Abstract: A parallel implementation of an efficient method for comparison of multiple DNA
sequences is presented. The method is described in terms of a conceptual tree data structure for
the sequences begin compared. The parallel algorithm shows efficient utilization of processors on
an Encore Multimax computer in a sample comparison of eleven sequences totaling over 4000 bases.
Timing data show the strong influence of computer system details on this parallel program.

Also presented is a graphics program for diplaying multiple sequence comparison output data.
The display is capable of representing large volumes of multiple sequence comparison data in a
single plot. The program has several additional features that allow closer examination of subsets of
sequences. A display of matches from the sample comparison reflects the known structure of these
sequences.

Parallel Computation of Multiple
Biological Sequence Comparisons

David E. Foulser @nd Nolan G. Core

Research Report YALEU /DCS/RR-727
July 1989

This research supported by the Office of Naval Research under grant N00014-86-J-1906 and by the
National Library of Medicine under NIH Grant T15 LM07056.

Abstract

A parallel implementation of an efficient method for comparison of multiple
DNA sequences is presented. The method is described in terms of a con-
ceptual tree data structure for the sequences begin compared. The parallel
algorithm shows efficient utilization of processors on an Encore Multimax
computer in a sample comparison of eleven sequences totaling over 4000
bases. Timing data show the strong influence of computer system details on
this parallel program.

Also presented is a graphics program for diplaying multiple sequence com-
parison output data. The display is capable of representing large volumes of
multiple sequence comparison data in a single plot. The program has several
additional features that allow closer examination of subsets of sequences. A
display of matches from the sample comparison reflects the known structure
of these sequences.

1 Introduction

The advent of new DNA sequencing technologies has led to an explosive
growth in the quantity of biological sequence information available to re-
searchers [1]. As of Release 58 in December 1988, the Genbank database
had approximately 21,000 entries with over 24 million nucleotides [7]. The
benefits of this sequence information have already been clearly established,
with consequent gains in knowledge of the biological structure and function
of many genes and the proteins they encode, resulting in important insights
into human biochemistry, physiology, and disease processes. The need rapidly
to compare these sequences continues to grow as the accumulated body of
information expands.

Several varieties of sequence comparison algorithm exist, with the longest
common subsequence (see e.g., Needleman and Wunsch [14], Wilbur and
Lipman [19], Smith and Waterman [16], and Lipman and Pearson [11]) and
suffix-tree methods (see e.g., Karlin et al. [9, 10] and Martinez [12, 17]) being
the most common. The former have been used for pairwise sequence compar-
isons for several years. However, the latter seem to be particularly well-suited
for multiple sequence comparisons, which are of increasing importance due
to the proliferation of sequencing data. The computational task of complex

sequence comparisons seems well suited to parallel computer processing.
This paper presents a parallel computer implementation of a suffix-tree
based method for rapid multiple sequence comparisons, as a variant on a
method proposed recently by Karlin [9, 10]. We also describe a new graphics
post-processor for the display of multiple sequence comparison output.
Section 2 introduces the computational problem formulation in terms of
a sequence suffix tree. Section 3 presents the matching algorithms for a se-
quential computer and gives the implementation details of the computation’s
initial phase. Section 4 indicates the parallel formulation of the computa-
tion and details the synchronization steps to coordinate parallel processing.
Section 5 describes the biological sequence data used in our computations.
Section 6 gives an overview of the graphics postprocessor. Experimental
results are presented in section 7. Conclusions are stated in section 8.

2 The Suffix and Match Trees

The comparison method we use finds local sequence similarities based on
exact matches of a fixed minimum length in one or more sequences. The
rationale behind this approach is that long regions of exact similarity are
highly significant (in a probabilistic theoretical sense) and thus may be worth
investigating for biological function. A prescribed form of inexact matching
is then permitted to extend the original exact matches in order to allow for
biological variability.

The exact matches within a single sequence can be represented by the
projection of the sequence onto a tree structure of all possible substrings,
where a substring is a contiguous subsequence of letters from a larger se-
quence. The sequence comparison algorithm can then be viewed in terms of
the tree structure, which we now develop.

The root node T4, of the infinite suffix tree T represents the null or r empty
substring ¢. Node T¢ has four subnodes, labelled Ty, Tc, Tg, and T, rep-
resenting the four single-nucleotide substrmgs From these four nodes, the
infinite tree is recursively constructed by concatenating letters A, C, G, and
T to each node. For example, Tacg has subnodes T 'ACGA» TACGC, TACGc;,
and Tacgr. The level of a node in the tree is the length of its associated
substring. For example, Tacge is a node at level four. The general suffix
tree may be constructed for a sequence drawn from an arbitrary alphabet.

Having established the form of T, it is straightforward to map a given
sequence ¥ onto a finite subtree T of T, by identifying a node Ts with all
sequence locations in ¥ at which the substring S begins. (We shall use ¥
to denote a sequence or concatenation of sequences, the letter S to denote
a substring, and the characters x and y to denote other sequence letters or
substrings.) Thus the node T represents all occurrences of the exact match
S within Y. T is called a suffix tree because each node represents all sequence
suffixes beginning with a given substring. The subnodes Tsa, Tsc, Tsg, and
Tst represent the occurrences of extensions of the match S in ¥. The union
of sequence locations represented by Tsa, Tsc, Tsa, and Tst is precisely the
set of locations in Ts. The refinement of Ts into its subnodes is the basis of
the algorithm described below.

After restricting the infinite T' to the finite tree T' of nodes determined
by X, T can be pruned slightly to its exact match form. For our present
purposes, the only significant nodes of T' are those which represent a match
of two or more substring occurrences. We can prune away all tree nodes
representing a single substring occurrence, that is, all singleton branches, to
form the ezact match tree T. For example, the sequence AACGATCGACAA
has the match tree T with nodes Ty = {1,2,3,4,5,6,7,8,9,10,11,12}, Ty =
{1,2,5,9,11,12}, Tc = {3,7,10}, Tg = {4,8}, Taa = {1,11}, Tac = {2,9},
Tca = {3,7}, Toa = {4,8}, and Tcga = {3,7}. Note that node Tr, among
others, is absent from the tree in this example because it contains only a
single substring occurrence.

The match tree has an obvious generalization to multiple sequences, in
which the sequences are individually mapped onto T' and the match tree T
is then formed by pruning singleton branches. Nodes of T' then correspond
to substrings matching within a single sequence and/or among multiple se-
quences. There are many known sequence comparison algorithms that work,
implicitly or explicitly, with T or a related data structure, including those
of McCreight [13], Weiner [18], Karlin et al. [9, 10], Martinez [12, 17] and
Blumer et al. [3].

As an aside, we note that T can be further refined by various require-
ments on its nodes. A few such requirements include: a minimum number of
matching instances greater than two, the representation of a minimum num-
ber of sequences, the presence of a substring from a specified target sequence,
and minimum or maximum length requirements on the substrings.

The exact matching algorithm computes the information in T making use
of two efficiencies. First, an internal node of T' with only a single subnode
represents an incompletely extended exact match and need not be displayed.
In our example, Tcg = {3, 7} has the sole subnode Toga = {3,7}. Thus the
information in Tcq is subsumed by its descendant and need not be displayed.
Such a node represents a substring that is incompletely extended to the right.

The second efficiency recognizes matches that are incompletely extended
to the left. Any node Ts that has a single unique leftward extension for all
its instances (i.e., only one of AS, CS, GS, TS exists for all occurrences of
S) is redundant and need not be displayed.

By suppressing the display of these two types of node correspondences,
the algorithm effectively computes only maximal length sequence matches
for later display. In the previous example, only A, C, AA, AC, and CGA
would be displayed, with G, CG, and GA omitted as non-maximal matches.
Note the differences between G and A: A is displayed because it has six
occurrences, while no two-letter extension xA or Ax has six occurrences; but
all extensions of G are GA.

3 Comparison Algorithms

Many methods are used to compare biological sequences (for a good overview
of longest common subsequence based comparison algorithms see Sankoff and
Kruskal [15]). An efficient algorithm for the determination of all repeats
greater than a given length k has recently been described by Karlin [10].
That algorithm determines both exact and inexact repeats, where an exact
repeat is an identically shared sequence of nucleotides of length at least k,
and an inexact repeat is a grouping of two or more exact repeats separated
by error blocks, each of length at most e nucleotides. Karlin’s algorithm first
determines the locations of all exact repeats of length k£ and then extends
them to their length of maximum identity. The inexact repeats are then
determined by finding neighboring exact matches separated by error blocks
of at most e nucleotides. Our matching program follows the above approach,
with an emphasis on parallel computation.

We now present our exact matching algorithm, using the match tree no-
tation of the previous section. Let ¥ be a sequence or concatenation of
sequences, with total length N.

Exact Method

1. Initialize Ty = {1,2,..., N}, the set of all locations in ¥. Mark Ty as
active.

2. While any active nodes remain, execute steps 2a — 2f.

(a) Select an active node Ts = {ly,1s,...,1,}, where the length |S| =
m. Mark Ts as inactive.

(b) Create sets for Tsa, Tsc, Tsg, and Tst by examining letters at
locations Iy +m, l+m, ..., I, +m in the concatenated sequences.
Discard any substrings Sx that cross sequence boundaries within
¥ (i.e., for which l; + m — 1 is in one sequence and /; + m is in
another).

(c) If every element of a set Tsx extends to the left by an identical
letter y to form ySx, discard the non-maximal node Ts,.

(d) If a set Tsy has m elements as well, discard the non-maximal node
Ts.

(e) Discard nodes with sets of zero or one element.

(f) Mark undiscarded nodes as active.

3. No active nodes. Display the undiscarded and inactive nodes that
match the display criteria.

Although the set of exact matches is rapidly computed by this approach,
it may not suffice in the analysis of actual sequences. Biological sequence
similarities often embody a degree of inexact matching, which calls for a
measure of flexibility in the method. We address the drawback of considering
only exact repeats by extending the method to compute a certain class of
inexact matches, namely those composed of exactly matching segments of
a minimum length k separated by non-matching regions of no more than e
bases between them.

The parameters (k,) describe a family of sequence comparison schemes.
When k£ = 1 and e = 0, this is simply the exact match method presented
above. For k = 1 and e = N, it is the longest common subsequence calcu-
lation commonly implemented in dynamic programming approaches to se-
quence comparison. We employ small values of k and e, with £ = O(log N)

5

and e a constant. Our inexact matching method could thus be viewed as a
local refinement of a longest common subsequence approach. In this regard it
is similar to earlier methods of Wilbur and Lipman [19] and Martinez [12, 17].

Given that the classes of matches computed by this method are related to
longest common subsequence calculations under certain restrictions, one can
view this method as a replacement for such algorithms. In many cases, par-
ticularly for small e, this method is likely to be more efficient than straight-
forward dynamic programming approaches.

The inexact matching method allows a more flexible creation of subnodes
in the tree structure. For a given node Tg, it allows additional subnodes
Ts+x, where the ‘+’ indicates an error block of length 0, 1, ..., e in each
instantiation of the match. At least one instance of the inexact match S+x
must have a non-zero length error block ‘+’. Superfluous error blocks are not
allowed. For instance, A+A could be represented by AA, ATA, or ACGTA,
among others, but not by AAA. The augmented, inexact match tree contains
nodes of the inexact match type, as well as all the nodes of the exact match
tree.

With the addition of inexact matchings, a bulk of the program necessary
to implement our algorithm becomes devoted to removing duplicate matches
in order to reduce processing time and eliminate redundant information in
computation and display. Our criterion in constructing inexact matches is
to form a minimal set of inexact matches, each of which is composed of
maximally extended exact repeats separated by error blocks. The elimination
of redundant matches implements this matching criterion from the elements
of the pruned suffix tree.

The redundant matches have two basic forms. They include matches that
could be extended to the left or right, by the exact or inexact methods, to
give another match in the output set. Additionally, no inexact match is
allowed where an exact match would suffice (thus no identical error blocks
are allowed across all match instances).

Consider, as an example of this latter restriction, an inexact match of
three sequences that extends to an inexact match of length 11 on two out
of the three. But on examining the two, we see that the match is actu-
ally an exact matching pair, which is necessarily computed elsewhere in the
tree. The present duplicate copy must be rejected. The table below shows
AAA+AAA as such a three-way inexact match, where the two-way match

AAA+AAA+AAA is a redundant “inexact” match:

AAA | C| AAA| G| AAA
AAA | C| AAA| G| AAA
AAA| T | AAA| T | zzx

This is an example of a refinement of a distinct inexact match that yields a
duplicate exact match.

The other type of duplication is the incompletely extended match. Ex-
amples of this class were already treated in steps 2c and 2d of the exact
matching method. Analogously, certain matches extending inexactly to the
left and right are redundant. (However, note that a match whose inexact
leftward (rightward) extension can itself be extended exactly to the right
(left) does not automatically qualify as a redundant match.) Steps must be
taken in the inexact method to eliminate these duplicates.

The inexact matching algorithm can be described as follows. Note the
slight modification of the exact method that fully extends exact matches
before branching out to subnodes. Again, ¥ is a sequence or concatenation
of sequences of length N.

Inexact Method

1. Initialize Ty = {1,2,..., N}, the set of all locations in ¥. Mark Ty as
active.

2. While any active nodes remain, execute steps 2a — 2k.

(a) Select an active node Ts = {ly,ls,...,l,}, where the length of
instance [; is m;. Mark Ts as inactive.

(b) Compute the maximal length p > 0 by which all elements of Ts
may be extended and yet remain in a single set Tsx. That is,
extend S to its maximal exact matching length from the single set
Ts. Extend Ts to Tsy, and write p = |z|.

(C) Create sets TSxy for TSan TSXC, TSxGa and TSxT by exa'mjning let-
ters at locations [; + m; + p in the concatenated sequences, for
1 <2 < n. Discard any substrings Sxy that cross sequence bound-
aries, as in the exact method.

(d) Create sets for Tsyxy,, Where z is one of the 4% words of length k,
and where ‘+’ represents an error block of length 0, 1, ..., e.

(e) If every element of a set Tsyy extends to the left by an identical
letter q to form qSxy, discard the non-maximal node Tgyy.

(f) If every element of a set Tsyy, extends to the left by an identical
letter q to form qSx+z, discard the non-maximal node Tsy4s.

(g) Discard nodes with sets of zero or one element.

(h) If every element of a set Tsy4, contains a corresponding superfluous
error block, discard the node Tsyys.

(i) If every element of a set Tsyxy or Tsx4, €xtends to the left by an
error block followed to the left by an exact match of length k or
greater, and that leftward inexact match cannot be extended to
the right, discard the node Tsyy or Tsx4s.

() If any remaining node Tsyy or Tsy4, has the same number of set
members as Ts, discard Ts. Under this condition T extends com-
pletely by the inexact matching method and Tgs is thus a non-
maximal internal node that need not be displayed.

(k) Mark remaining undiscarded subnodes as active.
3. No active nodes. Display inactive nodes matching display criteria.

The tree-based method can be modified to proceed directly to nodes at
level k, by precomputing all substrings of length k£ in X. In the sequential
algorithm this is done to avoid unnecessary work on insignificantly short
repeats, while the parallel algorithm performs this step to quickly reach a
level with appreciable parallelism. It is also true that O(kN) work is needed
on average to extend the tree to level k = O(log N) by creation of subnodes,
whereas the modified approach requires only O(N) work.

We proceed directly to level k by forming an array W(1: N +1 — k) as
the numerical representation of overlapping words of length k in ¥. We let
A=0,C=1,G =2, and T = 3. Denote by ¥; the j*® letter of X. Then
W; = Y53 4°%,,;. For example, W; = 4°%, 4 415, + - - - 4+ 4¥-1%,;. Finally,
k-words crossing a sequence boundary are set to a prescribed value (e.g., -1)
that is not in the range [0,4% — 1] of valid k-word values.

The array W of k-word locations is then assembled into tree node sets.
Our method employs a table P of 4% pointer entries, which reference linked
lists representing the node sets of T'. We indicate a node set Ts by refering
to Tw,, where W} is the numerical representation of S. The essence of both
methods is presented below.

1. For j=0to 4 -1
Pi=0
endfor

2. Fori=1to N
if W; € [0,4% — 1] then

Py, = Pw, +1
Tw,(Pw,) =1 (essentially Tw, = Tw, U1)
endif
endfor

Step 1 initializes the counters in P to zero. Step 2 uses the counters to
augment the nodes T; by the locations of words 7 in ¥. At the end of step
2, each node T, has its correct set of substring locations for the word W; in
locations Tw,(1), Tw,(2), - .., Tw,(Pw,). Note that Tw, may be implemented
as a linked list in this computation. Also, P; contains the size of the set Tj
after step 2.

Our method of implementing this approach allocates the table P as the
full array of 4* words. However, for even modest values of k, this may require
a very large memory allocation for P, perhaps much larger than the size of
Y. In such a case, one should implement P as a hash table where unstored
elements are understood to be zero. In this case, at most N +1 — k elements
are filled since that is the number of k-letter words in ¥, and in general many
fewer than N will be needed, as there will be a substantial number of k-word
repeats.

Given the initial node sets of T, the full exact match computation may be
started. The computation is organized by keeping a pool of active nodes to
be processed. When a CPU becomes free, it executes step 2 of the algorithm,
selecting an active node and performing the extensions, marking the initial

node as inactive and eventually placing several subsidiary active nodes back
in the pool. We use a queue data structure to implement the pool of work,
with the consequence that nodes are processed in a first in, first out fashion.
The initial queue is composed of the tree nodes at level k, which has at most
4% entries. Additional queue nodes are calculated by the exact and inexact
matching methods.

4 Parallel Computing Considerations

Our parallel implementation of the inexact matching algorithm was written
in C and run on an Encore Multimax [4] 320 with APC cards, using up to
17 processors. The Encore computer is a shared-memory multiprocessor in
which the individual CPUs have local cache memories and are linked by a
shared system bus to a larger, shared memory. Actions of the multiple CPUs
can be coordinated through appropriate operations on the shared memory, or
the processors can function as independent virtual-memory computers. The
present system has 64 Mbytes of shared system memory and a peak system
bus bandwidth of 100 Mbytes/sec. Each APC board holds a pair of CPUs
and a local 64 Kbyte cache memory. The Multimax can contain up to 20
CPUs, each of which is rated at 2 MIPS.

The opportunities for parallel computation on T are inherent in its tree
structure. T is, in effect, a dependency graph, in that computation for a
node T, depends only on completion of the work for the parent node Ts. Our
parallel implementation strategy is to precompute a portion of T in sequential
mode, then to switch over to parallel mode in computing the remainder of T'.
The initial portion computes level k of the tree. Various tactics can then be
employed to divide up the remaining work so as to uniformly utilize multiple
processors without incurring undue overhead costs. We shall present two
approaches. '

To implement the parallel processing of the algorithm, we set up a queue
data structure of tree nodes, which the processors use to allocate their work.
Each queue entry is a tree node, represented as a pointer to a linked list of
identical exact matches. The construction of the original queue is discussed
above in section 3, where its elements are labelled Tw,. The top queue entry
is the next active element to be examined, and newly created nodes are added
to the bottom of the queue.

10

Both methods use shared memory locks to synchronize parallel access to
the shared queue data structure. The synchronization is necessary to avoid
anomalous conditions in which two processors might operate on the same
node in the tree due to essentially simultaneous access to the queue.

Synchronization requires two counters in shared memory that point to
the top and bottom of the the queue. The counters are manipulated in two
“critical sections” of program, which are implemented with a spinlock mech-
anism to ensure access by only one processor at a time. The processor locks
the critical section, reads and increments the “top” counter, then releases
the lock. When nodes are returned to the bottom of the queue, a similar
mechanism is used to synchronize access to the “bottom” index. When the
top counter reaches the bottom of the queue, and no nodes are being pro-
cessed, the computation is complete. We investigate two methods of using
the queue and counter to allocate work to the processors:

e Shared data: Place all elements of the queue in shared memory. Each
processor takes an entry from the top of the queue, completes one cycle
of exact and inexact extension, and places all newly created repeats
at the bottom of the queue. This process continues until no further
extensions are possible.

This method is meant to distribute the work as evenly as possible
across the processors, which operate on small tasks. While this method
balances the workload well, it calls for a large amount of data traffic
across the system bus to the processors, a large number of accesses to
shared memory, and a significant amount of synchronization.

e Shared index: Copy all entries of the initial queue to each processor’s
local memory. Each processor maintains a unique local queue. Avail-
able elements on the local queues are determined by a global “top”
index. Each processor reads and increments the global top index, takes
the indexed element off the top of its own queue, and completes in its
local memory all possible cycles of extensions for this element. Pro-
cessors repeat the process until all members of the initial queue have
been processed. The only requirement for shared memory is the global
counter describing the next available element of the queue.

This method attempts to place a small load on the shared memory and
bus, at some cost in load balancing. No subsidiary nodes are returned to

11

any shared queue. Instead, each processor completely forms the entire
subtree of its selected node and displays the results before returning to
the queue to select another node.

The shared data method implements the synchronization by maintaining
two pointers to the queue. “Top” points to the next available active queue
node, while “bottom” points to the next empty space for a node on the
queue. If another processor has locked the section, processors seeking to
access the queue wait idly. In both cases top and bottom start at 0. The
actual operations for the shared data method are as follows:

LOCK
If adding then

b = bottom;
bottom = bottom + #nodes added
endif
If removing and top < bottom then
t = top;
top =top + 1
endif
UNLOCK

If adding then

add elements b, b+ 1, ..., b+ #nodes — 1 to queue
endif
If removing and ¢ is defined then

remove element ¢ from queue

endif

Very few CPU cycles are used in the critical locked section of the code.
The expensive data transfer to or from the queue is performed outside (and
immediately after) the locked section, after the appropriate elements are
identified with pointers b and ¢ to the queue.

The shared index method uses an analogous locking scheme. Since no
data are ever returned to the queue, only the data removal section is used:
LOCK

If (top < 4%) then

t = top;
top = top + 1;

12

else
done
endif
UNLOCK

If done then
stop
else
remove top queue element and extend its full subtree

endif

Each processor can eventually write its own partial queue information
to the output display. For the timing runs reported below, no output was
performed by either method.

5 Target Biological Sequences

We use as a sample problem the 11 known sequences of the ribonuclease P
RNA, the catalytic element of a ribonucleoprotein enzyme [2, 8]. In addition
to allowing a broad range of sequence similarities, this RNA is important
because it was one of the first RNA’s shown to have catalytic activity [2].
The length and name of these sequences are show in table 1 below.

The first seven sequences have been aligned by James et al. [8] by a series
of iterations using additional information which would not be available to
a general sequence alignment algorithm. This included implied secondary
structure and conservation of pairs of nucleotides that are complementary.
The first four sequences are all Bacillus species and fall within one phylum.
The next three are members of another phylum, the “purple bacteria”. Align-
ments within each of the phyla are easier than alignments between phyla, due
to evolutionary distance of the sequences. For the latter, James et al. [8] used
selected subsequences containing several nucleotides that are the same in all
seven sequences. These are shown in table 2.

The last four sequences are more distant in evolutionary relatedness. We
know of no published alignments among these four sequences or between
these four and the preceeding seven. The correspondences between S. Oc-
tosporus and S. Pombe are readily apparent in figure 1, but S. Cerevisiae and
Hela show little relationship to the other sequences. There is a need to obtain
sequences of ribonuclease P RNA from additional species to provide a more

13

Length Name

401 Bacillus Subtilis

417 Bacillus Stearothermophilus
408 Bacillus Megaterium

411 Bacillus Brevis

354 Pseudomonas Fluorescens
375 Salmonella Typhi

377 Escherichia Coli

282 Saccharomyces Octosporus
284 Saccharomyces Pombe

369 Saccharomyces Cerevisiae
339 Hela

Table 1: Sequence lengths and names.

Bacillus Subtilis E. Coli

15— 22 12 -19

43 — 53 61 — 71
179 — 188 124 — 133
226 — 253 229 — 256
258 — 263 292 — 297
313 — 322 327 — 336
369 — 382 347 — 360

Table 2: Alignment subsequences.

14

FIGURE 1: Pairwise matches of .length 15 or greater.

Enzymatic RNA Comparison

1 - T

T
\
1 -HH !
|

1 - T TR

1 I
I AINNIIEIE T
LI 1IN R
1 HIEE [1 1T
1 — —1 1N 1
O] AN
1 — —1] I RN

1

P O O 0O ~NOO AW+

e

llllllIIIIIIIlllI|IIIIIIIII'IIIII!I1IIIIIIIIII

0 50 100 150 200 250 300 350 400

. Subtilis

. Stearothermo.
. Megaterium
. Brevis

. Fluorescens
Typhi

. Coli
Octosporus
Pombe

. Cerevisiae
ela

0 V0 U 1 0O b b o b

= OO0 -

—

FIGURE -2: Five-way matches of length 9 or more on a subset of sequences.

Zoomed Comparison

3 e —
4 25
ST
6 2s u
7 25 { |
IIIIIII[]I!IIIIIII]II!IIllllll
50 100 150 200 250 300
1 B. Subtilis
2 B. Stearothermo.
3 B. Megaterium
4 B. Brevis
5 P. Fluorescens
6 S. Typhi
7 E. Coli

INSERT FIGURE 1 HERE

Figure 1: Pairwise matches of length 15 or greater.

INSERT FIGURE 2 HERE

Figure 2: Five—way matches of length 9 or more on a subset of sequences.

gradual transition from the first seven to the final one. With the increasing
availability of large numbers of closely related sequences, the ability to con-
sider the 11-way comparison simultaneously is an important strength of the
algorithm. The ability to find repeats within as well as between sequences
also is useful for certain sequences.

Several of the alignments of table 2 are visible in our figures. Of the seven
conserved segments, figure 2 clearly shows the second, third and fourth as
being present in at least 5 out of the 7 sequences at lengths 9 or greater.
Figure 1 shows the conservation of the first segment in three of the Bacillus
sequences, and the seventh segment’s presence in 6 out of 7 sequences. Fig-
ure 2 presents an interesting deviation from those tabulated data for the fifth
segment, as it shows the matching contributions in P. Fluorescens, S. Typhi,
and E. Coli occuring in the range from bases 150 — 180, instead of 347 —
360.

15

6 Graphical Display of Multiple Sequence
Comparisons

We have developed a prototype graphical display program to present the
output of our parallel multiple sequence comparisons. Multiple sequence
comparisons generate large volumes of sequence similarity data, particularly
when inexact matches are allowed. Graphical analysis of the data elucidates
the overall framework of sequence similarities and can help guide further
analysis at the sequence level. Furthermore, a multiple sequence compari-
son plot can present information more succinctly than a series of pairwise
comparisons.

The graphics program is based on an interactive programming and graph-
ics language CLAM® (the Computational Linear Algebra Machine!)[6]. CLAM
is an interactive numerical computing environment that runs on a variety of
UNIX™ based computers. It is capable of producing graphics output for
Sun workstations using Suntools™, for X Window System™ server work-
stations or displays, and for PostScript™ and Impress™ hardcopy printers.
In addition to the line drawing capabilities of CLAM used in our program,
there are 2D plotting, 3D surface and contour drawing, color, and animation
graphics features.

The main feature of the graphical display is the representation of multiple
sequences and their inexact matches. As shown in Figure 1, exact matches are
drawn as boxes on each sequence with lines joining the match instances from
one sequence to the next. Multiple occurrences of a match on one sequence
are joined by angled lines. An inexact match is drawn as a sequence of exact
matches. A horizontal axis is provided to ease location of matches within a
sequence.

The display functions as a graphics filter, in that it manipulates the file
output of the parallel comparison program. Thus one need not recalculate
a complicated or costly sequence comparison each time a plot is desired. In
fact, the CLAM graphics filter need not execute on the same computer as
the sequence comparison. However, CLAM does support calls to Fortran or

LCLAM is a registered trademark of Scientific Computing Associates, Inc. UNIX is a
trademark of AT&T. Suntools is a trademark of Sun Microsystems Inc. The X Window
System is a trademark of MIT. PostScript is a trademark of Adobe Corporation. Impress
is a trademark of Imagen Corporation.

16

FIGURE 3: Three-way matches of length 8 or more on a reordered subset.

Reordered Comparison

3
1 1
2 | 1
4 1

clo b b b b b b b e
0 50 100 150 200 250 300 350 400

1 S. Octosporus
2 S. Pombe

3 S. Cerevisiae
4 Hela

INSERT FIGURE 3 HERE

Figure 3: Three-way matches of length 8 or more on a reordered subset.

C subroutines, so that we could have called the parallel sequence comparison
program directly from CLAM.

Additional features of the graphics display include legend plotting, se-
quence reordering, sequence masking, offset insertion, and zoom. As shown
on figure 1, the sequence names are displayed in the boxed legend. The
number next to the name indicates the sequence number in the figure.

Sequences may be reordered to change their vertical placement. This is
useful in grouping highly related sequences, thereby reducing the number of
match-joining lines crossing non-matching sequences. The user specifies a
permutation vector to control the reordering. The graphics filter updates
the legend to reflect the reordered sequence numbers.

The user may select a subset of the available sequences for display, in
order to highlight particular matches. This is accomplished by setting a
mask vector of logical values. Matches on the masked-off sequences are not
displayed. The vertical spacing and legend can be adjusted to reflect the new
selection. Only matches on the masked sequences are displayed.

The vertical alignment of matches depends on the correct alignment of
sequence fragments. The program allows the user to specify an alignment
offset, indicating the number of bases to shift each entire seqeuence to the
right before plotting. The vertical axis displays the sequence offset (in smaller
type) next to the sequence number.

Finally, it may be of interest to focus on a particular segment of the
compared sequences for greater clarity. This is accomplished by resetting
the lower and upper sequence limits in the plot. The program then replots
the sequence comparison output with the new limits. CLAM automatically
handles the zoom function, including clipping of data outside the specified
plotting region.

Figure 2 shows the use of several of these features. A subset of the se-

17

quences has been selected, its order changed, offsets added for better match
alignment, and a zoomed view of part of the sequence displayed. The dis-
played matches occur in at least five out of the seven sequences shown. This
figure shows the strong correspondence of the first seven sequences.

Figure 3 shows the reordering of sequences in a comparison of S. Oc-
tosporus, S. Pombe, S. Cerevisiae, and Hela, in which only matches with at
least three occurrences are displayed. The reordering is used to place related
sequences in proximity, for clarity of the image. Plots such as this can be
used to search for relationships between a subset of the entire set of compared
sequences.

7 Experimental Results

It is worth noting that the total parallel computation time for the compari-
son of these 11 sequences, of average length approximately 370, is about 13
seconds on a 2 MIPS computer. The initial sequential computation requires
2.3 seconds. This is in direct contrast to the cost of 370! ~ 1028 operations
necessary with the direct dynamic programming computation, an operation
count that renders such a multiple sequence comparison by that method in-
feasible on any computer. We attempted to make our timing runs at times
when few or no other jobs were running on the system.

A useful measure of the effectiveness of a parallel implementation is its
efficiency ratio. Figure 4 shows the parallel efficiency of the two methods on
various numbers of processors for our test problem. (The efficiency was com-
puted as the time for a non-parallel single processor version of the program
divided by the total parallel time on the same problem. Both methods com-
pute timings only for the extension of the initial queue; the formation of the
initial queue is not included.) In each case, ten repetitions were computed to
identify the variation in timings due to other jobs running on the computer
and competition of processors for system resources. The curves are drawn
through the average of 10 repetitions of the calculations; tick marks extend
to the minimum and maximum times out of the 10 trials. We note that both
methods produce identical sequence comparison output.

It is clear from figure 4 that the shared index method is substantially more
efficient than the shared data method. We shall now explain why this is so,
with the goal of deducing general principles for similar parallel programs.

18

FIGURE 4: Parallel processor efficiency measures.

Parallel efficiency over 10 trials

1.0 — .
Shared index

> N

)

c

QO o8

3)

o -

(-

ha u

3}

T 06 —

— -Shared data

© "

e

©

A 04 |-
_llllllllllilllllilllll

0 5 10 15 20
Number of processors

INSERT FIGURE 4 HERE

Figure 4: Parallel processor efficiency measures.

The curve labelled “shared data” represents the method in which all queue
elements are maintained in shared memory. The second curve, labelled “share
index,” represents the method that keeps the queue nodes in disjoint local
memories and shares only the index of the next active node on the queue, as
discussed above.

The resource usage of the programs are as follows. The number of spin-
locks controlling access to critical program segments is two for each queue
element. The shared memory requirement can be estimated by adding the
following items needed during a run:

1. Number of queue entries (pointers) x 4 bytes
2. Number of queue elements (repeats) x 20 bytes

3. Number of error blocks x 12 bytes

As an example, for the sample 11-way comparison described in section 5,
the memory usage in bytes is approximately as follows:

940,000 = 5000 x 4 + 40,000 x 20 + 10,000 x 12.

The data transfer to and from the main memory is approximately that re-
quired to move all of the data in each direction, for a total of 1.9 Mbytes of
data traffic. Individual queue elements reside in adjacent storage locations,
so there is low likelihood of thrashing due to cache misses.

The shared data method uses approximately this much storage, with most
arrays lying in shared memory. The shared index method assigns larger,
more variable, amounts of work to the individual processors. It requires
more storage, but significantly less global communication. By duplicating

19

the initial queue in all p processors, the second method uses up to (p —
1)(4¥+! + 20(N + 1 — k)) additional bytes. For our model problem with
p <17, k=3, and N = 4000, this is up to 1.28 Mbyte additional memory.
The actual memory requirements of the program include p — 1 additional
work buffers of 0.8 Mbyte each, but much of this space is never used. Thus
the shared index method more than doubles the required memory usage of
the shared data method.

The increase in memory is significant, because the individual CPUs have
rather small local memories. Thus all 2.2 Mbyte of data must be stored in
main memory and accessed over the system bus. With a very low number
of computations per datum, which is independent of problem size for both
methods, there is a heavy demand on the bus when the number of processors
is large. The bus appears to be fast enough to satisfy the requirements of our
program, for figure 4 does not appear to show the effects of bus saturation.

The shared index method uses significantly fewer global synchronizations.
Both methods require two synchronizations or locks for each global queue
element. The shared data method has about 5000 such queue elements,
while the shared index method has only 4%, in this case 64, for 10000 and
128 global synchronizations, respectively. Because it is possible that p — 1
other processors wait idly when one CPU executes the locked program, the
expected degredation due to a spinlock increases with processor number. The
chance of a processor encountering a lock also increases as the computation
time decreases, because the fixed number of locks must be accomodated in a
reduced actual time.

The shared index method has the added advantage of being applicable
to disjoint memory machines with many processors, since there is little con-
tention for any shared resource relative to the amount of computation carried
out, assuming sufficient local memory.

The data of figure 4 clearly show the deleterious effect of excessive use
of synchronization. We infer that the synchronization is the primary cause,
because the shared index method actually has higher memory and bus traffic
requirements; the shared data method requires two orders of magnitude more
synchronizations. The only additional requirement of the shared data method
is that it requires execution of the two critical sections of locked code for each
of its approximately 5000 nodes on the queue. Thus we attribute its relatively
poor performance entirely to synchronization penalties.

The second method operates at above 80% efficiency for 2 — 17 proces-

20

sors. The factors of synchronization, bus traffic, and memory usage probably
contribute to the loss of 20% efficiency for large numbers of processors, but
it seems likely that they are not the causes of the immediate decrease in
efficiency as we increase the number of processors beyond 1.

There are only 128 synchronizations in a total of several seconds of compu-
tation, so the processor idle time due to these waits does not seem a probable
cause. Saturation of the bus with data traffic might be at cause, but should
not be felt for very few processors. That is, one would not expect to see the
observed drop in efficiency for 2 or 3 processors.

Similarly, excessive shared memory traffic does not seem to be at fault.
Only approximately log N operations are performed per set element in the
original queue, and only a constant number of operations are performed per
set element in the entire tree. Thus there is a relatively small ratio of fast
computation to slow I/O in the algorithm. Again, these effects should not
be felt for a small number of processors.

There appear to be two primary causes of the 20% efficiency loss in using
17 processors on the shared index method, one for small numbers of proces-
sors and one for large numbers. The first reason must incorporate critical
system resources that are fully exercised by one processor. It appears likely
that the cost of page faults, as the system creates queue elements on their
first access by the CPU, is the true cause of much of this performance loss
for a small number of processors. There is a substantial cost in trapping to
the operating system during a page fault to bring an uninitialized page from
disk to memory.

We have performed a small experiment in C to time the cost necessary to
initialize to zero an array of M integers. For M = 20000, the time was 74.6
milliseconds on the first initialization pass, but only 48.0 milliseconds on the
second pass in the same program. Initializing from location 1 to M and then
from M to 1 drove down the second time to 43.2 milliseconds. Comparable
times for M = 80000 are 304.6, 192.9, and 171.7 milliseconds, respectively.

These numbers reflect a 35% cost due to page faults, with another 6%
to 7% due to cache misses. Therefore we should observe better performance
from our program if we initialize the large data areas before starting the ac-
tual computation. The improved times of the test problem reflect an upper
bound on the performance improvements we expect to see, as our program
performs more than one operation per datum and thus spends a lower frac-
tion of its time waiting for page faults and cache misses. The cost of page

21

FIGURE 5: Load balance by node refinement tasks per processor.

Load balance (tasks) over 10 trials

1 03.5 .

#Tasks processed
o

2.5

10

INSERT FIGURE 5 HERE

Figure 5: Load balance by node refinement tasks per processor.

faults explains the immediate loss of efficiency in going from 1 to 2 or more
processors in figure 4. In the absence of contention for a shared resource,
the efficiency rate should stay at 100%, which it clearly does not. The disk
accesses for page faults seem to be the shared resource in question.

One also observes a “knee” in the efficiency curves of figure 4 at approx-
imately 10 processors. As well, the shared data method exhibits increased
timing variability after 10 processors. The sharing of each cache by two pro-
cessors on the Multimax seems to be the cause of these changes. We conclude
that the Multimax operating system schedules new tasks on unoccupied pro-
cessors, effectively giving as many as 10 processors an entire 64 Kbyte cache
each. When two processors share a cache (11 tasks are necessary, unless sys-
tem processes are running), they incur additional waits due to cache misses.
Thus we see performance degredation with over 10 processors.

Figure 5 shows the effect of the “shared index” scheme in terms of load
balance on the active processors. Note that the shared data method should
exhibit better load balancing due to its small task size, but the loss of load
balancing in the “share index” method is more than compensated for by
reduced usage of shared system resources. Each curve represents a given
number P of processors applied to the problem, with curve data points plot-
ted at abscissae of 1/P, 2/P, ..., P/P. The data points forming the curve
are the number of tasks completed by the P processors, in sorted order.
Thus the ordinate for 2/P is the second least number of nodes processed
by any processor when P CPUs solved the problem in parallel. The tick
marks extend to the minimum and maximum values over 10 repetitions of
the computation. The curves are drawn through the average values over the
10 repetitions. This scheduling system achieves a good balance of work by
this measure. This balance is better than anticipated.

Figure 6 shows the processor load balance in terms of CPU time. Here

22

FIGURE 6: Load balance by CPU time per processor.

Load balance (time) over 10 trials

10 |—
o -
E 7
- L
<, 0.5 —
)
0 L
q) /
Q B j
S e
- -_—
10%° | M
I R R R S R N

INSERT FIGURE 6 HERE

Figure 6: Load balance by CPU time per processor.

the distribution of work is visibly uneven. For nine or more processors,
the top one to three processor loads are substantially greater than an even
distribution of work would provide. This uneven distribution is due to the
large blocks of work assigned to individual processors; each processor gets
one or more subtrees of T' and works to completion on those nodes. It is only
surprising that the load imbalance was not substantially worse than observed,
particularly for the case of 17 processors. The effect of the load imbalance
is not reflected in the efficiency measure of figure 1, where we simply sum
processor times to give the overall CPU time. However, on a system where
all processors were held idle until the last one finished, decreasing the load
imbalance would be important.

8 Conclusions

Our computational results establish the suitability for parallel implementa-
tion of a powerful and efficient sequence comparison algorithm. Our parallel
program achieves satisfactory speedups on up to 17 processors of an Encore
Multimax. The combination of efficient algorithm and high parallel pro-
cessor efficiency indicates the suitability of this method for larger sequence
comparison tasks. Parallel sequence comparison by this or similar methods
can provide a powerful tool for analysis of large sequence databases such as
Genbank.

We have developed a prototype graphical display program that renders
usable the volumes of data that arise from a multiple sequence computation.
The graphical display program presented above allows the user easily to de-
duce essential alignment information from such a comparison. The program’s
additional features enable one to focus on smaller features of interest as well.

23

Our sequence analysis reflects the alignment information of James, with
additional information about matches found within a subset of his original
seven sequences. In particular, the figures produced by our graphics program
show the strong relationships of sequence groups 1 — 4, 5 — 7, 8 — 9,
and 10 — 11. It is apparent that sequences 10 and 11 bear only moderate
relationship to the others in terms of our matching criteria.

We conclude from our timing experiments that very careful use must be
made of synchronization and implicit bus and memory traffic on a multi-
processor such as the Encore Multimax. Even page faults must be carefully
accounted for. This is particularly true for programs, such as ours, that do
very few computations per datum. In any case, allowing a large number of
computations per data transfer or synchronization step is essential to good
processor utilization.

9 Acknowledgements

We thank George McCorkle for generously providing us with the sequence
data used in our computations. Our appreciation goes to Stan Eisenstat for
helpful discussions about the behavior of our parallel program.

References

[1] Academy backs genome project. Science, 239:725-726, 1988.

[2] M. Baer and S. Altman. A catalytic RNA and its gene from Salmonella
typhimurium. Science, 228:999-1002, 1985.

[3] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, and
J. Seiferas. The smallest automaton recognizing the subwords of a text.
Technical report, University of Denver, Denver, Colorado, 1985.

[4] Encore Computer Corporation, Marlboro, MA. Multimaz Technical
Summary, 1987.

[5] D. E. T. Foulser. On Random Strings and Sequence Comparisons. PhD
thesis, Department of Computer Science, Stanford University, 1986.

24

[6] W. D. Gropp, D. E. Foulser, and S. Chang. CLAM User’s Guide: The
Computational Linear Algebra Machine. Scientific Computing Asso-
ciates, Inc., New Haven, Connecticut, USA, 1989.

[7] Intelligenetics, Inc., Mountain View, CA. News from Genbank, vol. 2,
no. 1, pg. 1, January/February 1989.

[8] B. D. James, G. J. Olsen, J. Liu, and N. R. Pace. The secondary
structure of a ribonuclease P RNA, the catalytic element of a ribonucle-
oprotein enzyme. Cell, 52:19-26, 1988.

[9] S. Karlin, G. Ghandour, F. Ost, S. Tavare, and L. J. Korn. New ap-
proaches for computer analysis of nucleic acid sequences. Proceedings of
the National Academy of Sciences USA, 80:5660-5664, 1983.

[10] S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung. Efficient al-
gorithms for molecular sequence analysis. Proceedings of the National
Academy of Sciences USA, 85:841-845, 1988.

[11] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity
searches. Science, 227:1435-1441, 1985.

[12] H. M. Martinez. A flexible multiple sequence alignment program. Nu-
cleic Acids Research, 16:1683-1691, 1988.

[13] E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the Association for Computing Machinery, 23(2):262-272,
1976.

[14] S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48:443-453, 1970.

[15] D. Sankoff. Matching sequences under deletion/insertion constraints.
Proceedings of the National Academy of Sciences USA, 69(1):4-6, 1972.

[16] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195-197, 1981.

[17] E. Sobel and H. M. Martinez. A multiple sequence alignment program.
Nucleic Acids Research, 14:363-374, 1986.

25

[18] P. Weiner. Linear pattern matching algorithms. In Proceedings of the
14th Annual Symposium on Switching and Automatic Theory, pages 1-
11, 1973.

[19] W. J. Wilbur and D. J. Lipman. Rapid similarity searches of nucleic
acid and protein data banks. Proceedings of the National Academy of
Sciences USA, 80:726-730, 1983.

26

