.

To support the construction of summaries that satisfy the above criterion, we intro-
duced the notion of a line’s visibility, and we contribute an algorithm for computing
their default values according to a set of heuristics controlled by user-settable param-

eters.
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The proof editor prepares a sumfna.ry according to these heuristics. Then, the user
may interactively further edit this summary to improve on the presentation and

achieve better legibility.

11.2 Related Work

Resolution

Resolution has held a preeminent position in automated theorem proving ever since its
introduction by Robinson in 1965 [Rob65]. It relies on a powerful matching operation,
namely unification, but requires that all formulae be expressed in clausal form. The
latter requirement is often considered a disadantage because the conversion to clausal
form introduces a lot of redundancy (by distributivity), and the result is difficult to
understand due to skolemization, loss of structure (everything is flattened out), and
fragmentation (one axiom may result in many clauses). On the other hand the search
space is very homogeneous. However, that too causes problems because it is difficult

to maintain some sense of direction when searching for a proof.

For this reason, many restrictions and modifications to the basic resolution rule have
been proposed, such as linear resolution, set of support strategy, or model elimi-
nation [FLSY74, Lov78], or the idea of connection graphs introduced by Kowalski
[Kow75,Bib81]. Also, SLD-Resolution on Horn clauses is used as the basis for logic
programming (cf. PROLOG).

Non-clausal resolution was described by Murray [Mur82]. Another resolution-like
procedure that does not require clausal conversion is mating search proposed by
Andrews [And81] and implemented in the TPS theorem prover. The connection graph

method was also adapted to non-clausal resolution by Stickel [Sti82].
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Another extension of resolution has to do with the proper treatment of equalities.
Wos and Robinson introduced paramodulation which is a generalization of equality
substitution, and uses an equality literal from one clause to rewrite a term in another
clause [RW69]. Unfortunately, this process is very undirected creating many useless
resolvents. Instead, Morris proposed E-Resolution [Mor69] where paramodulations
are effected only to repair a failed unification of the basic resolution procedure. Di-
gricoli further extends this approach with his notion of resolution by unification and
equality (RUE) [DHS86].

The unification procedure and the resolution rule were extended to higher-order logic

based on the typed A-calculus by Pietrzykowski [Pie73,] P76] and Huet [Hue72,HueT75).

LOGICALC also uses unification as a fundamental operation. At present, it is only a
slightly extended version of the first-order procedure; however, this is not a funda-

mental commitment.

LOGICALC’s subtratum supports the notion of logic programming; in fact it provides
both backward chaining and forward chaining flavors. This facility is often used to
implement decision procedures. For example, the system includes a non-trivial logic

program to automatically solve goals denoting type constraints.

LOGICALC also borrows from non-clausal resolution the idea of being able to perform
an inference using a subformula of an hypothesis. While in resolution theorem-proving
there is only one single rule of inference, LOGICALC generalizes this idea to a system of
natural deduction: the detaching mechanism provides a way to pull out subformulae

from assertions in the database and use them as premises for refinements.

The metaphor here is of reaching inside a hypothesis, grabbing a subformula, and
pulling it out; in the process, the original hypothesis is partially turned inside-out,
and, when we have pulled the subformula all the way out, usually, there will remain

a few other pieces of the hypothesis still hanging off it: these are the auxiliary goals
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which have to be proven in order to infer the selected subformula from the hypoth-
esis (in other words, they constitute the part of the resolvent that comes from the

hypothesis).

Although this mechanism is inspired by non-clausal resolution, it is implemented en-
tirely on top of natural deduction. As a further extension in the spirit of E-Resolution
and RUE, the detaching mechanism can also allow mismatches and automatically re-

pair failed unifications by introducing additional equality goals.

TPS

As explained earlier, the conversion to clausal form in resolution-based methods has
many disadvantages such as the proliferation of literals resulting from the repeated
application of distributive laws. Andrews proposed the notion of “matings” to carry

out refutations [And76], and described a corresponding proof procedure [And81].

Formulae are represented in matricial form, where the horizontal direction corre-

sponds to disjunction, and the vertical direction to conjunction. PV [Q A R] is

gH

A mating for a matrix G is a set of pairs of literal occurrences in G such that they can

written:

all be simultaneously resolved; i.e. there exists a substitution 6 such that, for each
mated pair (P, Q), 0P = —6Q.

A refutation mating is one such that G is false for any interpretation consistent with
the pairing, and can be recognized by the criterion of path-acceptability: a mating is

acceptable iff every vertical path through the matrix contains a mated pair.

The matrix is in negation normal form and skolemized. The search for an acceptable
mating may involve duplicating some quantifiers, i.e. replacing a subformula Vz P by

[Vz P] A [Vz P}, in order to obtain distinct universal instantiations.
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TPS is essentially a system for carrying out natural deduction proofs in the simply-
typed A-calculus. The user may apply inference rules directly (forward/inference,
backward/refinement), or invoke tactics, or initiate mating search. In the later case,
a tactic is required to translate the resulting expansion tree proof back into natural

deduction format.

Rewriting Techniques

Rewriting techniques are another widely used approach to automated theorem prov-

ing.

One of the more successful programs of this kind is the Boyer-Moore theorem prover
[BMT79]. It is used to prove equations between terms in pure LISP. The formal
theory accounts for inductively constructed objects such as natural numbers and
finite sequences, and allows recursive definitions provided that a measure and a well-
founded relation can be found such that the measure of each argument in a recursive
call is smaller than the measure of the corresponding input argument according to
the well-founded relation. It is from this condition that the Boyer-Moore theorem
prover derives its real power: namely the ability to perform induction proofs (e.g. by
induction on the length of a list: the corresponding recursive definition simply CDR’s

down the list, and the length of the list decreases monotonically for each recursive

call).

The Boyer-Moore theorem prover does no search. It uses heuristics to determine what
axiom or lemma to apply as a rewrite rule and where, and repeats the process until
the original equation is proven (i.e. has been rewritten to TRUE), or no rewrite rule
is applicable. This single-minded deterministic approach makes it quite fast, but,
occasionally, its heuristics will select a path that does not lead to a successful proof.

It is the responsibility of the user to supply appropriate lemmas to guide the rewriting
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process to success. Matt Kaufmann [Kau90] extended this framework to introduce

the notion of tactics as well as allow lower-level interaction by the user.

Ketonen’s EKL [KW84,Ket84] is an interactive proof-checker for a sorted logic with
quantification and abstraction. A new proof line is usually obtained either by intro-
ducing an axiom, or an assumption, or by rewriting an existing line, or by rewriting
a user specified term or formula. In the later case, if it is a term ¢ which rewrites to
¢/, the line ¢t = ¢’ is added, otherwise it is a formula p that rewrites to p'; if p’ is the

constant TRUE, then p is added as a line else p = p'.

Rewriting is carried out by interpreting earlier lines as rewrite rules. This interpre-
tation is more involved than with the Boyer-Moore theorem prover: rewrite rules
maybe quantified; furthermore, in addition to equations there are negated formulae
(—A rewrites A to FALSE), conjunctions (each conjunct is interpreted as a separate
rewrite rule), implications (4 O B rewrites B to TRUE in places were A must hold).
Other ways of deriving new lines are by universal instantiation (specialization) and

IF introduction (discharging assumptions).

EKL uses Huet’s algorithm for higher-order unification, and handles associative op-
erators cleverly. The direction of rewriting can be explicitly controlled by the user.
The system can be extended through its meta-theory. In this respect, it was influ-
enced by Weyrauch’s FOL system, its principle of reflection, and the idea of semantic

attachments.

The Knuth-Bendix procedure is a powerful method for converting systems of equa-

tions into sets of rewrite rules, but it will not be discussed here.

LOGICALC does not feature a rewriting mechanism of the form described above. On
the other hand, it inherits forward-chaining rules from the DuUck system. A forward-
chaining rule p — ¢ is triggered when a fact matching p is added to the database: qis
then also added to the database, or executed if it is an executable predicate. Currently,

this facility is used only to automatically generate entries for various indexing schemes.
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FOL and GOAL

FOL 1s a proof checker for first-order predicate calculus with equality and sorted
variables, developed at Stanford by McCarthy and Weyhrauch [FW76,Wey78,Wey80].

Proofs are constructed using Prawitz’s system of natural deduction.

A distinguishing feature of this program is its ability to perform semantic simplifi-
cations by attaching LISP functions to operators and predicates of FOL. This trick
permits the rewriting of ground terms and formulae by direct evaluation. Thus 1 + 2

can be simplified to 3 if the LISP function PLUS is attached to the FOL operator +.

Traditional rewriting is also supported. The user specifies a set of (quantified) equa-

‘tions or equivalences, and the system interprets them as left to right rewrite rules.

FOL supports simultaneously the notions of theory and metatheory, and a way to
interface between them though the principle of reflection and the opera.tbrs T (quote)
and | (eval). For example, an axiomatization of well-formedness can be found in
[Wey78] (see [HHP87] for a more recent approach to the problem of encoding in a

formal system the syntax and rules of another logical system).

GOAL written by Bulnes-Rozas [BR79] provides a facility fo;‘ goal-oriented, top-down
proof construction in FOL. The user may invoke matchers, tactics, and strategies.
A matcher attempts to prove a goal directly without reducing it further (e.g. by
matching against an axiom, or by recognizing it as a tautology). A tactic reduces a
goal into subgoals. Each tactic is the inverse of an inference rule. The reduced goal
keeps the necessary information so that the appropriate inference rule is called when
all its subgoals have been prdven. This process of constructing a proof of a goal from
proofs of its subgoals is called unwinding. The information that makes it possible is
called a reason and can be viewed as a simplified version of a LCF’s validation. A
strategy is simply a procedure consisting of a sequence of applications of tactics and

matchers.
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GOAL inherits the simplification and rewriting mechanisms of FOL.

LOGICALC takes a rather similar approach, but extends it in several directions. It
has a more complex and more powerful graph structure, plan generators can create -
plans whose vali(iations involve simultaneously many inference rules, the detaching
mechanism makes the process of refining goals into subgoals orders of magnitude
easier, and various browsers (such as the main graph editor, and find mode) facilitate

interaction with the system.

LCF

LCF stands for “a Logic for Computable Functions” and is based on the model of com-
putability proposed by Dana Scott in 1969. The original system was developed at
Stanford by Milner in 1971-72 and functioned as a proof checker. Milner then decided
to provide a meta-language (ML) with which he implemented Edinburgh LCF [Mil79a).
ML is a higher-order functional programming language with a polymorphic type sys-

tem.

Theorems are instances of the datatype thm, and inference rules are functions which
compute theorems. The type discipline guarantees that derived inference rules (i.e.
functions expressed in terms of existing inference rules) also return theorems. As-
suming that the primitive inference rules are sound and that their impiementa.tion is

faithful, then it is impossible to derive non-theorems.

LCF popularized the notions of tactics and tacticals. Tactics are primarily used to
refine goals into subgoals, whereas tacticals are higher-order functions that serve to
combine tactics and are often written as infix operators. For example, ¢, THEN ¢,

represents a composite tactic that applies tactic ¢; first, and then invokes ¢; on the

result.
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ML has a mechanism for raising and handling exceptions which is very convenient to
express partial functions. If a tactic determines that it is not applicable on its given
arguments, then it raises a failure exception. The tactic ORELSE handles a failure
signaled by its 1st argument by invoking its 2nd argument; thus, ¢; ORELSE ¢, is a
tactic that is just like ¢;, except when ¢; is inapplicable, in which case it is just like

to. Similarly, REPEAT ¢ applies ¢ repeatedly until it is no longer applicable.

However, the technique of programming with tactics and tacticals has a wider range
of applications than mere partial subgoaling methods. For example, TPS uses them

also to translate expansion trees to natural deduction proofs.

Paulson’s Cambridge LCF [Pau87] is also based on PPA (Polymorphic Predicate A-
calculus—the logic of LCF), but extends it with Vv, 3, <=, predicates, additional

inference mechanisms, and rewriting.

The Synthesizer Generator and IPE

The Synthesizer Generator [RT87] is a generalization of an earlier system, the Cor-
nell Program Synthesizer [RT81]. From a formal language specification, the Generator
creates a display editor for ﬁlanipulating sentential objects in this language. In par-
ticular, the editor is well-suited to the generation of structure editors that enforce the

syntax and static semantics of a particular language.

In 1984, Reps and Alpern [RA84] described a system for interactive proof checking
implemented with the Synthesizer Generator, and ba.sed on the notion of an attribute
grammar that expresses the rules of Gentzen’s sequent calculus [Gen35). The proof
tree is represented by a consistently attributed derivation tree; e.g. the set of A; is
called antecedent attribute, and the set of B; the succedent attribute. The user can
interactively edit this proof tree. If a particular subtree is altered or restructured,

attributes are incrementally reevaluated.
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A node that does not satisfy all the checks and attribute equations from the language
specification is inconsistent and noted as such, but, in contrast to a system like LCF,

is nonetheless permissible. This allows the user to incrementally fix/develop a proof.

Ritchie’s Interactive Proof Editor IPE [Rit87, RT88] is a continuation of the work
of Reps and Alpern, and explores the feasibility of “proof by clicking.” Its domain
is intuitionistic first-order logic defined as a natural deduction system. Proofs are

generated top-down, through a graphical mouse-driven interface.

Nuprl

The NUPRL system [C*86] is a display-based interactive proof development environ-
ment for constructive type theory and was inspired by the Synthesizer Generator. It
takes a strongly foundational stance and interprets constructive proofs as programs.
The intuition is that a program specification typically has the form Vz:4 Vy:B R(z,y),
where z is the input and y the output. A constructive proof provides a method for

obtaining a y given an z.

NUPRL borrows from Martin-Léf’s framework, in particular the notion of proposi-
tions as types, as well as from LCF, and operates according to Bates’ Refinement
Logic [Bat79]. A proof is a finite tree whose nodes are pairs consisting of a subgoal,
in the form of a sequent, and a rule name or a place holder. Invoking an applicable
rule at a terminal node with a place holder results in the latter being replaced by
the rule’s name and zero or more children nodes being attached to this one. Thus
the logic explicitly represents partial proofs. A proof tree with no remaining place

holders is complete.

The underlying language of NUPRL is the A-calculus with dependent types. Types
are arranged in a cumulative hierarchy of universes. The atomic types are int, atom,

and void (the empty type). Additional types can be constructed by means of type
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constructors. Thus, A list is the type of lists whose elements are of type A, A#Bis
the cartesian product, A|B the disjoint union, A — B the type of functions from A to
B. There are also constructors for dependent types: z:A# B the dependent product
(like £z:A4.B(z)), £:A — B the dependent function type (like IIz:A.B(z)), and also
{z:A|B} for sets and (z,y) : A//B for quotient types (equivalence classes). Each
type comes with an equivalence relation for equality notated a = b € A (a=a€ A

is abbreviated a € A).

In the propositions-as-types paradigm, propositions are encoded by type terms, and
proving a proposition amounts to showing that the type is inhabited by exhibiting an
element of this type, i.e. by deriving a judgement ¢ : A where A is the type encoding

the proposition, and ¢ is an element of this type.

When a proof has been constructed, a term representing its computational content can
be extracted by means of the term_of operation. Thus a program can be synthesized

from a constructive proof of its specification.

NUPRL allows the user to define new notations with templates, has facilities to support
libraries, and, like LCF uses ML as its metalanguage and tactics to help in the proof

development process.

Automath

The pioneering work of de Bruijn on the AUTOMATH project [dB80] has spawned
and continues to inspire very active research in logical frameworks. The project,
conceived in 1966, was aimed at developing a system for writing mathematical theories
with sufficient precision to allow their correctness to be verified automatically. Its
framework was intended to be general enough to allow all kinds of mathematical
notions to be captured easily, while making as few commitments as possible. Thus, it

could simultaneously serve multiple schools of mathematics with distinct foundational
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ideas. Probably the most notorious accomplishment of the AUTOMATH project was

the systematic translation (encoding) of Landau’s Grundlagen by Jutting [Jut77].

The Calculus of Construction

The calculus of constructions (henceforth cC) is another foundational approach, pro-
posed by Coquand and Huet [CH85b,CH85a,CH86] and inspired both by Martin-L5f
theory of types and by Girard’s F system. It is a higher-order formalism for construct-
ing proofs in natural deduction style. The basic language extends the polymorphic

A-calculus: terms and types are expressions of the same nature.

There is one constant ‘x’ representing the universe of all types. [z:M]N denotes
quantification, (A z:M)N abstraction, (M N) application. The calculus makes 3 dis-
tinctions: contexts, propositions, and proofs. A context is a sequence of declarations
of the form [z;:M]...[zn:M,]. The corresponding type [z1:M]. .. [zp: M)+ is also
called a context. A proposition is an object of type a context, and a proof is an
object of type a proposition. The calculus is expressed in terms of sequents where

the left-hand side is a context and the right-hand side is either a context or a typing.

From a programming language perspective, contexts, propositions and proofs can be

identified respectively with declarations, specifications and algorithms.

The system described in [CH85b] allows the user to give names to constructed objects
(this is typically represented by the notation [z = M ] in a context), and also to
introduce new mixfix syntax. Implicit arguments have been introduced to reduce the
burden of polymorphic instantiation when some argument types can be obtained from

the ‘interesting’ arguments.

A 2 register machine (2 sides of sequent) for carrying out constructions and proofs is

described in [CH85a]. Pollack’s LEGO system lets the user construct proofs top-down
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by incremental refinements [LPT89, Tay89]. Also, CC is a convenient framework for
developing programs which are certified to terminate and meet a logical specification.
Paulin-Mohring describes an algorithm to extract the computational content of a cc
proof [PM89].

Isabelle

Paulson remarked that the LCF framework was being used to construct theorem
provers for various logics, and that much of the same work had to be duplicated
for each one. To remedy this situation, he proposed to develop a generic theorem

prover called ISABELLE [Pau86].

ISABELLE’s meta-logic is intuitionistic higher-order logic with implication, universal
quahtiﬁers, and equality (resp. ¢ = ¥, Az.¢, and a = b). With it, you can encode

your own logic. For example, the rule of and-introduction can be represented by:
AP.AQ.P = (Q = P AQ)

~ Similarly, Vz.P can be encoded by All(Az.P) where ‘All’ is a new constant (of type,

say, (i — o) — o).

Thus, you can customize your own logic by encoding its signature and theory using
ISABELLE’s meta-logic, and by extending the parser/printer with new syntactic rules

(mixfix definitions).

ISABELLE does not construct proof trees. Instead, the process of searching for a proof
is viewed as the elaboration of derived rules of inference using higher-order unification,

where the encoding of inference rules generalizes PROLOG’s Horn clauses.

The goal package manages the proof construction and maintains a proof state which

consists of a number of subgoals. Applying a tactic to the current state results in a
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lazy stream of new states. The goal package presents us with the first state in this
stream. We can backtrack either (1) to an ancestor state (by discarding everything
done since), or (2) chronologically to examine other solutions in a lazy stream of

states.

ISABELLE is distributed with encodings for first-order logic, constructive type theory,

classical first-order sequent calculus, and higher-order logic.

A-Prolog

A-PROLOG is a similar enterprise for encoding logics using a simple intuitionistic logic
as meta-language: in this case the higher-order theory of hereditary harrop formulae.
The distinguishing feature of this approach is that it presents itself as an extension of
PROLOG with higher-order functions, A-terms, higher-order unification, modules and
secure abstract datatypes [NM88]. It also permits quantification a.ndb implication in

queries and the bodies of clauses.

Felty [Fel89,FM90] explains how to encode various logics in A-PROLOG, and describes
the implementation of tactic based theorem provers using logic programming tech-

niques.

The Logical Framework

LF is yet another attempt at providing a general framework for encoding logics, but,
instead of simple intuitionistic HOL used by ISABELLE and A-PROLOG, it is based on
a dependent-type A-calculus which makes it more like AUTOMATH.

Again, the idea is that the user need only specify the logic and automatically ob-
tains an editor that provides parsing and pretty printing, rules, tactics, definitions,

abbreviations, libraries etc. ..
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_The language is a three-level A-calculus with [I-types that distinguishes objects, types
and families of types, and kinds. A logic is specified by its signature which includes

declarations of constants and rules (constants of higher-order types).

Felty has shown that LF and A\-PROLOG have essentially the same expressive power [Fel89,
FM90].

The Environment for Formal Systems

Griffin’s EFS [Gri87b] is an interactive environment, implemented with the Cornell
Synthesizer Generator, which supports both Edinburgh LF and the Calculus of Con-

structions.

It is heavily inspired by NUPRL and borrows its notion of refinement rules, but it
also pursues and extends Reps and Alpern’s idea of using an attribute grammar
to manage proof construction and maintain proof consistency through incremental

editing operations.

The environment permits the interactive definition of the syntax and rules of a formal
system, of abbreviations, supports both top-down and bottom-up styles of proof,

allows user-defined refinement rules, and has a facility for carrying out Sné-reductions.

Unfortunately, the EFS lacks a programmable meta-language a la ML, and, therefore,

does not allow the user to write general tactics.

EIf

ELF is Pfenning’s [Pfe90] endeavour to produce a general meta-language that unifies

logic definition in the style of LF with logic programming as in A\-PROLOG. This is
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realized by giving types an operational interpretation much like PROLOG does with

Horn clauses.

ELF is based on the Any calculus which extends LF’s A;p with a ¥ type constructor, and

exploits Elliott’s unification algorithm fora A-calculus with dependent types [ElI89].

Signatures are transformed and indexed by type families to allows fast PROLOG-
style backchaining. ELF’s search process automatically constructs representations of
object-logic proofs; this is in contrast with other logic programming languages where
either these proof are implicit (PROLOG call tree) or it is the responsibility of the
programmer to construct them explicitly (as Felty-did in A\-PROLOG).

ONTIC

McAllester’s ONTIC [McA87] is a system for verifying mathematical arguments. In
spirit, it has a mandate similar to that of AUTOMATH: a mathematical argument can
be expressed in a very high-level fashion, and the system automatically verifies its

validity and supplies the missing parts.

ONTIC relies on forward-chaining. In order to avoid combinatorial explosion, this
process is guided by user-specified focus objects. Mathematical proofs often contain
lines stating: “let A be a 7” where T is a type, e.g. a mathematical concept such as
a set or a group. In ONTIC, the user proceeds similarly by entering the command
(let-be A 7). ONTIC’s database consists of statements about generic objects: the

previous command equates A with an unused generic object of type 7.1

ONTIC is implemented with Truth Maintenance techniques in the spirit of McAllester’s
ealier work [McA78,McA80]. The mathematical library is compiled into a graph with

nodes for terms, formulae, type expressions, etc... All the inference mechanisms used

f they are all in use, a new generic object is created, and everything known about objects of
type 7 is duplicated for it.



420 CHAPTER 11. CONCLUSION

in ONTIC manipulate labellings of this graph structure. A truth labelling indicates
what follows from the current assumptions. A color labelling reflects the current
equivalence relation (e.g. due to inferred or assumed equalities): nodes colored simi-
larly are considered equal. The labelling is computed by congruence closure (which

replaces unification).

ONTIC has a mechanism for automatic generalization: if g is a generic individual of
type 7, and ®(g) is labelled true, and no assumptions have been made about g other
than it is an instance of type 7, then Vz:r ®(z) can be labelled true as well. This
mechanism is more limited than LOGICALC’s, in particular because it requires that

the formula Vz:7 ®(z) be already compiled in the graph structure.

11.3 Future Work

Graphical Interface

Currently, LOGICALC only supports TTY-like interaction. We intend to develop a
full-blown graphical interface that will allow mouse-driven interaction. For example,
the user must frequently examine the current display, choose an item representing
another (presumably neighbouring) node in the graph, and issue a command to move

the focus of attention to it. It should be possible to effect these motions by clicking.

Another issue is the proper interfacing of plan generators with the graphical front-end.
For example, equality substitution requires that the user indicate which subterm, in
the current goal, is to be replaced. LOGICALC provides a powerful and concise notation
for specifications of these kind, but some users will prefer to effect the selection using

the mouse on the current goal display.

Finally, it would be desirable to have a graphical representation of the graph (of goals

and plans, etc...) constructed so far. Such a map would make it easier to visualize
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the current state of the proof and would help remind the user of the big picture.
Furthermore, the current path from the root (as embodied in the browser’s stack)

should be highlighted and large motions in the graph could be effected by clicking.

Higher-Order Framework

At present, LOGICALC operates in an extended first-order framework. A-terms are
tolerated as a convenient notational device, but they do not rest on solid ground.
Moving to a higher-order framework, such as the Ap calculus, will provide a firm
theoretical foundations for A-terms. Furthermore, 8-reductions will no longer have to
be carried out by hand as it is the case now. We anticipate no difficulty in replacing
our unification algorithm (which already may return more than one unifier) with a

higher-order procedure such as Huet’s or Elliott’s version for dependent types.

Graduation to a higher-order framework will let us investigate LOGICALC’s adequacy

for mathematical research and algorithm development.

Detaching

A legitimate question—even more so now that we have proposed to port LOGICALC
to a higher-order framework—is: “would the architecture and the mechanisms pro-
posed and implemented in LOGICALC be equally useful (or even meaningful) for other

frameworks?” First, I will consider the case of “detaching.”

The basic idea of the “detaching” mechanism is quite simple. Certain refinements
require premises. These premises may not be available as hypotheses and may have
to be inferred. The point of “detaching” is to (1) automatically determine the plan
required to infer the premises, and (2) merge it with the plan resulting from the
requested refinement. The principle of this technique does not depend on the formal

system used.
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In ISABELLE, the process of proof search is carried out by stringing inference rules
together using higher-order resolution. In such a system, detaching can be viewed
as the extractioﬁ of derived inference rules by exhaustive inspection of a formula.
It is trivial to write a tactic that returns the list of all the derived rules that can
be extracted from a given formula. For example, if we are given a theorem foo
whose conclusion is a conjunction, we can produce a derived rule whose conclusion
is the first conjunct by executing (conjunctil RES foo). Similarly, if foo is an
implication, we can produce a derived rule whose conclusion is the consequent by
executing (mp RES foo), and that has the implication’s antecedent as an additional

premise.

The particular transformations available to the detaching process depend on the for-
‘mal system being used. For example, in order to detach (from) the antecedent of an

implication, Modus Tollens must be a (derived) rule of inference.

Generalization

Concerning generalization, the issue is twofold: how can it be done and how can it
help (i.e. why bother)? First, let us address the second question. Generalization is
beneficial only if proofs derived earlier during an interactive session can be used to
solve goals occurring later in this same session. Once again, let us cast this require-

ment in terms of ISABELLE.

Since proving theorems in ISABELLE consists of producing derived inference rules, the
idea would be to record intermediate rules obtained in this manner and use them
as templates to be automatically matched against pending goals. Implementing this

idea would require an extension to ISABELLE’s GOAL package.

What about feasibility of generalization in the first place? The reason we want to

generalize is that, when a proof is developed by top-down analysis, every goal is about
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specific objects, and the proofs which are found for them are also stated about these
objects. It is often the case that these proofs are instances of more general proofs.

The point of generalization is to recover this generality after the fact.

If the system maintains a representation of the proof tree, then we may generalize
the premises (i.e. leaves of the tree) and play back the inferences recorded in the tree
(from the bottom up) in order to produce a generalized conclusion. A method for

doing this in the presence of skolemized assumptions was presented in this thesis.

But, if the system (e.g. ISABELLE) does not maintain a representation of the proof
tree, are we doomed? No! Instead, we can take advantage of a technique used for
PROLOG-based EBG [KCM87, vHB88]. We keep two versions of the current goal:
one is the ordinary specific instance, the other one is a skeletal version of it. Every
resolution that is carried out on the first one, must be exactly reflected on the other.?
The idea is to take advantage of the specificity of the first version to guide the search
process, while, at the same time, using the second version to record the most general
conclusion that can be obtained through the particular sequence of inferences which

we have established so far.

Graph Structure

Editing a graph structure is a natural way to engage in top-down goal-oriented the-
orem proving. LOGICALC not only makes it easy to navigate this graph, but it also
puts it to work for you. For example, by grouping goals into equivalence classes and
by broadcasting answers along links established between related classes, LOGICALC
is able to guarantee that an answer may benefit as many goals as possible. This
mechanism in conjunction with proof generalization helps make the most of each

answer.

*When limited to first-order unification, this is a trivial requirement. Higher-order unification
will undoubtedly complicate the matter.
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ISABELLE does not explicitly represent the proof tree. At all times, we are pre-
sented with a list of all active subgoals (i.e. what would correspond to the fringe
of the non-closed branches of the tree). A structured approach such as LOGICALC’s
goal/plan elaboration is more helpful when working interactively on complex proofs:
it maintains the distinction between separate sub-problems and allows the system to
recognize and handle recurring subgoals. Also, LOGICALC allows the user to develop

concurrently multiple alternative proof plans.

On the other hand, maintaining a large graph structure has the disadvantage that it
takes up a lot of memory space, and ISABELLE’s simple but homogenous representa-

tion facilitates automated processing.

In order to implement the network of links between related classes, we need to be
’able to determine whether a formula is an instance of another. In a higher-order
framework, we can take advantage of Huet’s pre-unification procedure (or an extension
thereof). In fact, since the distinction between more and less general classes has
turned out to be of little practical use, we may simply abolish it and opt for a weaker

criterion based on pre-unifiability.

Proof Summaries

One particularly nice feature of LOGICALC is that it is able to provide an edited
account of a completed proof. In ONTIC, a proof consists of the sequence of commands
issued by the user. A traditional mathematical exposition can often be translated into
such a sequence in fairly natural way. However, although you can easily get a shorter
account by deleting some commands, you cannot obtain a greater level of detail for
non-obvious inferences as there is not record of how they were obtained. Also, ONTIC

proofs have no intermediate result, which makes it hard to see where they are going.?

3This is the reason for the push-goal command, which has no effect on the system, but merely
annotates the proof for ease of reading.
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Since ISABELLE doesn’t maintain a proof tree, we have no access to the justification
for a newly obtained derived inference rule. Therefore, no summary can be produced.
Actually, the proof state records some of this information and could be extended to
record more. However, the basic problem is that a tactic does not produce a trace
of its activity. It is possible to treat the sequence of tactic applications as some sort
of proof, but there is simply not enough information available to produce a more

intelligible account.

The techniques and heuristics presented in this thesis for the generation of proof
summaries require that theorems be explicitly validated by a proof (tree). On the
other hand, in a tactic-driven system, we could incorporate information about which
tactic was used to construct a particular (partial) proof to arrive at a better summary.
For example, certain tactics may implement decision procedures for simple theories.
Often, this is an indication that the corresponding subproof is rather‘sirnple and

should not be expanded in the summary.

Tactics

A paradigm which has acquired considerable momentum is the use of tactics to aid in
the theorem proving task. We have claimed earlier that LOGICALC’s plan generators
are related to LCF tactics. In this section I wish to investigate further the nature
of this relationship, and establish that our extent implementation can accommodate

tactics and tacticals for the elaboration of refinement steps.

An LCF tacticis a partial subgoaling function, i.e. it maps a goal to a plan, or else fails
(signals an error condition). A plan generator takes some user input and proposes
a set of plans for the current goal. As I explained earlier, this task is carried out in
three phases: (1) user input is parsed and packaged, (2) for each argument record
produced by phase 1, the plan generator’s designer function constructs a set of plan

descriptions, (3) finally these descriptions are realized into actual plans by the system.
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Tactics correspond more specifically to the designer functions called in phase 2. Each
designer function takes a list of premises and a list of parameters and constructs a
list of plan descriptions. Like tactics, they can be composed because input premises
are- also expressed in the language of plan descriptions. In other words, a designer
function combines a list of plan descriptions (steps) to produce one or more larger

plan descriptions.

We now substantiate this correspondance by dicussing a prototype implementation

of tactics and tacticals that was developed with an afternoon’s worth of work.

A tactic_t is a function that maps a plandesc_t to a list of plandesc_t. We do
not have the notion of signalling failure because we do not require it. In LCF, when
a tactic is inapplicable, or cannot produce a plan for whatever reason, there is no
natural value to return instead. If one was chosen arbitrarily, every tactic would
have to check for it in its input. It is much more convenient to signal a special error
condition and trap it at strategic choice points. In LOGICALC, we return lists of plans;

failing is handled simply by returning an empty list.

A plandesc_t is more than just an expression in the language of plan descriptions;
it is a pair of a plan description and a substitution. A tactic may be applied to
a part of a larger plan description. While transforming this subpart, it may also
instantiate certain variables. We need the corresponding substitution to instantiate

all occurrences of these variables in other parts of the larger plan.

The fact that our tactics return lists of plan descriptions is a generalization of LCF’s
subgoaling methods, and has the advantage of requiring no special mechanism for
handling failures. However, our tacticals must now be prepared to handle lists of

plandesc_t and map tactics over them.

Also, what I have dubbed ‘the language of plan descriptions’ consists of three sorts of

entities: names of assertions, goal representations, and plan representations (whose
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steps are also plan descriptions). Many tactics are meaningful only when applied to

goal representations, and should be prepared to check this condition on their input.

The following tactics and tacticals have been implemented:

(TacPlangen designer prems parms)
Invokes the designer function, using the tactic’s argument as the current goal

(description), prems as the premises, and parms as the parameters.

(TacOr tac; ... tacy)
Invokes tac,, and, if it returns an empty list, then tries invoking the next tactic,

etc...

(TacAnd tac; ... tac,)

Invokes tac,, then maps tac, over the results, etc. ..

(TacMap tac)
Invokes tac on the goal representations occurring in the argument of the result-
ing tactic’s. This is meant to facilitate the application of goal-oriented tactics

to all subgoals occurring in a plan description.

(TacRepeat tac) _
Applies tac, then maps it over the results repeatedly, until no further transfor-

mations can be achieved.

(TacUse specs)
If the tactic’s a.fgurnent is a goal description, attempts to detach it from the
specs. The specs is a list of expressions sfmilar to the argument to a USE
command. For example, it may be a list of assertion names. It may also include

the -find option to invoke Find Mode.

TacHyp

If the tactic’s argument is a goal description, attempts to match it against
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axioms and assumptions. When it succeeds, the goal description is replaced by

the name of the corresponding assertion.

In order to allow the use of these tactics, I extended the user interface with the new

command TACTIC.

TACTIC tac
Simply invokes tac on the current goal. This is much like invoking a plan

generator, except that tac is an arbitary NISP expression denoting a tactic.

TACTIC tac plangen args. ..
This is like ‘+PLAN plangen args...’, except that tactic tac is then mapped over

the resulting plan descriptions.

For example, we can turn off automatic goal expansion by setting auto-expand* to
NIL, and yet obtain the same effect by repeatedly mapping plan generator EXPAND’s

designer function over plan descriptions using the following tactic:
(TacRepeat (TacMap (TacPlangen #’expand-plangén nil nil)))

As a matter of fact, by default, the TACTIC command will wrap (TacRepeat (TacMap
...)) around its tactic argument because that is almost always what you want, and

doing it automatically saves typing.

In practice, #’expand-plangen is applicable to more cases than we really want to
transform. The solution is to write a tactic, say ExpandFilter, that filters only those

goal descriptions we want to expand. The correct tactic to use is then:

(TacAnd #’ExpandFilter (TacPlangen #’expand-plangen nil nil))
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We have shown that the tactic-based paradigm of interactive proof construction can
easily be added to LOGICALC. Our tactics operate on plan descriptions which are
expressions in the intermediate language used by plan generators. For every plan
generator, we can produce a tactic by applying tactical TacPlangen to its designer
function. Furthermore, by this method, tactics can benefit from other mechanisms

provided by LOGICALC, such as interactive help, detaching, and find mode.

An alternative design for LOGICALC would be to designate tactics as the more prim-
itive notion, and to obtain plan generators by composing them with user interface

functions.

11.4 Conclusion

In this thesis, we have described a system that was designed for, and is well suited to,
the interactive development of proofs in formal AI domains. It is based on an inter-
esting logic which combines the sequent calculus with skolemization and unification,

yet implements assumptions sets with an ATMS.

The system is based primarily on the notion of top-down analysis by successive refine-
ments, and embodies this principle in its architecture: proof construction is viewed

as graph editing.

We have proposed several mechanisms that take advantage of this architecture to
reduce the work involved in the development of a proof. Recurring subgoals are
handled by goal classes. Furthermore, every new answer is broadcast along a network

of links so as to benefit as many goals as possible.

This last effect is further amplified by the preliminary application of proof general-
ization. To this end, we proposed a procedure extending EBG to a system of natural

deduction with skolemized assumptions.
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Our architecture lends itself well to an exploratory style of proof, which is further
encouraged by the “detaching” mechanism. The latter is transparently integrated
with plan generators and may also be invoked through “find mode.” We maintain

several indexings into the database to speed up searches.

We have also described a method for the semi-automated preparation of proof sum-
maries. Several examples served to illustrate the system formatting heuristics and

editing capabilities.

Finally, we have contributed a first-order axiomatization based on Kuipers’ theory of
Qualitative Simulation, and we have demonstrated the capabilities of the system as

well as its extensibility by deriving two proofs in this formalism.

We have established that our approach is compatible with the use of tactics by ex-
hibiting a prototype implementation of the latter. In the future, we plan to provide

a graphical interface and to graduate to a higher-order framework.
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Appendix A

The Language

In this appendix, I describe the language for writing axiomatizations. I explain the
syntax of propositions and terms, review types and type declarations, and explain

how to define axioms.

A.1 Terms and Propositions

LOGICALC expects terms and propositions to be written in a LISPish (i.e. prefix fully
parenthesized) notation familiar to most everyone in Al. The table below summarizes
the correspondance between traditional logic notation and LOGICALC expressions for

connectives and quantifiers:

A A D, (AND p; ... p,)

pV...Vp, (OR py ... pn)

POy (IF p @)

(Vz1)...(Vzs) P(z1,...,2,) (FORALL (z; ... z,) (P Ty ... Tp))
(321)...(32a) Pz1,...,7,) (EXISTS (21 ... z,) (P 21 ... 2,))
ATy Tp H(T,. .., T0) (LAMBDA (zy ... z,) (t zy ... z,))

449
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Because our logic is essentially first-order, free variables and lambda terms are not
allowed to occur in functional position. Instead, their application must be handled

indirectly using the ‘4’ notation. For example:
(% (LAMBDA (X) (+ 1 X)) FOO)

An expression of the form (% (lambda (args...) ...) parms...) is called a redex
and the functional application which it denotes can be effected by invoking the rule
of B-reduction, provided there are as many actual parameters as formal parameters.

Thus, the above example becomes (+ 1 FoOQ).

A.2 Read Macros

Notational conventions can be greatly enhanced or simplified through the judicious
use of “read macros.” See e.g. [Ste84] for a discussion of read-macros in COMMON

LISP.

Free Variables: Variables to the unifier are prefixed with a question mark. Thus,
a free variable named FOO is written ?F00, and is internally represented by the ex-

pression (\? F00).

Skolem Terms and Abbreviations: Skolem terms are constructed and intro-
duced by the system during skolemization (see Section 2.2). A skolem term is repre-

sented by an expression of the form:

(sk fun id args...)
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and prints as !.fun (see Section 4.4 for further details). Similarly, the prefix ‘1.’
is defined to act as a read-macro on input: !.fun turns into (sk fun id args...)

(ibidem).

LOGICALC also uses skolem terms to implement a general abbreviation mechanism

documented in Section 4.4.

Lists and Tuples: It would be tempting to represent lists as LISP lists. Unfortu-
nately, this scheme would not distinguish between a list whose first element is FOO

from an expression whose functor (i.e. main symbol) is FOO.

Obviously, we must introduce a new function to help us represent lists. The choice is
essentially between CONS and LIST.! PROLOG chooses to go the 1st way and uses the

’

two-argument functor *.”. DUCK chooses the other alternative, and uses the function

TUP to represent lists, which are also called ‘tuples.” The expression:
(TUP FOO (BAR X) BAZ)

denotes a 3-tuple, i.e. a list of 3 elements. LOGICALC provides the square bracket
read-macro (and print method) to make tuples visually more appealing. The nicer

syntax for the above example is:

[FOO (BAR X) BAZ]

Segment Variables: In PROLOG, it is possible to denote the tail of a list using the
vertical bar notation. For instance, the term [XIL] denotes a list with X as its first

element and L as its tail (i.e. remainder of the list). In LOGICALC, the corresponding

1Or LisT™,
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idiomis [?X !?L]. The term !?L denotes a segment variable, which is a generalization

of a ‘tail’ variable: it stands for an unspecified number of adjacent elements.

Segment variables are a rather convenient device when writing logic programs. For

example, here is how the MEMBER predicate might be defined:

(DEFPRED (MEMBER ?X - obj ?L - (LST obj))
(MEMBER ?X [!7L1 ?X !7L2]))

When a segment variable becomes instantiated with a tuple, that tuple is ‘spliced’
into the list where the variable occurred. Thus, when ?X is bound to [B C D], [A
!?X E] becomes [A B C D E]J.

Segment variables may cause the unifier to find more than one solution; see Sec-

tion 2.6.2.

Sets by Enumerat;ion: Sets and lists are distinct concepts both representing col-
lections of elements. For many purposes it is convenient to think of a set as the list of
its elements. Lists are computationaly more attractive because they have structure;
in particular, it is trivial to recursively enumerate the elements of a list. A set which
is specified by enumeration (i.e. by listing its elements) can be written using curly

braces. For instance:
{FOO (BAR X) BAZ}
denotes a set with three elements and is internally represented by the expression:
(LSET (TUP FOO (BAR X) BAZ))

The function LSET takes a list (a tuple) as an argument and denotes the set consisting

of the elements of the list.
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A.3 Syntax Macros

It is often convenient to be able to define new syntactic constructs for greater con-
ciseness and perspicuity in the specification of axioms, without having to extend the

logic with new connectives or other operators.

For example, LOGICALC defines “if and only if” as a macro which expands into the

conjunction of two implications, one in each direction. It is implemented as follows:

(DATAFUN SYNMACRO IFF
(DEFUN (E)
“(AND (IF ,(CADR E) ,(CADDR E))
(IF ,(CADDR E) ,(CADR E)))))

The reader unfamiliar with the backquote notation should consult [Ste84]. The
DATAFUN construct is a NISP idiom documented in [McD88], and, here, has the ef-
fect of defining the procedure IFF-SYNMACRO as described by the defun, and storing
it on property SYNMACRO of symbol IFF.

In Chapter 2, I explained that expressions are automatically syntax/type checked by

LOGICALC. Syntax macros are also expanded during this process.

LOGICALC defines a few other macros: XOR for exclusive or, \\ for LAMBDA, and ELT

for expressions like (ELT X L) that expands into the less perspicuous (% L X).

A.4 Types

By default,? DUCK makes sure that assertions (and other expressions it is given as

input) are well-typed. There are two reasons for doing so.

?When the global variable SYNCHK* is non NIL.



454 APPENDIX A. THE LANGUAGE

Firstly, it is easy to make mistakes when editing an axiomatization; such as to mistype
the name of a variable or constant, or to forget an argument to a predicate or function.

DUCK'’s type-checking facility will catch these lapses.

Secondly, type declarations are often meant to restrict the scope of the axiom or
theorem in which they occur. For example, when we say Vn:N P(n), we mean that
if n is a natural number, then P holds of it. Therefore, type declarations (e.g. n:N)
give rise to type constraints, of the form (IS type object), which must be combined

with the text of the formula in which they are located.

A.4.1 Type Designators

Types are complex objects—the reasons for this complexity will not be explained here.
However, they can be denoted simply by type designators. For example, integer,
boolean, string denote the obvious types. The reader should consult the NISP
manual [McD88] for an exhaustive list of primitive types. Types are arranged in a
lattice: thus integer is a subtype of number. At the top of the lattice is the universal
type obj: everything is an obj. At the bottom of the lattice is the empty type bottom
which is not inhabited. prop is the type of propositions.

More complex types can be obtained with type constructors. Again the reader should
consult the NISP manual. Here, we shall simply review a few type constructors of

particular interest for writing axiomatizations.

(FCN ¢to [t; ... t.1)
denotes the type of functions that map n arguments of types ¢; through ¢, to
an expression of type ¢o. For example, if NTH is declared to be of type (FCN 7T
(integer (LST 7T)]), where ?T is a type variable, and L is declared to be of
type (LST string_)‘, then (NTH 3 L) is syntactically acceptable and denotes a

string.
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(PRD [#; ... tn]) _
denotes the type of predicates that take n arguments of types t; through ¢,.

(LST t)

denotes the type of lists whose elements are of type ¢.

(LRCD t; ... tg)

denotes the type of n-tuples whose elements are respectively of typest; through ¢,.

(SET.OF t)

denotes the type of sets whose elements are of type ¢.

(EITHER ¢; ... t,)
denotes the union of types ¢; through t,.

The subtype relation is extended to these types, sometimes in an ad-hoc fashion to
preserve decidability or for efficiency. For example, (FCN b [4]) is a subtype of (FCN
v [a']) iff @’ is a subtype of a and b is a subtype of &. (LRCD a ') is a subtype of
(LST b) if both a and a’ are subtypes of b. Etc...

Defining new type constructors is beyond the scope of the present exposition, but

declaring new type constants is easy:
(DEFDUCKTYPE name descriptor)
defines the new type constant name, and declares it to be a subtype (in the sense of

the lattice) of the type denoted by descriptor. Most often, the descriptor is simply
obj.
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"A.5 Type Declarations

Type declarations are of two sorts: those that declare global constants, functions,

and predicates, and those that declare bound variables in formulae.

A.5.1 Global Type Declarations

Global declarations are performed with the following special forms:

(DUCLARE names-and-types...)

Where names-and-types are names of new constants interspersed with type
designators. A type designator follows the names to which it applies and is

separated from them by a dash ‘~’. For instance:
(DUCLARE FOO BAZ - integer BAR - (FCN integer [(LST obj)]))

declares FOO and BAZ to be constants of type integer and BAR to .be a function
that maps a list of anything to an integer (e.g. it might be the length of the
list). '

(DEFFUN [type] (name vars-and-types...))

The first (optional) type is the function’s “return” type; name is the name of
the function constant. vars-and-types are free variables interspersed with type
declarations. The free variables serve only as place holders for the corresponding
arguments. The following statements are equivalent and both define BAR as a
function mapping a list into an integer:

(DEFFUN integer (BAR 7X (LST obj)))
(DUCLARE BAR - (FCN integer [(LST obj)]))
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(DEFPRED (name vars-and-types) )
name is the name of the predicate constant, and vars-and-types is as above.
The following two statements are equivalent and both define FOO as a predicate
that takes an integer and a list as its two arguments:

(DEFPRED (FOO ?X - integer ?L - (LST obj)))
(DUCLARE FOO - (PRD [integer (LST obj)l))

A.5.2 Local Type Declarations

Type declaration may also appear in the binding lists of FORALL, EXISTS, and LAMBDA

b

and have the form of names (introducing new bound variables) interspersed with

types. For example:

(AXIOM STOP-NEW-DOWN-NEXT
(FORALL (S - i-situation Q - !!quantity L1 L2 - !!landmark
LEFT RIGHT - !!(LST landmark))
(IF (AND (DURING S (STATE Q DEC [L1 L2]))
(DURING S (LANDMARKS Q LEFT RIGHT))
(DURING S (STOP-NEW Q)))
(EXISTS (L - landmark)
(AND (DURING (NEXT S) (STATE Q STD [L]))
(DURING (NEXT S) (LANDMARKS Q LEFT [L !?RIGHT])))))))

A.5.3 Controlling Type Constraints

The above example introduces another read-macro, namély ‘1’ which can be used
as a prefix to a type designator in a binding list. The corresponding declarations play
their normal role during type-checking, but do not generate type constraints to be
added to the formula. Thus, the above formula is transformed (prior to skolemization)

into:
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(FORALL (S Q L1 L2 LEFT RIGHT)
(IF (AND (IS i-situation 8)
(DURING S (STATE Q DEC [L1 L21))
(DURING S (LANDMARKS Q LEFT RIGHT))
(DURING S (STOP-NEW D))
(EXISTs (L)
(AND (IS landmark L)
(DURING (NEXT S) (STATE Q sTD [L]1))
(DURING (NEXT S) (LANDMARKS Q LEFT [L !'?RIGHTI))))))

Thanks to the ‘! 1’ type-designator prefix, the user can have the benefit of definition-
time type-checking, without necessarily burdening his formulae with superfluous type

constraints. For example,
(DURING S (STOP-NEW Q))

can only be derived if Q is a quantity. Therefore there is no need to add a type

constraint of the form:
(IS quantity Q)

which is why Q was declared with ! 'quantity, rather than just qﬁa.ntity.

There are two other ways in which to control whether type constraints are contributed.
First, setting the variable PROVE-DECLARATIONS* to NIL completely inhibits these con-

tributions. Secondly, if a type possesses the NOCHECK feature, then it never contributes

any type constraint. For example:
(1= (TYPE-FEATURE ’integer ’NOCHECK) ’#F)

sets the NOCHECK property of type integer.
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A.5.4 Quantifying Over Types

It is sometimes convenient to quantify over types and allow occurrences of type vari-

ables. For example:

(FORALL (TY - type)
(FORALL (L - (LST ?7TY))
(IS (SET.OF TY) (LSET L))))

Thus, type designators may really be arbitary terms which happen to denote types.

A.5.5 Type Declarations And Lambda Expressions

We have stated earlier that the binding list of a A-expression may consist of variables
interspersed with type designators. Also, we have explained that such declarations
normally contribute type constraints. Whereas it is fairly clear, in the case of quan-
tifiers, how to combine these constraints with the fbrmula. in which they occur, it is

less clear what to do with them in the case of a A-expression.

There are two cases: either the A-expression denotes a predicate or it is a term.

Predicate Lambda

Let F(z,y) be a formula containing = and y as free variables. Then the expression
Az,y - F(z,y) denotes the set of pairs (z,y) that satisfy F(z,y). Clearly, type dec-
larations are intended to restrict the scope of this condition. Therefore, they should

simply be conjoined to F(z,y). Thus:

(LAMBDA (X - number Y - (LST number)) (F X Y))
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must be interpreted as restricting X to be a number and Y a list of numbers, and should

be transformed into:

(LAMBDA (X Y) (AND (IS number X) (IS (LST number) Y) (F X Y)))

Term Lambda

Let T(z,y) be a term containing z and y as free variables. Then the expression
Az,y - T(z,y) denotes the set of terms of the form T(a,b) where a and b are terms
substituted for variables z and y. Clearly, type declarations are meant to restrict
the admissible terms a and 6. Unfortunately, our logic does not provide a means to
represent such a restriction. At present, we simply drop these type constraints in the

bit bucket.

A.6 Constraints In Binding Lists

Not only may binding lists containt variables interspersed with type designators, but
they may also contain constraints. A constraint is an expression where the new bound

variables are identified by a ‘??’ prefix. For example:

(AXIOM P-TRANSITIONS-STD
(FORALL ((REACHABLE ??7S) - p-situation Q - quantity V - !!value)
(IF (DURING S (STATE Q STD V))
(OR (DURING S (CONTINUE Q))
(DURING S (START-UP Q))
(DURING S (START-DOWN Q))))))

The universal quantifier introduces the new bound variable S, with the additional
constraint that S must be REACHABLE. Such a constraint is combined with the formula

in the same manner as type constraints.
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It is possible to declare several variables in parallel in the same constraint by following
the ‘??’ prefix with a list of names rather than a single name. The constraint is

duplicated for each name. Thus the following formulae are equivalent:

(FORALL (X - number) (EXISTS ((< ??(A B) X) - number) (< A B)))
(FORALL (X - number) (EXISTS (A B - number) (AND (< A X) (< B X) (< A B))))

In a lambda binding list, it is permissible for some constraints to denote terms rather
than a propositions. This extension was motivated by the desire to make set theory

easier to express. For instance, the set {f(z) | z € NA P(z)} can be written:

(LAMBDA ((F ?7?X) - integer) (P X))

and is equivalent to:

(LAMBDA (Z) (EXISTS (X - integer) (and (= Z (F X)) (P X))))

A.7 ‘Axioms And Rules

The form (AXIOM name formula) asserts a new axiom in the database. This axiom
can be referred to by its name. You may introduce new axioms at any time; this
is very convenient when, in the process of proving a theorem, you realize that your
axiomatization is not sufficiently powerful or that you forgot to formalize some aspect

of your application domain.

You may even redefine an existing axiom. However, you should not do so if this axiom

has already been used in the proof in progress.
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Back-chaining rules (i.e. axioms whose main connective is <-) may be used to write
logic programs. Typically, these are meant to implement decision procedures to be

invoked automatically on newly created goals (or rather, classes). For example:

(AXIOM LSET-SIMPLE-DEF
(<- (ELT ?X (LSET ?L)) (MEMBER ?X ?L)))

The DUCK manual [McD85] documents the embedded logic programming language.

Related axioms can be defined in groups using the form:
(ASSERTION-GROUP name formulae...)

Each formula is given a name of the form name-k, where k is an integer (name-1,

name-2 ...). Thus,

(ASSERTION-GROUP OBVIOUSLY-REACHABLE
(<- (REACHABLE 7S) (INITIAL 7S))
(<= (REACHABLE (NEXT 78))

(AND (IS p-situation ?S)
(REACHABLE 7S))))

defines assertion group obviously-reachable to consist of axioms obviously-reachable-1

and obviously-reachable-2.

Some axioms are not especially intersting from the point of view of the reader of a

proof. You may inform LOGICALC of this fact in advance with the form (hide-from-lc ’name).

For example:

(HIDE-FROM-LC ’LSET-SIMPLE-DEF)
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has the effect that the axiom 1set-simple-def is never mentionned is the summary
of a proof where it occurs. The idea is that what it does is too trivial to require

justification and would only clutter the summary.

In the case of an assertion-group, the same procedure must be repeated for each
axiom in that group. Fortunately, there is a slightly easier way than tedious enu-
meration. For example, all axioms in group obviously-reachable can be hidden as

follows:
(<\u hide-from-lc (prop ’assertion-group ’obviously-reachable))

The <\, special form is like mapc in COMMON LISP, and, yes, the second character of

its name is a space, which is why it must be escaped.






Appendix B

Find Mode

Certain plan generators, such as Modus Ponens, require one or more premises as
arguments. Instead of such a premise, the user may supply the -find option. As
a result, an interactive sub-mode is entered which provides help in searching the
database and in selecting detachments. When this sub-mode is exited, the selected

detachments are used in place of the missing argument.

Other plan generators, such as Equality, require that the user select one or more
subterms in the current goal. Specifying the -find option has the effect of activating
a sub-mode which provides help in looking for and selecting subterms. When this
sub-mode is exited, the path to the selected subterms are used in place of the missing

argument.

B.1 Generic Find Mode

There are currently three sub-modes offering the kind of help described above. Since

they are so closely related, they are implemented as specializations of a generic utility
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-that provides the kernel functionality and basic commands. Here is a description of

these commands:

QUIT

Exit from Find Mode and return all selected candidates to the caller.

GO
Initiate a new search for candidates. The procedure that generates the stream
of candidates is called anew. This command is typically useful after the user

has somehow altered the context of the search (e.g. by ché,nging the view).

NEXT
From the stream of candidates, the system only display the current one. The

NEXT command moves on to the next candidate, if any.

TAKE

TAKE -ALL
Save current candidate in the list of selected candidates to be returned to the

caller upon exit. With option -ALL, take all remaining candidates.

TAKE -SHOW z;...1,

TAKE -SHOW -ALL
Display selected candidates ¢, through 4, (resp. all of them).

TAKE -0UT 2;...1,

TAKE -0UT -ALL
Discard selected candidates i, through i, (resp. all of them).

0K
Equivalent to TAKE followed by QUIT.

PP

Redisplay current candidate.
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B.2 Formula Find Mode

Formula Find Mode provides an interface to the detaching procedure described in
Chapter 7. It can be invoked by typing -find where a premise was expected. This
option may also be followed by a view consisting of a sequence of assertion names.
In that case, the system will only attempt to detach from the view. When the view
is not specified, it defaults to the whole database (as if the user had typed -find
-all).

For each candidate detachment, the system displays the detached formula, the aux-
iliary goals required by this detachment, and show the original assertion with the

occurrence of the detached formula highlighted.

Here are the additional commands available in Formula Find Mode:

VIEW
Display the current view. This may be a list of assertions, or the whole database

in which case the system simply prints ‘the database’).
y y

LOGICALC also allows detachments from conjectures: the ‘= formula’ specifi-
cation sets up formula as an auxiliary goal and performs detaching from it.
When such a conjecture occurs in a view, the system prints ‘conclusion from

auxiliary goal’.

VIEW ~SET specs...
Set the view according to the specs which consists of names of assertions and
expressions of the form ‘= formula’. If there are no specs, the view is set to the

whole database.

PATTERN

Display the pattern of the formula which we are trying to detach from the view.
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PATTERN formula

If the context allows it, set the pattern to be detached to the given formula.

B.3 Subterm Find Mode

Subterm Find Mode provides an interface to the subterm facility described in Sec-
tion 6.2.2. It can be invoked by typing -find where a subterm argument was expected.
This option may be followed by subterm descriptors, in which case they will provide
the initial stream of candidates. Here are the additional commands available in this

mode:

PATH
Display the subterm descriptors which currently serve to generate the stream

of candidates.

PATH descs...
Change these descriptors to be the given descs. ... The user should then invoke
GO to generate a new stream of candidates from these descs. Usually, the user

can simply type descs and omit the PATH command altogether.

B.4 Target Find Mode

Occasionally, the context constrains the shape of admissible subterms. For exam-
ple, B-reduction applies only to redexes, i.e. expressions of the form (% (LAMDA args
body) parms...). In such a case, Target Find Mode is invoked instead of Subterm
Find Mode. There are no additional commands for this mode. The initial stream

of candidates is obtained by enumerating all subterms that agree with the specified
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shape. The mode of agreement may be EQUAL, UNIFY, or SUBSUME, and is displayed
in the prompt.
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