Yale University
Department of Computer Science

Linear Algorithms for Analysis of
Minimum Spanning and Shortest Path Trees
in Planar Graphs

Heather Booth! Jeffery Westbrook?

YALEU/DCS/TR-763
February 1990

Research partially supported by Office of Naval Research Grant N00014-87-
K-0467 and National Science Foundation Grant CCR-8610181.

! Department of Computer Science, Princeton University, Princeton, NJ 08544.
2Department of Computer Science, Yale University. This research was partially

done while the author was at the Department of Computer Science, Stanford Uni-
versity, Stanford, CA 94305.

Abstract

We give a linear time and space algorithm for analyzing trees in planar
graphs. The algorithm can be used to analyze the sensitivity of a minimum
spanning tree, to changes in edge costs, find its replacement edges, and verify
its minimality. It can also be used to analyze the sensitivity of a single-source
shortest path tree to changes in edge costs, and to analyze the sensitivity of a
minimum cost network flow. The algorithm is simple and practical. It uses the
properties of a planar embedding, combined with a heap-ordered queue data
structure.

Let G = (V, E) be a planar graph, either directed or undirected, with n vertices
and m = O(n) edges. Each edge e € E has a real-valued cost cost(e). A minimum
spanning tree of a connected, undirected planar graph G is a spanning tree of mini-
mum total edge cost. If G is directed and r is a vertex from which all other vertices
are reachable, then a shortest path tree from r is a spanning tree that contains a
minimum cost path from r to every other vertex.

We consider the following problems:

e Finding the replacement edges of a minimum spanning tree, and verifying its
minimality.

o Performing sensitivity analysis of a minimum spanning tree.
e Performing sensitivity analysis of a shortest path tree.
o Performing sensitivity analysis of a minimum cost network flow.

Sensitivity analysis measures the robustness of a minimum spanning tree or short-
est path tree by determining how much the cost of each individual edge can be per-
turbed before the tree is no longer minimal [14, 17].

Let e be some edge in a minimum spanning tree of G. The replacement edge for e
is the non-tree edge that replaces e in the minimum spanning tree of G’ = (V, E —e).
Finding replacement edges is an important subproblem of determining the k smallest
spanning trees of a graph [4, 6]. Given the set of replacement edges, we may verify
the minimality of a spanning tree.

Sensitivity analysis of shortest paths and network flows has been studied by Shier
and Witzgall [14] and Gusfield [10]. The fastest known algorithms for all these prob-
lems are due to Tarjan [17, 16] and run in time and space O(ma(m,n)), where a is the
functional inverse of Ackermann’s function. Gabow [7] also achieves these bounds.

Here we show that in the special case of planar graphs, these problems can be
solved in O(n) time and space.

Our result also remedies a lacuna in Fredrickson’s proof of Theorem 9, reference
[6], which is incorrect without an O(n) algorithm for finding replacement edges in a
planar graph.

The above problems can all be solved by an algorithm for what we call the critical
edge problem. We are given an undirected planar graph G containing a spanning
tree T, rooted at vertex r. We allow G to have multiple edges and loop edges,
but for convenience we will continue to call G a graph, rather than multigraph or
pseudograph. For each vertex v we wish to determine the minimum-cost non-tree
edge with exactly one endpoint a descendant of v. We call this edge the critical edge
for vertex v. In this paper we first give a critical edge algorithm and then describe
its application to the problems listed above.

1 Preliminaries

We assume we are given an embedding of G = (V, E) in the plane in which r, the
root of T, is on the outer face. Such an embedding always exists (see [11, page 105])
and can be generated in O(n) time using the algorithms of Hopcroft and Tarjan [12]
or Booth and Leuker [1] (see Chiba et al. [3]). The embedding of G specifies the
order in which edges incident to v € V are encountered as we walk around v in
the counterclockwise direction (this ordering defines the embedding). We assume a
standard representation of the embedding in which the counterclockwise successor of
an edge around a vertex can be found in constant time.

For convenience of exposition, we define the directions “up”, “down”, “left” and
“right” in the plane so that r is the uppermost vertex. Since a loop edge cannot
be a critical edge, we assume that any loops in G have been removed in an O(n)
preprocessing stage. If u and v are vertices, {u,v} denotes the undirected edge with
endpoints u and v, (u,v) denotes a directed edge from u to v and p(v) denotes the
parent of v in T'.

We assign preorder and postorder numbers to the vertices of T' according to a
topological depth-first search. For each vertex v, a linear edge list {eo,e1,...,€4} is
constructed, where d is the degree of v. Edge € is the edge from v to its parent
in T and the remaining edges ey, ..., e, are listed in the order they are encountered
by walking counterclockwise around v jfrom eg. At the tree root r, €o is the edge
such that ep and its counter-clockwise predecessor ey both lie on the outer face. The
depth-first search visits and numbers each child of v according to the order it appears
in the edge list. (Note that the edge list contains both tree and non-tree edges.)
Figure 1 gives an example.

We denote the preorder and postorder numbers of v by pre(v) and post(v), re-
spectively. It is well-known (see e.g. [15]) that for any pair u and v of vertices, v is
an ancestor of u if and only if pre(v) < pre(u) and post(u) < post(v).

Let f be a non-tree edge {u,v}. We denote by nca(f) the nearest common ancestor
of u and v. Edge f is a potential critical edge for every tree edge on the tree path
connecting u and v. The cycle induced by f together with the tree path between u and
v separates the plane into an interior and an exterior region. We denote the interior
region by R(f). Given a tree edge e = {v,p(v)} in the boundary cycle of R(f), we

2

.

e enn,,

e,

Figure 1: A planar graph with spanning tree rooted at a. Solid
edges are tree edges. Vertices have been labeled by the preorder and
postorder numbers given by a topological depth-first search. Edge
{e,g} is a right edge of e and a left edge of g. Edge {g,b} is right

edge of g and a dead edge of b.

say R(f) is a left or right region of e if R(f) lies to the left or right, respectively, of
e as we look along e from v to p(v).

The edges incident to a given vertex v are partitioned into three classes. Edge
f is called a dead edge of v if v = nca(f) or if f = {v,p(v)}. Note that every tree
edge is a dead edge. If f is not a dead edge of v, it is called a left edge of v if R(f)
is a left region of the tree edge {v,p(v)}, and a right edge of v otherwise. Thus a
non-tree edge f is a left edge of one endpoint and a right edge of the other, unless the
endpoints are related, in which case f is a dead edge of the ancestor endpoint and a
left or right edge of the descendent endpoint. Note that if f is a left edge of v, then
R(f) is a left region of all vertices on P(v, f). The analogous property holds for right
edges.

We can determine whether an edge f = {u,v} is a dead, left, or right edge of v
by using the topological preorder and postorder numbering in the following manner.
If v is an ancestor of u or if u = p(v), then f is dead. If u and v are unrelated then f
is a left edge if pre(u) < pre(v) and a right edge otherwise. If u is an ancestor (but
not parent) of v, then let e = {u, 2z} be the first tree edge following f in the edge list
of u. If there is no such tree edge, or if pre(z) > pre(v), then f is a right edge of v;
otherwise f is a left edge. As mentioned above, ancestor queries can be answered in
constant time using the preorder and postorder numbering.

Lemma 1 Let f be a left edge of u and let g be a non-tree edge that precedes f in
the edge list of u, i.e., is encountered before the tree edge {u,p(u)} in clockwise order
around u from f. Then g is also a left edge, and nca(f) is a (not necessarily proper)
ancestor of nca(g).

Proof. Since g lies between f and {u,p(u)} in clockwise order, g must be contained
wholly within the region R(f), by the assumption of planarity. This implies that R(g)
is a left region of {u,p(u)}. Let ¢ = {u,w}. Either w is on the boundary of R(f)
or lies within R(f); i.e., is a proper descendent of a node on the boundary. Since
all boundary nodes are descendents of nca(f) by definition, nca(g) must also be a
descendent of nca(f). O

The analogous result holds for right edges.

Let v be a leaf of T' with edge list {eo, f1, f2,-..., fa}, where eq = {v,p(v)} and
fi... fa are non-tree edges. Lemma 1 implies that there is an index £, 0 < £ < d, such
that the edges in {fi,..., fo} are left edges and the edges in {fet1,..., fa} are right
edges. Furthermore, let f; and f; be edges such that 1 <7 < j < d. Then nca(f;)
is an ancestor of nca(f;) for ¢,j < £ (the left edges) while nca(f;) is an ancestor of
neca(f;) for 7,5 > £ (the right edges).

Let e = {u,v} be a tree edge, with v = p(u). A contraction of e, shrinks u up into
v leaving only the single vertex v. The new edge list of v is constructed by removing
e from the list of v and v and inserting the edge list of u into the edge list of v at the
position formerly occupied by e. Edge contraction preserves planarity [13, Lemma 1].

4

and the edge list produced by the contraction specifies a valid embedding. It may,
however, produce new loop and multiple edges.

2 Critical Edge Algorithm

The algorithm is based on the approach of Shier and Witzgall [14].

If v € T is a leaf its critical edge is simply the minimum cost edge in its edge list,
excluding the tree edge from v to its parent, which we will ignore from now on.

To compute the critical edges for the remaining vertices, we construct a series of
graphs Gy, Gy, ...,G; with corresponding spanning trees Ty, T1,...,T;, where Gy is
G minus its loop edges and j is the number of non-leaf vertices in Go. Graph G; is
constructed from G;_; by the following procedure:

1. Choose any vertex v in G;_; all whose children in T;_; are leaves.

2. Contract the edges from v to its children and delete any resultant loop edges.
This produces graph G; and tree T; in which v is a leaf.

3. Set critical(v) to be the minimum weight non-tree edge incident to v in G;.

The correctness of the algorithm is proved in [14] and is easily seen. For a vertex
v € G, let the relevant edges denoted rel(v), be the set of non-tree edges with exactly
one endpoint in the subtree of T rooted at v. By definition, critical(v) is the minimum
weight edge in rel(v). A simple induction on ¢ shows that when v becomes a leaf in
stage i, its edge list contains exactly its relevant edges.

So far our algorithm does not particularly depend upon the planarity of G; this
algorithm solves the critical edge problem in any general graph, and can be imple-
mented in O(mlogn) time using a mergeable heap data structure to store the edges
at each vertex [10]. To further improve the running time of the algorithm to O(n) in
the planar case, we take advantages of the properties discussed in Section 1.

Given G and T rooted at r, we first perform a topological depth-first search on T'
as described in Section 1, computing and storing preorder and postorder numbers and
constructing the edge lists for each vertex. As part of this preprocessing, we determine
whether each edge is dead, left, or right with respect to each of its endpoints. This
requires two scans of the edge lists, one to determine for each non-tree edge the first
subsequent tree edge in its edge list, and one to classify each edge using the constant-
time test described in Section 1. These scans can be combined with the topological
depth-first search. Loop edges can be removed at the same time.

Let v be a leaf with edge list {eo, f1, f2,..., fs}. Lemma 1 implies that there is
an index £ such that all edges fi to f; are left edges of v and all edges f4; to fa are
right edges of v. Using £ we split the edge list into two lists L, = f1, f2,..., fe and
R, = f4, fi—1,-.., fey1- By Lemma 1 the edges in L, and R, are nca-ordered, i.e., if

edges a and b belong to the same list and edge a precedes edge b, then nca(a) is a
descendant of nca(b).

At each stage of the processing, our algorithm explicitly maintains the two nca-
ordered lists L, and R, for each leaf node v. The lists for each leaf of the initial tree T
are constructed during the preprocessing. The lists are maintained in a heap-ordered
concatenable queue data structure that supports the following operations:

1. make queue(r): Create and return a new queue containing the single element
z.

2. pop(q) : Delete and return the first item from queue gq.

3. concatenate(qy, q2): Return the queue formed by concatenating ¢; to the back
of ¢;.

4. find min(q): Return the item of minimum weight in ¢ without removing it from
q. If ¢ is empty return null.

5. first(q): Returns the first element in ¢ without removing it. If ¢ is empty return
null.

Let v be a non-leaf vertex of G processed in the i** stage. Any child u of v must
be a leaf, with left and right lists L, and R,, respectively. In Step 2 of the above
procedure, the edges from v to its children are contracted, and two lists L, and R,
are constructed from the non-tree edges incident to v and from the left and right lists
of the children of v. The union of L, and R, is exactly the set of relevant edges for v.
Step 3 is simply performed by finding the minimum of find min(L,) and find min(R,).
Thus the bulk of the work occurs in Step 2.

Let {eo,e1,...,€e4} be the edge list of v. To begin Step 2, with each edge e;,
¢ > 0, we associate two lists L; and R;. If e; is a tree edge {u,v}, where u is a
child of v, then L; = L, and R; = R,. If ¢; is a left edge then L; = make queue(e;)
and R; = make queue(P). If e; is a right edge then then R; = make queue(e;) and
L; = make queue(d). If e; is a dead non-tree edge, i.e., if both endpoints of e; are
descendants of v, then both L; and R; are empty queues.

Next we delete the loop edges formed by the contractions. The loop edges are
those edges f with nca(f) = v. Since each left or right list is nca-ordered, all such
loop edges are grouped at the front of the lists. Let f = {z,y} be a loop edge formed
by the contractions. Edge f is not a relevant edge of v, and hence in the original
tree To = T both z and y must be descendents of v. This can be tested in O(1) time
using the preorder and postorder numbers, as described in Section 1. Thus to delete
loop edges, we simply examine each list and pop edges off until reaching the first edge
whose nearest common ancestor is not v, i.e., the first that is a relevant edge of v.

After deleting loop edges, the collection of left and right lists contains only rele-
vant edges. We form L, by concatenating the left lists from left to right and form

R, by concatenating the right queues ;from right to left. That is, we form L, by
initializing L, to the empty queue and then performing L, = concatenate(L,, L;) for
t=1,2,...,d. The same is done for R,, except the index runs from d to 1. Code for
the general processing step is given in Figure 2.

The edge list of v in G, after performing the concatenations, contains the edges
of L, in order followed by the edges of R, in reverse order. Since G; is planar and v
is a leaf, Lemma 1 implies that L, and R, are nca-ordered and, further, that there is
an index £ such that for ¢ < ¢, R; is empty and for ¢ > ¢, L; is empty.

Let d be the degree of v. Excluding the work involved in popping loop edges, the
processing of vertex v requires O(d) queue operations plus O(d) additional work. The
total number of pops is O(n), since each edge is inserted into at most two queues and
so can be popped at most twice. The preprocessing phases requires O(n) time. If
each queue operation takes O(1) amortized time, then the total running time of the
algorithm is O(n).

We now describe the heap-ordered concatenable queue data structure. The data
structure we present is a simple extension of ideas presented by Gajewska and Tar-
jan [9]. The items in queue q are stored in a linked list, with additional pointers to
the front and back items. In order to answer the find min queries a second list r is
maintained, consisting of the rightward minima of q. The first rightward minima is
the minimum element of the entire list ¢. The i** rightward minima is the minimum
element occurring after the (i — 1)**. We store r as a doubly-linked list, with pointers
to the first and last elements. To make a new queue containing item z, we initialize
both lists to contain z. The operations first(¢) and find min(q) are implemented in
O(1) worst-case time by using the pointer to the front of the appropriate linked list.
The operations pop and concatenate are implemented as follows:

o pop(q) : Delete the first element from ¢ and if it is also the first element of r,
delete it from r.

o concatenate(qi,qz): Link the list of ¢ to the back of ¢;. Let y be the first
element of r,. Remove the elements of r; from the last element forward, until
reaching an element = with cost(z) < cost(y). Link y to z, concatenating r;
to the back of the modified r,. Reset all pointers to first and last elements
appropriately.

The worst-case time required for pop is O(1). The time to perform a concatenation
is O(1) plus the number of items removed from the rightward minima list of the first
queue. The removal of an element z is charged to the make queue that created z. Once
z is removed from the minima list it can never be put back on it; z is removed because
there is some other item y of lesser key following it in the queue, and y cannot be
popped before z. Thus the amortized time per make queue and concatenate is O(1).
This in turn implies that the critical edge algorithm runs in time O(n). The space
required is also O(n), since at any time each edge appears in at most two lists.

ProcessVertex(v : vertex) begin
/* Let v have edge list {eq, f1, f2,-.-, fa} */

/* Delete loop edges */
for i = 1 to d do begin
if f; is a tree edge
while nea(first(L;))=vand L; # 0
pop(L;);
while nca(first(R;)) = v and R; # 0
pop(R;);
end
/* Initialize lists */
for i = 1 to d do begin
if f; is a non-tree edge begin
L; = make queue(D);
R; = make queue(D);
if f; is a left edge
L; = concatenate(L;, make queue(f;));
if f; is a right edge
R; = concatenate(R;, make queue(f;));
end
end
/* Compute L, and R, */
L, = make queue(0);
R, = make queue(D);
fori=1,2,...,d do L, = concatenate(L,, L;)
fori=d,d-1,...,1do R, = concatenate(R,, R;)
/* Compute critical(v) */
set critical(v) = min{find min(L,), find min(R,)}
end

Figure 2: Algorithm for processing one vertex.

3 Minimum Spanning Tree Analysis

In this section we use the critical edge algorithm to solve the following problems in
linear time: finding all replacement edges of a minimum spanning tree, verifying the
minimality of a spanning tree, and performing sensitivity analysis on the edges of a
minimum spanning tree. The following lemma will be useful.

Lemma 2 [6, 16] Tree T is a minimum spanning tree if and only if for each non-tree
edge f = {u,v}, the cost of f is greater than or equal to the cost of each edge on the
path from u to v.

Let T be the minimum spanning tree of G = (V, E). As defined in Section 1, the
replacement edge of edge e € T is the non-tree edge f that replaces e in the minimum
spanning tree of G' = (V, E — e). The removal of edge e breaks T into two fragments
T' and T". Tt is well-known ([16]) that the replacement edge f is that edge with
minimum weight edge in the cut induced by (T",T"). We arbitrarily root T' at some
vertex r. Then for each tree edge ¢ = {v,p(v)}, f is the minimum cost edge with
one endpoint in the subtree rooted at v. Thus to find replacement edges we run the
critical edge algorithm and set the replacement edge of e to be critical(v).

If the cost of a tree edge is greater than the cost of its replacement edge, then
a spanning tree of smaller total cost can be constructed by replacing the tree edge
with its replacement edge. If T is a minimum spanning tree, however, this situation
cannot occur; thus the replacement edges can be used to to verify the minimality of 7.
(An alternative method is to run the O(n)-time algorithm for computing minimum
spanning trees of Cheriton and Tarjan [2].)

To analyze the sensitivity of a minimum spanning tree T' we determine for each
edge e how much its cost can be perturbed before T is no longer minimal. We compute
lower and upper bounds [a, b] such that T remains minimal as long as a < cost(e) < b.
If e is an edge in T, then the lower bound is —oo. The above discussion implies that
the upper limit is the cost of the replacement edge of e. Now consider a non-tree edge
f = {u,v}. The upper limit for the cost of f is +00. By Lemma 2, the lower limit for
cost(f) is the cost of the maximum cost edge on the path from u to v. To compute
the non-tree edge lower bounds in linear time we find critical edges in the dual graph
G* = (V*,E*) of G.

Let S denote the planar subdivision given by the embedding of G. For each face
in S there is a corresponding vertex in G* and for each edge e in G there is a dual
edge e* connecting the dual vertices representing the two faces adjacent to e in S.
Thus G* is dependent on the embedding of G. The dual graph is clearly planar; an
embedding S is given by placing each dual vertex inside the face it represents and
placing each dual edge so that it crosses only the primal edge corresponding to it. We
set cost(e*) = cost(e). The planar graph representation scheme of [?] simultaneously
maintains both primal and dual graphs; in any case, given the embedding of G the

Figure 3: (a) A planar graph (bold) and its dual (shaded). (b)
Primal and dual spanning trees for the graph of (a).

dual can easily be computed in O(n) time. Further discussion of dual graphs can be
found in Harary [11]. An example is given in Figure 3.

Lemma 3 [5, 8] Given a spanning tree T in G, let T* be the set of dual edges {e*|e
isnot in T}. The set T* is a spanning tree for G* and, furthermore, T is a minimum
spanning tree for G if and only if T* is a mazimum spanning tree for G*.

Lemma 4 Let f = {u,v} be a non-tree edge in G; hence its dual f* is a tree edge in
T*. The replacement edge for f* in G* is exactly the dual of the mazimum cost edge
on the path between u and v in T

Proof. As in Section 1, let R(f) denote the interior region of the plane bounded by
f and the path in T from u to v. Removal of f* breaks T* into two fragments, 7™
and T™". All the vertices of one of these fragments (which are faces in the embedding
of G) lie inside R(f). Thus the edges in the cut (T*,T*") are exactly the duals of the
boundary edges of R(f). The replacement edge for f* is the minimum weight edge
in this cut. O

By Lemma 4 the lower limits for the non-tree edges can be computed by finding
replacement edges in the dual graph and setting the lower bound for each non-tree
edge to be the cost of its dual replacement edge. The result of this section are
summarized in the following theorem.

Theorem 1 The problems of computing replacement edges and determining the sen-
sitivity of a minimum spanning tree of a planar graph can be solved in O(n) time and
space.

10

4 Shortest Path Tree Analysis

Let G be a directed graph whose edges each have an associated cost and let T be a
single-source shortest path tree jfrom source vertex s. In shortest path sensitivity
analysis we are interested in finding bounds [a,)] on the cost of each directed edge
e such that, in the absence of other changes, T remains a shortest path tree for
a < cost(e) < b.

Let d(v) denote the distance from s to v, which is the sum of the costs of the
edges on the path from s to v in T'. The following lemma is well-known.

Lemma 5 [15, 18] A spanning tree T in G is a shortest path tree if and only if for
all non-tree edges e = (u,v), d(u) + cost(e) > d(v).

Let e = (u,v) be a non-tree edge. By Lemma 5, T remains a shortest path tree
for (d(v) — d(u)) < cost(e) < +00. Now consider a tree edge e = (p(v),v). Changing
cost(e) by A changes the distances d(v) for all nodes z in T, the subtree rooted at
v. Lemma 5 implies that for T to remain a shortest path tree, A must satisfy the
following constraints:

1. for each non-tree edge f = (z,y) such that z € T, and y ¢ T, (the outgoing
edges), A > d(y) — d(z) — cost(f)

2. for each non-tree edge f = (z,y) such that y € T, and z ¢ T, (the incoming
edges), A < d(z) — d(y) + cost(f).

For each non-tree edge f = (z,y) we compute a transformed cost cost’(f) =
cost(f) + d(z) — d(y). Then the lower bound on the cost of tree edge e = (p(v),v) is
cost(e) — cost'(fo), where fo is the edge going out from T, of minimum transformed
cost. The upper bound for e is cost(e)+ cost'(f1), where f7 is the edge coming in to T,
of minimum transformed cost. To compute fp for each vertex v we initialize the edge
lists of each vertex to contain only outgoing edges and run the critical edge algorithm,
setting fo = critical(v). To compute f; we initialize the edge lists to contain only
incoming edges and again run the critical edge algorithm, setting f; = critical(v).
(Note that these initializations preserve the planarity of G.)

Theorem 2 Sensitivity analysis of a single-source shortest path tree in a planar graph
can be performed in O(n) time and space.

5 Minimum Cost Network Flow

We consider the network flow problem in which each edge e of the network G has
upper and lower capacity bounds [l,u] and a cost per unit flow across e, and each
vertex has a demand D(v). If D(v) > 0, v is a source; if D(v) < 0, v is a sink. A

11

minimum cost flow in G assigns flow values z(e) to the directed edges of G that satisfy
the flow constraints and minimize the sum over all edges of z(e)cost(e). Sensitivity
analysis determines how much the edge costs can be perturbed without changing the
optimality of the flow.

If there is any feasible flow there is an optimal flow with basis T'; T' is a spanning
tree of G such that any non-tree edge has flow z(e) = Il(e) or z(e) = u(e). There
exists a price function on the nodes = such that the transformed cost of e = (z,y),
cost'(e) = cost(e) + w(z) — w(y), is zero for all tree edges. The flow is optimal if
and only if for all non-tree edges f, cost'(f) > 0 if z(e) = l(e) and cost'(f) < 0 if
z(e) = u(e) [14].

If we root T at some vertex r, we can regard T' as a shortest path tree from r,
with 7(v) the distance from r in the tree, by replacing any edge e pointing up the
tree by a reversed edge e’ with cost —cost(e). Then the sensitivity of the flow can
be found by computing the sensitivity of the shortest path tree, reversing upper and
lower bounds for reversed edges. Further details can be found in [14].

Theorem 3 Sensitivity analysis of a minimum cost network flow in a planar network
can be performed in O(n) time and space.

6 Acknowledgements

We would like that thank Robert E. Tarjan for his insightful comments.

References

[1] K. Booth and G. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci.,
13:335-379, 1976.

[2] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J.
Comput., 5:724-T742, 1976.

[3] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-trees. J. Comput. System Sci., 30:54-76, 1985.

[4] D. Eppstein. Finding the k smallest spanning trees. Manuscript, 1989.

[5] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and
M. Yung. Maintenance of a minimum spanning forest in a dynamic planar graph.
In Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, to ap-
pear. Submitted to SODA special issue of Journal of Algorithms.

12

