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Abstract

High communication bandwidth in standard technologies is more expensive to realize than a
high rate of arithmetic or logic operations. The effective utilization of communication resources is
crucial for good overall performance in highly concurrent systems. In this paper we address four
different communication problems in Boolean n-cube configured multiprocessors: 1) broadcasting,
i.e., distribution of common data from a single source to all other nodes, 2) sending personalized
data from a single source to all other nodes, 3) distribution of common data from all nodes to all
other nodes, 4) sending personalized data from all nodes to all other nodes. Routing according
to the well-known spanning tree obtained by bit-wise complementation of leading zeroes (referred
to as SBT routing for Spanning Binomial Tree) is compared with routing based on multiple span-
ning binomial trees obtained through rotation, nRSBT, n Rotated Spanning Binomial Trees, and
rotation and translation, nESBT, n Edge-disjoint Spanning Binomial Trees. The nESBT routing
with appropriate scheduling offers a speed-up over the SBT routing by a factor of up to n for
broadcasting. The nESBT algorithm fully utilizes the bandwidth of the Boolean cube. It can also
be used to accomplish graceful degradation under faulty conditions.

For personalized communication and all-to-all broadcasting, i.e., cases 2, 3 and 4, routing
according to a Spanning Balanced n-Tree (SBnT) offers a lower complexity than SBT routing. The
potential improvement is by a factor of n. Our analysis takes into account the size of the data
sets, the communication bandwidth, and the overhead in communication. We also provide some
experimental data for the Intel iPSC/d7.

1. Introduction

In this paper we investigate two generic communication problems in Boolean n-cube configured
ensemble architectures. The first problem is broadcasting, i.e., the distribution of the same data set
from one node to all other nodes, or a subset thereof. The second problem is that of personalized
communication in which case a node sends a unique data set to all other nodes, or a subset thereof.
This is the familiar situation in which each recipient receives a personalized message from the same
agency. We consider broadcasting from a single source to all other nodes, one-fo-all broadcasting,
as well as concurrent broadcasting from all nodes to all other nodes, or all-to-all broadcasting
in the case all nodes are performing one-to-all broadcasting. Broadcasting, in the sense of one
node distributing the same data set to all nodes in a cube, is used in a variety of linear algebra
algorithms [11, 20, 19], such as matrix-vector multiplication, matrix-matrix multiplication, LU-
factorization, and Houseliolder transformations. It is also used in data base queries and transitive
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closure algorithms [4]. For the broadcasting operation a spanning tree can be used for the routing.
Data is replicated according to the fan-out of the nodes in the tree as it passes from the root towards
the leaves. The reverse of the broadcasting operation is reduction, in which the data set is reduced
according to the fan-in as data is moving from the leaves towards the root. The reduction operation
may be addition/subtraction as used in the computation of global sums for inner products or
histogramming, or a max/min operator as used in searching/sorting, or a composition of reduction
and other operators as in the solution of tridiagonal systems by cyclic reduction [5], recursive
doubling {22], and parallel prefix computations [23].

In personalized communication a node delivers (or collects) personalized information to (from)
all other nodes, or a subset thereof. We restrict ourselves to two cases: one-to-all personalized
communication and all-to-ali personalized communication. The fundamental difference between
broadcasting and personalized communication is that in the latter no replication/reduction of data
takes place. The bandwidth requirement is highest at the root of the spanning tree and is reduced
monotonically towards the leaves. Personalized communication is used, for instance, in transposing
a matrix, and the conversion between different data structures [20, 16]. Matrix transposition is
useful in the solution of tridiagonal systems on Boolean cubes for certain combinations of machine
characteristics [21], and for matrix-vector multiplication.

The routing problem investigated here is that of routing according to some form of a spanning
graph SG for a graph G = (V,E), where V is the node set and E is the set of edges. A spanning
graph is a connected, directed, graph with node set V and edge set being a subset of the edge set
E; SG = (V,SE), SE C E. One class of spanning graphs is that of spanning trees. A Boolean
cube has many spanning trees. A Hamiltonian path is one example. In real architectures a time
is associated with each edge traversed, as well as each operation performed in the nodes of the
paths. In order to minimize the maximum time for a data element to reach any destination it is of
interest to minimize the maximum path length, i.e., the diameter, or height, of the spanning graph.
Minimizing the height minimizes the propagation time, the time for the first data element to reach
the furthest destination(s). The data unit may be atomic (a bit, byte, word, record), or a collection
of atomic units.

In broadcasting several atomic units minimizing the time to completion may be a more inter-
esting criterion of effectiveness than minimizing the propagation time. A spanning tree only uses
N —1 of the nN directed edges of an n-cube. The bandwidth of the Boolean cube is poorly used. In
a spanning graph the bandwidth of the Boolean cube may be used more effectively by incorporating
additional edges in the routing algorithm. The spanning graphs we consider are either spanning
trees, or compositions of n spanning trees. The composition is made through rotation, or rotation
and translation, and a direct sum. In the composition, each tree is given an equal weight % Hence,
the weight of all nodes is 1, but the weight of the edges falls in the range [;l;, 1). The smallest value
applies for graph edges that are used only in one of the trees used in the composition. A graph
edge occurring in every spanning tree, if there is such an edge, has the weight 1.

In a spanning graph there is a set of outgoing edges associated with every incoming edge. The
sets are not necessarily disjoint. The task of the routing algorithm is to retransmit the appropriate
parts of the incoming messages on the outgoing edges, or ports. In broadcasting using a spanning
tree the incoming message is retransmitted on every outgoing port in the set of ports associated with
the input port. Broadcasting using other spanning graphs may use message combination such that
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a message needs to be disassembled upon receipt, and different pieces retransmitted on different
ports, potentially combined with messages from other input ports. In personalized communication
the incoming message is broken up into pieces, one for each port in the output set associated with
the input port, and one for the node itself. In a distributed computing environment it is clearly of
interest that the routing algorithm be distributed. All routing algorithms discussed in this paper
only use local information, and are synchronized by message arrivals.

The routing algorithm establishes the paths of the messages. The scheduling algorithm de-
termines the order in which messages are sent on different ports as well as the message order for
each port. The goal of the scheduling algorithm is to avoid unnecessary delays and allow messages
to propagate at the maximum speed. We investigate two extreme cases with respect to communi-
cation constraints: communication on one-port-at-a-time for every node, one-port communication,
and concurrent communication on all n ports of every node, n-port communication. In broad-
casting, the data order for a given port is irrelevant, but in personalized communication it effects
the communication complexity. We investigate two orderings: postorder starting with the largest
subtree recursively, and reverse-breadth-first ordering. The first ordering is of interest in one-port
communication, the second for n-port communication. In the reverse-breadth-first ordering data for
the most remote nodes are ordered first and data for the nodes adjacent to the source node last.
With the restriction of one-port communication we interleave the communication on the different
ports such that the minimum time between successive communications on the same port is maxi-
mized. For the spanning binomial tree this port scheduling results in communications on ports in
the same order as the order in which dimensions are encountered in the binary-reflected Gray code.

For all-to-all communication the interleaving of the spanning graphs rooted at different nodesis
of interest. In particular, it is important to find the maximum number of elements that traverse any
cube edge during any routing cycle (assuming a synchronous algorithm). For all-to-all broadcastiag
it is sufficient to know the number of edges of the spanning graph in a given dimension and ata
given distance from the source in order to determine the number of elements contending for an
edge during a routing cycle. In personalized communication and postorder scheduling it suffices to
know, for every level of the spanning graph, the sizes of the subtrees connected through a given
dimension to the nodes at a preceding level. In reverse-breadth-first scheduling the number of nodes
at successively decreasing distances in subtrees needs to be considered.

In real architectures communications overhead and buffer sizes are determined as a trade-off
between implementation cost and performance. The communications overhead is a fixed delay,
start-up 7, for each communication. Such a delay often gives rise to an optimization problem in
which delay is traded for increased utilization. This point is easily illustrated for broadcasting M
elements along a path of length N. The minimum number of start-ups is clearly N, and the total
time N(Mt. + 7), where t. is the transmission time for an element. By dividing the set M into
packets of size B and pipelining the communications the total time becomes ([%{] +N-1r+
(M + (N = 1)B)t,, which has a minimum of Tpyn = (Mt + /7(N — 1))2 for By = \/IN—A—{fE'

Pipelining, as described above for broadcasting, is part of the scheduling discipline. It is also

applicable to personalized communication. In the reverse-breadth-first scheduling, successive levels
are pipelined. In the postorder scheduling, pipelining is also used, in that several packets may be
progressing away from the source in the same subtree, but successive communications are typically



made on different ports. In broadcasting pipelining implies dividing the set Af into pieces. In
personalized communication it never pays to subdivide Af, but it may be beneficial to divide the
data set for a given port into several messages. For instance, for personalized communication based
on a Hamiltonian path, the communication time is minimized by communicating data for each node
separately, but in the case of a spanning binomial tree and one-port communication the optimum is
an entire subtree at a time, as we will show later. With n-port communication and reverse-breadth-
first scheduling it is never beneficial with respect to communication time to divide the data for a
given level into more than one packet.

For the all-to-all communication, pipelining is not an issue for a lower bound algorithm. With
one-port communication all the links in a dimension are evenly used during each routing cycle, and
with n-port communication all links in any dimension are evenly used. The data transfer times are
already optimal in both cases. Pipelining can only increase the number of start-ups.

Data communication in Boolean cubes has received significant interest recently due to the
success of the Caltech Cosmic Cube project [29] and commercially available Boolean cube config-
ured concurrent processors (from Intel, NCUBEJ[13], and Ametek, and cube-like architectures from
Floating-Point Systems[12] and Thinking Machines Corp. [14]). The embedding of complete binary
trees is treated in [31, 20, 27, 7, 3]. Wu also discusses the embedding of k-ary trees. Embedding of
arbitrary binary trees is discussed in [3] and improved in [2]. Efficient routing using randomization
for arbitrary permutations has been suggested by Valiant [30]. Broadcasting of data from a single
source to all other nodes, and from all nodes to all other nodes is also studied in [9. 28]. For
one-to-all broadcasting we propose an algorithm that offers a speed-up of a factor of logy N over
the algorithm in [9, 28]. The communication complexity of our algorithm is the same as the lower
bound. We also present lower bound algorithms for personalized communication. lower bound
algorithms for all-to-all broadcasting similar to the one in [28], and lower bound algorithms for
all-to-all personalized communication. We consider both communication restricted to a single port
as iu [9] and concurrent communication on multiple ports. We give both routing and scheduling
algorithms, and analyze the complexity in detail. The analysis is compared with experimental data.
The one-to-all communication algorithms are discussed briefly in [15].

In this paper we focus on spanning graphs in the form of Hamiltonian paths (HP), two-
rooted complete binary trees (TCBT), wspanning binomial trees (SBT), and spanning balanced n-
trees (SBnT), and combinations thereof in the form of n rotated SBTs, nRSBT, aud n edge-disjoint
SBTs, nESBT. A balanced n-tree has a fan-out of n at the root, and each of the subtrees of the root
has approximately the same number of nodes. Hence, a complete binary tree is a balanced 2-tree.
We first state some of the essential characteristics of the Boolean cube, then describe some of the
topological properties of each of the spanning graphs as well as distributed routing algorithms for
generating the graphs. Then we consider one-to-all and all-to-all communication. For each we
consider broadcasting and personalized communication, and present routing algorithms and derive
optimum scheduling strategies and packet sizes.

2. Notations and Definitions.

A Boolean n-cube has N = 2" nodes, diameter n, (’}) nodes at distance 7 from a given node.
and n disjoint paths between any pair of nodes. The paths are either of the same length as the
Hamming distance between the end points of the paths, or the Hamming distance plus two [27].
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The fan-out/fan-in of every node is n, and the total number of communication links is %nN, or nN
if the links are bidirectional (concurrent communication in both directions).

In the following, N denotes the number of nodes in the Boolean cube and n = log, N the
dimension of the cube. Nodes in the cube are assigned binary addresses such that adjacent nodes
differ in precisely one bit. Address bits are numbered from 0 trough n — 1 with the lowest order bit
being the 0'* bit. Node ¢ is the node that has a binary address equal to¢,i.e., 7= (an-1an-2...4a0).
Let @ be the bit-wise exclusive-or operation. The 7** port of a node ¢ connects to the node k that
differs from 7 in the 7' bit, i.e., i@ k = (On-10p-2...05411;0;-1...00). There is a port, or dimension
d, for each address bit, and ports (dimensions) are numbered from 0 through n — 1. Let |i| denote
the number of bits with value one in the binary number 7, hence |{® ;| denote the Hamming distance
between the binary numbers ¢ and j.

A spanning tree of the Boolean cube is a connected subgraph of the Boolean cube graph which
contains all the nodes of the Boolean cube and is a tree. In this paper, we consider the spanning
tree as directed. A source node, or a root node, is a node with in-degree 0. A sink node, or a leaf
node, has out-degree 0. Nodes that are neither source (root) nor sink (leaf) nodes are internal
nodes. A spanning graph, as used in this paper, is either a spanning tree, or a sum of n spanning
trees. A spanning graph is a connected, directed, graph with weighted edges. The weight of an
edge in each of the spanning trees forming the spanning graph is %, except in the trivial case where
the spanning graph is a spanning tree, in which case the weight of every edge is 1. The weight of
an edge in the spaning graph is equal to the number of times the edge occurs in any of the trees
making up the spanning graph, divided by n. The weight represents the fraction of the data each
edge is transmitting.

A greedy spanning tree is a spanning tree for which the path length from the root to any node
is equal to the shortest distance between the root and the node in the graph G, i.e., the Hamming
distance in the case of a Boolean cube. A greedy spanning graph is a spanning graph such that the
composed spanning trees are all greedy.

The root of a spanning graph is at level 0 and the level, I, increases by one for each directed
edge traversal away from the root. The height, h, of a spanning graph is equal to the maximum
level. The nRSBT, nESBT and SBnT spanning graphs are constructed out of n spanning trees (or
subtrees) labeled O through n — 1 (from left to right in the figures of this paper).

R denotes the right rotation function defined by R(:) = (apan-1@n-2...a1), where i =
(@n-1Gpn-3...a0), and R’ = R’~1 o R meauns a right rotation of 5 steps. The rotation of a graph
with binary node addresses is accomplished by applying the same rotation function to all its ad-
dresses. Similarly for the translation of a graph. Clearly, adjacency is preserved under rotation and
translation. Translation also preserves the relative order of dimensions. The period of a binary
number ¢, P;, is the least j > 0 such that i = R’(¢). For example, the period of (011011) is 3. ‘A
binary number is cyclic if its period is less than its length and it is non-cyclic otherwise. A relative
address of a node 7 in a spanning tree rooted at node s is : @ s. A cyclic node is a node with cyclic
relative address. Note that a cyclic node is defined only when the source node is given.

The communication is assumed to be packet switched. M denotes the number of elements
to be transmitted from the source node to any other node, ¢, the transfer time for an element,
and 7 the start-up time for the communication of a packet of maximum By, elements. We assume
concurrent bi-directional communication, i.e., that a pair of adjacent nodes can exchange a pair

5



of messages during any routing cycle. With one-port communication we mean that each node can
ezchange data with one other node. In n-port communication a node can concurrently exchange
data with all of its neighbors.

3. Spanning Graphs

In this section we define and characterize a few spanning graphs. For the all-to-all communi-
cation we assume that the spanning graphs for the different source nodes are distinct translations
of each other. The interleaving properties of the different graphs determine the complexity of the
communication. The translation of a graph through a bit-wise exclusive-or operation preserves
the order of the dimensions, and hence the number of edges in each dimension. Let E; be the
number of spanning graph edges in dimension d, and Ewy be the corresponding sum of weights of
edges. For a spanning tree Ewy = E4. Moreover, let EL!,V denote the number of spanning graph
edges mapped to every cube edge in dimension d for N distinctly translated spanning graphs. To
determine the total load on an edge, E'wL(’,V, during all-to-all broadcasting based on N distinctly
translated spanning graphs, the sum of weights of spanning graph edges mapped to every cube edge
in dimension d is needed. To determine the number of elements, ewL{y,, contending for any cube
edge in dimension d during a given routing cycle during all-to-all broadcasting the total weight of
edges between levels [ and I+ 1 in dimension d. ewyq, of the spanning graph is needed. To determine
ewy we first consider e;q, the number of edges between levels [ and [ + 1 in dimension d. Clearly,
Z;;—ol ewyg = Ewy. For a spanning tree ew;q = ¢4 and Ewyg = E4. Moreover,

Lemma 3.1. For a spanning graph composed of n edge-disjoint spanning trees of equal weight,
Ewys = %Ed and ewqy = %e,d.

Lemma 3.2. For a spanning graph SG composed of n distinctly rotated spanning trees ST of equal
weight Ew;¢ = 1371 pST = E-l 0<d<n-1,and ewff = Ly el = L (the number
of edges between levelsl and | + 1 in (any) one spanning tree),0 < d < n - 1.

Let Ej,v denote the number of edges in dimension d for N distinctly translated spanning graphs,
and e{y, the total number of edges in dimension d extending from nodes at distance ! from their
respective sources. Then Ef,v =N x Ey, e{)} = N X eq. and eV wyg = N x ewyq.

Lemma 3.3. For N distinctly translated spanning graphs, the number of spanning graph edges
mapped to every cube edge in dimension d. ELY . is E4, and the number of spanning graph edges
extending from nodes at distance | from their sources mapped to every cube edge in dimension d,
eL{g, is ¢14. Correspondingly, EwLY = Ewy, and ewL,’Y, = ewyq.

Proof. Any spanning graph edge is mapped to a distinct cube edge in the same dimension through
N distinct exclusive-or operations. Hence, E4 spanning graph edges are mapped to every cube edge
in dimension d, and ELY = E,. The bitwise exclusive-or operation also preserves the topology of
a spanning graph, hence the number of edges at a given distance from the source node. It follows
that eL,’Z = ¢;4. The argument for the weighted quantities is identical.

|

The value of EwLY = Fw, determines the total data volume that needs to be communicated
across a cube edge during broadcasting. which is a lower bound for all-to-all broadcasting based
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on the N translated spanning graphs. and concurrent communication. With synchronous routing
and the same scheduling discipline in each node. ewL] = ewiq determines the number of elements
contending for the same cube edge for n-port communication. This gives an upper bound.

For personalized communication we consider two scheduling disciplines:

e Postorder for each port and maximizing the minimum time between successive communications
on the same port for one-port communication. With n-port all-to-all personalized communi-
cation, we also consider postorder for each port and concurrent communication for all the n
ports.

® Reverse-breadth-first order for n-port communication.

In the following we refer to the first scheduling discipline simply as postorder scheduling. With
~.n-port all-to-all personalized communication, a determining factor for the complexity of postorder
scheduling is the maximum size of any subtree rooted at successive levels of the spanning graph.
For the reverse-breadth-first discipline. the maximum number of nodes at successively decreasing
distances from the root of any subtree of height at least equal to the given distance is a determining
factor. Figure 1 shows the node sets considered for three routing cycles.

Lemma 3.4. Given a spanning tree, let ¢(i,7) be the number of nodes at distance 7 from node
v in the subtree rooted at node i. If ¢(i.j) > é(k,7) for any child node k of node t, then the
data transfer time of n-port one-to-all personalized communication based on the given tree and
reverse-breadth-first scheduling is dominated by the edges from the root.

Proof. 1t follows from the fact that the propagation time for the internal nodes is at most the same
as the transmission time for the root during each routing cycle.

The property in lemma 3.4 simplifies the analvsis of the communication complexity. Only the
largest subtree need to be considered if the largest subtree is also of maximum height.

Step 1 Step 2 Step 3

Figure 1: Node sets for reverse-breadth-first scheduling.

The total load on a cube edge for all-to-all personalized communication based on N translated
spanning graphs is determined by the total number of subtree nodes connected through a given
dimension. For a spanning graph s;q denotes the total number of nodes in the subtrees rooted at
level [ 4 1 having subtree roots connected to level I through an edge in dimension d. swyy denotes
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the corresponding weighted quantity. For N distinctly translated spanning graphs sL{:’, denotes the
total number of nodes, which receive data through a link in dimension d and have a predecessor
node at level l. swL{‘c’, denotes the weighted quantity.

For n-port communication and the reverse-breadth-first scheduling discipline, the data for nodes
at level [ is sent during routing cycle h — I, assuming commencement of the routing at cycle 0, and
a height h of the spanning graph. Consequently, nodes with children at a maximum distance of
h — 1 — k will receive data from its parent during cycle ¥ and become active sending out data from
cycle k + 1 until the last cycle, i.e., cycle h — 1. Sender nodes are between levels 0 and k. All
the data for nodes between levels h — k and h are on their way during the k** cycle. All the data
elements will arrive at their destinations during the last routing cycle. We define ri4 to be the sum
of nodes at distance ! from ancestor nodes, with ancestor nodes connected by edges in dimension
d to their parents, and rwiqg to be the corresponding weighted quantity. The subscript [, defined as
the relative height, is the complement of the routing cycle such that I + k = h — 1, Figure 1. For
N distinctly translated graphs the number of edges being mapped to every cube edge in dimension
d is equal to the number of edges in dimension d of the spanning graph being translated. Hence,
the number of elements transmitted across any edge in dimension d during the k** routing cycle,
er&_l_k) 40 is equal to the number of elements transmitted through dimension d by all nodes at
levels O through &, rw(s—1-¢)q4-

Lemma 3.5. For N translated spanning graphs the number of subtree nodes in subtrees rooted at
nodes of level | + 1 and connected to a node at level | through dimension d is sL,I:; = $14. Similarly,
swLﬁ = swig. The number of nodes that are at a distance of | + 1 from the originating node of
every cube edge in dimension d is rL,}y, = r14. Similarly, er,’:’, = ruyg.

Proof. Same argument as in the previous proof.

|
Lemma 3.8. For a spanning graph composed of n edge-disjoint spanning trees of equal weight,
swyg = %Sld and rwyg = -,l;nd.
Lemma 3.7. For a spanning graph composed of n distinctly rotated spanning trees of equal weight
and with height h, swig = rwyg = Zf:,l ewig. 0<I<h~-10<d<n-1.

Proof. From the property of n distinct rotations it follows that sig is the sum of the number of
nodes at levels ¢,/ + 1 < ¢ < h, for one spanning tree. Similarly, r;4 is the sum of the number of
nodes at levels ¢, [+ 1 < ¢ < h, for one spanning tree. Hence, s;g = ;4. By lemma 3.2, ¢;q = the
number of edges between levels ! and [ 4+ 1 in oue spanning tree, which is also the number of nodes
at level [ + 1 in one spanning tree. Lemmas 3.1 and 3.6 completes the proof.

Lemma 8.8. A spanning tree of an n-cube is greedy iff the number of nodes at level | is (7).

Proof. There are (7) nodes at distance ! from any cube node.

Corollary 8.1. Any greedy spanning graph has minimum height.

Note that a spanning graph of minimum height is not necessarily a greedy spanning graph.
For instance, a two-rooted complete binary tree has minimum height, but is not a greedy spanning
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graph. In all-to-all personalized communication only greedy spanning graphs can serve as a basis
for scheduling disciplines that accomplishes lower bound communication.

Lemma 3.9. A greedy spanning graph of an n-cube is acyclic.

Proof. A greedy spanning graph, by definition, is the sum of greedy spanning trees. Since all
the edges of a greedy spanning tree rooted at node s are pointing from node i to node J with
[7®s| = |i®s|+ 1, it is acyclic.

3.1. The Hamiltonian Path
There are many ways of generating Hamiltonian paths in a Boolean cube. One such way is to
" use a binary-reflected Gray code [26]. We refer to such a path as a BRG path.

Lemma 3.10. The number of edges E4 in dimension d of a BRG path is 2"~9-1 and the npumber of
edges e;g in dimension d between levels | and !l + 1 of the BRG path is

_§0, d#t;
=11, d=1t,

where t is the dimension of transition of the binary reflected Gray code in proceeding fron:l
tol+ 1, which is also the dimension (bit position) of the rightmost 0 of the binary encoding of .

Lemma 3.11. The number of nodes in subtrees rooted at level | + 1 and having subtree roots
connected to level | through edges in dimension d is

oy = 0. d#t;
M=AN-1-1, d=1t.

The number of nodes ri4 at distance ! from their ancestor nodes with ancestor nodes connected by
edges in dimension d to their parents is

N 1-2941
Nd= ga71 = | T gd+1

By rotation of the dimensions of the BRG path, n different paths are generated.

Lemma 3.12. The paths of an nRBRG graph obtained through n distinct rotations of a BRG path
are not edge-disjoint, for n > 2,

Proof. By direct evaluation. For instance, the edge 2 — 6 is used in two paths of the 3RBRG, and
those two paths are part of every nRBRG graph for n > 3.
|

In fact, it can be shown that path i and path j share 2"~®~! 4 27=8=1 _ 9 edges where
o= (i — j) mod n and B = (j — i) mod n. Also. n edges are shared by n — 1 paths, i.e., the edges
from node (00...01;0..0) to node (00..01;4;1,0..0). 0 < j < n—1. Figure 2 shows three rotated BRG
paths in a 3-cube. The fact that the paths are not edge-disjoint limits the potential for pipelining.

9
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Figure 2: Three rotated binary-reflected Gray code paths in
a 3-cube.

Lemma 3.13. In an nRBRG graph, the edges hetween nodes at distance l and distance l + 1 from
the source node are edge-disjoint for0 <1 < N — 1.

Proof. By construction the edges are in different dimensions.

1
Lemma 3.14. In an nRBRG graph, E; = %]\', etda=1, Ewg = %(N— 1) and ewyq = %, de[0,n-1],
le[o,N —1].
Proof. From the definition of the nRBRG graph, it can be shown that path j and ({J path i,i €
{0,1,...,5 — 1}) have & — 1+ |2/=2] edges in common. 1 < j < n — 1. Hence, the total number of
cube edges in the nRBRG graph is %nN and E; = %N. erg is derived from e;q4 of the BRG. Fwy
and ewq are derived by lemma 3.2.

Lemma 3.15. In an nRBRG graph, swijq = ruyg = 1(N =1 -1).
Proof. By lemmas 3.7 and 3.14.

3.2. The Spanning Binomial Tree

A O-level binomial tree has 1 node. An n-level binomial tree is constructed out of two (n — 1)-
level binomial trees by adding one edge between the roots of the two trees, and by making either
root the new root, {1, 8]. It follows from this recursive construction that:

1. An n-level binomial tree has () nodes at level 7.

2. The n-level binomial tree is composed of n subtrees each of which is a binomial tree of
0,1,...,n—1 levels respectively. The k level subtree has 2* nodes. Hence, one subtree has %N
nodes, another 1V nodes etc.

3. An n-level binomial tree can be obtained from a k-level binomial tree, k¥ < n, by replacing
each node of the k-level binomial tree by an (n — k)-level binomial tree. The children nodes of
a node in the k-level tree become children of the root of the replacing (n — k)-level binomial
tree.

Since an n-level binomial tree can be embedded in an n-cube as a spanning tree, we called it
a spanning binomial tree (SBT). It is a greedy spanning tree.

10



The familiar spanning tree rooted in node 0 of a Boolean n-cube generated by complementing
leading zeroes of the binary encoding of a processor address 7 [10, 20, 25, 27, 29] is indeed a spanning
binomial tree. For an arbitrary source node s the spanning tree is simply translated by a bit-wise
exclusive or operation on all addresses with the address of the source node, i.e., c =@ s is formed.
Complementation of those bits of i that correspond to the leading zeroes of ¢ defines the edges
of the translated spanning tree. More precisely, let s = (8n-18n-2...50), 1 = (@p-1@p-2...a0), and
¢ = (Cn-1Cn—2...C0), Where ¢y, = sy @ ap. Let ¢ = 1 and ¢, = 0,Vm > k with k = —1 for ¢ = 0,
i.e., k is the highest order bit of ¢ that is 1. Let childrengpt(i,s) be the set, of children nodes of
node ¢ in the SBT rooted at node s and Mspr(i @s)={k+1,...,n - 1}. Then,

childrenspr(i,s) = {(an-1ap-2...8m...a0)}, VYme Mspr(i & 5).
The children function defines the SBT. This definition can be used as a distributed algorithm

for generating the SBT. Each node only needs information of which node is the source node, and
its own address. The parent function, parentsgr(: ,8) is the inverse of the children function.

¢. ft=s;
(@n-1@n-2....0k...a0), 1 # s.

It is easy to verify that the parent and children functions are consistent, i.e., that node Jisa
child of node ¢ iff node 7 is the parent of node ;. Figure 3 shows a spanning tree generated by the
children (or parent) function for the root located at node 0 in a 4-cube.

parentspr(i,s) = {

0000

1011 1101

Figure 8: A spanning binomial tree in a 4-cube.
Lemma 8.16. Let ¢(i,7) be the number of nodes at distance 7 from node ¢ in the subtree rooted at
node t. Then, ¢(¢,7) 2 ¢(k,j) where node k is a child of node i.

Proof. From the definition of the SBT. the subtree rooted at node k is a connected subgraph of
the subtree rooted at node :.
|

Lemma 3.17. The number of edges E;4 in dimension d is 2¢,0 < d < n— 1 and the number of edges
etq between level | and I + 1 in dimension d is (‘Il) where the root is at level 0.

11



Proof. By induction on the cube size.
1

Lemma 3.18. The number of nodes s14 in subtrees rooted at level |+ 1 with subtree roots connected
to level l through dimension d is (7)2"""‘1. (Note that (:) = 0ifr < y.) Moreover, max s;q, 0<
d < n—1is attained at d = min(2l,n — 1).

Cog= 4 (2L ifo<i |2
max sig = { (n;l), if[.";_lj <l<n-1

Tid = (""7-1)2(1 = s,(n_d_l),O S l,d _<_ n—1.

3.3. The Complete Binary Tree

A complete binary tree of 2" — 1 nodes cannot be embedded in an n-cube with edge dilation 1
(28, 3, 7], but a Two-rooted complete binary tree (TCBT) can [3, 7]. A two-rooted complete binary
tree is a complete binary tree with the root split into two nodes. Hence, the TCBT has 2" nodes.
Figure 4 shows a 16 nodes two-rooted complete binary tree. The distance between the root and the
furthest node is n for an N nodes TCBT. The number of nodes at level ¢ of an N nodes TCBT is

1. if:=0;
2. ifi=1:
3x272 if2<i<n:
N/4. if 1 = n.
Level Rl
0
R,
1
2
3
4

Figure 4: A 16 nodes two-rooted complete binary tree.

3.4. The nRSBT Spanning Graph

The nRSBT graph is the union of n spanning binomial trees each of which is a distinct rotation
of the SBT described previously. Figure 5 shows the nRSBT graph of a 3-cube with the appropriate
weights on the edges. The nRSBT graph contains all cube edges directed in the 0 — 1 direction,
Le., half of the total number of cube edges. The nRSBT graph is a greedy spanning graph, and
hence acyclic by lemma 3.9.

12



Lemma 3.19. If the source is node O, then for any node the weight of a 0 — 1 incoming edge in
dimension d is 5—';5-1, where k is the number of consecutive 0-bits immediately to the left of bit d.

Proof. From the definition of the SBT and the rotation property, the given cube edge in dimension
doccurs in SBT d+1,d+2,...,d+k+1,i.e., in these k+1 SBTs, bit d is the last bit complemented
in reaching the node being considered.

For instance, node (011001) has an incoming edge in dimension O weighted 1/2, an incoming
edge in dimension 3 weighted 1/6, and an incoming edge in dimension 4 weighted 1/3. As a
k+1

consequence of this lemma, the weight of a 0 — 1 outgoing edge in dimension d is = with the

same k defined above. Nodes at level [ have | parents and (n — ) children in the nRSBT graph.
Corollary 3.2. The sum of the weights of incoming edges is 1 for every node, except for the source.

Proof. From lemma 3.19 it is clear that the weight of a 0 — 1 edge is equal to % times the number
of dimensions encountered before the next 1 in the address is found to the left of the dimension
considered. Hence, the total weight is equal to % times the number of address bits.

Corollary 3.2 guarantees that every node receives the entire data set.

Lemma 3.20. For the nRSBT graph E; = %N and Ewy = %(N ~1). The edge weight in dimension

d between levels | and [ + 1 is ewyy = %(,_’;1), de(0,n-1], le[0,n-1].

Proof. Since ESBT = 1N it follows that EZRSPT = LN for every d, since rotation does not change
the direction of an edge. The rest of the lemma follows from lemma 3.2.
]

From this lemma and the greedy property, we conclude that all the %nN cube edges pointing
away from the root node belong to the nRSBT graph. Also, none of the %nN cube edges pointing
toward the root node belong to the nRSBT graph.

Lemma 3.21. The values of swig and rwiq are swig = rwig = 230, (7).

i=l+1 \y
Proof. By lemma 3.7.

3.5. The nESBT Spanning Graph

The nESBT (n Edge-disjoint Spanning Binomial Trees) graph is composed of n SBTs with
one tree rooted at each of the nodes adjacent to the source node. The SBTs are rotated such that
the source node of the nESBT graph is in the smallest subtree of each SBT. The nESBT graph
is then obtained by reversing the edges from the roots of the SBTs to the source node. After the
edge reversal each SBT becomes an ERSBT (for Edge Reversed Spanning Binomial Tree). Figure
6 shows an nESBT graph formed by three SBTs in a 3-cube. The height of the nESBT graph is
n + 1, since the source node is adjacent to all the roots of the SBTs used in the definition of the
nESBT graph. The total number of edges in the n SBTs is n(N - 1).

Before proving that the SBTs are edge disjoint we specialize the children function to the partic-
ular situation in the nESBT graph. Assume first that the source node is node 0. The SBTSs used for

13
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Figure 5: Three rotated spanning binomial trees as a span-
ning graph in a 3-cube.
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Figure 6: Subtrees of an nESBT viewed as SBTs.

the construction of the nESBT graph rooted at node O are rooted at nodes (00...010...0),¥j €
{0,1,...,n — 1}. We refer to the SBT rooted at node (00...01;0...0) as the j'* SBT of the
nESBT graph. The ;' ERSBT is obtained from the j** SBT by reversing the edge directed to
node O (the source). The j** SBT is obtained by rotating left 7 + 1 steps the SBT rooted at node
0, then translating its root to location (00.. .01;0...0). The children of a node in a given subtree,
say the j'* | can in principle be determined by a translation to move the root of the 7** subtree
to node 0, perform a j + 1 step right rotation of its address, execute the children function in the
definition of the SBT, perform a j + 1 step left rotation, and finally a translation to move the root
back to node (00...01;0...0). This cumbersome procedure is readily accommodated in a modified
children function.
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Figure 7: Three edge-disjoint directed spanning trees in a
3-cube.

Let ¢ = (an-1@n-2...00) and k be such that ax = 1, and a,, = 0,Ym € M,psp7(i,5), where
Muespr(i,7) = {(k+ 1) mod n,(k+ 2) mod n,...,(5 — 1) mod n}. Hence, k is the first bit to the
right of bit j, cyclically, which is equal to one, if k # 5. For : = 0 k = —1. For the j/* ERSBT of
the nESBT graph with source node 0 the set of children nodes of node ¢ is defined by

(@n—18n-2...8;...a0),Y5 € {0,1,...,n — 1}, ifk=-1;
. .. _ {(an—lan—2---anl~--a0)}»V7n € MnESBT(iaj) U{J}’ if ay = 1, k 56 j;
Chzldren,,EsBT(Z,],O) - {(an-1an—2-~-5m.--ao)},Vm € MnESBT(i’j)’ if a; = Lk=y;
d)a ifaj=0,k7é—1.

All nodes with bit j equal to zero are leaf nodes of the j'* ERSBT, except node 0. Conversly,
all nodes with a; = 1 are internal nodes of the j'» ERSBT. The exceptional connection to node 0 is
handled by the conditions on k. The first case defines the children for the root of the j*» ERSBT,
the second the set of children nodes of internal nodes of the j** ERSBT, except the node at level 1.
The third case handles the node at level 1, and the last case handles the leaf nodes of the ERSBT.
Figure 7 shows that the three ERSBTs of a 3-cube are edge-disjoint. Figures 8 shows nESBT
graphs with source node 0 in a 4-cube.

The parent,gspr function is

¢3 if k = -1,
parent,gspr(i,j,0) = (an_lan-g...’dj...ag), ifa; =0,k # —1;
(a,,_lan..g...ﬁk...ao), if a; = 1.

Theorem 3.1. The n directed ERSBTs are edge disjoint.

Proof. We only need to prove that for an arbitrary node the address of its parent node in each of
the n ERSBTSs is obtained by complementing a distinct bit.

From the definition of the ERSBTs it is clear that a node is a leaf node of the j** ERSBT
iff the s** bit is 0, with the exception of node 0. If a node is a leaf node of an ERSBT, then its
parents address in that ERSBT is obtained by complementing the corresponding bit (bit 5 for the
4'* ERSBT). If a node is an internal node of an ERSBT, say the j*» ERSBT, then the corresponding
bit is 1, and the parents address is obtained by complementing the first bit cyclically to the right
of the j'* bit that is equal to 1. Hence, the addresses of the parent nodes for all the ERSBTs of
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Figure 8: Four edge-disjoint directed spanning trees in a 4-
cube.

which the considered node is an internal node are also obtained by complementing distinct bits.
Figure 9 shows the parents and children of one node in a 6-cube. The numbers on the edges are the
dimensions through which the node connects to its parents or children nodes in different ERSBTS.
The labels on the nodes denotes the ERSBT to which the parent and children nodes belong.

For an arbitrary source node s an nESBT graph is defined by translating the nESBT graph
rooted at node 0. The only difference in the definition of the parent,gpspr and children,gspr
functions is that k is determined from ¢ = { & s. Hence, for a source node s, k is such that ¢ = 1,
and ¢y = 0,Vm € MugsBT(i @ s,7). For the special case of ¢ =0, k = —1.

(@n-18p-2...3;...a0),¥j € {0,1,...,n — 1}, ifk=~1;
{(an-10n-2...Tp...a0) },

. oo _ Vm e MnESBT(i@ 3&.7.) U{j}a if = 1, k ?é j;
ChildrennESBT(t’]’s) - {(a,,-la,,-g...ﬁm...ao)},
Vm € Muesar(i @ s,j), ifej=1,k=y;
R ifc; =0,k # -1.
¢, ifk=—1;
parentngspr(t, 5,8) = ¢ (An-10p-2...T,...a0), if ci =0,k # -1,

(a,,..la,,_g...ﬁ/,....ao), if ¢;=1.

Lemma 3.22. The j*" ERSBT can be derived by (7 — 7) mod n steps left rotations of each node of
the i*" ERSBT.
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Figure 9: Parents and children of a node in a 6-cube.

Proof. From the definition of the parent or children functions.
|

Corollary 3.3. There exist an edge-disjoint embedding of n Spanning Binomial Trees in an n-cube.

Corollary 3.4. The nESBT graph for a Boolean n-cube is a directed graph, such that all directed
cube edges, except those incident on the source node, appears precisely once in the nESBT graph.

Proof. Follows from theorem 3.1.
|

Corollary 3.5. The in-degree and the out-degree of any node in an nESBT graph is n, with the
exception that the source has in-degree 0 and all the neighbors of the source have out-degree n — 1.

Theorem 3.2. The height of the nESBT graph is minimal among all possible configurations of n
edge disjoint spanning trees.

Proof. To prove that with n edge disjoint spanning trees, the height n -+ 1 is minimal, we prove
that n disjoint spanning trees with height n is impossible. Without loss of generality, we assume
that the address of the root node is 0. The total number of directed edges in an n-cube is nN,
but only the edges directed out from the source may be used (assuming dilation 1). Each spanning
tree has N — 1 edges. Hence, every eligible edge is used by the n edge disjoint spanning trees. It
follows that the edges directed out from the node with address N — 1 also must be used, and since
this node is at distance n from the source node. the theorem follows.
|

Lemma 3.23. Labeling the levels of the nESBT graph from 0 to n+1 with O at the root, the number
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of nodes at level 1 of a single ERSBT is

() + (53 = (2), fornt12i2Lig2,
1, fori=0;

n-—1, for i = 2.

Proof. From the definition.
1

Lemma 3.24. For the nESBT Eq = N -1 and eta = (]),! € {2,n}. €og =1 and e1g = n — 1.

Ewd = %(]V - 1) and eWld = %eu.

Proof. By lemmas 3.1, 3.2 and 3.23.

|
Lemma 3.25. The values of swig and rwyq of an nESBT are
L(N=-1), forl=0;
swig=rwg=14 2(N-2), forl=1;
Ly, (0, for2<i<n
Proof. By lemmas 3.7 and 3.24.
|

3.6. The Spanning Balanced n-Tree

In the Spanning Balanced n-Tree [17] the node set is divided into n sets of nodes with approxi-
mately an equal number of nodes. Each such set forms a subtree of the source node. The maximum
load on the edges directed away from the source node is minimized for personalized communication.

We define the SBnT by pruning the nESBT graph. This SBnT is very well balanced, but can
be perfectly balanced. We show how this balancing can be accomplished. The two-stage definition
of the SBnT is made for ease of exposition. In the SBT a node ¢ belongs to the j** subtree iff
a;j = 1, ap = 0, k < 7. In the nESBT graph a node is an internal node of the j'» ERSBT if
a; = 1. Bit j can be considered as a base for the j'* subtree. For the SBnT we define the base
as follows: Let J; = {71,2,...,5m}, Where j; < jo < ...jm, R*({) = R'({), wu,v € J;, and
R*(i) < R'(?), weJ;, 1¢J;. |J;|=n/P; where P, is the period of i. Define base(i) = 7, l.e.,
the value of the base equals the minimum number of right rotations which minimizes the value of 1.
For non-cyclic nodes |J;| = 1, but for a non-cyclic node ¢, P; < n, hence, |J;| > 1. The notion of base
is similar to the idea of distinguished node used in [24] in that base = O distinguishes a node from
a generator set (necklace). For ease of notation we omit the subscript on j in the following. For
the definition of the parentsp, T and childrengp,r functions we first find the position k of the first
bit cyclically to the right of bit j that is equal to 1, i.e., ax = 1, and amm = 0,Ym € Mnespr(i,7),
(k = 7, if every bit but bit 5 is0). Fori=0 k = —1. Then

{(an-18n-2...8m...a0) },Ym € {0,1,...,n — 1}, ifi=0;
childrenspar (¢,0) = { {gm = (@n-18n-2...Bm...a0) },
Vm € Mpaespr(,7) and base(gm) = base(z), if i #0.
o, if1=0;

parent 1,0) = — :
1 SBnT( ’ ) {(an—lan-2~--ak---‘10)’ otherwise.
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The parentspnr function preserves the base, since for any node ¢ with base Js g is the highest
order bit of R’(i). Complementing this bit cannot change the base. It is also readily seen that the
parentsp,t and childrengp, functions are consistent.

Theorem 3.3. The parentsp,r (or the childrensp,r) function defines a spanning tree rooted at
node 0.

Proof. For every node i the parentgp,r function generates a path to node 0. Hence, the graph is
connected. Moreover, the parent node of a node at distance d from node 0 is at distance d — 1 from
node 0, and each node only has one parent node. Hence, the graph is a spanning tree.

Figure 10 shows that a SBnT is a connected subgraph of the nESBT graph. Figure 11 shows
a spanning balanced 5-tree.

Figure 10: A SBnT as a subgraph of an undirected nESBT
in a 3-cube.

For an arbitrary source node s we translate the SBuT rooted at node 0 to node s by performing
for each node the bit-wise exclusive-or function of its address and the address of the source node.
The base of a node is determined from ¢ = ¢ & s. and the children and parent functions are readily
modified.

Let Jis = {51,725+ -,Jm}, where i < j2 < ...jm. R¥(c) = R*(c), wu,v € Ji,s, and RY%(c) <
RY(c), ueJ;,, l¢ Ji,s- Then base(c) = jy = j and k is defined by ¢; = 1 and ¢,, = 0,Ym €
Mnespr(t @ s,7) with k= —-1if c= 0. "o

{(an-1an-2...@m...a0)},Ym € {0,1,...,n — 1}, if c=0;
childrenspnr(t,8) = { {gm = (an-10n=2.-.Tm-..a0)},
Vm € Mpespr(i & s,7) and base(gy @ s) = base(i @ s), if c # 0.

éa if e = 0,

arent t,8) = _ . .
parentspnr(,s) {(a,,_la,,_g...ak...an). otherwise,

Lemma 3.26. The number of distinct nodes at level | is (7).
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Figure 11: A spanning balanced 5-tree in a 5-cube.

Proof. From the definition of the parent (or children) function it follows that the distance from any
node to the source node is |c[, i.e., the SBnT graph is greedy, and the lemma follows by lemma 3.8.
|

Lemma 3.27. Let ¢(,7) be the number of distinct nodes at distance j from node i in the subtree
- rooted at nodei. Then, ¢(i,7) > ¢(k,7). where node k is a child of node i.

Theorem 3.4. Excluding node i@ s = (11...1), all the subtrees of the SBnT are isomorphic if n is
a prime number. Furthermore, the j'" subtree can be derived by (7 — %) mod n left rotation steps
of each node of the i** subtree.

Proof. Since n is a prime number there are no cyclic nodes except nodes (00...0) and (11... 1).
The latter part can be shown from the definitions of parent or children function. With the root
at node 0 and excluding node N — 1 all nodes are non-cyclic, and since the different subtrees
are obtained through rotations of the addresses they are isomorphic. The proof is completed by
noticing that a translation does not alter the topology.

|

The load imbalance in the SBnT graph is caused by the cyclic nodes. By allowing multiple
paths to cyclic nodes the load can be perfectly balanced among the subtrees of the root. The
number of paths to a node  is n/P;. To allow for multiple paths to cyclic nodes the definition of base
becomes the set J; , instead of the integer ;. The modified SBnT graph, SBnTc is no longer a tree.
However, the SBnTc can be viewed as composed of n SBnT, called SBnT O, 1,...,n—1, such that the
base of SBnT r is defined as j; where J; , = {ji.J2....,Jm} and (1 +r) mod n < (jo+r) mod n <
.o+ (Jm +r) mod n, R¥(c) = R*(c). wu.v€ Ji,. and R¥(c) < R'(c), ue€J;,, l¢&Ji,.

The SBnTc graph is perfectly balanced for Af mod n = 0. In the complexity analysis we
assume that the personalized data is partitioned into n/P; sets for every node i. Then, the load on

. - (N=1)M
each edge directed away from the source node is L"TFL
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Table 1: Summary of Ewq, ewd, swig and rwq.

Lemma 3.28. The values of Ewgq, ew;q, swiq, rwiq for a SBnTc are

1 1
Ewg=—(N-1), ewd = (l-: ) SWid = TWid = — Z ( )

t—l+1

=

Proof. By lemmas 3.2 and 3.7.
‘ |

In the following, SBnT always means the SBnTc graph. Table 1 lists the values of Ewg, ewyq,
swig and ruwyq for various spanning graphs.

4. One-to-All Broadcasting

In this section we derive complexity estimates for broadcasting based on the various spanning
graphs. A lower bound for one-to-all broadcasting with one-port communication is (M+n—-1)t,+nz,
since the height of any spanning graph is at least n, and a node must receive M elements. This
is not a strict lower bound, in general. With n-port communication a lower bound. for the data
transfer time is ([2] + n — 1)¢,, since the fan-out of the source is n. With M = 1 the strict
bound is (f; + 7)n both for one-port and n-port communication. This bound is realized by SBT
routing and appropriate scheduling. Indeed, with n-port communication any spanning graph of
height n can realize the lower bound communication for A = 1. With 1 < M < n and n-port
communication, the nRSBT routing attains the lower bound, n(t. + 7). The nRSBT routing does
not utilize pipelining. In general, it needs a time of H—f]n(tc + 7) with n-port communication.

The nESBT routing yields the lowest communication complexity Jof the spanning graphs we
consider, both for one-port and n-port communication, except if only one routing cycle is required
by the root, i.e., M = 1 for one-port communication and 1 < M < n for n-port communication. For
the first case the SBT routing is of lower complexity than the nESBT routing, and for the second
the nRSBT routing is optimum. However, the nESBT routing is only inferior by 1 routing cycle.

The SBnT routing is not competitive for one-to-all broadcasting, but it is a good graph for
all-to-all broadcasting and personalized communication. Hence, we do not analyze the complexity
of one-to-all broadcasting based on the SBnT graph. ‘

4.1. The Complexity of One-to-All Broadcasting

4.1.1. The Hamiltonian Path
With one-port communication the broadcasting of M elements requires a time of (Mt +
[%]T)(N — 1) without pipelining, i.e., (Mt + 7)(N — 1), if B > M. When pipelining is applied
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Bopt = Z%TE and Tpin = (/2MT1, + /(N — 3)7)%. For one send operation concurrently with

one receive operation on different ports, B,y = ‘/U‘TM_;)T’ and Tpin = (V/Mt, + \/ N-2) )
With n-port communlcatlon and paths generated by rotated binary-reflected Gray code sequences
the time is —lﬂv—gt + [2£1(N - 1)r without pipelining, which is (&t +7)(N - 1), if B, > 2.

The n rotated bmary 1eﬂected Gray code (nRBRG) paths are not edge-disjoint, lemma 3.12, and
the advantage of pipelining is limited.

4.1.2. The Spanning Binomial Tree

With one-port communication we choose a scheduling discipline servicing subtrees in order
of decreasing height. Since the binomial tree is composed of two n — 1 level binomial trees the
broadcasting operation after the source has communicated all its data to the largest subtree is
reduced to the broadcasting of data in two same size, disjoint, subtrees. The process is repeated n
times and the complexity is T = (Mt. + [4]7)n. Clearly By = M and Ty = (Mt + 7)n. The
data transfer time is independent of the packet size, but the number of start-ups decreases.

With n-port communication pipelining can be employed extensively. The propagation time
to the node furthest away from the source is at least (Bt. + 7)n. When this node has received
all packets the broadcasting is terminated. Hence, T = (M + (n — 1)B)tc + (n+ [4£] - 1)7, and

Bopt = /("A—l)f—’ and T = (VM + /(n — 1)7)2.

4.1.3. The Two-rooted Complete Binary Tree

With one-port communication the TCBT (Two-rooted Complete Binary Tree) routing the root
can send one packet every three cycles. The furthest node will receive the first packet 2(n — 1)
- cycles after initialization. For the internal nodes, three cycles are required to receive a packet from
“the parent and propagate it to both children nodes. The total time T = (3[41+2n - 5)7 +
(83M + (2n — 5)B)tc; Bop, is @—,% and Tpin = (V3Mt. + /(2n — 5)7)2. If each node can
support one send and one receive operation concurrently on distinct ports then the propagation

time is still 2(n — 1), but the source node can send out a new packet every two cycles. Hence,

T = (2[%1+2n—- 4)7+ (2M + (2n — 4) B)t,, Bopt = \/(+2)T’ and Toin = (V2Mic+/(2n — 4)7)2.

With n-port communication the complexity of broadcasting is the same as that of the SBT.

4.1.4. n Rotated Spanning Binomial Trees

Broadcasting based on nRSBT and nESBT routings is performed by splitting the data into n
parts with each part transmitted through one spanning tree. The difference between nRSBT and
nESBT is that the rotated SBTs in an nRSBT are not edge-disjoint. The weight of each of the
edges from the source is 1. Hence, the minimum transmission time for one-port communication is
at least nMt., the same as for the SBT routing. Except in the case M = 1 this time is higher than
the lower bound. The minimum number of start-ups is 2n — 1. Label the SBT rotated j steps by
7. Then, the scheduling of data for the j'* SBT is initialized during cycle . The data for different
SBTs routed over the same edge and scheduled during the same cycle are combined into one packet.
The packet size increases linearly from 1Af to M, then decreases again to l.M for the last routing
cycle; T = nMt.+ (205 [A4] + [A{])T For B > M the number of start-ups is minimized.

With n-port communication the scheduling of data for each SBT used in the composition of
the nRSBT is made as in the case of one-port communication for a single SBT. Since the SBTs are
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rotated, all ports of the root are used in every routing cycle until the last packet leaves the root.
Data for the 7** SBT is sent across dimension (+1%) mod n during cycle{,0 < 4,7 < n—1. There is
no edge-conflict for the non-pipelined routing. Figure 12 shows the routings of the three distinctly
rotated SBTs in a 3-cube. The labels on the edges represent the routing cycle. The communication
complexity is the same as that of a single SBT with data set 1M, i.e., T = Mt + f"ME]nr, which
yields Tyin = Mt. + n7 with B,, > 5"1, assuming M mod n=0.

100 2 101
0 10 2 [
1 o
: 2 ..
010 011

Figure 12: Broadcasting based on 3 rotated SBTs in a 3-cube.

4.1.5. n Edge-disjoint Spanning Binomial Trees ,

The minimum number of routing cycles to broadcast n packets for any routing algorithm and
scheduling discipline is at least 2n — 1 for one-port communication and n for n-pert communication.
For the nESBT the bounds are 2n and n + 1 for one-port and n-port communications respectively.
Note that for n-port communication if the bandwidth is fully utilized at the source by sending out
n packets per cycle, then each node receives n packets each cycle, when the pipe is full. Hence,
even the node at distance n from the source must send out packets every cycle. Consequently, any
routing/scheduling that fully utilizes the bandwidth at the source node must use a spanning graph
with diameter at least n + 1, unless é — 00.

To realize the lower bound for one-port communication it is required that a scheduling discipline
be found that allows concurrent communication within all subtrees without violating the constraint
on communication. We describe such a scheduling discipline in terms of labeling the nESBT graph
with the least label being 0. A valid labeling for one-port communication, that allows pipelining
every n cycles, requires that the following conditions be satisfied:

1. For any node of each subtree the least label on the output edges is greater than the label on
the input edge.

2. For any cube node the labels on its input edges are distinct modulo n. (If there is more than
one packet per subtree, then the root can send out a new packet to every subtree every n
cycles.)

3. For any cube node the labels on the output edges are distinct modulo n.

4. Identical input and output labels (modn) must be on edges between the same pair of proces-

SOrIS.
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Property 4 guarantees that each node sends and receives (if both exist) through the same
port during the same cycle. Let ¢ = (a,-1a,-2...a0) and f(7,5) be the label of the input edge of
node ¢ in the 7' subtree for an nESBT graph with source node s. Let ¢ = t®s, ¢ =1 and
cm = 0,Ym € Mugspr(i1®5,7). If c =0 then k= —1. Then

Theorem 4.1. For the nESBT graph the scheduling discipline defined by the following labeling

@, ifk=-1;

o Ja+n ife;=0k# -1

FGa) =% =1k
k+n, ife;j=1,k<yg

allows conflict free communication for one-port communication.

Proof. Property 1 can be proved by deriving the labels of output edges from the definitions of
the function children,gspr and f(i,7). Consider a node with ¢; = 1and k 2 j. The labels
of the output edges are {k + 1,k + 2.....n — Ln.....n + j} (excluding n + j if k = j). For
¢; = 1 and k < j the labels of the output edges are {k+ 1+ n,k+2+n,...,5 — 1 + n}. For
¢j = 0,k # —1, there is no child. The uniqueness of the input labels to a node is proved by
the same arguments as in the proof of theorem 3.1. From the definition of the children function
it is readily seen that for a given subtree. say the j'" subtree, the outgoing edges are labeled
{(k+1) mod n, (k+2) mod n,...,(5~1) mod n,j}, (excluding j if £ = §). Property 3 is established
by noticing that each bit equal to 1 in the binary encoding of 1 partitions the outgoing edges into
distinct sets with each set corresponding to a subtree, and for each subtree the edges are labeled
corresponding to the bit position. From the labeling scheme, the largest label of all the input edges
is 2n — 1, i.e., broadcasting the first n packets (one packet per subtree) can be done in 2n cycles.
For pipelining additional packets, we notice that for each node the labels of the input edges are
distinct modulo n. So are the labels of the output edges. Property 4 follows from the fact that
edges in dimension j are labeled j(modn).
|

For n-port communication it is easy to determine the time of arrival of messages. Let c = i @ s
for an arbitrary node 7 and source node s, i # s. Then the path length between nodes s and ¢ in
the j*» spanning tree is equal to

'|c[, ife; =1
le]+2. ife;=0.

The input ports of node ¢ that correspond to bits that are equal to 1 in the binary encoding of
¢ receives the first element during the |c|’" routing cycle. The other input ports receive the first
element during cycle (|| + 2)*A.

Theorem 4.2. The complexity of nESBT broadcasting of M elements and one-port communication
is at most (M + nB)t. + ([¥1 + n)7; Toin = (VAL + /n7)2.

Proof. The number of cycles follows from the definition and proof of the scheduling discipline.
1

Figure 13 shows an nESBT graph for a 3-cube labeled by the algorithm above.
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Figure 18: Scheduling in an nESBT graph with one-port com-

munication.
Algorithm one-port n-port
BRG N-1 N-1
SBT n n
nRSBT n n
TCBT 2n -2 n
nESBT n+1 n+1

Table 2: Propagation delays.

For communication restricted to one send or one receive operation per node, each cycle defined
previously is made into two cycles. Notice that in the previous routing algorithm, all the commu-
nication links are only used in one direction during the first n routing cycles, and the last routing
cycle.

Theorem 4.3. The nESBT graph allows M elements to be broadcast in 2| 'AB!'] +n—1 routing cycles
under the constraint of at most one receive or one send operation during each cycle.

Proof. The number of routing cycles can be derived by subtracting n + 1 from twice the number
of routing cycles given in theorem 4.2.

With one-port communication T = ([-AB{] + n)7 + (M +nB)t.; Bopt = \/ﬁ’T:. Tmin = (VMt. +
V/n7)2. Restricting the communication to one send or one receive operation at a time, T = (2[-"3’—] +
n— 1)1+ (2M + (n — 1)B)t. and Tpin = (V2Mi, + \/(n=1)7)2. For n-port communication

T=([$£1+n)7+ (M + nB)t; Tyuin = (/2 + /n7)? and By = %\/%’-

4.2. Comparison and Conclusion

There are two factors that determine the communication complexity of broadcasting with
pipelining. One factor is how often the source node can send out a new packet (containing new
data). The other is the minimum time for a message to propagate to every node. The algorithms
based on the SBT, the nRSBT, the nESBT. and the TCBT routings have propagation times in the
range of n to 2n, Table 2.
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Algorithm one-port n-port
BRG 2 1
SBT n 1

nRSBT n 1
TCBT 3 1
nESBT 1 -};

Table 8: Number of cycles per distinct packet.

For one-port communication the root can only send out a packet with new data every n cycles
in the SBT routing. In the TCBT routing the root can send out one new packet every three cycles,
while the nESBT routing allows one new packet every cycle. In the nRSBT routing the source
needs n cycles for each packet, but can start a new packet every cycle if data routed through
different SBTs are combined into a larger packet. For a fixed packet size, one distinct packet is sent
out every n cycles, on the average. This assumption is made for Table 3, which concerns the root.
Note that broadcasting through a Hamiltonian path on an n-cube may be faster than broadcasting
based on the SBT or even the TCBT routing depending on the values of M, t,, 7 and N. In a
Hamiltonian path a new packet can be sent every other cycle. The number of start-ups is N — 1.

With n-pert communication the source can send out n distinct packets every cycle in the
nESBT routing, while the SBT and TCBT routing only allows the sending of one distinct packet
. every cycle. In the case of n distinctly rotated Gray code sequences the source can send out n
distinct packets per cycle, but pipelining is limited. The situation is the same for the nRSBT
routing, in which n packets can be sent out.during cycle 0, n , 2n,..., etc. The average number
of cycles per distinct packet is 1. Table 3 compares the number of cycles per distinct packet for
various routings. Some variations exist like using two Hamiltonian paths with opposite directions
sending distinct data, or using one Hamiltonian path with the source node at the center of the
path. However, these variations only affect (either increase or decrease) the delays and the number
of cycles per packet by at most a factor of two. The complexity estimates are summarized in Tables
4 and 5.

For n-port communication the number of sequential start-ups and the bandwidth requirement
is reduced by a factor of approximately n for an arbitrary packet size in nRBRG, SBT, nRSBT,
and nESBT routing. TCBT routing does not fully utilize the bandwidth of a cube. The reduction
in communication complexity for n-port communication is a factor of 3. Optimizing the packet size
for each situation brings the number of start-ups to O(n) (or O(N) for BRG) both for one-port
or n-port communication. With n-port communication the bandwidth requirement is reduced by
a factor of n for the nRBRG, SBT, nRSBT, and the nESBT routings, also when packet sizes are
optimized. However, the bandwidth requirement of the TCBT routing is reduced by a factor of 3.

The nESBT routing always offers a reduction in bandwidth requirement for individual com-
munication links by a factor of approximately n over SBT and nRSBT routings. With n-port
communication the nESBT routing has a communication complexity that is lower than that of
TCBT routing by a factor of n. Even with one-port communication the nESBT routing still is
faster than TCBT routing by a factor of 3. For an arbitrary packet size the nESBT routing also
offers a reduction in the number of start-ups. The reduction may be of order O(n). The nESBT
routing offers a speed-up of up to n over SBT and nRSBT routings for sufficiently large values of
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Algorithm T Bopt Tonin
BRG Q@[¥1+N-8)r+ (2M + (N -3)B)tc | /Ug—ﬁgfy,_c (V2ZRLt, + /(N - 3)7)?
SBT [ InT + Mnt, M n(Mt, + 1)
nRSBT nMt.+ (20 [ + [ )7 M nMt, + (2n — 1)7
TCBT (3[4 +2n - 5)7+ (3M + (2n - 5) B)t. o | (VBME +/(2n - 5)7)?
nESBT ([%1+ n)r + (M + nB)t, \/ ML (vVMt, + \/n7)?
Table 4: The complexity of one-port one-to-all broadcasting.
Algorithm T Bopt Tonin
nRBRG [MYN - 1)r 4 M=), M My 4 1) (N -1)
SBT (31 +n-1)7+ (M+ (n-1)B)t, \/rni—fl),— (VM + /(n = 1)7)?
nRSBT Mt + [ 25 ]n7 s Mt + nr
TCBT ([H1+n~-1)r+ (M+(n~1)B)t, InAT[lTE VMic+/(n- 1)1
nESBT (451 + n)7 + (& + nB)t. %‘/A{c_f \/M_‘c+ fr7)?
Table 5: The complexity of n-port one-to-all broadcasting.
Communication Algorithm one F>n B = By, B = By,
Assumption ‘ packet ™n 3> M{, ™ <« Mt
one-port SBT,nRSBT/nESBT FEat n 1 n
one-port TCBT/nESBT . 3 2 3 -
n-port SBT,nRSBT, TCBT/nESBT el n 1 n

Table 6: The relative complexity of routings for one-to-all
broadcasting compared to the nESBT routing.

M, both for one-port and n-port communication. The communication complexities of broadcasting
based on the SBT, nRSBT, and the TCBT routings are compared with that based on the nESBT
in Table 6. Notice that the entry for the last column and the last row in the table is based on the
assumption that B = By, 7n? <« Mt,.

5. One-to-All Personalized Communication

In personalized communication no replication of information takes place during distribution,
nor is there any reduction during the reverse operation. In broadcasting the bandwidth requirement
of a cut at a distance ¢ from the source node grows precisely as the number of nodes grows. In
personalized communication the source node has to distribute (N — 1)M elements. The bandwidth
requirement for a cut at distance ¢ from the source decreases in proportion to the number of nodes
The total bandwidth requirement for the cube is at
least 31, M x ¢x (number of nodes at distance ¢ from the root), which is 2NA compared to
(N — 1)M for one-to-all broadcasting. The root is the “bottleneck”. A lower bound for one-to-all

N-1)M
personalized communication is (N — 1)A{t, + nr for one-port communication, and i——)—tc + nr

at and within distance : from the source.

for n-port communication. The minimum of the maximum number of elements transmitted across
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. 7-— .. 3
an edge, the edge load, is & nl A Clearly, a necessary condition for lower bound personalized
communication is that the maximum edge load is minimized. Two strategies can be applied to

reach this goal:

e Partition the node set into n equal sets.

e Provide n paths from the source to every node, and partition the data set M into n equal
subsets.

In SBT and TCBT routing for personalized communication the maximum edge load is lNI\I
The bandwidth of the cube is not used effectively, when n-port communication is possible. In a
SBnT all subtrees of the root have the same edge load, i.e., M , compared to ~4L NM for a complete
binary tree. The SBnT graph achieves a minimax edge load through partltlonmg of the node set,
and, for cyclic nodes, also the data set.

The nRSBT graph and the nESBT graphs both provides n paths from the source to every
other node. The maximum edge load is minimized for both graphs, but the height of the nESBT
graph is n + 1. We do not analyze the complexity of personalized communication based on the
nESBT graph.

5.1. Complexity of Personalized Communication

For one-port , personalized communication, we consider a scheduling discipline using postorder
traversal in order of decreasing subtrees, and maximizing the minimum time between communica-
tions on the same port. In the particular case of a packet size B = M and a spanning binomial
tree, this scheduling discipline leads to communication on ports in a binary-reflected Gray code
order [15, 9]. We assume the same scheduling discipline for every node. For n-port communication
we consider reverse-breadth-first scheduling. .

With one-port communication the number of start-ups for the reverse-breadth-first scheduling
discipline is equal to the sum of the number of levels in the subtrees of the source node, if the
fan-out of any node is at most equal to the fan-out of its parent node. The number of start-ups
is at least of order O(n?) for the spanning graphs considered here. In the postorder scheduling
discipline the number of start-ups may be as low as n, but not higher than 2n for spanning graphs
of height n. The data transmission time may in either scheduling discipline be limited by the root.

5.1.1. The Hamiltonian Path

One-port personalized communlcatlon along a BRG path requires a time T' = (2N — 3)M¢, +
max(2] X Bl M] lB J,2N = 8)7. With one send operation concurrent with a receive operation on
a different port the complexity is reduced to T = (N — 1)Mt, + max([&};—zﬂ] N - 1)7.

Both routings assume pipelining. With n-port communication and nRBRG routing, pipelining
is limited due to edge-conflicts, lemma 3.12. With no pipelining T = M%)A—tc + Z,N:l[;f"]
which is greater than routing according to one BRG path.

5.1.2. The Spanning Binomial Tree

One-port personalized communication based on SBT routing and the postorder scheduling
discipline with a packet size of B yields a complexity T ~ (N — 1)Mt, + T(NM + log[ =] -
1), M<BXZ %, which is minimized for By = M with Ty = (N — 1)Mé, + nr. This
complexity is the same as that of the lower bound for one-port personalized communication. For
B<M,T~(N-1)Mi + fu]r This complexity is the same as that of communication in
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a Hamiltonian path. We conclude that for personalized communication, SBT routing and one-port
communication the complexity is equal to the lower bound if the maximum packet size is sufficiently
large, but may be equal to that of a Hamiltonian path if B < M.

With n-port communication a reduction in the transfer time by a factor of 2 is possible com-
pared to one-port communication by use of pipelining. From the minimax edge load it is clear that
the reduction in the data transfer time can be at most 2.

Lemma 5.1. With reverse-breadth-first scheduling and n-port communication the time for person-

alized communication is limited by the root. The complexity is T = %NMtc + ::01 (",_-l)-]g-]r
: s — 1 . : -1 NAM

with a minimum of T = 3 NMt. + nr for a packet size B > ma:c("‘. ) ~ m

Proof. Follows immediately from lemmas 3.4 and 3.16.
|

We conclude that for SBT routing the packet size is of greater importance than concurrent
communication on all ports.

5.1.3. The Two-rooted Complete Binary Tree

With one-port communication and TCBT routing for personalized communication the mini-
mum number of start-ups is 2n — 2. The minimum transfer time is (2N — 2n — 1) Mt with the min-
imum number of start-ups. With additional start-ups, the transfer time can be reduced. However,
the transfer time is at least of O(N). For n-port communication the minimum number of start-ups
is n, and the minimum transfer time with the minimum number of start-ups is ( 2N — 1)Mt,, which
can be achieved by the reverse-breadth-first scheduling. The total time T = (3N - 1)Mt.+nr. In
comparison with the SBT routing, the TCBT routing complexity is always higher. The slow-down
is approximately 2

5.1.4. n Rotated Spanning Binomial Trees

The subtrees of the source node are all of equal height in the nRSBT graph. With one-port
communication the number of start-ups is 2n — 1 and the data transmission time is M (N — 1)t..
This data transmission time is the same as that of the SBT routing. The data transfer time is
minimized for the nRSBT routing with the scheduling for the ;' SBT starting during cycle j.
The data for different SBTs routed over the sane edge and scheduled during the same cycle are
combined into one packet. The packet size during cycle 7 is ﬁnﬂ(l - 7‘;,—), for0<:<n-1,and
-1!;.4’-(5-;_—,_3,-_—,, — 47), for n < ¢ < 2n — 2. The data set that needs to be transmitted to each subtree
is %(N -1). T=M(N -t + (7} —ﬁ,’:B—Tl] + Z:;l[ﬂ,?g_—u])" For n-port communication
the time for a reverse-breadth-first scheduling discipline is T = Mtc + }::':01 ( )nB]‘r For

B = (Mt +7)(N — 1), a reduction by a factor of n compared to one-port communication.
For B > M( ) ~ \/Z:’;,“ﬁ, T = Y (N - 1)t. + n7, a reduction in the data transmission time by a

factor of n. 'fhls complexity is mdeed the same as the lower bound.

The above results are strictly only true for the case when n divides M. With (M mod n) =
k # 0 a combination of reflections and rotations minimizes the maximum edge load. For k even
k/2 distinct rotations should be used. and for every rotated graph a reﬂected graph is also used.

For k even and optimally rotated SBTs the maximnm edge load is (N - 1) and for optimally
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+1

reflected and rotated SBTs the maximum edge load is (N-1) 2% -
2% -1

1
5.1.5. The Spanning Balanced n-Tree

With one-port personalized communication and SBnT routing the root can send data to the
subtrees cyclically. With a maximum packet size B > M, data for severa] nodes can be merged
into one packet. The receiving node has sufficient time to retransmit pieces on all its ports, should
that be required, since a new packet only arrives every n cycles. The root requires a time of T ~
(MMM (B, +7)n. For B= M, T = (N —1)(Mt,+7), L.e., the same as in the SBT and Hamiltonian
path routing. For B > LN;':)—M— the root of the SBnT need only perform one communication per
subtree, and it completes the communication in a time of T = (N — 1)Mt, + nr. But, unlike in
the SBT routing the communication is not terminated when the root is done. The message to
the last visited subtree needs to traverse n — 1 communication links. The bandwidth requirement
of each subtree can be shown to be ~ &L"ﬂ [17]. An upper bound on the time for personalized
communication based on the SBuT with unbounded packet size is T = N(1+ 2—'%‘£)AIQ+ (2n—1)7.
The number of start-ups is almost twice that of the SBT personalized communication, and the total
transfer time is higher by a lower order term. The time for personalized communication based on
the SBnT routing is minimized for B > U\—_,;lﬂ With a maximum packet size of iN—_nlm, the
number of start-ups for the SBT routing is approximately also 2n. We conclude that for one-port
~ personalized communication the SBT routing yields a lower complexity than the SBnT routing.
However, in the case of n-port communication the SBuT routing does offer a lower complexity.

With n-port communication the time for personalized communication with SBnT routingis T =
(N',,I)Mtﬁ- I'(N;é)M]‘r. fB=MthenT = (N',:)Mtc+ [£=117, a reduction in the number of start-
ups and the transfer time by a factor of %n over the SBT routing for personalized communication.

The communication time is minimized for B > \/g ;,%‘}-2-1\-! and Toin = H—nf—l-l\l t.+ nr, the minimum
possible. This complexity estimate is true by lemmas 3.4 and 3.27, which guarantees that the
data transfer time is dominated by the root. By merging data for different levels of the SBnT the
requirement on the maximum packet size can be reduced. We conclude that in the case of n-port

communication the SBnT routing is always of a lower complexity than the SBT routing.

The nRSBT and SBnT graphs yield the same communication complexity and the same maxi-
2NM

mum packet size, \/; +37z- In the case Af mod n # 0, the SBnT graph is always superior.
5.2. Comparison and Conclusion

Tables 7, 8 and 9 show the communication complexities of personalized communication based
on various spanning graphs. With one-port communication and a maximum packet size B < M
the complexity of SBT, TCBT, nRSBT. and SBuT and Hamiltonian path routing is the same. For
B > M, the SBT routing yields a lower complexity than the Hamiltonian path, the nRSBT, the
SBnT, and the TCBT routing. For sufficiently large maximum packet size the SBT routing has =
start-ups compared to 2n—1 for the nRSBT and SBnT routings, and 2n — 2 start-ups for the TCBT
routing. The transmission times are comparable, though the transmission time for the SBnT and
TCBT routings are higher. Note that as in broadcasting the minimum number of start-ups can be
accomplished for sufficiently large packet size.

With n-port communication the number of start-ups and the transmission time of SBnT and
nRSBT routing is lower than that of the SBT routing by a factor of %n, and is lower than that for
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Algorithm

BRG, one-port (2N - 3)Mt. + max(2 LN_EIM.I [M 2N — 3)7
SBT, one-port (N - )Mt + "_ll'?'}\r]
nRSBT, one-port M(N - 1)t.+ (21—1 [ M(N _an T 1(3;-1)]
TCBT, one-port ~ (2N —2n — 1).Mt + 2y @ -1)1\ 17
SBnT, one-port ~ N(1+ M)]\Itc NM] + [ 2Nlogn]\[-|)
nRBRG, n-port ﬂN_nl)A_ EN-IPM]T

SBT, n-port NMtc f(n- VE]T

nRSBT, n-port Lj‘_”_)_tc y‘n (Y3,
TCBT, n-port ~ (K - 1)Mt. + (] NM'I ¥ ZLW——z[

z5 )7
SBnT, n-port Mt + 30 (.‘)u
Table 7: The complexity of one-to-all personalized communi-
cation.
Algorithm Bopt Tomin
BRG M (2N - 3)Mt. + (2N - 3)r
SBT e (N - 1)Mt. + nr
TCBT s < (2N - 2n— )Mt + (2n = 2)7
nRSBT -1 (N — )Mt + (2n - 1)7
SBnT L= T < N1+ 2o Aft, + (20— 2)7

Table 8: The optimum complexity of one-port one-to-all per-
sonalized communication.

Algorithm Byt Tmin
1RBRG (N—-nl)M N(NQ-'-Il)Mtc +(N=1)r
SBT 2’;(’;’_1) £t + nr
TCBT 2 (§N = 1)Mt, +nr
nRSBT %%% LN—_nl-mtc + nr
SBuT N F-UM 4+ nr

Table 9: The optimum complexity of n-port one-to-all per-
sonalized communication.

the TCBT routing by a factor of %n for a maximum packet size B < M. With a sufficiently large
packet size all routings yield a minimum of n start-ups. The SBnT and nRSBT routings have a
total transmission time that is lower than that of SBT routing by a factor of %n, and lower than

that of TCBT routing by a factor of gn Moreover it is achieved at a maximum packet size of

%,%\i’ compared to a maximum packet size of for the SBT routing. We conclude that

N ( -1)
for n-port communication, the communication complexity of the SBuT and nRSBT routings may
be lower by a factor of %n compared to the SBT routing and by a factor of %‘/l compared to the
TCBT routing. The nRSBT routing is never of a lower complexity than the SBnT routing, and of

a higher complexity if n does not divide Af.
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6. All-to-All Broadcasting

Theorem 6.1. The lower bound for all-to-all broadcasting is (N — 1)Mt, + nr for one-port commu-
nication and @;nl)ﬂtc + nr for n-port communication.

Proof. Each node receives M elements from every other node, i.e., each node receives (N — 1)Af
elements. Hence, for one-port communication a lower bound for the data transfer time is (N ~1)A/1,,
and with n-port communication the time is bounded by -(E-%)ﬂtc.

Theorem 6.2. The communication time for all-to-all broadcasting based on N translated spanning
graphs of height h and n-port communication requires a time of at most

h-—-1
M
= — X X X X .
T Z([ 5 0513;3—1ew'd]f+Mtc Osrlrilsa'}_l ewiq)

=
If B > maxogi<h-1, 0<d<n-1(M X ewyq) then

h-1
T= (,Z; o ewg) Mt, + hr.

Proof. Each node broadcasts its data set M according to its own spanning graph. During the I/
routing cycle all nodes at level / + 1 of each spanning graph receives messages sent out from the
roots during the 0** routing cycle. The number of messages contending for a communications link
in dimension d between levels { and ! + 1 during the I** cycle is ewL{Z, i.e., the sum of weights of
spanning graph edges mapped to a cube edge. By lemma 3.3 the number of elements contending
for an edge is ewyy.

Theorem 6.1 gives a lower bound for communication time based on N spanning graphs. Tle-
orem 6.2 gives an upper bound. In the following we give complexity estimates for some spanuing
graphs, and show that all-to-all broadcasting based on the SBT graph yields a lower bound al-
gorithm for one-port communication, and that the SBnT and nRSBT graphs yield a lower bound
algorithm for n-port communication.

Corollary 6.1. For a given spanning graph satisfying ew;; = ew;;, 0< 14,75 <n,and 0 <! < h, the
communication time for all-to-all broadcasting based on N translated spanning graphs of height
and n-port communication is

(N = 1)M

T= te + hr, if By > 0nslla<)§1(1\l X ewq).

Proof. 1t follows from theorem 6.2.
1

From Table 1 and this corollary, the nRBRG, nRSBT, nESBT and the SBnT routings all
yield the lower bound for the data transfer time with n-port communication. The nRSBT and
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the SBnT both with minimum height also attain the lower bound time, theorem 6.1. In fact,
any spanning graph composed of n distinctly rotated spanning trees of minimum height attains
the lower bound. The greedy spanning grapl, while it is a necessary condition for the all-to-all
personalized communication, is not necessary for the all-to-all broadcasting to attain the lower

bound.

Corollary 6.2. For N translated spanning graphs each composed of n distinctly rotated greedy
spanning trees the time for all-to-all broadcasting with n-port communication attains the lower
bound.

N-1)M . 2NM .
Tin = %tc + nr, if By, 2 \/;11,37 approximately.

Proof. It follows from corollary 6.1 and lemma 3.8.
|

Lemma 6.1. The data transfer time for one-port communication is minimized if one dimension is
routed per cycle, and all nodes use the same scheduling discipline.

Proof. The load on every edge in the routed dimension is the same, since the spanning graph for
the different sources are translations of each other.

For an optimum one-port all-to-all broadcasting it remains to minimize the number of start-
ups, preserving the data transfer time. This can be accomplished through the labeling of one
spanning graph. The rules are:

1. For each composed spanning tree, labels of the outgoing edges of any node are greater than
the label of the incoming edge.

2. All the edges with the same label in the spanning graph are in the same dimension.

The label on the edge corresponds to the cycle during which the data is transferred. Rule 1
is obvious. Rule 2 is due to the one-port communication constraint. The number of start-ups
required for the broadcasting is equal to the maximum label plus 1, if the least label is 0. For a
spanning tree of height h, the minimax label is at least A — 1 by rule 1. For the BRG path, we
label the 7** edge in the path by 1 — 1. The maximum label is then N — 2, which is a minimax
label because the BRG path is of height N — 1. For the SBT labeling edges in dimension ¢ by i
satisfies both rules. The maximum label is n — 1, which is also a minimax label. For the nESBT,
nRSBT and SBnT, we first define the edge label in the 0'* spanning tree (or subtree for the SBuT).
Edges in dimension ¢ are labeled 7, except the edges to the leaf nodes which are labeled i + n.
The 0% subtree of the nESBT is equal to an n level SBT, deleting the smallest subtree. Hence,
the minimax label is n for ERSBT 0. The minimax label of the 0** subtree of the SBnT can be
shown to be n — 1 from the definition of the SBnT. The 7*» spanning tree (or subtree) is the left
rotation of the :*" spanning tree (or subtree) by (j — ¢) mod = steps, lemma 3.22 and theorem 3.4.
The labels of the edges in subtree j are defined by adding 7 to the label of the corresponding edges
in subtree 0. The minimax label for the entire graph is equal to the minimax label of subtree 0
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BRG

SBT

nESBT nRSBT SBnT TCBT

N-1

n 2n

2n -1 2n -1 22n-2

'Table 10: The minimum number of start-ups in one-port all-
to-all broadcasting.

Algorithm T
BRG (N = 1)Mt.+ [¥YN -1)r
SBT (N = )Mt + 1 12M,
nRSBT | (N - 1)Mt, + (S
nESBT (N =1)Mt. + (37 )7
SBnT ~ (N = 1)Mt, + max(2n — 1 )T

Table 11: The complexity of one-port all-to-all broadcasting.

Algorithm Bopt Trin
BRG M (N-1DMt.+ (N -1)r
SBT s (N = 1)Mt, + nr
nRSBT UM TN )Mt + (20 - 1)r
nESBT (-2 (N — )Mt + 2nr
SBuT ST T (N )Mt + (20 - Dr
Table 12: The optimum complexity of one-port all-to-all broad-
casting.
Algorithm T
nRBRG R=DMy [ M(N - 1)r
SBT e i [
nRSBT L;’ﬂ-tc (M
nESBT | =l 4+ (v (M ]+[mﬂ+f§%m
SBuT T + o () 2

Table 13: The complexity of n-port all-to-all broadcasting.

plus n — 1. The minimax label of the nESBT, nRSBT and SBuT is 2n — 1,2n~2 and 2n — 2
respectively. The labeling of the nESBT graph is the same as the labeling for one-port one-to-all
broadcasting, Figure 13. Table 10 lists the minimum number of start-ups for various spanning
graphs. The amount of data transfer during cycle 7 is equal to Mx (sum of weighted edges labeled
t). The maximum packet size and tlie number of start-ups in terms of packet size can be derived
easily for various spanning graphs given the labels of the edges in the spanning graph.

6.1. The Complexity of All-to-All Broadcasting

Tables 11, 12, 13 and 14 summarize the complexity of all-to-all broadcasting.

The one-port N BRG path routing is employed in the matrix multiplication algorithm by Dekel
[6]. Messages with different source nodes are routed through different BRG paths. There are no
- communication conflicts because pipelining is not used, lemma 3.13. Messages are exchanged along
a sequence of dimensions as 0, 1, 0,2, 0. 1. 0, 3. ... etc. Sharing one Hamiltonian circuit yields the
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Algorithm Bopi Tmin
aRBRG M W=OM, (N =1)r
ST | AT P
nRSBT 21Xy (K-UMy g
nESBT %,I;VT\% LN—_:Mtc +{(n+1)r
SBnT %%‘é Q’—::-)—Mtc + nr

Table 14: The optimum complexity of n-port all-to-all broad-
casting.

. same complexity. With n-port communication and N nRBRG paths the complexity in Table 11 is
derived from Table 1 and theorem 6.2.

With one-port communication for the SBT routing it can be completed in n routing cycles,
as in the single source case. In the all-to-all case this routing scheme amounts to exchanges in the
different dimensions [27]. Note that if the maximum packet size is smaller than the data set to be
broadcast, then the SBT routing is of the same complexity as the BRG routing. But, if B > %.MN
then Thin = (N —1)Mt.+nr, which is the lower bound. The start-up time is reduced by a factor of
Qy;f—ll compared to the BRG routing. With n-port communication the SBT algorithm is no longer
optimal. The data transmission time is at most reduced by a factor of 2, and the maximum number
of elements contending for communication by a factor of about /7.

The following pseudo code implements the N SBT routing for n-port communication.

for port O to port n—~1 do concurrently
send out resident data (length Af);
receive the incoming data (length M);
enddo
for ¢i:= 1 to n—1 do
for port j:=: to n—1 do concurrently
send out the data accumulated in buffers of inports
{i-1,i1—2,..,7 -1} (length ({));
receive and append to each inport buffer;
enddo
enddo

With one-port communication and TCBT routing, the number of start-ups is at least 2n — 2,
the optimum data transfer time can be attained by increasing the number of start-ups. With n-port
communication, the data transfer time is not optimal due to the fact that the bandwidth is not
fully utilized during the first logn cycles. Also, edges at the same level are not evenly distributed
in different dimensions.

With one-port communication and nESBT routing, the data transfer during cycle ¢ and the
number of start-ups are

] respectively.

7 _1..0t—n .
N-1-2777)M forn<i1<2n-1, nB

n ° =0 i=n

2M <i<n—1- n—-1 oi 2n— _ 1 _ oi=n
{n, for0<i<n-— 1L andZ[“MHZf(N 1-2-")M



The total data transfer time is the same as the lower bound, lemma 6.1. For B,, > M%’;ZZ, the
number of start-ups is reduced to 2n. The maximum packet size occurs during cycle n. With
n-port communication the data transmission term is &_Tlmtc, i.e., equal to the lower bound. For
B> \/gi—V% the number of start-ups is equal to n + 1.

With one-port communication and nRSBT routing, the data transfer during cycle ¢ and the
number of start-ups are

B, forogisn-L (2 DM S W XM ctively
N-T;“-H M, for n <1t <2n-2, =0 nB i=n "B p ’

The total data transfer time is the same as the lower bound, lemma 6.1. For B > M-(P, the
number of start-ups is reduced to 22 — 1. The maximum packet size occurs during cycle n — 1. For

n-port communication the nRSBT routing attains the lower bound, corollary 6.2. The maximum

e 2NM
packet size is \/;ns 5.

With one-port communication and SBnT routing the number of start-ups is 2n — 1 (if B >
Mﬁ’;l)-) and the data transfer time is A(N — 1)t,. The packet size increases from cycle 0 to cycle
n — 1 and decreases from cycle n — 1 to cycle 2n — 2. The sum of packet sizes for cycle ¢ and cycle
t+ n is equal to B = iN—'”l)ﬂ, 0 < i< n-—2. With n-port communication the transmission time
is U—v:"})ﬂtc, but the minimum number of start-ups is n. The maximum number of elements that

contend for the same communications link is ~ \/gg—]‘{;
If the source node address is included in the message, then a node upon receipt of a message
makes use of the children function to determine on what ports the received message should be

retransmitted. The following shows the routing algorithm in pseudo code.

msg := (mynode,data);
% Let M be the length of msg;
for i:= 0 to n—1 do .
out_buf [:] := msg;
enddo
for step:= 1 to n do
send (out_buf [:]) through port 7, for all 0<i<n-—1 concurrently;
for i:= 0 to n—1 do concurrently;
receive (inbuf [¢]) from port i;
for each data of length M in inbuf [:] do
extract source;
{e1,¢2,...ck} := children(mynode, source);
% At the last step, children will be ¢;
Let p; be the output port to cii
for 7:= 1 to k do
append this msg of length M to out.buf [p,];
enddo
enddo
enddo

36



enddo

6.2. Comparison and Conclusion

With one-port communication SBT routing for all-to-all broadcasting attains the lower bound,
Tnin = M(N — 1)t, + n7 for By, > Miﬂ The BRG, nESBT, nRSBT and SBnT routings all have
the minimum data transfer time. The number of start-ups is (N - 1), 2n, 2n — 1 and 2n — 1,
respectively, with the maximum packet size MU,\:_Q) . MIZ—” and M(}:_l), respectively. With the
maximum packet size B,, of order %ﬁ', the number of start-ups for SBT, nESBT, nRSBT and
SBnT routings are all compatible.

With n-port communication the nRBRG, nESBT, nRSBT, and SBnT routings achieves the
lower bound transmission time for a suﬂiciently large packet size. Both the nRSBT and SBnT
routings also attain n start-ups, i.e., the lower bound complexity, with the same maximum packet
size B > \/}E@i If M modn # 0, then the nRSBT routing does not attain the lower bound
complexity. The nESBT routing attains a nearly optimal bound with the exception of one additional
start-up. The SBT routing yields a slow-down of approximately % for the data transfer time
compared to the lower bound routing.

7. All-to-All Personalized Communication

In all-to-all personalized communication every node sends M distinct elements to every other
node.

Theorem 7.1. The lower bound for one-port all-to-all personalized communication is n( 5-te + 7).
The maximum packet size B,, must be at least % to attain this lower bound.

Proof. The bandwidth requirement for distributing personalized data from one node is

. nNM
2oi((7)ae= 15

i=0

The total bandwidth requirement is ﬂ-’\—’;—’l-{-

During each cycle only N edges of the n-cube can
communicate in the case of one-port communication, so "NM is the minimum number of element
transfers in sequence. The number of start-ups is at least n. The maximum packet size can be
derived by dividing the total bandwidth requirement "N; M by the number of cycles n, and the

number of directed edges that can be used in each routing cycle N.

Theorem 7.2. The lower bound for n-port all-to-all personalized communication is %tc +nr. The
maximum packet size By, must be at least -]‘% to attain this lower bound.

Proof. From theorem 7.1 the total bandwidth requirement is ’—’-’y-er During each routing cycle nN

directed edges can communicate concurrently. The maximum packet size is derived by dividing the
total bandwidth requirement by the number of cycles n and the total number of links nN.
]

Theorem 7.3. The time for n-port all-to-all personalized communication based on N translated
spanning graphs of height h and postorder scheduling concurrently for all subtrees of the source is

T=Z([%x max swi|7+ Mt X max  swg).

0<d<n-1 0<d<n~-1

/
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If B > maxo<i<h-1, 0<d<n-1(M X swiq) then

h-1
T= (Z onax swig)Mt, + hr.
-— —n_

Proof. For each spanning graph, the amount of data transmitted across all edges in dimension d
during routing cycle ! is swy¢x M,0 <! < h—1. For the N translated spanning graphs, the amount
of data transmitted across each cube edge in dimension d during routing cycle ! is swiq x M.

|

Theorem 7.4. The time for n-port all-to-all personalized communication based on N translated
spanning graphs of height h and reverse-breadth-first scheduling is

-1

T = Z ma\ ruglt + Mt, X max rwy).
— B <n—1 al ¢ 0<d<n-1 )

If B > maxp<i<h-1, 0<d<n-1(AM X rwiq) then

h-1

T = - Osx(rilsa'?:_l rwiq)Mt, + hr.

Proof. Similar to theorem 7.3.
1

Theorem 7.5. The all-to-all personalized communication based on N translated spanning graphs
will not attain the lower bound for data transfer time if the spanning graph is not greedy; and
will not attain the lower bound for the start-up time if the height of the spanning graph is not
minimum.

Proof. The bandwidth requirement for each node is

n—-1n-1 n—~1n-1
Z stld = Z Z rwyg = Zl X (the number of nodes at level I).
1=0 d=0 1=0 d=0

Hence, non-greedy spanning graphs require more data transfer than greedy spanning graphs. The
latter follows from theorems 7.1, 7.2 and its non-optimal height.
|

Theorem 7.6. All-to-all personalized n-port communication based on N translated greedy spanning
graphs, each composed of n distinctly rotated greedy spanning trees, can attain the lower bound
communication time Ty, = -1"',L,—Mtc +nr for B > M both for postorder scheduling concurrently

for each subtree, and reverse-breadth-first scbedu]mg.

Proof. A spanning graph derived by combining n distinctly rotated greedy spanning trees has the
properties that
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Algorithm T
N-=-1)NMX '
BRG oMMy + S )
SBT nf\/l\lt +[‘J\Nl‘|n1,
nRSBT I, (g [T ¢y e )
nESBT | (&£ + N —2)Mt. + ( ";}f(&— Vs ARG e 1k
SBnT Ay AL 2520 + max(2n — 1, —7,?—’-)

Table 15: The complexity of one-port all-to-all personalized

communication.
Algorithm % Bopt Tonin
BRG (N - 1)M W=UNM,; 4 (N = 1)r

SBT

NN L L
nRSBT oM 2BMi + (2n—1)r
nESBT M En=l _ 1) | (28 + N - 2)Mt, + 2nr
SBnT XN nMt, + (20~ 1)7

Table 16: The optimum complexity of one-port all-to-all per-
sonalized communication.

l.ew;dzm,0<d<n—1 0<lI<n~-1,
2.sw;d=2,_l+lu 0<d<n—-1,0<I<n~1,
3.rwm=2,_,+1Ll 0<d<n-1,0<L1i<n-1.

From theorem7.3 and property 2 above, the data transfer time is

Mtcz: E N M, te.

=0 i=l+1

The maximum packet size B = ﬂ:;lm occurs during routing cycle 0. Similarly, the reverse-breadth-
first scheduling discipline can be shown to be optimum, with the same value of the maximum packet
size. The maximum packet size occurs during the last routing cycle.

|

Corollary 7.1. All-to-all personalized n-port communication based on N translated nRSBT and
SBnT graphs can attain the lower bound complexity.

Notice that in one-port communication the data transfer time is always optimal if the routing.
is based on N translated greedy spanning graphs. But, not all greedy spanning graphs have the
same number of start-ups. Only the SBT graph allows a minimum of n start-ups for sufficiently
large packet size. The minimum number of start-ups can be decided by the same labeling rules
as were used in all-to-all broadcasting. The minimum number of start-ups is the same as for the
all-to-all broadcasting, Table 10. The difference is that the amount of data transferred during cycle
1 is equal to the sum of weighted subtree sizes with the root of each subtree connected through an
edge labeled ¢ to its parent.

7.1. The Complexity of All-to-All Personalized Communication
Tables 15, 16, 17 and 18 summarize the complexity estimates.
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Algorithm T
uRBRG L’V—‘zl)“—" + S NCiM Y,
SBT (Ez_o (¥)2r-2- I+El l—t.l( )Mt
+ }.Tjr<2'>£°;r‘ﬂ1+z,-l%r( )N
aRSBT ;Y (NM]m
nESBT | (¥ +2=2)Mt, + ( .-2{ b= (D251 + 155 + 152 )
SBnT NAltC + Zl-—l [E y=¢ (J)_H]T

Table 17: The complexity of n-port all-to-all personalized

communication.
Algorithm Byt Tmin
uRBRG (N-1M (N_UNM, 4 (N = 1)7
SBT Lo O(y/n)NMt. + nr
nRSBT 281 Mt +nr
nESBT oD T (N N Afg 4 (nt 1)7
SBnT (Y- UM NMy +nr

Table 18: The optimum complexity of n-port all-to-all per-
sonalized communication.

With one-port commumcatlon and BRG routing both the data transfer time and the start-up
- times are off by a factor of & . compared to the optimum for one-port communication. The former is
" due to the non-greedy property, and the latter is due to the non-optimum height. The complexity
for n-port communication and nRBRG routing holds for both the concurrent postorder scheduling
and the reverse-breadth-first scheduling. The routing fully utilizes the cube bandwidth; however,
- much of the data transfer is not through the shortest path, i.e., non-greedy.

Figure 14 shows all-to-all personalized communication on a 3-cube based on 8 SBTs. The
shaded area represents the portion of the data residing in processor 0 (denoted PO). The task is to
exchange the 7' block of data of processor 7 with the i*» block of processor j for any two distinct
processors 7 and j. If initially processor ¢ owns the *# block column as in figure 14-(1) then on
completion of the all-to-all personalized communication processor i contains the ** block row as
in figure 14-(4).

Lemma 7.1. All-to-all personalized one-port communication based on N translated SBTs can
achieve the lower bound 2L (Bt, + 7).

Proof. During the first routing cycle, data is exchanged along the highest dimension, i.e., each
node exchanges %NM elements with the neighbor in the highest dimension. Then, the procedure
is applied recursively with the data set doubling for each cycle of the recursion and the dimension
of the cube decreasing by 1. Let T'(:. M) be the time required by the stated personallzed all-to-all

routing algorithm with initially A data per node in an ¢-cube. Clearly, T(1,M) = (Btc +7),
T(k,M) = Z—EIM(BtC+T)+T(I. —1,2M). Hence, T(n,M) = 31 %’%—[(Btc+1) = %(Bic“*-f).
1
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Figure 14: All-to-all personalized communication in a 3-cube
based on SBTs.

In the case of n-port communication we can find the communication complexity from the
previously derived formula. The interesting quantity for postorder scheduling concurrently for each
subtree is Y= max sy4.

n-1 L%J 9] n—1 n 1
" _ n-2l—1 -
Yompon= 3 (D)7 3 (7))

=0 1=L_'L$J

which is of O(y/nN). Since rg = sy(n=g-1) the reverse-breadth-first scheduling yields the same
result.

The TCBT is not a greedy spanning tree, and the data transfer time will not be optimum.
However, the number of start-ups can be optimum for n-port communication. The amount of data
transfer is (LZ"_%?_LE + 2)M for a TCBT, compared to %.M for a greedy spanning tree. The data
transfer time is at least twice that of the lower bound, approximately. With one-port communication
the number of start-ups will be greater than 2n — 2. Unlike routing according to the SBT, nESBT,
nRSBT, and SBuT graphs, the TCBT graph cannot perfectly interleave the communication on
edges in different subtrees. With n-port communication, the fact that the first logn cycles do not
utilize the edges of all dimensions, and the uneven distribution of edges over dimensions at the
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same level, will make the factor of 2 even larger.
With one-port communication and nRSBT routing, the data transfer time during cycle 7 is

”’;ﬁ"(i + 1)¢., for0<i<n-1;
Igﬁ"(Zn —t1—-1)t,, forn<:<2n-2.

which yields the lower bound transfer time "A;M tc. The number of start-ups is 2n — 1 if B,, > N—{"—

For B,, < %4, the number of start-ups is the same as the SBT based routing.

With n-port communication, both the postorder and the reverse-breadth-first scheduling disci-
plines attain the lower bound, T},;, = %tc + nr for By, > 1N—_n-l-m :

The maximum packet size can in fact be reduced to A;—ﬁl by using a variation of the nRSBT
scheduling discipline. We describe an alternative discipline in terms of one SBT rooted at node
0, and with weight % During the first routing cycle, node 0 sends out % data across the link
in dimension 0. During the second routing cycle, node 0, and the node receiving data during the
previous cycle, send NTﬁi data through links in dimension 1 to node 2 and node 3 respectively.
During cycle ¢, there are 2' links in dimension 7 — 1 communicating -’g—,—ﬁi data elements each. Now,
consider n-port communication on nN rotated/translated SBTs. Then, each link transmits an
equal amount of data, %—ﬁi during every routing cycle. Note that the same scheme, if applied to
all-to-all broadcasting, will increase the maximum packet size from \/%_ :’7"% to %‘M—

Since the nESBT is not a greedy graph and also is not of optimal height, both the data transfer
time and the start-up time exceed the lower bound. The data transfer exceeds the lower bound by
at least M(N — 2). The number of start-ups is at least 2n for one-port communication and n + 1
for n-port communication. In fact, from theorems 7.3 and 7.4, T, = (’-g— + -N—"'—2)Mtc +(n+1)r
for n-port communication and Ty, = ('_'21 + N — 2)Mt. + 2n7 for one-port communication. The
maximum packet sizes are ﬂ—;l)ﬂ and %’(M';il — 1), respectively.

With one-port communication the data transfer time is optimal, N,f" tc, and the number of

start-ups is 2n — 1 with B,, > % With n-port communication, the SBnT routing attains the

lower bound by corollary 7.1. The maximum packet size is QV_—"_I)ﬂ’ a factor of 2 larger than the

minimum maximum packet size, %ﬁ—’, for any lower bound algorithm.

7.2. Comparison and Conclusion

With one-port communication, the SBT routing for all-to-all personalized communication at-
tains the lower bound. Only greedy spanning graphs attain the optimum data transfer time. In
fact, an optimum data transfer time can always be attained for the greedy spanning graphs, if the N
spanning graphs are translations of each other. The number of start-ups is equal to the maximum
edge label for a graph labeling such that edges in the same dimension carry the same label, and
outgoing edges always carry a higher label than incoming edges for the spanning trees making up
the spanning graph. Both the nRSBT and the SBnT routings attain the optimum data transfer.
The nESBT, the TCBT, and the BRG routings are about a factor of "nﬁ, 2, and % higher than
the lower bound data transfer time. The number of start-ups is in the range n to 2n, except for
the BRG routing which has N start-ups.

With n-port communication, both the nRSBT and the SBnT routings attain the lower bound
for postorder and reverse-breadth-first scheduling. The nESBT and the nRBRG routings do not
attain the lower bound due to their non-greedy properties. The SBT routing, though greedy, does
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not evenly utilize edges in the same dimension, and hence is non-optimum. The data transfer time
for the nESBT, the SBT, and the nRBRG routings are a factor of "—;',i, V1, and %’— higher than
the optimum time.

8. Experimental Results

8.1. The Intel iPSC Boolean Cube

The Yale version of the Intel iPSC [18] is a 128-node multiprocessor connected as a 7-dimensional
Boolean cube. It has a message passing programming model. Up to 16k bytes can be passed in each
communication, but the operating system subdivides messages of a size greater than 1k byte into
1k byte packets. We refer to the user defined packets as ezternal packets and the operating system
defined packets as internal packets. There is a communications overhead (start-up time) associated
with each packet. For an external packet we have recorded a start-up time that averages 8ms. For
internal packets the start-up time is approximately 6ms (at the time our programs were tested).
The interprocessor communication channels are 10A{-bit ethernet channels. Although there are 7
ports per processor in the 7-cube, the storage bandwidth can only support 2 — 3 ports concurrently.
However, we have effectively been unable to realize this potential with the available operating sys-
tem. The concurrency in communication on different ports of the same processor amounts to an
overlap of about 20%.

8.2. One-to-All Broadcasting Based on the SBT and nESBT Spanning Graphs

For the SBT-based broadcasting a processor retransmits the message it receives to the adjacent
nodes that correspond to leading zeroes in its address. The control is indeed very simple. For the
nESBT-based broadcasting the control is also simple. From the definition of the children,gpspr
function it follows that if a node receives a message on a port corresponding to a 0 address bit,
then it is the final recipient. If the message was received on a port corresponding to an address bit
that is 1, say port k, and the first bit to the left of &, cyclically, that is 1 is bit 7, then it retransmits
the message to all nodes corresponding to bits (k + 1) mod n, (k + 2) mod n, ..., ( — 1) mod n,
J mod n (excluding the last term if k = 7).

Figure 15 shows the measured time to completion of one-to-all broadcasting using SBT routing
for cubes of various dimensions and a number of different external packet sizes. As expected, the
communication time increases almost linearly for external packet sizes below 1k bytes. Figures 16
shows the measured time of SBT and nESBT routing for an external packet size of 1% bytes and
for cube dimensions ranging from 2 to 6. Figure 17 shows the speed-up of nESBT routing over the
SBT routing. The measured speed-up is approximately n, as predicted.

8.3. One-to-All Personalized Communication

For one-to-all personalized communication on the Intel iPSC and SBT routing we use the
postorder scheduling with communication on ports in a binary-reflected Gray code order, which
maximizes the minimum time between successive communications on any port.. This scheduling
means that data is communicated over ports in an order corresponding to the transition sequence
in a binary-reflected Gray code. Advantage is taken of the approximately 20% overlap in commu-
nication on different ports.

For the implementation of the SBnT routing we let the root determine which node belongs in
the different subtrees. In the case where n is a prime number the subtrees are isomorphic (excluding
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node ¢ @ s = N — 1). For this case the root only needs to keep one table
entry of size n bits. The order of the entries corresponds to the transmission order for each port,
e.g., postorder or reverse-breadth-first order. The table entries point to the messages transmitted
over port 0. The pointers for the other ports are obtained by (right) cyclic shifts of the table
entries. A one step cyclic rotation is used for port 1, two steps for port 2, etc. For n not a prime
number there are also cyclic nodes. If a single path is used to such nodes,
root are no longer isomorphic. By finding the period P; for each table ent
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Figure 17: Speed up of nESBT vs SBT.

into P; pieces, as described previously. Our implementation uses a single path to every node.

Internal nodes can either route according to the destination address if it is included, or use
tables. If the destination is included, then a node first checks if it is the destination. Otherwise,
the output port is determined by finding the base from base({myaddress) @ (source)) and then
finding the first bit that is equal to 1 in ((myaddress) & (destination)) to the left (cyclically)
of the bit corresponding to the base. If tables are used instead of a destination field, then for
postorder scheduling it suffices that each internal node keeps a count for each port. Since the
number of ports used in each subtree is at most n — 3 and the number of nodes in the entire subtree
is approximately %, a bound on the table size in each node is n? bits. A reverse-breadth-first
scheduling can be implemented by internal nodes keeping a table of how many nodes there are at
a given level in each of its subtrees. The table has at most n? entries. An upper bound for the
number of nodes in a subtree at any level is ;’;’;5, and the total table size in a node is at most n®
bits. Hence, without a more sophisticated encoding the postorder scheduling discipline requires less
table space. It is used for the measurements presented in Figure 18.

With one-port one-to-all personalized communication the expected time for SBT routing and
SBnT routing is the same. The observed advantage of the SBnT over the SBT routing is due to the
fact that the SBnT can take better advantage of the overlap between communication on different
ports. In the SBT case, even though messages were communicated over different ports in a binary-
reflected Gray code order, the nodes adjacent to the root are not yet finished with retransmitting
the last packet received when a new packet arrives. In the SBnT a subtree receives a packet once
every n cycles, and full advantage of the 20% overlap in communications actions is taken.

8.4. All-to-All Broadcasting

We have also coded all-to-all broadcasting using the exchange algorithm, the SBnT, and broad-
casting based on a single one- or two-way Hamiltonian circuit. The results are shown in Figure 19.
The behavior is to first order the same for all forms of all-to-all broadcasting, as expected for the
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Intel iPSC.

9. Conclusion

We show that the Boolean n-cube topology allows for the embedding of n edge-disjoint bi-
nomial trees, and present routing algorithms and scheduling disciplines for broadcasting that has
a complexity equal to the lower bound both for communication restricted to one port at a time,
and a potential for concurrent communication on all n ports of a node. We also define a spanning
balanced n-tree for personalized communication and all-to-all broadcasting. Each subtree of the
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Data Distribution

Assumption Routings Byt Train
One-to-all B. one-port , M =1 SBT 1 n(t. + 1)
One-to-all B. n-port , M <n nRSBT 1 n(tc + 1)
One-to-all B. one-port M > 1 nESBT ﬁ—{—f (VMt, + /nT)?
One-to-all B. n-port , M > n nESBT % 1:’: (\/-1‘—‘"1E + /n7)?
One-to-all P.C. one-port SBT XM (N — 1)Mt, + nr
One-to-all P.C. n-port SBnT, nRSBT -:-f,hg -(i:'-‘l-)—b—l-t, + nr
All-to-all B. one-port SBT L7 8 (N - 1)Mt, +nr
All-to-all B. n-port SBunT, nRSBT \/g fwﬁ% iﬂ-’—"lmtc + nr
All-to-all P.C. one-port SBT iR 2t + nr
All-to-all P.C. n-port SBuT (=DM MM +nr
All-to-all P.C. n-port nESBT —N;gi LMyt +nr

Table 19: Summary of the lower bound algorithms for various
data distributions.

root of the spanning balanced n-tree we define has approximately % nodes. Personalized commu-
nication based on the spanning balanced n-tree is for certain maximum packet sizes of the same
complexity as personalized communication based on a binomial tree, and in other cases has at most
a factor of 2 higher complexity for communication only on one port at a time. With concurrent
communication on all ports, the routing based on the spanning balanced n-tree is superior by a fac-
tor of % for a variety of combinations of maximum packet sizes, start-up times, transfer rates, and
data sizes. We also show that routing based on the spanning balanced n-tree is superior to routing
based on binomial trees for all-to-all broadcasting and all-to-all personalized communication when
concurrent communication on all n ports of a node is possible. Table 19 lists the communication
complexities of lower bound algorithms for the four data distribution problems discussed in this
paper.

Fault tolerance is not directly addressed in this paper, but we note that any spanning graph
with multiple paths to nodes inherently offers graceful degradation of performance under faulty
conditions.

Experimental results on the Intel iPSC/d7 confirm the results of the analysis.

Acknowledgement

Thanks go to Chris Hatchell for his assistance with the manuscript. The generous support of

the Office of Naval Research under contract N00014-84-K-0043 is gratefully acknowledged.

47



References

[1] Aho A.V., Hopcroft J.E., Ullman J.D., Data Structures and Algorithms, Addison-Wesley, 1983.

(2] Bhatt S.N.,Chung F.R.K., Leighton F.T., Rosenberg A.L., Optimal Simulations of Tree
Machines, Proc. 27th IEEE Symp. Foundations Comput. Sci., IEEE Computer Society,
1986, pp. 274-282.

[3] Bhatt S.N, Ipsen I.C.F., How to Embed Trees in Hypercubes, Technical Report YALEU/CSD/
RR-443, Yale University, Dept. of Computer Science, December 1085.

[4] Browning S.A., The Tree Machine: A Highly Concurrent Computing Environment, Technical -
Report 1980:TR:3760, Computer Science, California Institute of Technology, January
1980.

[5] Buzbee,B.L., Golub, G.H., Nielson, C.W., On Direct Methods for Solving Poissons’s Egquations,
SIAM J. Numer Anal, 7/4 December (1970), pp. 627-656. ‘

[6] Dekel E., Nassimi D., Sahni S., Parallel Matriz and Graph Algorithms, SIAM J. Computing,
10(1981), pp. 657-673.

[7] Deshpande S.R., Jenevin R.M., Scaleability of a Binary Tree on a Hypercube, Technical Report
TR-86-01, University of Texas at Austin, January 1986.

(8] Fischer M.J., Efficiency of Equivalence Algorithms, Complezity of Computer Computations,
Plenum Press, 1972, pp. 153-167.

[9] Fox G.C., Furmanski W., Optimal Communication Algorithms on the Hypercube, Technical
Report, California Institute of Technology, July 1986.

~ [10] Fox G.C., Jefferson D., Concurrent Processor Load Balancing as a Statistical Physics Problem,
Technical Report Caltech Concurrent Computation Project Memo 172, California
Institute of Technology, dept. of Theoretical Physics, May 1985.

[11] Gannon D., Van Rosendale J., On the Impact of Communication Complezity in the Design of
Parallel Numerical Algorithms, IEEE Trans. Computers, C-33/12 December (1984),
pp. 1180-1194. |

[12] Gustafson J.L., Hawkinson S., Scott K., The Architecture of a Homogeneous Vector
Supercomputer, 1986 Int. Conf. Parallel Processing, IEEE Computer Society, 1986,
pp. 649-652.

[13] Hayes J.P., Mudge T.N., Stout Q.F., Colley S., Palmer J., Architecture of a Hypercube
Supercomputer, 1986 Int. Conf. Parallel Processing, IEEE Computer Society, 1986,
pp. 653-660.

(14] Hillis W.D., The Connection Machine, MIT Press, 1985.

[15] Ho C.-T., Johnsson S.L., Distributed Routing Algorithms for Broadcasting and Personalized
Communication in Hypercubes., 1986 Int. Conf. Parallel Processing, IEEE Computer
Society, 1986, pp. 640-648.

[16] ————, Matriz Transposition on Boolean n-cube Configured Ensemble Architectures, Tech-
nical Report YALEU/CSD/RR-494, Yale University, Dept. of Computer Science,
September 1986.

[17) ————, Spanning Balanced Trees in Boolean cubes, Technical Report YALEU/CSD/RR-,
Yale University, Dept. of Computer Science, November 1986.
[18] Intel iPSC System Overview, Intel Corp., January 1986.

[19] Johnsson S.L., Odd-Even Cyclic Reduction on Ensemble Architectures and the Solution Trids-
agonal Systems of Equations, Technical Report YALE/CSD/RR-339, Department of
Computer Science, Yale University, October 1984.

48



[20) —————, Communication Efficient Basic Linear Algebra Computations on Hypercube Archi-
tectures, Journal of Parallel and Distributed Computing, (1986). Report YALEU/
CSD/RR-361, January 1985, Dept. of Computer Science, Yale University.

[21] —————, Solving Tridiagonal Systems on Ensemble Architectures, SIAM J. Sci. Stat. Comp.,
(1986). Report YALEU/CSD/RR-436, November 1985.

[22] Kogge P.M., Stone H.S., A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, IEEE Trans. Computers, C-22/8 (1973), pp. 786-792.

[23] Ladner R.E., Fischer M.J., Parallel Prefit Computation, J. ACM, 27/4 October (1980), pp.
831-838.

[24] Leighton F.T., Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph
and Other Networks, MIT Press, 1983.

[25] McBryan O.A., Van de Velde E.F., Hypercube Algorithms and Implementations, Technical
Report , Courant Institute of Mathematical Sciences, New York University, November
1985.

[26] Reingold E.M., Nievergelt J., Deo N., Combinatorial Algorithms, Prentice Hall, 1977.

[27] Saad Y., Schultz M.H., Topological properties of Hypercubes, Technical Report RR YALEU/
DCS/RR-389, Dept. of Computer Science, Yale University, June 1985.

(28] —————, Data Communication in Hypercubes, Technical Report RR YALEU/DCS/RR-428,
Dept. of Computer Science, Yale University, October 1985.

[29] Seitz C.L., The Cosmic Cube, Communications of the ACM, 28/1 (1985), pp. 22-33.

[30] Valiant L., Brebner G.J., Universal Schemes for Parallel Communication, Proc. of the 18th
ACM Symposium on the Theory of Computation, ACM, 1981, pp. 263-277.

[31] Wu A.Y, Embedding of Tree Networks in Hypercubes, Journal of Parallel and Distributed
Computing, 2/3 (1985), pp. 238-249.

49





