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Chapter 1

Introduction

The simulation of the air flow past the blades of a gas turbine required over four
days on a Cray X-MP[34, 65]. Simulating the flow around the whole engine or
entire airplane is well beyond the capacity of current computers. Replacing costly
scale models with computer simulations will require an increase in the speed of
computers by several orders of magnitude. However, the nanosecond switching
times and submicron feature sizes of today’s integrated circuits are approaching
physical limits inherent in the speed of light and the size of molecules.

The ability to solve enormous problems, like the simulation of flow around an
airplane, will require computers to consist of millions of independent, high-speed
processors. A crucial component of these computers will be an interconnection
network capable of channeling the torrents of data produced by these processors
to their proper destinations. In an inadequate network communication bottle-
necks will negate the advantage of having millions of processors. Any network
which meets the communication demands of these massively parallel systems
must allow as much of the data as possible to remain local to the processors and
must make efficient use of the available physical resources.

In order to illustrate the need for both locality and efficient use of resources
we look at a proposed machine for the mid 1990s, the Mosaic C machine currently
being designed at California Institute of Technology[76, 77, 78]. This computer is
designed to have 16,000 processors; each processor will be on its own chip along
with a 64KByte local memory and a router capable of transmitting 80MByte off
the chip per second. The processors will execute 14 million scalar instructions per
second. Since each instruction consumes four bytes each processor will require
56 MByte of data per second.

At first glance it appears that the off-chip data channels are fast enough to
allow data to reside on or off the chip. However, the nominal speed of the channels
1s a poor measure of off-chip access time. Off-chip accesses require time to build
packets with proper chip addresses, to multi-plex 16 bit operands .onto narrower
channels (8 or 4 bit in the Mosaic), to traverse the physical wires between chips,
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2 Chapter 1. Introduction

to route through intermediate chips, and to wait when channels are assigned to
other packets. It will be important to orchestrate data so that the communication
resources are not overwhelmed.

Two types of locality are required to ease the communication bottleneck.
First, most memory accesses must be to local memory. Johnsson[44] estimates
that data access off chip for current multi-computers is two orders of magnitude
slower than access on chip. Accesses to external boards are another order of
magnitude slower. The basic operations of the computation must be partitioned
across the processors so that the operands often reside in the memory of the
processor executing the operation; the results of each operation should often be
used by the processor executing it and operations which use the same data item
should reside, as often as possible, on the same processor.

Second, when memory accesses are not to local memory they should be to
the memory of chips which are nearby in the network. The load which a message
adds to the network is proportional to the length of the path which it travels in
the network. If each message travels through 100 chips (less than the average
distance between chips in a mesh of 16,000 chips) then the average load on each
network channel is 100 times greater than if each message went between two
neighboring chips.

The stress on the network will only increase for machines which are more
powerful than the Mosaic. The Mosaic processors execute one scalar instruction
per chip per cycle; if technology allows a vector floating-point instruction per
chip per cycle then the data requirements will increase. The current Mosaic
aims at 16,000 processors but its design is extensible to a two million processor
version[77]; the potential network distances and bottlenecks will be magnified.

Communication patterns

Fortunately many algorithms have natural data locality; the problem can be
broken into subtasks so that each task requires data from only a few others. We
take as an example the calculation of the air flow past a jet engine. The equations
for the motion of the air cannot be simply solved algebraically. Instead, a finite
difference equation is created over a lattice of points surrounding the engine. The
equations relate the value at each point to the value of the surrounding points.
Solutions are obtained by iteratively adjusting the value at each point, based on
its previous values and the values of the neighboring points. (Figure 1.1 shows
the standard five point stencil in which the value at each point depends on the
previous values of its four grid neighbors.)

Two features of these calculations are important for parallel computing: the
iterative nature and the dependence only on neighbors. The iterative nature of
the problem means that if a grid point is assigned to a single processor then
its successive values will always be in the local memory. The dependence on



Figure 1.1: A five point stencil

neighbors means that if blocks of grid points are assigned to a single processor
then for those points in the interior of the block the values of the neighbors will
also be in local memory.

For example, suppose each block contained one hundred thousand points and
each point were described by ten variables. Of the five million variables required
to update these values only about twelve thousand would not be in the local
memory; the remaining values would be in the four logical neighbors. A two
order of magnitude reduction in communication results from utilizing the problem
structure.

In order to capture the structure of an algorithm we define its communication
pattern. First, the basic repetitive tasks of the algorithm, such as the computation
of the next value of a grid point, are identified. A graph is then formed with the
basic tasks serving as graph vertices. An edge is added between two vertices
if the result of some operation in one task is used by an operation in the next
iteration of the other task. The resulting communicasion graph gives a convenient
representation of the algorithm’s data dependencies.

We have already seen that one common communication graph is the grid. A
one dimensional grid, or cycle, is the natural pattern for pipelined algorithms
such as the Jet Propulsion Laboratory’s Radar processing program|[80]. Numer-
ous fluid flow algorithms[8] use one, two, and three dimensional grids. Examples
of problems using two dimensional grids include Reif and Storer’s video compres-
sion algorithm[70] and the Perkin-Elmer group’s program for displaying three
dimensional graphics[60]. Components of the weather forecast systems of the
National Weather Service [85] naturally form three dimensional grids.
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Algorithms which follow the divide and conquer paradigm, such as the graph
algorithms of Nayar, Prabhu, and Wright[57] or which evaluate strategy games
(be they chess or economics) have communication patterns which form trees. The
target detection program from Perkin-Elmer(60] uses the FFT communication
pattern. Other algorithms use hexagonal meshes and pyramids. Problems which
have simple communication patterns abound throughout computer science.

Whatever the communication pattern, it will be important to map it carefully
onto the network. The existence of structure allows the possibility of mapping
neighboring tasks to neighboring processors. If locality is not maintained an
opportunity to significantly reduce the communication overhead may be squan-

dered.

Interconnection Networks

If every pair of processors were connected by a fast link then all neighboring tasks
would automatically be mapped to neighboring processors. A complete network
connecting each of 16,000 processor-chips to every other is, however, impossible.
Each chip has only at most a couple of hundred pins which can be used for data.
Thus even a slow, single-pin link could not be made to all other processors. Since
in many architectures five to ten or more pins are needed for each link, at most
a few tens of bidirectional links will be possible. The network must be relatively
sparse.

Several different networks have been proposed for parallel computers. The
mesh interconnection has been used for the MPP[9], Mosaic C[30], and the J-
Machine([59]. The butterfly is used for the BBN Butterfly[41] while Browning[22,
23] proposed a tree based machine. The Caltech Cosmic Cube[75], the TMC
Connection Machine[36], the Intel iPSC[42], and the nCube all use a hypercube
interconnect. New machines are being designed and the preceding list is per force
only a representative sample. .

The natural network for the two-dimensional air-flow example is a mesh; the
communication pattern exactly matches the network. For each pair of commu-
nicating processors there is a direct link. Data can stream off the chips, across
the links, and on to their destination chips.

On the other hand, suppose the air flow algorithm were executed on a machine
with an interconnection network based on the complete binary tree. It is easy to
show that at least one hundred of the processors on the left side of the tree will
have a neighbor on the right side of the tree. All the data between processors
on one side and their neighbors on the other must flow through the root of the
tree. The resulting bottleneck on the links adjacent to the root will slow the
computation down by two orders of magnitude compared to running on a mesh
based machine.

The air flow problem mapped naturally to a mesh connected network. But



suppose our problem has a divide-and-conquer solution. When we attempt to
run the algorithm on a sixteen-thousand-processor, mesh interconnection net-
work many messages will have to be forwarded through one hundred or more
intermediate processors[19]. Once again we will have delays due to the network.

Different algorithms seem to need different interconnection networks. But we
do not want to build a different machine for each problem or communication pat-
tern. We would like to have one network which could handle the communication
for many different patterns.

Graph Embeddings

In order to compare networks as candidates for a general purpose computer we
need to ask how well a particular network can service a given communication
pattern. Graph embeddings provide a way of abstractly asking how suitable a
network is for a communication pattern. The graph embedding framework re-
duces both the network and the communication pattern to abstract graphs. A
mapping of one graph to the other corresponds to a way of assigning processes
to processors and routing communication.

If a good embedding can be found then there exists a way of mapping the
algorithm to the given network so that communicating processes are mapped to
logically near processors. The communication delay due to the network is min-
imized since messages need not travel far. There have been many good embed-
dings found of common communication patterns into common networks. Meshes,
trees, pyramids, FFTs, CCCs, and Butterflies have been shown to map easily to
hypercubes{14, 32, 40, 82]. (In Chapter 4 we describe an embedding of the FFT,
CCC, and Butterfly into the hypercube.) Trees have been shown to be embed-
dable in FFTs[13]. FFTs, CCCs, and Butterflies each easily can be embedded
into each other.

Showing that a network is not good for a communication pattern is more
difficult. We have already mentioned that there are 10 good embeddings of trees
in meshes or vice versa. It has also been shown that meshes and mesh-like net-
works cannot be embedded in FFTs[13]. The lack of a good embedding certainly
makes servicing the communication pattern difficult. It has been argued[47] that
fast communication may still, in principle, be possible. By making copies of
data (a practice limited by scarce memory) and allowing the mapping to change
over time, the congestion inevitable in a direct embedding can sometimes by
avoided. For example, the mesh communication pattern can be serviced on a
FFT interconnect[47].

Nonetheless, the existence of a good embedding is a good indicator of whether
or not the network can efficiently simulate the communication pattern.
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The Boolean Hypercube

The consideration of graph embeddings as a measure of network flexibility has led
to the boolean hypercube being considered a good general purpose network. In
fact, several commercial machines have been based on this network[36, 42]. Be-
sides allowing the embeddings of several common communication patterns (mesh,
tree, and FFT) the hypercube has a nice recursive structure. A shortest path
between any two processors is easily determined. Fast sorting and permutation
algorithms for the hypercube have been developed[67, 86]. It is also possible
to reconfigure a faulty hypercube to efficiently simulate the original unfaulty
hypercube(35].

The hypercube does have some obvious disadvantages though. The degree of
the hypercube nodes grows with the size of the network. Thus communication
nodes designed for one size are not extensible to larger sizes. If a node is designed
for a d-dimension hypercube then it cannot be used to build a hypercube with
more than d dimensions and has wasted hardware when used for a hypercube
with fewer than d dimensions. ’

Hypercubes are also hard to build. Planar wirings of a hypercube require area
proportional to the square of the number of nodes and many long wires will always
be necessary. As the desired size of the hypercube increases the complexity can
become extreme. Currently all hypercube-based machines have at most twelve
dimensions and some designers have argued that sixteen dimensions is about the
largest size possible[11].

Physical Constraints

Physical constraints affect the cost and efficiency of all networks. The amount of
chip area required for wires and routing elements, the lengths of wires between
chips, the number of pins available to carry data off chips, the power required
by the chips, the necessity of cooling the chips, and the necessity of a consistent
clock signal are just a few of the design issues which physics imposes on the
network design.

These physical considerations have, in part, led to arguments for the aban-
donment of high-dimension networks such as hypercubes in favor of simpler two
and three dimensional meshes{27, 74]. The meshes are extensible, can be wired in
a small planar area, and require no long wires. By building a network which con-
forms to physical constraints the hope is that faster transmission over inter-chip
links will compensate for the loss in locality.

One goal of this thesis is to help give a theoretically sound underpinning to
decisions concerning potential trade-offs between optimizing locality and mini-
mizing the effects of physics.

Perhaps the best studied physical resource is chip area. For example, Dally
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and Seitz[27, 74] look at the specific question of comparing members of the graph
families called k-ary n-cubes. At one extreme is the two-dimensional mesh, at
the other the boolean hypercube. They examine the question of mapping the
network to a fixed area chip. The number of network edges which must cross
the chip bisection grows with the network dimension. To accommodate a larger
number of wires either the channels carrying the wires must be made physically
thinner or the wires must multiplex across channels. It will not be possible to
transmit as much data per time unit over edges of the higher dimension network.

They use the latency of an average message as a joint measure of locality and
wire efficiency. Higher dimension means shorter, slower average paths. Since the
delay due to slower data transmission increases more quickly than the savings due
to shorter path lengths they conclude that lower dimension meshes are preferable.

Pin limitations

While acknowledging the importance of chip area we still wish to consider other
resources. In particular, since large machines will consist of many chips the rate
at which data can flow between chips is important. All data leaving a chip must
use just a few (currently at most 200 to 300) pins. These pins are a precious
resource which must be efficiently used.

This is not to say that efficient use of chip area is not important. Rather we
ask how well we can optimize inter-chip communication if we ignore chip area
issues. We hope to show ways in which the pins can be used more efficiently.

While the study of pin limitations is the basis of most of the results in this
thesis we will also consider wire length; another important off-chip resource.

Resource Limited Embeddings

We have set ourself the goal of simultaneously maintaining locality and making
efficient use of pin connections. We will start by extending the concept of graph
embedding. The graph embedding model captures the structure of the network
but not its physical costs. We will rectify this shortcoming by not treating all
network edges equally. The physical constraints ¢f network construction will
provide us with limitations on edge capacities.

In our primary example, pin limitations, the capacity of a network link is
tied to the number of pins available for it. If all networks are built using chips
containing the same number of pins then the networks having higher degree will
necessarily have fewer pins assigned to each communication link. Fewer pins
means fewer bits can be transmitted in each clock cycle. We will demand that
networks having these lower capacity links make better overall use of their links.
A perfect, subgraph embedding in a logarithmic degree network is not as fast
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as a similar embedding in a constant degree network. To be considered equally
good the high degree network must provide many short paths.

We will show that, although the links of the hypercube are allowed logarith-
mically less capacity than those of constant degree graphs, the hypercube can
still efliciently simulate meshes, trees, and FFTs. Our main tools will be two
new types of graph embeddings: one in which multiple paths are assigned to
each guest link and one in which multiple copies of the guest are mapped at
once. These embeddings allow us to use all of the hypercube links, even though
the guest graph has many fewer links than the hypercube. By using all the links
we use all the pins; efficient, high utilization of the pins results. -

1.1 Plan of the Thesis

The remainder of the thesis is organized as follows. The next chapter makes
explicit the assumptions made in the thesis. Chapter 3 gives formal definitions
while Chapter 4 contains useful facts about hypercubes. In Chapter 5 embed-
dings are developed which make efficient use of pins. Chapters 6 and 7 contain
two variations on the resource limitation theme; the former extends the pin lim-
itations to other networks besides the hypercube and the latter looks at a way
of mitigating the delay due to long wires. Chapter 8 presents some conclusions
and open problems.



Chapter 2

Background

In the last chapter we argued that many large scientific computations require
computers consisting of interconnected, independent processors. Furthermore,
these computers require networks which allow efficient use of available physical
resources while avoiding frequent data reference to logically distant processors.
In this chapter we examine more closely the type of algorithms that can benefit
from our techniques and consider the effects of various physical constraints.

Our model of computation has a structure similar to data flow models. An
algorithm consists of independently executable tasks. Each task has some, typi-
cally small, number of inputs and outputs. Qur tasks will be iterative in nature.
That is, they will repeatedly accept a set of inputs, compute values as a func-
tion of these inputs, and output these values. Examples of iterative algorithms
include those in which the tasks represent slices of time (eg. the simulation of an
artificial retina), those in which the tasks represent successive refinements of an
approximation (eg. a finite element solution to an integral equation), and those
in which the tasks represent successive versions of a pipelined algorithm (eg. the
variational analysis of parameters to a system).

2.1 A simple algorithm; a simple machine

As an example we consider a variant of Conway’s Game of Life. Each task is a
cell on a torus. On each time step each cell sends a bit to its eight neighbors, a
one if it is alive or a zero if it is dead. Each cell then sums its inputs; if the result
is less than three it changes its bit to zero, if greater than five its bit becomes
a one, otherwise its bit is unchanged. Each task is identical, sends equal-length
messages to each neighboring task, and repeats the same operations on each step.

It is straightforward to design a machine to implement the Game of Life.
The ‘processors’ are simple circuits which take nine one-bit inputs (the last value
in the processor and its eight neighbors) and outputs the new value for the

9



10 Chapter 2. Background

processor. If all the circuits use a global clock then all the values are computed
simultaneously. On one cycle all processors can latch the neighboring values and
on the next cycle (or possibly several cycles) the processors can all compute the
new value. Latching of neighboring values can recommence on the next cycle.
The processors are synchronous, receive neighboring values in a single cycle, and
repeat the same operations each round.

Both the algorithm and the machine are homogeneous. Since all the opera-
tions occur in lockstep there is no need for complicated communication schemes.
However, real applications and real machines vary from these simple machines in
many ways. In the remainder of this chapter we will examine ways in which real
systems differ from this simple example.

2.2 Inhomogeneity

It is rare that all the tasks are exactly the same. The amount of computation
required by each task may be different. Some tasks may require less information
from their neighbors than others and thus the lengths of the messages may be
different. We will assume throughout this thesis, however, that the tasks are the
same length, as are the messages. This assumption is mostly a logical convenience
since the asynchrony in the hardware, which we describe below, can mimic the
effects of non-uniform tasks or messages.

An additional reason for assuming the tasks to be of equal size is that it
helps to concentrate the attention on the communication network. When task or
message size varies greatly then the overall computation speed may be limited by
poor load balancing or long data paths, obscuring the limitations of the network.

The ezecution of identical tasks need not proceed in lockstep. Although some
parallel computers, such as the TMC Connection Machine, employ a global clock,
others allow each processor to run at its own rate. Thus the processors may
complete the iterations at different rates. Due to the data dependencies no
processor will be able to get too far ahead of its neighbors but they need not
be synchronous.

Asynchronous execution of the processors presents a problem for the network.
If messages are sent to processors which are not ready to receive them then the
network may become clogged with undeliverable messages. We do not wish to be
concerned with such side effects of processor speed. Thus we will place a logical
buffer at each end of each communication link. A processor can proceed at its
own speed, limited only by the availability of inputs.

Our model allows the processors to compute asynchronously while the network
functions independently in a synchronous manner. At the beginning of each
communication step each processor can inject a packet into the network, during
the step each communication link can forward one packet, and at the end of the
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step one arriving packet can be consumed by each processor. Our challenge is
to move packets from source to destination as fast as possible. This will require
choosing good routes for the packets; no packet should travel over many more
communication links than necessitated by a shortest path and no packet should
be delayed too often by having to wait for another packet to use its preferred
communication link. _

In order to better orchestrate the routing of messages and avoid message
collision, the network will sometimes proceed in phases. Each phase will consist of
some small number of communication steps. New messages will only be accepted
from the processor buffers on the first step of each phase. Thus a message may
be delayed by up to the length of the phase (eg. if it arrives on the second step.)
However, in return for the delay in entering the network, the message will be
given a stronger guarantee on its maximum delay in the network. Any message
entering at the beginning of a phase will be delivered to its destination by the
end of the phase.

Our networks are designed for the best case algorithms; ones in which the
communication occurs in regular, iterative phases. Minor variation in task size
or processor speed is smoothed away in order to allow optimal use of the network.

2.3 VLSI Area Cost

The inherent degree of synchrony in the system is important to the design of com-
munication networks but does not directly impart an advantage to one network
topology over another. Physical restrictions such as limited area, wire length,
or number of pins do favor some networks over others. Some interconnection
patterns are more expensive in terms of these resources than other patterns.

Perhaps the most studied physical cost is the area required to lay out a circuit
or network. Large area layouts have several disadvantages. If the area is above
some threshold (the maximum size of a VLSI chip) then additional costs will be
incurred in order to divide the layout up into manageable size pieces (see Section
2.4). Even if the layout area is below this threshold, larger area layouts will be
more costly and more prone to manufacturing defect. In addition, large layout
area often also means some wires are long (see Section 2.5).

Thompson(83] defined a, now standard, model for determining area costs. He
discovered that for many problems a lower bound could be shown for the product
of the area of any circuit solving the problem and the square of its running time
(AT?). Thompson([83], Yao[89, 90], and Vuillemin[88] used bounds on the number
of bits which must cross the mid-point of a circuit to achieve AT? lower bounds
for boolean-valued functions and transitive functions. Networks which can solve
these problems inherit their A7? bounds. ‘

Rather than ask what is the minimum area to solve a problem we can ask
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how much area is required for a particular network. The obvious lower bound on
area is V, the number of processors. Some networks such as meshes and trees[55]
can be constructed with this ideal layout area. Others such as shuffle-exchanges,
FFTs, and hypercubes[51, 84, 88] require larger areas.

Another approach is to start with a fixed chip area and ask what is the best
network which can be built with this area. Following Leiserson[54] area-universal
networks have been investigated by several researchers[10, 18, 33]. The time to
simulate any communication pattern on an area-universal network is not much
greater than the time to simulate the same pattern on any other network of equal
area.

Rather than look for a general network, Seitz[74] compares the performance
of different networks when each is implemented on a fixed area chip with a fixed
feature size. There are a limited number of channels which can be etched across
the bisection. Networks requiring more wires to cross the bisection will neces-
sarily be able to assign fewer channels per wire. For example, the N-node mesh
can be assigned N times as many channels per wire as the N-node hypercube.
Theoretically, the mesh can send N times as many bits as the hypercube over
each wire in a single time step. '

Layout area does not tell us everything about communication though. A
good layout area does not guarantee that all other factors will also be good. In
addition, the actual cost of VLSI chip area has been constantly decreasing. An
inefficiency in layout area may not cost as much as an inefficiency elsewhere. In
this thesis we examine networks which are so large that even an area N layout
will not fit on a single chip; in fact we will assume that each processor is on its
own chip. In such cases the costs of communicating off-chip can dominate the
costs of area inefficiency.

2.4 Packaging Constraints

Once a multi-computer becomes large enough that it must be implemented on
several chips, and even on multiple boards, a new cost becomes apparent. The
number of pins over which data can leave the chip is severely limited. Current
designs such as the C Mosaic[78] and J machine[59], which are optimized for
communication power, are able to use only about one hundred pins off each chip
for data. The scarcity of pins limits the chips to at most six bidirectional links,
each eight bits wide. For a twelve dimension hypercube the links would have to
be only half as wide. The resulting trade-off between number of links and width
of links will be a central theme in this thesis.

At the board level the data squeeze is even more evident. The J machine
has sixty-four processors per board, each requiring fifteen pins per port. The
routing of the approximately one thousand wires to connectors at the edge of
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the board is only barely possible. The designers of the J machine decided to use
new elastomeric connectors which allow connections to be made directly from
the middle of one board to the middle of the board above or below it in a stack.
These connectors also significantly reduce the lengths of the wires. Even with
this new technology the limited number of interchip connections remains a critical
bottleneck.

Noakes and Dally note several other packaging issues for the J Machine[59].
An important consideration is cooling. The proposed four thousand processors
each dissipates 1.5W and the external memories contribute another .45W per
processor. All this heat required a careful spacing of the boards to allow sufficient
cooled air to remove the excess heat.

Another problem is the delivery of power and ground signals. They must be
routed among the processors so as not to couple with the data signals. The clock
signal for a synchronous system is an even greater problem. Noakes and Dally
employ an elaborate system of delay lines under the active control of a host to
keep the clock signal aligned.

Cooling and power/ground wiring are common to all networks so they proba-
bly do not give differential advantage to one network over another. The necessity
of clock alignment is an added problem for synchronous networks but will be
ignored in this thesis.

The limit on the number of pins leaving a chip, however, imposes a clear
tradeoff in network design. The more links there are between processors the
fewer pins can be used for each link and thus the slower the link. This basic
tradeoff will be an essential part of the results in Chapter 5.

2.5 Wire Length

Both attempts to limit layout area and packaging decisions are linked with the
desire to keep wire length short. Long on-chip wires will necessitate large layout
area while a requirement for short wires complicates packaging. In addition, long
wires can slow the system due to the delay in transmission across them.

Wire length, the distance a signal must travel between processors, affects mes-
sages independently of the other message traffic. The time required to transmit
a bit along a wire depends on the wire’s length. Ideally all wires would be short;
all communicating processors would be near to each other. Unfortunately this is
often impossible in practice. The layout of a complete binary tree on N nodes re-
quires some wires be of length at least v/N/log N[56]. Many other networks such
as the shuffle exchange, the FFT, and the hypercube contain trees as subgraphs
and thus also must have long wires. As with area, swo-dimensional meshes can
achieve the lower bound of unit wire length.

The cost of long wires is not simple to model. Various physical models lead
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to different dependencies[20, 26, 69]. At least three physical components must
be considered: speed of light, capacitive effects, and resistive effects. If all are
combined the wire delay varies with at least the square of distance. However,
hardware techniques such as repeaters and exponential horns can significantly
reduce the delay. Thus wire delay is commonly taken to vary logarithmically in
its length (mostly capacitive delay) or linearly in its length (mostly resistive or
speed of light). Sometimes the constraints on cycle time due to other factors is
great enough that variations in wire delay can be ignored and the wire delay is
considered to be constant.

A complicating factor in the modeling of wire delay is the possibility of using
the wire as a transmission line and piping multiple signals along the line. In this
case the significant factor becomes the minimum distance between signals rather
than wire length.

In Chapter 7 we will consider one possible way to mitigate the effects of wire
length; more pins are used for the longer wires. In the chapters preceding that
we will, however, ignore the effects of wire lengths and assume that switching
costs out-weigh wire delays.

2.6 Costs of Routing Complexity

Quantifying the costs of one routing scheme versus another is difficult. There are
many factors involved including at least: switch size, amount of decision logic,
queue and other memory size, and message length overhead. Decisions on the
type of routing scheme will affect the delay experienced by messages and the
amount of area required for the network components.

As the number of edges incident to each node increases, the ability to route the
inputs on the incoming edges to an arbitrary permutation of the outgoing edges
requires a larger switching network. If a full cross-bar switch is used the area
required can be significant; if a smaller switching network is used then significant
delays may occur. In this thesis we will assume that the on-chip delay to switch
signals between incoming and outgoing edges is not significant. Obviously this
gives a small preferential advantage to higher degree networks such as hypercubes.

Some routing schemes (eg. Fluent[67], Adaptive Sorters [48, 58]) make de-
cisions on where an incoming message will be routed based on the contents of
the message. The more complicated the decision the larger the logic required to
implement it. In addition, if queueing is required then space must be allocated
for the queues. The time spent waiting in queues may be substantial. Several
researchers [46, 66] have examined the question of minimizing queue size. Cer-
tainly small size queues are preferable but even a small queue may have significant
associated cost.

All of these routing problems are undoubtedly important. We will, whenever
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possible, endeavor to make sure that our embeddings require as little queueing
and switching as possible. We will not, however, explicitly include these issues
in our models.

2.7 Working Assumptions

In this section we summarize some key assumptions made in the first two chap-
ters.

One Chip per Node Each processor, along with its memory and switch-
ing/routing circuitry, is assumed to fit on a single chip. This assumption
allows us to concentrate on inter-node communication. All communica-
tion is reduced to the routing of message packets between nodes through a
sparse network.

Pin Limitations The number of bits in a packet sent across a commu-
nication link is inversely proportional to the degree of the origin node. If
each chip has 2W pins then a degree-d node can send and receive W/d-bit
packets along each link in one communication step. By fixing the number
of pins per chip the relation between packet size and number of incident
links gives us our primary example of the effects of resource limitations on
network comparisons.

Wire Length Throughout Chapters 4, 5, and 6 we assume that one bit of
information can be transmitted along each wire in a time step, independent
of the wire’s length. In Chapter 7 we consider a model in which the time
to transmit a bit varies with the length of the wire and look at one way to
mitigate the effects of wire length delay.

Communication Synchrony We assume that inter-node communication
occurs in discrete phases. At the beginning of each phase each processor can
inject a message into the network. The use of synchronous communication
steps allows us to decouple the network from the asynchronous processors
and thus concentrate on the network.

Need for Data Locality Throughout this thesis our emphasis will be on
algorithms with natural, iterative parallelism. We assume that it is impor-
tant for the network to capture the inherent data locality of the algorithms.
The ability of the network to maintain locality reduces the load on the net-
work and thus enables larger, more communication intensive versions of
these problems to be solved.
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Definitions

3.1 Graph Embeddings

Both the interconnection networks of parallel computers and the communication
patterns of parallel algorithms can be represented as graphs. The processors and
processes become vertices; while communication links and pairs of communicating
processes become edges. An embedding of the communication graph into the
network graph captures the difficulties of assigning processes to processors and
of routing messages. All the complicating physical details are removed.

The physical details may, however, be important to network design. An
important part of this thesis will be showing how to add some physical issues
back into the model. But we must first define the standard graph embedding.

An embedding of a guest graph, G = (V, E), into a host graph, H = (W, F)
consists of: a one-to-one vertex map 7 : V -+ W and an edge map x which
assigns each edge (u,v) € E to a path in H from n(u) to n(v).

When |V] > |W| we allow many-to-one mappings, but restrict the mapping
so that each host vertex is the image of no more than [|V|/|W]|] guest
vertices. '

An embedding is an attempt to fit one graph into another. If the guest graph
is a communication pattern and the host graph is an interconnection network then
an embedding tells how to assign the processes to processors and how to route
the messages. A good embedding should result in low communication overhead.
Similarly, if both graphs are interconnection networks then an embedding tells
how to simulate one network on the other; guest processors are mapped to the
host processor which will simulate them and communication links are mapped
to routes over which corresponding messages will be sent. When the guest graph
contains more vertices then the host graph then the mapping must be many-to-
one. However, to avoid trivial solutions and to ensure that the computation load

16



3.1. Graph Embeddings 17

is balanced, we insist that no host vertex is the image of more than its fair share
of guest vertices. ’

Measures of Embedding Quality

As a guide toward determining which embeddings are good we use three simple
measures.

The dilation of an edge e € E is the length of the path y(e), and the dilation
of an embedding is the maximum dilation of any edge in G.

The congestion of an edge f € F equals the number of edges in G whose
images contain f. The congestion of an embedding is the maximum con-
gestion of any edge in H.

The load of a processor is the number of processes mapped to it. The load
of an embedding is the maximum load of any processor.

Dilation, congestion, and load are detailed measures of embeddings. Often we
prefer a single measure of quality - in terms more closely related to networks and
communication patterns. Rather than edges of a guest graph we consider all the
messages delivered in a single communication phase; instead of host graph edges
we consider the ability to transmit a standard sized message (called a packet) in
a single communication time-step. Qur single measure tells us how many host
communication time-steps are required to complete one communication phase.
We define this measure formally as packet cost.

The one-packet cost of an embedding of G into H is the minimum number
‘of time steps necessary for H to simulate the transmission of one packet
along each edge of G. It is assumed that at most one packet can cross each
edge of H in one time step.

Simple bounds on the packet cost in terms of dilation and congestion (assum-
ing the load to be one) are easy to derive. In a dilaticn-d, congestion-¢ embedding
at least d steps are required for those packets which must traverse an edge dilated
to length d and at least ¢ steps are necessary for the ¢ packets to cross the edges
with congestion ¢. On the other hand ¢ communication steps suffice for every
packet to move forward at least one edge; so, in cd steps every packet can be
delivered to its destination. Thus max{c,d} < packet cost < cd.

In order to keep packet cost low it is necessary to arrange the timing of the
packets so that no packet is delayed frequently at congested edges. Leighton,
Maggs, and Rao [52] showed that the routing can always be orchestrated so that
the one-packet cost is at most a constant factor times the sum of the dilation
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and the congestion. Unfortunately, their result does not always yield a method of
determining the optimal routing plan. Thus, we will sometimes want to explicitly
define the timing of the packets over their routes, thereby establishing low packet
cost.

Sometimes our embeddings will specify several paths for each guest edge, or
there may be the possibility of pipelining several packets along a single path.
In these cases the one-packet cost does not adequately define the goodness of
the embedding. Imagine that the guest edges require the communication of long
messages, each containing p packets. Each host edge can still only transmit one
packet per time step. The relevant measure becomes the number of time steps
necessary to deliver all the packets for all the messages of one communication
phase. Clearly p times the one-packet cost will suffice; but often we can do much
better.

The p-packet cost of an embedding of G into H is the minimum number of
time steps necessary for H to simulate the transmission of p packets along

each edge of G.

Previous Graph Embeddings

The study of graph embeddings has is roots in several areas: the investigation
of graph/subgraph isomorphisms, the search for good VLSI layouts, and the
construction of data structures (see [72] for more details). Although our focus is
on the use of graph embeddings to map a communication pattern into a network
the techniques and results of these earlier works are still relevant. An important
tool for graph embeddings is the graph separator; the planar separator theorem
of Lipton and Tarjan led to embeddings of planar graphs in complete binary trees
and several researchers have made extensive use of separators to produce graph
embeddings (eg. [17, 18, 19, 51]).

In Figure 3.1 we list a few of the previous graph embedding results concerning
networks. Several of these embeddings will be used as tools within the thesis.
The ability to square a mesh[4, 29, 49, 53] (ie. map a rectangular mesh to
an equal area square mesh) was originally studied as an aid to VLSI design.
Often it is easy to design a circuit as a rectangle but better to fabricate square
chips; a mapping of the rectangular mesh to the square mesh provides a way of
automatically converting the design to a chip layout. Qur interest in squaring
meshes derives from the necessity of equalizing resource use.

A second set of embeddings which will be useful to us are the embeddings
of arbitrary trees into complete binary trees and of complete binary trees into
FFTs[13, 15]. We will first find efficient embeddings of FFT-like graphs (FFTs,
butterflies, and CCCs) and then compose them with these earlier embeddings in
order to produce efficient embeddings of arbitrary trees.
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GUEST HOST References
mesh square mesh [4, 29, 49]
tree complete binary tree [15]
complete binary tree FFT [13]
mesh hypercube (25, 71]
tree hypercube (14, 16]
FFT,CCC hypercube [32]
pyramid hypercube (39, 82]
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Figure 3.1: Graph Embeddings

Multiple-path embeddings

Standard embeddings, which assign a single path to each guest edge, may not
capture the entire ability of one graph to service the communication inherent in
another graph. The host graph may, in fact, be able to accommodate multiple
paths for each guest edge — without much greater dilation or congestion than
mappings which provide just a single path per edge.

A width—w embedding of G into H is a one-to-one embedding in which each
edge of G is mapped to w edge-disjoint paths in H. The congestion of an
edge f € H equals the number of edges in G whose image paths contain f.
The congestion of the embedding equals the maximum congestion among
all edges in H. (The definitions of dilation and load are unchanged.)

Multiple—copy embeddings

Rather than allowing multiple paths per guest edge we may choose to embed
multiple copies of the guest graph. Multiple copies will inevitably increase the
load; but, it may be possible to route the paths of all the copies so that the
overall congestion is not much greater than an embedding of a single copy.

A k—copy embedding of G into H is a collection of k one-to-one embeddings
of G into H. Since each embedding is one-to-one, each node of H can
host up to k nodes, one from each copy of G. The congestion of an edge
f € H in a k-copy embedding equals the sum, over all embeddings, of
the congestion on f. The edge-congestion of a k-copy embedding is the
maximum congestion on any edge in H.



20 Chapter 3. Definitions

3.2 Common Networks

Throughout the remainder of this thesis we will often refer to several common
interconnection networks. In this section we formally define each network and
give a few well-known facts about each. The facts should serve to give some idea
of why the networks have become popular as well as to aid us in our later proofs.

The networks which we describe will be the the mesh/torus (sometimes called
grid), the tree, and the hypercube, along with its constant degree derivatives (the
Fast Fourier Transform Network (FFT), the Cube-Connected-Cycles (CCC), and
the Butterfly).

.3.2.1 Mesh networks

Perhaps the simplest network is the grid or mesh. Processors are arranged in
rows and columns with each processor connected to its four nearest neighbors
(sometimes denoted as North, East, South, and West). Formally the mesh is
defined as follows:

The vertices of the £ x w mesh form an array (i,7) where 0 < i < £,0 <
J < w. The edges are divided into two sets: the rows R and columns C.
The sets R and C are defined as follows:

R = {((57),(0+ 1) ]0<i<t-1,0<5 <w}
C = {{(6), @i+ 1)0<i<40<j<w—1}

For a wrapped mesh or torus the sets R and C are defined as:

R = {((sJ),(t+1 (mod £),5)) |0 <i<£,0<j<w)
C = {((&5), (i +1 (mod w))) [0<i<£,0<j<w}

The vertices of a k-dimensional, Ly x L, x ... x Ly mesh are k-tuples with
ith component € [0, L;). There are k edge sets, the ith consists of edges
between pairs of vertices differing by one in the ith component (modulo L;
for tori).

The layout and wiring of a two-dimensional mesh is trivial. The bisection
- width, the number of edges which must be cut to disconnect the network into two
approximately equal pieces, of an N vertex square mesh is vN. The diameter,
the longest distance in the graph between two vertices, is 2/ N —1. The relatively
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large diameter means that unless locality is maintained some processors may have
to send messages over long paths.

The mesh is the natural communication pattern for many algorithms, in-
cluding some image processing and discrete method approximations of partial
differential equations. Its simple structure has led to the development of many al-
gorithms tailored to its pattern (eg. matrix algorithms and sorting algorithms|[58,
73]). :
Some algorithms require slight variations to the mesh. For example some par-
tial differential equation solvers require the addition of diagonal edges (Northeast,
etc.) Some sorting and matrix algorithms require wrapped edges connecting ver-
tices at opposite sides; thereby forming a torus. The addition of these extra edges
does not make the layout or wiring of the mesh significantly more difficult. If no
new wires are added it is still possible to quickly simulate these new networks on
the mesh.

Computational problems in physics are often three dimensional; in fact, rel-
ativistic equations require four dimensions and some quantum dynamic systems
use six. Some work has been done on building three dimensional mesh inter-
connects in three physical dimensions[59]. When the dimension of the mesh
interconnect exceeds the physical dimension of construction then the layout and
wiring advantages are lost.

The study of mesh-based algorithms has a rich history. Leiserson[53], Aleli-
unas and Rosenberg[4], Atallah and Kosaraju[49], and Ellis[29] have examined
maps of rectangular meshes into square meshes. Chan[24, 25], Bettayeb, Miller,
and Sudburough(12], Ho and Johnson(38], and Stout and Wagar[82] have looked
at mapping meshes into hypercubes.

3.2.2 Trees

Another simple network is the tree.

A degree-d tree has a vertex set consisting of a prefix closed set of strings
over the alphabet {1,2,...,d} (including the empty string). There are
edges between vertex w and all vertices of the form wz,z € {1,2,...,d}.

A height-k complete binary tree is the special case where d = 2 and the
vertex set includes all strings of length less than k. All strings of length ¢
are said to be on level i. There are 2! vertices in level 7 and 2" — 1 vertices
in the tree.

The tree is also simple to lay out on the grid, requiring area only linear in
the number of nodes. However, some N-vertex trees require wires of length
Q(VN/log N). Most trees of interest to this thesis have diameter O(log N) and
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all such trees require long wires. All trees have bisection width at most log N
while complete binary trees have bisection width one. As a network, trees never
require communications to travel very far but tend to suffer from bottleneck
congestion near their root.

Many variants of trees have been proposed to alleviate the congestion at the
root including fat-trees[33, 54] and X-trees[28]. We will not discuss these in this
thesis.

Many algorithms, such as those based on divide-and-conquer or on mini-max
games, use trees as their communication structure. These algorithms are often
most efficient when the trees have limited depth.

3.2.3 Hypercube-based networks

While the mesh and tree are easy to lay out on the plane, the former has high
diameter and the latter has low bisection width. The networks based on the
binary hypercube combine low diameter with high bisection width. Each of these
networks has diameter O(log V), matching that of the tree. The hypercube has
edge bisection-width ©(N) while the FFT, Butterfly, and Cube-connected-cycles
each have edge bisection width ©(N/log N).

Boolean Hypercubes

The boolean hypercube has been used as the network for several commercial
parallel machines {36, 42]. Mathematically it is very simple and its extensive
symmetry gives it many useful properties. Unfortunately its relatively high de-
gree and the large area and wire length required to lay it out on the plane are clear
disadvantages compared to the mesh and tree. Nonetheless the hypercube will
be our most common host network. Many of its useful properties are discussed
in Chapter 4.

The k-dimensional hypercube, Q, consists of 2% nodes with distinct k-bit
addresses. There is a directed edge (u,v) if and only if the addresses of u
and v differ in exactly one bit position. (See Figure 3.2) An edge between
two nodes that differ in the sth bit is said to lie in the ith dimension.*

The FFT network

The high degree of the hypercube can be avoided by expanding each hypercube
node into a chain of log N + 1 subnodes. If the subnodes are connected in a chain

"We define the hypercube as a directed graph; thus each communication link is modeled as
a directed edge.
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Figure 3.2: The 4-dimensional Hypercube

and the dimension-¢ edges of the hypercube nodes are assigned to edges between
the ith and ¢ + 1st subnode in the corresponding chains then the FFT is formed.
The FFT gets its name from the fact that it is also the communication pattern
of the Fast Fourier Transform algorithm. This pattern is related to the more
general convolution pattern used in signal processing algorithms.

The nodes of the n-stage FFT network, F(r), are divided into (n + 1)
levels and 2" columns. (See Figure 3.3) Each vertex is addressed (I, c)
where 0 <! < n and 0 < ¢ < 2". The edges of the FFT are divided into
two sets: the straight-edges S, and the cross-edges C. The sets S and C
are defined as follows:

S = {Le)(+1,9)]0<I<n,0<c< 2}
C = {((l,c),(l+1,c@2’))]0§l<n,05c<2"}

We call the edges between nodes at levels / and [+1 level-I edges. The operator
@ denotes bitwise exclusive-or of its two arguments. From node (/, c) the level-I
straight-edge simply increments /, while the level-l cross-edge complements the
Ith bit of ¢ in addition to incrementing /.

Fact 1 For every pair of columns ¢; and ¢, there exists a unique path of length
n connecting nodes (0,¢;) and (n,c;). The lth edge in the path is the level-]
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0 1 2 3 4 5 6 7

Columns .
-— : cross-edge = =: straight-edge

Figure 3.3: The 3-Stage FFT

cross-edge if ¢; and c; differ in bit / and the level-l straight-edge otherwise. (Bit
0 is the lowest order bit).

The Cube-connected-cycles Network

If each hypercube node is expanded into a length-(log N) cycle and the dimension-
i edge is replaced by an edge between the ith copy of the corresponding nodes then
the CCC is formed[63]. The CCC has fewer nodes than the FFT and undirected
degree 3 rather than 4. They can, however, be easily simulated on each other.

Like the FFT the vertices of the CCC are divided into levels. The n-stage
CCC network has n levels and 2" columns. (See Figure 3.4) Each vertex is
addressed (/,c) where 0 < ! < n and 0 < ¢ < 2". The edges of the CCC are
divided into two sets: the straight-edges S, and the cross-edges C. The sets S
and C are defined as follows:

S = {((he), (1 +1 (mod n),¢)) | 0 <1< n,0<c< 2}
C = {(<l,c),<1,c@2‘))|ogl<n,ogc<2n}

We call the edges between two nodes at level I or a node at level [ and one a
level [ + 1 level-l edges. The operator @ denotes bitwise exclusive-or of its two
arguments. From node (I, c) the level-/ straight-edge simply increments I, while
the level-/ cross-edge complements the /th bit of c.

The Butterfly network

The butterfly network has edges similar to the FFT and subnode cycles like those
of the CCC. It has served as the network for several research parallel machines{41].

The nodes of the n-stage Butterfly network, B(n), are divided into n levels
and 2" columns. (See Figure 3.5) Each vertex is addressed (I, c) where 0 < [ < n
and 0 < ¢ < 2". The edges of the Butterfly are divided into two sets: the
straight-edges S, and the cross-edges C. The sets S and C are defined as follows:
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Columns
_— crmss-eclge0 - =: straight-dge

Figure 3.4: The 3-level CCC (level 0 shown at top and bottom)

S = {(le), (1 +1 (mod n),e)) [0 <1< n,0<c<2"}
C = {((l,c),(l+1 (modn),c@21))|0§l<n,0§c<2"}

We call the edges between nodes at levels ! and {41 level-I edges. The operator
& denotes bitwise exclusive-or of its two arguments. From node (I, ¢) the level-
straight-edge simply increments I/, while the level-I cross-edge complements the
Ith bit of ¢ in addition to incrementing 1.

Q 1 2 3 4 5 6 7

Columns .
~— : cross-edge - =: straight-edge

Figure 3.5: The 3-Stage Butterfly (level 0 shown at top and bottom)

3.3 Cross-Products

Once we have graphs with interesting properties it is often nice to combine them
to form new graphs. One particularly useful technique for combining graphs is
the cross-product. In fact many of the graphs already described can be viewed
as cross-products of simpler graphs. There are many slightly different definitions
of the cross-product. The one used in this thesis is the following:

The cross-product of two graphs G = (V,E) and H = (W, F) is denoted
G x H and consists of vertex set V. x W = {(v,w) | v € V,w € w}
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and edge set {({v,w), (v,wa)) v €V, (wl,wé) € F} U {({(v1,w), (v2,w0)) |
(v1,v2) € E,w € W}. By analogy with multiplication, the graphs G and
H are referred to as factors of G x H.

Fact 2

The cross-product of the length-L path (resp. cycle) and the length-W
path (resp. cycle) is the L x W grid (resp. torus).

The cross-product @, X @, is equal to Qnim.

The complete binary tree of height 2k —1is a subgraph of the cross-product
of the height-h complete binary tree with itself.
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Properties of Hypercubes

As mentioned in the previous chapter the boolean hypercube is a very flexible
network; it is capable of hosting a variety of networks via efficient embeddings.
In this chapter we collect some general properties of the hypercube which are
useful to our later results and also for hypercube algorithms in general. Some of
these properties are old enough to be considered folklore, others are new to this
thesis.

4.1 Graycodes

A classic problem is to find an ordering of consecutive binary numbers such that
successive values differ in exactly one bit. The problem of creating such one-bit-
change-at-a-time sequences is isomorphic to the problem of finding Hamiltonian
paths and cycles in the binary hypercube. Each change of a single bit corresponds
to traversing an edge of the hypercube. Including each of the binary numbers is
equivalent to visiting each hypercube node. Solutions to the problem have come
to be called gray codes, so named because Gray discovered one of the first such
sequences|[71].

There are, in fact, many possible gray code sequences for any hypercube. The
study of how many different codes exist for each size hypercube (under various
definitions of ‘different’) has a long history but is outside the scope of this thesis.
We will concentrate on two particular gray codes: one old and frequently used
called the Binary Reflected Gray Code (BRGC for short); and one new, with
special properties, which we call the Even Distribution Gray Code.

We start with some terminology:

A gray coded list is any list for which each two successive words differ in a
single bit. If the first and last words also differ in a single bit then the list
is a gray coded cycle. For example, 000,001,011,111 is gray coded list.

27
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Any gray coded list of the 2" n-bit binary words is called a gray code on
n bits. For example, 000,001,011,010,110,111,101,100 is a gray code on
three bits.

The sequence of bit positions changed between each successive pair of words
in a gray code is called a gray code transition sequence. It is simple to
convert a gray code specified by a list of its words into a transition sequence
along with the first code word and vice versa. When no first code word
is given with a transition sequence then the first code word is assumed
to be the all zeros word (of length equal to the ceiling of the log of the
length of the transition sequence). The gray code transition sequence for
the previous example is 0,1,0,2,0,1,0. For initial code word 001 the gray
code becomes 001, 000,010,011, 111,110,100,101.

We denote the ith element of the n-bit transition sequence (1 < i < 27)
by Gn(z). Note that although there are 2" code words in a gray code there
are only 2" — 1 elements of a transition sequence. The bit changed to go
from the last code word to the first is uniquely determined by the previous
elements.

Given a transition sequence G,, denote the implied gray code as H, where
H,(0) = 0", and for 0 < i < 2", Ha(i + 1) equals H,(i) with bit Gn(7)
complemented.

4.1.1 Operations on Gray Codes

Given one gray code it is easy to produce others via simple reflections and ro-
tations of the hypercube. Each reflection is equivalent to choosing a node to be
labeled 0¢ and a rotation is just a naming of the d dimensions. A Hamiltonian
cycle in the hypercube must remain a Hamiltonian cycle regardless of which node
is labeled 0¢ and what names are given to the dimensions. Equivalently, a gray
code must remain a gray code after any bitwise-exclusive-or of all code words
with a fixed code word and/or any permutation of the bit positions of all code
words with a fixed permutation.

Lemma 1 Forall0 < w < 2" and all permutations w € S, the sequence produced
by applying a fized reflection @,, or rotation © to each code word in a gray code
produces a new gray code.

The fact that transition sequences do not explicitly refer to the length of the
code words makes them useful in stating recursive specifications of gray codes.
We next give recursive definitions of two gray codes.
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4.1.2 Binary Reflected Gray Code

The binary reflected gray code sequence derives its name from the fact that
the second half of the code is identical to the first half in reverse (or reflected)
order with the high order bit complemented. The transition sequence is defined
recursively as follows:

Gy =0
G'n = Gn—l on—1o Gn—l
where o = string concatenation.

Thus the three bit transition sequence is G3 = 0102010 and the three bit code
beginning with 000 is 000,001,011, 010,110, 111,101, 100.

4.1.3 Even Distribution Gray Code

When the gray code actually corresponds to a cycle within the hypercube it is
sometimes desirable for the number of edges used in each dimension to be approx-
imately the same. Vickers and Silverman([87] give additional reasons for finding
such even distribution codes (which they call muddy). Exactly equal distribution
is possible only when the number of dimensions is a power of two. Vickers and
Silverman used a heuristic search to discover optimally evenly distributed codes
for up to eight dimensions. We present a new, explicit method of producing codes
in which no dimension is used more than three times as often as the average.

The idea behind these gray codes is to build up from copies of a smaller gray
code just as in the BRGC but to permute the dimensions used in the second copy
so as to equalize the distribution. The exact permutation used will be defined
by the following sequence of shuffle-like permutations, o;. Define f(i) = 2¢ + 1,
We denote the identity permutation as I and specify all other permutations as
products of transpositions.

gg = I,
Vi Z 00’](;) =I,
Vi > 00461 = [17eg (a,a + 2-1),

Vi>0,1<k<i 0<j <21

O fiyrrimai; = [Poep “H(2F 4 2+ 4 g, 2F 4 j2i=k+1 4 g 4 9i-k),
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The first 12 values of o are I; I; (0,1); I; (2,3); (0,2)(1,3); I; (4,5); (6,7);
(4,6)(5,7); (0,4)(1,5)(2,6)(3,7); L.
The Even Distributed Gray Code is then defined as:

El = 0
E, = Enyon—100,_1(FEn-1)
where o = string concatenation

and o is applied to each word of its argument code

Lemma 2 The even distributed gray code transition sequence is a valid gray code
sequence.

Proof: The proof is inductive. Clearly F, is a gray code transition sequence.
In the recursive construction of E, both E,_., and On-1(Fn-1) are transition
sequences by the induction hypothesis and Lemma 1 so they each form gray
codes within (n — 1)-dimensional subcubes. The element n — 1 connects the two
(n — 1)-dimensional gray codes into a single n-dimensional gray codes.
Implicitly the use of gray code transition sequences uses Lemma 1 to ensure
that no matter what vertex is reached after traversing E,_, followed by n —1 the
sequence 0.1 (En_;) will form a gray code within a (n — 1)-dimensional subcube.

Lemma 3 In the n bit even distributed gray cod= transition sequence no bit oc-
curs more often then 3 - 2™ /n times.

Proof: A careful bookkeeping shows that when n = 2 44 | ¢ > 0 that all
dimensions less than 2‘ are used 2% — 1 times and all dimensions greater than or
equal to 2' are used a total of 2¢ times. This yields a maximum dimension use
that asymptotically approaches the average 2" /n as i approaches infinity.

When n is not of this form the dimension use can become slightly more skewed
but a simple inductive proof shows that the maximum use of a dimension is at
most three times the average use.

4.1.4 Properties of Gray Codes

Fact 3 In the binary reflected gray code bit b > 0 is used 2° times and for any
two levels at which b is used there exists some bit ¥ < b which is used an odd
number of times between these two levels.

Fact 4 Every contiguous subsequence of any gray code contains at least one
element an odd number of times.
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4.2 Moments

The moment function assigns a [log n]-bit label to each node of Q, so that all
the neighbors of each node have distinct labels. This simple property underlies
all the multiple-path embeddings presented in this thesis. In the following, b(z),
0 < z < n denotes the [log n]-bit binary representation of the number z. Also,
€ denotes the bitwise xor of [log n]-bit numbers.

Definition 1
The moment of an n-bit number v = vV 5...v is defined by

M(0) = b(0) and M(v) = ;=1 b().
Lemma 4 FEach hypercube neighbor of a given node, u, has a distinct moment.

Proof: Let v and w be the neighbors of u in dimension ¢ and j. Then M (v) =
M(u) ® b(z) # M(u) & b(j) = M(w). ' |

The moment of a node can take on any non-negative integer value less than
2M°8n1  Consequently when the number of dimensions is a power of two then
there are exactly n possible values of the moment and in all cases there are fewer
than 2n values of the moment.

4.3 Simple Hypercube Embeddings

In this section we present three simple embeddings (these embeddings also ap-
pear in [32].) They further illustrate the idea of an embedding and extend our
understanding of the flexibility of the hypercube. In the next chapter we will
extend the CCC embedding to produce a multiple-copy embedding.

4.3.1 FFT

In order to show that the FFT is a subgraph of the hypercube we describe an
embedding which maps the vertices of the FFT onto the nodes of the hypercube.
The n-level FFT has (n+1)2" vertices so our hypercube will have n + [log(n+1)]
dimensions. For convenience, let 3 = [log(n + 1)].

The Embedding

We first label each edge of the FFT by a single dimension of the hypercube.
Every level-£ cross-edge is labeled Gg(£ + 1), the £+ 1st bit in a §-bit gray code.
Every level-£ straight-edge is labeled £ + 8. Thus, the labels on cross-edges are
disjoint from the labels on straight-edges.



32 Chapter 4. Properties of Hypercubes

The origin vertex s = (0,0) of the FFT is mapped to the hypercube node
#(s) = 0. The remaining FFT nodes are assigned hypercube addresses in the
following way. To compute the hypercube address ¢(v) of vertex v in the FFT,
pick any path from the origin s to v. The ith bit of ¢(v) is 1 if and only if
dimension i appears as the label of an odd number of edges along the path. For
example, if we choose the path from s to (1,4) in the 4-stage FFT to be the
path which traverses edges labeled with dimensions 0,1,3,1,4,0,3,2,0 then the
hypercube address of v would be ¢(v) = 10101;; positions 0, 2, and 4 occur an
odd number of times.

At this point we need to establish three properties of the embedding:

¢ is well-defined, i.e., the address ¢(v) is independent of the path chosen
from the origin to v.

¢ is injective, i.e., each node in the FFT is assigned a distinct hypercube
address.

¢ is dilation 1, i.e., if edge (u,v) is in the FFT then (4(u), ¢(v)) is an edgeA
of the hypercube.

Lemma 5 (¢ is well-defined)

For each vertez v = (l,c) in the FFT and any two paths P and Q from s = (0, 0)
to v in the FFT, the hypercube address assigned to v using P is the same as the
address assigned using Q.

Proof: We start with three facts about cycles in FFTs.

For every cycle O in the FFT the number of level-{ edges along O is even.
Since O is a cycle every edge from one level to the next higher must be matched
by an edge coming back down.

For every cycle O in the FFT the number of level-I cross-edges along O is
even. Each level-/ cross-edge leads to a vertex whose column address is the same
as the previous vertex except that the I/th bit is complemented. Thus an even
number of complements at each level are necessary to return to the first vertex.

For every cycle O in the FFT the number of level-I straight-edges along O
is even. The total number of level-/ edges is even as is the number of level-]
cross-edges so the number of level-/ straight-edges must also be even.

Now consider the hypercube dimension labels associated with a cycle in the
FFT. Since all level- edges of each type are assigned the same label each hyper-
cube label must appear an even number of times.

Next consider the cycle which starts at s, follows P to v, and then follows
@ back to s. Since each hypercube dimension appears an even number of times
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the parity of the number of appearances along P must be the same as the parity
along @ for every dimension. Therefore the address assigned to v is the same

whether P or @ is used. 1

Lemma 6 (¢ is injective)
For every pair of vertices u = (Iy, ¢1),v = (lg,¢;) in the FFT,

u# v = $(u) # 9(v).

Proof: We assume ¢(u) = ¢(v) and derive a contradiction. W.l.o.g. assume
Ly 2 l;. Let v’ = (n,¢1) and v' = (0,¢;). Consider the path in the FFT which
starts at u, traverses straight-edges up to v/, follows the unique path to v/, and
then traverses straight-edges up to v. Let v” and u” be, respectively, the nodes
at level /; and /; along the path between v’ and u’. (See Figure 4.1) Since u
and v are mapped to the same node in the hypercube the path must cross every
hypercube dimension an even number of times.

Now consider all the level-i edges in the path. For ¢ > [ or ¢ < [, there are two
level-i edges in the path, one of which is known to be a straight-edge. However,
the hypercube dimension assigned to a level-i straight-edge is only assigned to
level-i straight-edges. Thus the only other edge which could cross this hypercube
dimension is the other level-i edge which must also be a straight-edge. Therefore
the paths from u to «’ and «' to u” must be the same making u = »”. Similarly
v =10v".

For any remaining levels there is only one path edge on the level. If this
edge were a straight-edge then it would be the only edge crossing its hypercube
dimension. Thus all the edges on these levels must be cross-edges. However,
no subsequence of dimensions from a gray code crosses every dimension an even
number of times (see Fact 4). Thus the path does not exist and we have a
contradiction. ' 1

Figure 4.1: A Path from u to v
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Lemma 7 (¢ is dilation 1)
For every pair of vertices u = (I, c1),v = (lo, c2) in the FFT,
(u,v) is an edge of the FFT = (¢(u), ¢(v)) is an edge of the hypercube.

Proof: Every FFT edge was assigned a single hypercube dimension. |

Lemmas 5, 6, and 7 establish:

Theorem 1 Each FFT is a subgraph of the smallest hypercube containing at
least as many nodes as the FFT.

4.3.2 Butterfly Graph

The butterfly graph is quite similar to the FFT except that the first and last
levels of the FFT are identified as one in the Butterfly. This means that there
are fewer nodes in the Butterfly than in the FFT for the same number of inputs.
Thus our embedding of the Butterfly will sometimes have a smaller hypercube
with which to work.

Theorem 2 Every Butterfly graph is embeddabie in a hypercube with optimal
ezpansion and optimal dilation. Thus, for each m, B(m) is embeddable in Q7
with dilation 1 if m is even and dilation 2 if m is odd, where d =g¢s m + [log m].

The Embedding

Our embedding will make use of the following characterization of the Butterfly.
B(m) consists of two copies of F(m — 1) along with edges between each output
and its corresponding input in both copies of F(m — 1). This characterization
can be compared to that of F(m) as consisting of two copies of F(m — 1) and
two sets of 2"~! new nodes along with edges between each output in each copy of
F(m — 1) and its corresponding node in both sets of new nodes. The new nodes
become the new outputs for the FFT.

We first reserve the highest dimension, d, as special. This partitions our
hypercube into two subcubes of d — 1 dimensions each. Embed the first copy of
F(m — 1) into the subcube in which bit d is zero using the simple embedding
of Section 4.3.1. Let a be the address of the hypercube node to which the first
output of this copy of F(m — 1) is mapped. Next embed the second copy of
F(m —1) into the second subcube (on which bit d is one) using the same simple
embedding except that the origin node (0,0) is mapped to the neighbor across
dimension d of « instead of to hypercube node 0.

The proof that this embedding is valid divides :nto two parts: those properties
inherited from the embeddings of F(m —1) and the verification of the dilation of
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the additional edges between outputs of the F(m — 1) and their corresponding
inputs in both copies. The well-definedness of the embedding is inherited from
the embeddings of the copies of F(m — 1) and the fact that they are embedded
in disjoint subcubes. The dilation of all the edges other than the ones between
outputs and inputs is also inherited from the F(m — 1) embeddings. Thus only
the dilation of these additional edges must be verified.

The edges between an output and its corresponding input in the same copy of
F(m —1) follows directly from the fact that the dimensions used for the straight-
edges form a length m or m + 1 cycle. When m is even the cycle is length m,
we have used m — 1 edges along the cycle and thus there exists a single edge to
complete the cycle connecting the output back to the input. When m is odd the
cycle is length m + 1 and thus we require two edges to complete the cycle and
the dilation of the output to input edge is two.

Inputs {/__—m\i

F(m—1) F(m —1)
0 ~Qutputs 0 Inputs

Figure 4.2: A cycle in the Butterfly

The edges between an output and its corresponding input in the other copy
of F(m — 1) are all dilation 1 and in fact all cross dimension d. We start with
output 0 of the first copy of F(m — 1). Its image is, by the definition of the
embedding, adjacent to the image of input 0 of the second copy across dimension
d. Now consider the output 7 of the second copy along with the following cycle
in the hypercube: start at the image of output 0, follow the image of the unique
length m — 1 path in F(m — 1) to input ¢, next cross to the image of output ¢
of the second copy, continue along the image of the unique path in F(m — 1) to
input 0 of this copy, and lastly complete the cycle by crossing to the image of
output 0. (See Figure 4.2) We already know that the last step, going from input
0 of the second copy to output 0 of the first copy, can use exactly dimension
d. The key point is that the images of the two unique length m — 1 paths
must cross exactly the same hypercube dimension since they must either both
follow a cross-edge or both follow a straight-edge on corresponding levels of their
respective FF'Ts and the same hypercube dimensions are being used for all cross-
edges (respectively straight-edges) in both FFT embeddings. Thus, since this is a
cycle in the hypercube the remaining step, going from the image of input ¢ in the
first copy to the image of output ¢ in the second, must also cross only dimension
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d.

Now that we know that output 0 of the second copy is adjacent across di-
mension d to input 0 of the first copy we can use a symmetric argument to argue
that the edges from output ¢ of the first copy to input ¢ of the second are also
dilation 1.

Note that dilation 2 is optimal for m odd since in this case B(m) has odd
length cycles and no hypercube has odd length cycles.

4.4 The Cube-Connected Cycles

The CCC can be embedded in a manner similar to the embeddings of the FFT
and Butterfly. There are, however, simpler embeddings of the CCC graph. Since
the CCC is a subgraph of the cross-product of a hypercube and a ring the CCC
can be embedded in the hypercube by decomposing the (m + [log m])-dimension
hypercube into the cross-product of a m-dimension hypercube with a [logm]-
dimension hypercube and embedding the hypercube factor of the CCC in the
m-dimension hypercube using the identity map and the ring factor in the other
hypercube using a gray code.

Theorem 3 Every Cube-connected-cycles graph is embeddable in a hypercube
with optimal expansion and optimal dilation. Thus, for each m, CCC(m) s
embeddable in Q7 with dilation 1 if m is even and dilation 2 if m is odd, where
d =get m + [logm].

We defer the proof of this theorem until the next chapter where we will prove
the stronger result that m copies of the m-level CCC can be embedded in the
hypercube with optimal expansion and dilation and overall congestion of only 2.
Once again note that dilation 2 is optimal for m odd since in this case CCC(m)
has odd length cycles and no Hypercube has odd length cycles.

4.5 Multiple-Copy Embeddings of Cycles

Hypercubes can be decomposed into edge-disjoint Hamiltonian cycles (see [5] for
a survey). In particular, Alspach, Bermond, and Sotteau [5] show that the edges
of every (undirected) hypercube with 2n dimensions can be partitioned into n
(undirected) Hamiltonian cycles. Furthermore, if the number of dimensions is
2n+1, then the edges can be partitioned into » cycles and one perfect matching.

These results are easily extended to multiple-copy embeddings of directed
cycles in directed hypercubes. For the n-dimensional cube, we orient each of the
[n/2] undirected cycles in either direction to obtain the following lemma. When
n is odd it is not, in general, possible to partition Q, into n directed cycles.
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Lemma 8 For all even n, n copies of the 2" -node directed cycle can be embedded
into QQ,, with dilation 1 and congestion 1.

For all odd n, n—1 copies of the 2" -node directed cycle can be embedded into Q,
with dilation 1 and congestion 1.

4.6 Disjoint Paths

In later chapters, embeddings are presented which supply multiple paths be-
tween guest images. The search for such multiple-path embeddings was in part
motivated by the following simple facts from [31].

Fact 5 Between any two nodes in the n-dimensional hypercube there are n edge-
disjoint paths.

Fact 6 Between any two sets of p < n vertices in the n-dimensional hypercube
there are p vertex-disjoint paths such that each vertex in each set is the endpoint
of exactly one path.

4.7 Eigenvalues of the Hypercube

Any finite graph can be represented by an adjacency matrix. For d-regular graphs
the adjacency matrix can be normalized to become the transition matrix of the
Markov chain for a random walk on the graph. The magnitude of the second
largest eigenvalue of the matrix can be used to bound the convergence time of the
walk. Several researchers have used this property to produce routing algorithms
on expander graphs[61, 79]. In this section we enumerate the eigenvalues of the
hypercube. (See [50] for related results.)

Lemma 9 For the d-dimension hypercube the eigenvalues are {d — 2i |0<:i<
d}. The eigenvalue d — 2i has multiplicity (f)

Proof: Let My be the adjacency matrix for the k-dimension hypercube.
[0 1 [ M I
Ml“(lo)’M"“‘(I Mk>

Clearly the eigenvalues of M; are 1 and —1 with eigenvectors G) and (_11)
The lemma then follows by the observation that for any eigenvalue ¢ with eigen-

vector v of M}, there is an eigenvalue c+ 1 with eigenvector (L’) and an eigenvalue

¢ — 1 with eigenvector (_”u) of My,,. |
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Efficient Embeddings

We have already noted that, unlike trees and meshes, the degree of the hypercube
network grows as the network becomes larger. The standard graph embedding
model ignores this fact and thus has led to the hypercube being considered a
good general-purpose network. There exist good (packet-cost one) embeddings
of meshes, trees, and butterflies into hypercubes. It seems that rather than
building meshes for PDE solvers, trees for divide-and-conquer, and butterflies
for convolutions that a hypercube can be used to simulate all the others.

The consideration of physical construction constraints seems to contradict the
hypercube’s generality. In this chapter we look in particular at pin limitations.
We will first show that pin limitations make most previous embeddings into
the hypercube inadequate to allow efficient simulation by the hypercube. These
earlier embeddings make poor use of the hypercube edges and thus poor use of
the pins. Having established that standard embeddings are inefficient we present
two types of extended embeddings which allow efficient use of the hypercube’s
edges. We demonstrate how these multiple-path and multiple-copy embeddings
can be used to efficiently simulate meshes, trees, and CCCs on the hypercube;
even when pin limitations are considered.

There are, as we described in Chapter 2, many other resource constraints
besides pin limitations. The incorporation of physical limitations into graph
embeddings has just begun. The hypercube is also not the only proposed general
computer. In Chapter 6 we extend some of the ideas presented in this chapter to
other networks. In the Chapter 7 we add some thoughts about wire length.

5.1 Pin limitations
Suppose each processor is on its own chip and that each chip has 2W pins used
for data transmission in the interconnection netwerk. A single bit of data can be

transmitted across each bit in a time step. If the network has constant degree

38
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(such as a mesh, tree, or butterfly) then each link can be assigned O(W) pins.
On the other hand the n-dimension hypercube can only assign O(W/n) pins to
each link. The constant-degree network can send a W-bit word across a link in
a constant number of steps while the hypercube needs O(n) steps.

As an illustration of the effect of pin limitations on network comparisons we
compare a cycle to a hypercube. If we build the cycle we can use W pins to
connect to each neighbor; W-bit words can be sent one place around the cycle in
a single clock step. Can the hypercube do as well?

The standard graph embedding approach would be to use a binary reflected
gray code embedding of the cycle in the hypercube. The cost of the gray code
simulation is perfect; each cycle message need travel over only a single link. The
problem is that the links are thinner; it takes n clock steps to transmit the W
bit word. Apparently the hypercube network is a poor substitute for the cycle
network.

A moments reflection reveals that the binary reflected gray code is using
only one nth of the hypercube edges. Pins have been used to construct the idle
edges but are not being used by the embedding. Any embedding which allows
the hypercube to efficiently simulate the cycle will have to somehow use all the
hypercube edges.

It is well-known that between any two nodes of the hypercube there are n
edge-disjoint paths (See Fact 5). Perhaps the binary reflected gray code can be
made efficient by using multiple paths between each two successive nodes on the
cycle.

Unfortunately, the binary reflected gray code cannot employ the idle edges to
speed transmission. To prove this assertion we refer to Figure 5.1 which shows
the binary reflected gray code embedding of the 16-node cycle in the 4-dimension
hypercube. The label on each cycle edge corresponds to the dimension of the
hypercube edge which is the image of the cycle edge. There are 2"~ cycle edges
which use a hypercube edge in dimension 0. Any path taken by any message
corresponding to one of these edges must cross at least one dimension-0 hypercube

edge.
T TaRY TR
3§0V1V0V2 0
TG Y
0 1 0 2 0~1Y0

Figure 5.1: The binary reflected graycode embedding
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If W bits are to be sent along each cycle edge shen W2"~! bits must cross
edges in dimension 0. The entire capacity of the 2" edges in dimension 0 is
only W2"/n. Thus, regardless of multiple paths or clever routing schemes, n/2



40 Chapter 5. Efficient Embeddings

clock steps will be required if the cycle is embedded into the hypercube using the
binary reflected gray code.

Similar bottlenecks occur if attempts are made to create pin-efficient embed-
dings from other standard embeddings of constant degree graphs into hypercubes.
Entirely new embeddings are necessary.

5.2 Multiple-path Embeddings of Grids

In this section we show that grids have efficient multiple-path embeddings in hy-
percubes. We present the technique for cycles; the extension to multi-dimensional
grids is noted at the end of the section.

5.2.1 Multiple-path embeddings of cycles

We present two multiple-path embeddings of cycles. The first embedding maps
the 2"-node cycle into @, with load 1, width |n/2]| and [n/2]-packet cost 4.
Roughly speaking, half of all hypercube edges transmit a packet at each of the
4 steps. The second embedding attempts to keep all hypercube edges busy at
each step; it maps the 2"*!-node cycle into Q,, with load 2, width |n/2], and
[n/2]-packet cost 4. When n is a power of two then the n/2-packet cost of both
embeddings can be reduced to 3.

A key idea in both multiple-path embeddings of cycles will be the conversion
of the multiple-copy embedding of Lemma 8 into a multiple-path embedding. In
Section 5.4 this idea will be generalized to allow the construction of additional
multiple-path embeddings.

5.2.2 Embedding Cycles with Load 1

Theorem 4 The length-2" directed cycle can be embedded in Q,, with width n/2]
and [n/2]-packet cost 4. When n is a power of 2 the n/2-packet cost is 3.

Proof: Suppose that n =4k+r, 0 <r <4, k> 0. Thus for r = 0,1 we have
|n/2] = 2k and for r = 2,3 we have |n/2] = 2k - 1.

First we partition @, as the product Qs x Q2k+r- The product can be
visualized as a grid with 2% rows and 2%*" columns. Each row is connected as
Q2k+r and each column is connected as Q2x. The most significant 2k bits of the
addresses in @, name a grid row while the least significant 2k + r bits name a
grid column.

Furthermore we partition the columns into 2" blocks by letting the least sig-
nificant r bits of the column name be the name of a block and the most significant

*k =0 is trivial
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2k bits be the name of a position within a block. Note that within each block
each row and column forms a copy of Q2x. Thus if each column is treated as a
coarse node it has 2k neighboring columns within the block. (See Figure 5.2)

Row name Column name
Position | Block
2k bits 2k bits + bits

Figure 5.2: Dividing addresses into three fields

Next we number the k edge-disjoint undirected cycles and the 2k edge-disjoint
directed cycles of Q2 provided by Lemma 8 in Section 4.5 as follows. The
undirected cycles are numbered arbitrarily. Then for 0 < ¢ < k the ¢th undi-
rected cycle oriented in one direction is numbered 27 and the 7th undirected cycle
oriented in the other direction is number 2 + 1. For our embedding we will
need 2/1°82¥1 cycles so when 2k is not a power of two we use some cycles twice.
For 0 < j < 2M°82¥1 our jth cycle is the directed edge-disjoint cycle numbered
J mod 2k. Note that no cycle is used more than twice.

Now we can choose a special cycle within the subcube associated with each
column. For column c at position z in block b we select the edge-disjoint directed
cycle number M(z)! as the special cycle. Observe that each node of Q, lies in
exactly one special cycle, and we have selected 22¥*" special cycles.

We now use these special cycles, plus a few edges in the rows to form our
length-2™ cycle, C. (See Figure 5.3.) The cycle C consists of 22¥ — 1 consecutive
edges from each special cycle and 22**" row edges; each row edge connects one
column’s special cycle to the special cycle in the next column. The order in which
C visits columns is specified by the binary reflected gray code G, defined in
Section 4.1.2.

Formally, the first vertex of C is the hypercube node at row 0 of column 0.
The first 2% — 1 edges of C follow the special cycle in column 0 (until the special
cycle is about to return to row 0). The next edge of C is the row edge in the
first dimension of Gyk,,. In the new column reached, and each successive column
thereafter, C follows 22¥ — 1 edges of the special cvcle and then leaves via the
row edge in the next dimension listed in Gzx4,. Upon returning to column 0 the
cycle C is complete.

By construction C visits each of the 22*+" columns exactly once, in the order
determined by Gary,. Since a visit by C to a column involves the traversal of a
special cycle, each node is visited exactly once. It remains to show that when C
returns to column 0 it is in row 0.

"Recall that M(z) denotes the moment of . (See Section 4.2)
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Block 1 Block 2
Position: 0 1 2 3 0 1 2 3
Moment:( 0 1 1 0 0 1 1

Figure 5.3: Forming the length-2" cycle, C, from column special cycles

Group the columns, starting with column 0 and in the order they were visited,
into sets of four. Between columns within each set the dimensions specified by
Gak4r for row edges are always 0, 1, and 0. Thus within each set the moments of
the first two columns are the same (z@®0 = ) as are the moments of the last two.
Furthermore the cycle associated with the moment of the first two columns is the
reverse orientation of the cycle associated with the moment of the last two. (The
names of the cycles were chosen so that names differing in the least significant bit
corresponded to opposite orientations of the same undirected cycle.) The path
taken by C in the first two columns is reversed in the next two columns thereby
returning C to row 0. Since the number of columns is divisible by four, C must
end in row 0 after visiting all the columns.

We are now ready to make the edges of C wide. We supplement each special
edge with the 2k length-three paths which cross into neighboring columns, follow
the projection of the edge in the neighboring column, and then cross back into
the original column (See Figure 5.4).

Formally, we choose the first 2k edge-disjoint paths for column-edge (u,v)
along a special cycle (u and v differ in dimension i, 2k+r < i < 4k+r) as follows.
The jth path, 0 < j < 2k, from u to v is of the form u, u @ 2ty @2t @ 2 .
In other words the jth path crosses into the column adjacent via the edge in
dimension r 4 j (one of the dimensions used within block row subcubes), crosses
the :th dimension while remaining in this new column, and then crosses back to
its original column via an edge in dimension r + ;.

‘We add a 2k + 1st path of length one which goes directly from u to v via the
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Figure 5.4: The length-three paths

edge in dimension .

For the edges in the rows we similarly pick 2k + 1 edge-disjoint paths. The
first 2k paths for row edge (u,v) (where the dimension i between u and v is now
such that 0 < ¢ < 2k + r) are chosen so that path j, 0 < j < 2k, is of the
form u,u @ 2%+7+ o @ 22*+7+i g 21 v, Again we add a 2k + 1st path which goes
directly across dimension z.

We claim that this multiple-path embedding of the special cycles has [n/2]-
packet cost 4. First observe that each first edge of the paths corresponding to a
single edge of C is in a different dimension. Thus all first edges emanating from
each node are disjoint. Similarly, the set of final edges is also disjoint. Next, we
argue that the middle edges have congestion at most two.

Our main tool will be the following observation about the special cycles.
Consider column c in block b, and its 2k neighboring columns within block 4. By
Lemma 4 each neighbor has a distinct moment. When n is a power of two each
moment is assigned a distinct special cycle and in all cases at most two moments
are assigned the same special cycle. Therefore when the special cycles of all the
neighbors are projected onto column c their images zre edge disjoint in the first
case and have congestion at most two in all cases.

All the middle edges of paths for column edges are projections of special-cycle
edges onto neighboring columns within a block. But, the projections of all special
cycles onto any column have congestion at most two. Therefore each middle edge
contends with at most one other.

The middle edges of paths for row edges are projections onto neighboring
rows and thus disjoint from the column path’s middle edges. Furthermore each
row edge in C, and all its projections, connects a unique pair of columns and thus
its projections are disjoint from those of any other row edge in C.

Thus a packet may be sent along all paths including the direct path on step
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one, forwarded along all middle edges of the length-three paths on steps two and
three, and arrive at their destination on step four. Furthermore an additional
packet can be sent along the direct path on step four. Thus the embedding yields
(2k + 2)-packet cost 4 which is always better than that required by the theorem.
(When n is a power of two the middle edges can be traversed in a single step and
the cost is only 3.) |

Since this first embedding uses only about half the hypercube edges a natural
question is whether the idle edges can also be put to use. We do not know how
to increase the width in order to increase the efficiency. However, by increasing
the load to two and thereby doubling the number of guest (cycle) edges the
embedding in the next section uses nearly all the hypercube edges.

5.2.3 Load 2 Embeddings which Fully Utilize the Hy-
percube Links

Theorem 5 The length-2"*' directed cycle can be embedded in Qn with width
[n/2] and |n/2|-packet cost {. When n is a power of two the cost is 3.

Proof: The most difficult case is » =3 (mod 4). Thus we state the proof for
the case n = 4k + 3 and discuss the other values for n mod 4 at the end.

First we partition Q443 into Q2k+2 X Q2kt1.

The product can be visualized as a 222 by 22k+1 grid of nodes with each row
connected as (Jyx4+1 and each column connected as Q2k+2- The most significant
2k + 2 bits of the addresses in @, name a grid row, the next 2k + 1 bits name a
grid column. The rows and columns each form a subcube.

As in Theorem 4 we will need a cycle for each possible moment of a node in
either the row or column subcube. The number of special cycles needed will thus
be 208(2k+1)1 55 oflog(2k+2)] respectively. There are 2k disjoint cycles available
in the row subcubes and 2k + 2 for the column subcubes. By using each cycle
at most twice each moment can be assigned its own special cycle. For column ¢
we choose the disjoint column cycle assigned to M (c) while for row r we choose
disjoint row cycle M(r). Thus each node of Q, is on two special cycles and the
subgraph of @, induced by the special cycles spans @~ and has in-degree and
out-degree equal to 2 at every node.

By choosing the Eulerian tour of the induced spanning graph as our length-
2™t1 cycle we need only show that each edge of the special cycles can be given
width 2k 4+ 1 with [n/2]-packet cost 4.

Each special cycle is given width 2k + 1 by choosing 2k + 1 edge-disjoint
paths in the following manner. If edge (u,v) is along a column special cycle (and
thus u differs from v in dimension i, 2k + 2 < i < 4k + 3) then the jth path,
0 <7 <2+1, from u to v is of the form u,u DD udd @ 2¢. v. On the
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other hand if edge (u,v) is along a row cycle (and thus traverses dimension i,
0 < ¢ < 2k + 2) then the jth path, 0 < j < 2k + 1, from u to v is of the form
u, u @ 22+ oy @ 22145 g 2 4. (Note that we could not add the direct path as
a 2k + 2st path because for columns edges the direct edge is used by row paths
and vice versa.)

We claim that this width-(2k+1) embedding of the special cycles has (2k+1)-
packet cost 4. Observe that the set of first edges on all the length 3 paths for
column edges are in dimensions less than 2k + 2 while the set of first edges on
paths for row edges are in dimensions greater than or equal to 2k + 2. Thus
the first edges emanating from each node, and therefore all the first edges, are
disjoint. Similarly, the final edges are also disjoint. Next, we argue that the
middle edges are disjoint. _

All the middle edges of paths for column edges are projections of special-cycle
edges onto neighboring columns. But, as we observed earlier, the projections of
all special cycles onto any column or row have congestion at most two. Since the
row edges are disjoint from the column edges all the middle edges together have
congestion at most two. »

Since the sets of first and last edges are each disjoint and the middle edges
share their hypercube edge with at most one other middle edge, packets can be
sent down each path in four steps and the (2k + 1)-packet cost is indeed 4.

For other values of n mod 4 the hypercube is similarly decomposed into as
near equal pieces as possible. Note that when n is a power of two the cross-
product decomposition yields two hypercubes whose dimension is a power of
two. Thus no edge disjoint cycle need be used twice in order to assign cycles to
moments and the cost becomes 3. |

5.2.4 Bounds on Width and Cost

We next show that the multiple-path embedding of Theorem 5 is the best possible
when n is a power of two.

Lemma 10 Forw > 2, every width-w embedding requires dilation (and therefore
p-packet cost, p > w) at least 3. There is no p-packet cost 3 embedding of the
length-2"t1 cycle in Q, with p > [n/2].

Proof: In order to have w > 2 edge-disjoint paths between two distinct hypercube
nodes, one of the paths must have length 3 or greater. Therefore, for all width-w
embeddings, w > 2, the cost must be 3 or greater.

The number of edges traversed by all the paths in the embedding equals
the sum, over all guest edges, of their dilations. To achieve cost 3, at least
w — 1 edges must have dilation 3. Thus the sum of the dilations is greater than
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2"+ x (w — 1) x 3. On the other hand the number of hypercube edges available
during three steps is simply three times the number of directed hypercube edges
or 3n2™. Thus in order for the number of edges used to be no greater than the
number of edges available, we have that 6 - 2"(w — 1) < 3n2™ which implies that
w < [n/2]. i

5.2.5 Multiple-path embeddings of grids

In Chapter 3 we mentioned that grids/tori are cross-products of paths/cycles and
that hypercubes are cross-products of smaller hypercubes (see Fact 2). These
two facts lead to a natural technique for extending embeddings of paths into
embeddings of grids. Each axis of the grid is embedded in a hypercube via
the cycle embedding and then the cross-product of the hypercubes inherits the
embeddings of the axes and thus an embedding of the grid.

For example, when the k-dimensional grid with each side of length 2° is em-
bedded in Q. using the cross-product decomposition and the embedding of The-
orem 4, we obtain a width-{a/2| embedding with [a/2]-packet cost 4.

When the sides of the grid are equal, but not a power of 2, the cross-product
embedding may use the hypercube nodes inefficiently. For example the 5 by 5
grid is the cross-product of two 5-node paths. Each 5-node path can be embedded
in the 8-node hypercube and the cross-product of two 8-node hypercubes is the
64-node hypercube. Thus by embedding each axis into its own independent factor
subcube we obtain an embedding of the 5 by 5 grid into the 64-node hypercube.
The 25 grid nodes could, however, have fit in the 32-node hypercube. The ratio
of the size of the hypercube used to the size of the smallest hypercube at least as
large as the guest graph is often called the ezpansion. In the 5 x 5 grid example
the expansion is 2; in general, cross-product decomposition can lead to expansion
k 4+ 1 for k-axis grids.

Corollary 1 The k-azis grid with all side lengths equal to L can be embedded in
QknogL) with ezpansion k + 1, width |[log L1/2] and [[log L]/2]-packet cost 4.

Proof: Embed each axis in Q@nogr) Via the embedding of Theorem 4 and use the
cross-product decomposition. |

For width-1 embeddings it has been shown that using gray codes for the
paths and applying the cross-product technique to k-axis grids causes expansion
no greater than k+1. Chan [25] has shown that by abandoning the cross-product
approach and increasing the dilation to O(k) the expansion can be reduced to
one.
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Unfortunately Chan’s techniques do not apply immediately to our multiple-
path embeddings. Thus we have no current alternative to the cross-product
technique.

When the sides of the grid are not equal (more precisely when the ceiling
of the logarithm of their lengths are not equal) the multiple-path embeddings
require additional work. We cannot just embed each axis in a hypercube large
enough to hold it because the width of the embedding depends on the number
of dimensions in the host hypercube. If one axis of a grid were embedded to a
smaller hypercube than another axis then the width of edges on the first axis
would be smaller than the width for edges on the other.

In order to compensate for the need to have all sides of the k-axis grid be
equal we first square the grid; that is we map the k-axis grid with unequal sides
onto a k-axis grid with equal sides. Aleliunas and Rosenberg [4] show that two-
axis grids can be squared with constant dilation and expansion and Kosaraju
and Atallah [49] extend this result to k-axis grids. Ellis{29] reduces the constants
slightly.

Combining the grid squaring with Corollary 1 gives us the following:

Corollary 2 The Ly x Ly--- x Li grid can be embedded in Qi; with width
L[log L1/2], O(1) ezpansion, and [[logL]/2]-packet cost O(1),
where L = [(TT5, Li)/*].

We leave to the reader the proof of Corollary 2 and to show that the em-
beddings of Theorem 5 can be used to create load-2* embeddings of k-axis grids
which more fully use the edges of the hypercube.

5.3 Multiple-copy Cube-Connected-Cycles

We now turn from grids to the cube-connected-cycle network (CCC). In this
section we will assume that we are given a CCC and required to embed it in
the smallest hypercube having at least as many nodes as the CCC. Since the
m-level CCC has m2™ nodes, optimal expansion is achieved by embedding into
the (m + [log m])-dimension hypercube.

Our main result in this section, a multiple-copy embedding, is stated below.
Note that since the directed cube-connected-cycle (straight-edges directed toward
higher level) has degree 2 the edge-congestion is optimal. The dilation is also
optimal since when n is odd the cube-connected-cycle has odd cycles and thus
dilation 2 is necessary.

Theorem 6 n copies of the n2™-node directed cube-connected-cycles network can
be embedded in Qninoga) with edge-congestion two and with dilation one (two)
when n is even (odd).

Before we pfoceed with the proof we introduce a few definitions.
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5.3.1 Terminology

Windows A window W C Z, is an ordered subset of the dimensions of the
hypercube Q;. For any node v in Qx, the signature ow(v) is the concatenation of
the address bits of v in the dimensions ordered by W. For example, the signature
of node 01001 over the window W = {1,4,3} is 110, the bits in positions 1, 4,
and 3. (The bits are numbered left to right starting with 0.)

Longest Common Prefix For any sequence ¢ we denote the prefix of length
¢ by pi(a). When a is a sequence of bits then p;(a) denotes the integer value of
the first 7 bits. For any two sequences a and b, we define A(a,b) to equal the
length of the longest common prefix.

We recall that Hy is the Hamiltonian cycle formed by starting at hypercube
node 0% and crossing successively the dimensions listed in the binary reflected
gray code sequence Gk. Also that Hj (i) and Gi(i) denote the ith elements of
their respective sequences.

5.3.2 Embeddings of the CCC Network

In Chapter 4 we claimed that the n-level CCC could be embedded in the hy-
percube with congestion 1 and dilation 1 if n is even and dilation 2 otherwise.
In this subsection we describe an abstract embedding which will be more easily
convertible into a multiple-copy embedding.

To embed the n-stage CCC into the hypercube Qn4» (Where r = [logn]),?
first partition the n +r hypercube dimensions into two windows W and W where
[W|=r, [W|=n,and WNW = 0. Implicitly the partition into windows defines
a cross-product decomposition of the hypercube.

The CCC vertex (¢, c) is mapped to the hypercube node with signature H, (£)
on window W and signature ¢ on window W. Each column is thereby mapped to
its own subcube via a gray code and each row to its own subcube via the identity
map. A nice feature of this mapping is that level-£ straight-edges are mapped to
hypercube edges in dimension G, (£). Similarly, level-¢ cross-edges are mapped to
hypercube edges in dimension W (€). Optimal dilation and congestion are thus
readily apparent.

Observe that the embedding is completely specified by the choice of a length-r
window W, a disjoint length-n window W, and & Hamiltonian cycle H,. Recall
that windows are ordered sequences, so the choice of W does not completely
specify W.

For sake of convenience, we assume in the remainder of this section that n is a power of 2.
. For other values of n, the congestion for multiple-copy embeddings is, at worst, doubled and
some edges suffer dilation 2.
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5.3.3 The Multiple-copy embedding

In order to embed n copies of the CCC network into Q,4., we specify, for each
copy, two disjoint windows and a Hamiltonian cycle. In this subsection we show
how to make these choices such that the overall edge-congestion is at most 2.
Since each copy is embedded as described in the previous subsection, the dilation
is 1 for each embedding.

To show that naive choices are insufficient, we consider two extremes. First,
suppose that we choose the same partition of hypercube dimensions for all n
copies; in all n embeddings the straight-edges are mapped to the same set of r
dimensions. There are n2" straight-edges in each copy, n%2" in total, whereas
there are only rn2™ hypercube edges in the r dimensions. Consequently, the
edge-congestion is at least n/r.

Next, suppose instead that each copy, ¢, 0 < i < n/r, uses a distinct set of
dimensions for its length-r window W;. The proof thet the congestion is again n/r
typifies the arguments throughout the rest of this section. We pick a dimension
and, among all copies, look at all the CCC vertices which use this dimension
for their cross-edge. If many of these CCC vertices are mapped onto the same
hypercube node then the congestion due to cross-edges is high.

Consider one of the r dimensions, call it d, not contained in any W;. In each
copy, edges in dimension d are images of cross-edges. Furthermore, for a given
copy ¢, all CCC vertices whose cross-edge is mapped to dimension d are at the
same CCC level. It is easily established that all the hypercube images of CCC
vertices on one level under embedding 7 have the same signature, call it s;, on
Wi.

Since the windows are disjoint there exists a hypercube node, v, such that
Vi, ow,(v) = s;. Each copy maps a CCC vertex to v and the cross-edges ema-
nating from each of these n/r CCC vertices are all mapped to dimension d. The
congestion on dimension-d edges is therefore n/r.

In the remainder of this section we present an n-copy embedding which avoids
such congestion. In particular, we establish that, for our embedding, every hy-
percube edge is the image of at most one CCC cross-edge.

Overlapping windows From the preceding discussion we know that the win-
dows must be chosen carefully to avoid high congestion. We construct the length-
r windows for the n copies as follows: all windows contain dimension 1; half of the
windows contain dimension 2 and the other half contain dimension 3; in general,
of all the windows that contain dimension #, half of them also contain dimension
22 and the other half contain dimension 2: + 1.

Multiple embedding The length-r window and the length-n window for the
kth copy are denoted W* and W¥; the ith element of these are denoted W* (2)
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and W¥(7). Similarly, let H* denote the Hamiltonian cycle for the kth copy, and
let H¥(3) be the ith node on the cycle.

We define W*, W*, and H* (0 < k,£ < n,0 < 7 < log n) formally as follows.
(Again let & b(k) denote bitwise xor with the (log »)-bit binary representation
of k.)

WEO0) = 1

WEG) = 28+ pi(k)

— l if £ ¢ Wk
W) { n+ [logl] if £€ W
HE(E) = H.(0) @ b(k)

To show that the above defines n embeddings, we observe that Yk, WFNWF =
0 and H* is a Hamiltonian cycle. We leave the reader to verify these and the
following observations.

Observations

The following properties of the embeddings will be useful later.

1. Vk, £ the kth embedding maps every CCC vertex at level-£ to a hypercube
node whose signature on W* equals H*(¥).

2. In the kth embedding, level-¢ straight-edges are mapped to dimension-
WH*(G,(£)) hypercube edges.

3. In the kth embedding, level-£ cross-edges are mapped to dimension—Wk(f)
hypercube edges.

We will also use the following properties of prefixes.
4. For any two embeddings k; and k.: A(Wk Wk = Ak, kg) + 1.

5. For any level £ and any two embeddings k; and &:
A(Hk’l (f), Hk2 (Z)) - A(kl, kQ)

6. For any two levels ¢4, £, and r-dimension hypercube:

MH(8), H.(£62)) = MEy, £,).
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As mentioned earlier a frequent technique in the proof will be to identify all
the CCC vertices whose cross-edges (or straight-edges) are mapped to hypercube
edges in a particular dimension. We show that the congestion on hypercube edges
in this dimension is small by showing that no hypercube node can be the image
of more than one or two of these CCC vertices.

Observations 2 and 3 are especially useful in identifying groups of CCC ver-
tices whose images use the same hypercube dimension for cross-edges because
they associate CCC levels with the hypercube dimension to which the CCC edges
are mapped. For example, Observation 3 and the definition of W* together show
that all cross-edges mapped to hypercube edges in dimension 7, 0 < i < n, are at
level ;. Thus we ask how many level-i CCC vertices can be mapped to a single
hypercube node.

Lemma 11 For any level i, 0 < i < n, and any hypercube node v at most one
of the n embeddings defined above maps a level-i CCC vertez to v.

Proof: A dimension separates two sets of hypercube nodes if and only if the
value of the hypercube address bit corresponding to this dimension equals 1 for
all the nodes in one set and equals 0 for all the nodes in the other set. We show
that for any two embeddings there exists a dimension which separates the set of
hypercube images of level-i CCC vertices under one embedding from the set of
images of level-¢ vertices under the other embedding. Thus there is no hypercube
node to which two embeddings map level-: CCC vertices.

Given any two embeddings, k; and ks, call the images of level-i CCC vertices
under the two embeddings V; and V,, respectively. Observation 1 shows that
H* (7) is the signature on W* for all nodes in V; and that H*2 (7) is the signature
on W* for all nodes in V;. Observation 5 shows that 7* (:) and H*2 (1) differ on
their A(k1, k2) + 1st bit. Furthermore Observation 4 shows that the hypercube
dimension in position A(k1, k;) + 1 is the same for both W*1 and W*2,

Thus this hypercube dimension in position A(kj, k) + 1 of both length-r
windows separates V; and V, as desired. 1

Lemma 11 treated CCC vertices whose cross-edges are mapped to a hypercube
dimension less than n. We next examine all CCC vertices whose cross-edges are
mapped to a dimension greater than n.

Lemma 12 For any j, 0 < j < r and hypercube node v at most one of the n
embeddings maps to v a CCC vertex whose cross-edge is mapped to a dimension-
(n+7) edge.

Proof: As in the previous lemma let k; and k; be any two embeddings and V}
be the set of hypercube nodes which are images of CCC vertices using dimension
n +J as cross-edges under embedding k; and V; be the images of CCC vertices
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using dimension n + j as cross-edges under embedding k;. We will show that
the hypercube dimension in position A(k1, k2) +1 of both length-r windows again
separates V; from V5.

Let the levels at which dimension n + j is used for a cross-edge in the two
embeddings be ¢; and ¢, respectively. When j = 0 and thus ¢; = ¢, = 1 we can
apply Lemma 11.

When j > 0 we observe from the definition of the embeddings that ¢, =
29 + pj(k1) and £, = 27 4 p;(k;). From these representations we see that ¢,
and ¢, share 077711 as their first 7 — j bits and then A(k1, k2) more bits from
the prefixes of k; and k;. Thus A(¢1,€;) = r — j + A(ky, k2) and, since r > 7,
A4y, 42) > A(ky, k2). ,

Applying Observation 6 to the last equation yields A(H,(¢;), H.({3)) >
A(ky, k2). Using the definition of H* to write H* = H, & k; and H*? = H .ok
we can infer that A(H¥t (£1), H*2(£;)) = A(k1, k2). Since A(ky, k) is the length of
the longest common prefix 7*!(#;) and H*2(¢,) differ on their A(ky, k2) -+ 1st bit.

Since by Observation 1, H*'(£;) and H*2(¢;) are the signatures on the length-
r windows of vertices in V| and V; respectively it follows that the hypercube
dimension in position A(ky, k2) +1 of both length-r windows separates V] and V5.

Putting Lemma 11 and Lemma 12 together we show that the congestion on
cross-edges is small.

Lemma 13 The congestion due to cross-edges is at most 1, in dimension 1 the
congestion is (.

Proof: The congestion in dimension 1 due to cross-edges is 0 since no cross-
edges are mapped to dimension 1 edges. For dimension 0 or dimension d, 2 <
d < n, Lemma 11 guarantees that at most one CCC vertex using dimension d is
mapped to any hypercube node. Similarly Lemma 12 guarantees that for d > n,
at most one CCC vertex using dimension d is mapped to any hypercube node.
The single CCC vertex mapped to a hypercube node using a given dimension for
its cross-edge contributes congestion of one. |

We next turn our attention to straight-edges. From Observation 2 we know
that embedding k maps level-£ straight-edges to hypercube dimension W* (G,(0)).
From the definition of G, we can invert this relation to determine which levels
are mapped to a given hypercube dimension. For example, dimension 1 is always
the first element in W* and thus always corresponds to the most significant bit
in the gray code. Since the most significant bit is used only at G,(n/2 — 1) and
Gr(n — 1) we can conclude that only straight-edges at level n/2 — 1 and n — 1
are mapped to dimension-1 hypercube edges.
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The remaining dimensions can be divided into r tiers: dimension ¢ is in tier
t = |logi|. A tier ¢t dimension will always correspond to bit ¢ in the gray code
(with msb = 0). A simple fact about reflected gray codes is that bit ¢ > 0 is used
2 times and that for any two levels at which ¢ is used there exists some bit ¢ < ¢
which is used an odd number of times between these two levels (see Fact 3.)

Lemma 14 For any dimension t, 1 < i < n, and hypercube node v at most one
CCC vertex which uses the dimension-i hypercube edge for its straight-edge is
mapped to v. Furthermore no more than two CCC vertices which use dimension 1
for their straight-edge are mapped to v.

Proof: Given two embeddings k; and k,, define ¥; to be the set of images of
all CCC vertices which use dimension ¢ for straight-edges under embedding k,
and V2 be the images under embedding k. If ¢ is in tier ¢ and both V; and V, are
nonempty then A(W* , W*2) > t. (From the definition of W* if two embeddings
have the same dimension in position ¢ they must have the same dimension in all
positions 7, 0 < 5 < t.)

Since ¢ is in tier ¢ the nodes in V) and V; can only be the images of CCC
vertices in the 2° levels at which tier-t dimensions are used for straight-edges.
Partition the nodes of V; and V, into subsets depending on the CCC level of
their preimages. Thus V), is the subset of V; containing images of level-¢; CCC
vertices and V34, is the subset of V, containing images of level-¢, CCC vertices.
By separating each subset of V; from every subset of V; we will show that V; is
disjoint from V5.

Now let ¢, and £, be two levels at which tier-¢t dimensions are used for straight-
edges. If {; = {; then by Lemma 11 V,, is separated from Vae,- On the
other hand if ¢; # ¢, then because some bit ¢’ < ¢ is used an odd number
of times between the two levels it follows that p(H,(£1)) # pi(H,(£2)). Since
A(k1, k3) > t we can use the definition of H* to infer from the previous equation
that p(H* (¢1)) # pi(H*2(£;)). Let j < t be one position where the two prefixes
differ.

As in the previous lemmas we use Observation 1 to show that the signatures
on the length-r windows of nodes in Vj ,, and V,,, are H*1(¢;) and H*2(¢,). Since
A(WH Wk2) > ¢ the dimension in position j of both windows separates W,0, from
Vary-

It is also easily verified that dimension 1 is used for straight-edges at levels
n/2—1 and n—1 in each embedding. Thus by Lemma 11 at most one embedding
for each of these two levels can map to v the CCC vertex whose straight-edge is
mapped to a dimension-1 hypercube edge. |

To complete the proof of Theorem 6 we note that edges in dimension 1 are
never used for cross-edges and are used at most twice for straight-edges while
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edges in other dimensions are used at most once for straight-edges and once for
cross-edges. Thus the overall congestion of two is established. |

5.3.4 Extensions

If an undirected version of the CCC is desired then messages must be sent along
the straight-edges in both directions (rather than just toward higher levels). By
a variant of Lemma 14 this additional traffic will contribute an additional con-
gestion of at most two; increasing the total congestion to four.

A corollary of Theorem 6 is that every graph which is efficiently embeddable
within a CCC network has efficient multiple-copy embeddings within the hyper-
cube. It is easy to show that FFTs and Butterflies can be embedded in CCCs
with dilation 2 and congestion 2. Thus they also have efficient multiple-copy
embeddings into the hypercube.

In Section 5.4 we will be given @, and asked to embed the largest CCC having
no more than 2" nodes. When there exists m such that n = m + [logm] then
the expansion will again be optimal. When no such m exists there will be an m
with n — 1 = m 4 [log m]. Thus a single CCC embedding will have expansion 2.
However we can embed two CCCs, each in a separate copy of Q,_1, so that each
has optimal expansion within its subcube.

5.4 A General Technique

In this section we extend the techniques of Section 5.2 to a more general setting.
In particular, starting with a 20°8"l_copy?$ embedding of a directed graph G into
(n the general technique produces a width-n embedding of 2**+! copies of G into
Q2n- This transformation has the property that if the one-packet cost of the
multiple-copy embedding is ¢, and § is the maximum out-degree of any vertex of
G, then the n-packet cost of the multiple-path embedding is ¢ + 26.

For example, in Section 5.2 we started with a multiple-copy embedding of the
length-2"/2 cycle and produced a width-n embedding of the length-2"*! cycle.
The cost of the multiple-copy embedding is at most 2, the out-degree of each
vertex in a directed cycleis 1, and consequently the n-packet cost of the multiple-
path embedding is at most 4.

At the end of this section we will apply the general technique to the multiple-
copy embedding of the butterfly network. The resulting width-n graph has the
property that it yields a width-n embedding of the complete binary tree.

§For simplicity we will assume 7 is a power of two hereafter.
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We start with a generalization of the cross-product of two graphs to the cross-
product of two sets of graphs. Let R = {R; | € Zy} and C = {C; | 7 € Zn} be
two sets of graphs, such that each R;, C; has vertex set Zy.

The cross-product of two sets R and C is the graph (V, E) where V = Zy x Zy;,
and the edge set E is defined to be

E = {((ivjl}, <2v.72>) l 1 € ZN,(j1,j2) € Ri} U
{((21,7), (¢2,3)) | (11,42) € C},j € Zn}

One can visualize the vertices as arranged in an N x N grid. The edges in E
connect rows and columns so that the subgraph induced by row i equals R; and
the subgraph induced by column j equals C;.

We pause for one remark regarding our terminology. We say that graph
A = (In,E) equals graph B = (Zn,F) if and only if E = F. That is, the
graphs are equal if and only if they are isomorphic under the identity mapping
on vertices. In general, isomorphic graphs need not be equal.

It is easy to see that if, for all 7, R; equals G and C; equals H then the
generalized cross-product equals the standard cross-product G x H. Note that
this is not necessarily true when “equals” is replaced by “is isomorphic to.”

In our use of the generalized cross-product, the sets R and C will each contain
isomorphic copies of the same graph. Before we proceed, we need one more
definition. Let G = (Zy, E) be a graph and ¢ : Zy — Zy be an automorphism
on Zy. Then the graph Gy is defined as the graph ‘with vertex set Zy and edge
set {(#(u), 6(0)) | (u,0) € E}.

Now, consider an n-copy embedding of some graph G = (Zy, E) in Q,. Num-
ber these copies 0 through n — 1. Each copy is an isomorphic image of G. In
other words, the ¢th copy defines an automorphism ¢; of Zy, such that #:(7) is
the address of vertex j in the hypercube under the ith copy.

Having fixed ¢;, 0 < i < n,let Ry =C; = Gy Where M(2) is, of course,
the moment of the number i. Finally, define the induced cross-product X(G) to
be the generalized cross-product of the sets R and C.

Theorem 7 Let G be a graph with mazimum out degree §, and for which there
s an n-copy embedding in @), with one-packet cost c. Then there ezists a width-n
embedding of X(G) into Qq, with n-packet cost ¢ + 26.

Proof: The vertex embedding follows directly from the definition of X(Q). First
we divide ()2, into the cross-product @, x Q.. Next. as in the proofs of Theorem
4 and 5 we view the cross-product as a grid with a copy of Q, on each row and
column. The rows are named by the most significant n bits of their hypercube
addresses and the columns by the least significant n bits. Finally we embed R;
in row ¢ and Cj; in column j via the identity mapping.
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Each edge of X(G) embedded in a row is given width n by replacing it with
the following n length-three paths. Suppose the edge is mapped to hypercube
edge (z,y) in dimension d, 0 < d < n. For 0 < k < n the kth path for (z,y) is
T,z ® 2" @ 2"k @ 24, y. Intuitively it crosses into a neighboring row, follows
the projection of (z,y) in this neighboring row’s subcube, and then crosses back
into the original row. Similarly if an edge of X (G) is embedded in a column it is
mapped to some hypercube edge (u,v) in dimension n + d, 0 < d < n. The kth
path for (u,v)is u,u @ 2%,z @ 2% @ 27*4, 4.

It remains to bound the cost of the embedding. Each hypercube node has at
most § edges from R; in its row special image and uses each directed edge in the
column dimensions once for each such edge. Thus, together, the first edges of all
the paths use each directed hypercube edge at most § times. The edges for the
C; place the same load on the row dimensions. Similarly the final edges of all
the paths also use each directed hypercube edge at most § times.

To complete the proof we must show that the cost of the middle edges is
bounded by the cost of the n-copy embedding of G. Consider all the middle
edges in a particular row. They are each the projection of an edge of X(G)
from a neighboring row. Lemma 4 of Section 4.2 and the construction of X(G)
guarantee that each neighboring row is a different automorph of G. Furthermore
the automorphs of G were constructed so that their combined projections formed
the n-copy embedding of G in Q.. Thus together all the middle edges in this
row form the n-copy embedding and can be simulated with cost ¢. Similarly the
middle edges in each column also form an n-copy embedding.

Thus a simulation of the entire multiple-path embedding takes & steps to
simulate all first edges, ¢ steps to simulate all middle edges, and & steps to
simulate all final edges. |

5.4.1 Complete Binary Trees

Theorem 8 For all m and n = m2™ the (22" — 1)-vertex complete binary tree
can be embedded in Qa, with width n, O(1) n-packet cost, and O(1) load.

Proof: Section 5.3 shows that m copies of the butterfly can be embedded in Q,
with O(1) cost. By repeating n — m copies twice the n-copy embedding with
O(1) cost required by Theorem 7 is achieved. When Theorem 7 is applied using
this multiple-copy embedding of the butterfly the result is a width-n embedding
of the generalized cross-product of butterflies (call the product X ) in @2, with
O(1) n-packet cost.

We next show that the 2n-level complete binary tree (CBT) can be embedded
in & with O(1) congestion, dilation, and load. Our main tool will be the fact
that the M-node CBT can be embedded in the M-node butterfly with Oo(1)
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congestion, dilation, and load [13]. The embedding is simplified by the fact that
the embedding in [13] never maps two CBT leaves to the same butterfly node.

We start by embedding the top n levels of the CBT into Ry, the butterfly
along the top row of X. Each column of X receives at most one level-n CBT
vertex. The tree is then extended by treating each level-n vertex as the root of
a n-level CBT. These subtrees are each embedded in the butterfly corresponding
to the column of the root. Since the leaf level of the row tree and the root level of
the column trees is the same we have an embedding of the (2n —1)-level complete
binary tree. We complete the embedding by giving each leaf of a column tree
two children in its row’s butterfly. One child is mapped to the butterfly neighbor
along the cross-edge and the other along the straight-edge to the next higher
butterfly level.

The mapping of the first n CBT levels has load equal to that of the embedding
in [13] since it corresponds to a single CBT embedding. The next n — 1 levels
have the same load since each subtree is embedded in its own column butterfly.
In addition each hypercube may have two CBT leaf nodes mapped to it so the
overall load is 2 plus the load due to the embedding of [13]. The edges of X are
each used at most once by the first 2n — 1 CBT levels and once by the last level.
Thus the overall congestion on the edges of X is at most twice the congestion of
the CBT to butterfly embedding of [13]. In sum, the n-packet cost and the load
of the CBT to hypercube embedding are both O(1). |

When a multiple-path embedding of the n-level CBT is desired, and n is
not of the form specified by the theorem, a more complicated construction is
necessary. For these cases the butterflies will not map bijectively into the factor
hypercubes. Thus the embeddings will have larger expansion. In addition the
simple approach of embedding first the top n levels and then the bottom n levels
of the CBT may not work since the level-n nodes may not be mapped to nodes
which are images of column butterfly nodes. While O(1) load and cost is still
achievable we omit the proof from this thesis.

5.4.2 Arbitrary binary trees

In [15] it is shown that any (2® — 1)-node, constant-degree tree can be embedded
in the n-level complete binary tree with O(logn) congestion and dilation. By
composing this embedding with the multiple-path CBT embedding we achieve
a width-n embedding of arbitrary constant degree trees into hypercubes with
cost O(logn). All our previous embeddings had given us O(n) speed-ups over
standard embeddings while this embeddings yields O(n/logn) speed-up.
Recently Aiello and Leighton[2] have discovered an embedding of the cross-
product of the n-node complete graph and the n-dimension hypercube into the
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(n +logn)-dimension hypercube. They use this embedding to produce O(1) cost
multiple-path embeddings of arbitrary trees into hypercubes.

5.5 Large-copy embeddings

When the guest graph is much larger than the hypercube there is often a third
way to make eflicient use of the hypercube. A single large copy, (containing n2"
nodes), can be embedded into @, so that the n2"™ vertices are evenly balanced over
the 2" hypercube nodes and the O(n2") guest edges are evenly divided among
the n2" directed hypercube edges. We will call such an embedding a large-copy
embedding. Johnsson and Ho have used large-copy embeddings of grids to speed
matrix operations[43, 45].

Large-copy embeddings of cycles are easy to construct. A large cycle is em-
bedded by traversing the edge-disjoint cycles of Lemma 8 in sequence. Each
traversal of an edge-disjoint cycle in the hypercube embeds 2" vertices of the
large cycle and no two traversals use the same edge. Thus we get the following
corollary:

Corollary 3 For even n the n2" '-node undirected cycle and the n2™-node di-
rected cycle can each be embedded in Q, with dilation 1 and congestion 1.

Large-copy embeddings of CCCs, FFTs, and butterflies are also simple to
derive. Standard constructions of each of these graphs expand each node of Q,
into an n-node cycle or path. The n edges associated with each hypercube node
are divided among the n nodes which replace it. Thus the degree is reduced to a
constant (three for the CCC and four for FFTs and butterflies). The new graph
has n times as many nodes as the original hypercube.

When embedding the n2™ node FFT-like graph into Q,, the construction above
is simply reversed. Each n-node cycle or path is mapped to the hypercube node
from which it was expanded. The edges of the FFT-like graph are spread out
evenly among the hypercube edges and an efficient large-copy embedding results.

Lemma 15 The n2"-node CCC can be embedded in Q,, with dilation 1 and con-
gestion I while the (n + 1)2"-node FFT and n2"-node butterfly can be embedded
with dilation 1 and congestion 2.

The embeddings in [13] and [15] can again be applied to yield large-copy
embeddings of trees from the large copy embeddiags of FFTs.



Chapter 6

Beyond Hypercubes

In this chapter we apply our techniques to create multiple-path embeddings for
host graphs other than the hypercube. We identify three properties of the hy-
percube which are important to our techniques: the decomposition into cross-
products; the decomposition into Hamiltonian cycles, or more generally into
multiple-copy embeddings; and the existence of the moment labelling. After
examining each of these properties in turn, we state a general theorem which
allows the creation of multiple-path embeddings for any graphs having the three
properties. We conclude the chapter by illustrating the general conversion strat-
egy on the k-ary n-cube.

6.1 Cross-Product Decomposition

Throughout the preceding chapters we have made frequent use of the ability
to decompose graphs into the cross-product of smaller graphs. In Chapter 3.3
we noted that hypercubes and meshes can be naturally decomposed into cross-
products and that the height-h complete binary tree is a subgraph of the product
of two height-(%/2) complete binary trees. We used these facts to aid in the
embedding of meshes and trees into hypercubes; each factor of the guest was
embedded into a factor of the host.

The role of cross-products is not, however, confined to allowing each factor of
a guest to be embedded in a factor of the host. The cross-product composition
supplies a structure which easily accommodates multiple paths. The creation
of multiple-path embeddings relies on the ability to route paths through the
neighboring subcubes in the cross-product. In this section we take a closer look
at the advantages that the cross-product structure brings to network routing.

As a counterpoint to the use of cross-products in producing communication
efficient embeddings of fixed, structured communication patterns we look at the
ability of a network to route messages between arbitrary pairs of processors. In
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order to avoid trivial congestion at the sources and destinations we consider only
sets of source-destination pairs in which each processor sends and receives at
most a number of messages equal to the degree of the network.

Our use of the cross-product structure to aid in the formation of routes derives
from the three-phase routing algorithm for cross-product graphs of Annexstein
and Baumslag[6]. (They in turn credit Benes’ non-blocking routing scheme as
inspiration.) Given a method of routing on each factor graph they produce a
method of routing on the product graph. We restate their algorithm in our
notation and then extend it to make full use of the communication links.

Permutation Routes

Our goal is to send many messages at the same time. In order to fairly test
the network we consider two situations: in the first each processor is allowed to
send and receive at most one message, in the second each processor can send and
receive a number of messages equal to the number of incident communication
links. The second situation makes full use of the communication resources since
the number of messages sent is equal to the number of communication links.

A permutation mapping on an N-node network is a set of N source-dest.
pairs (s;, d;) such that each node is a source in one pair and the destination
in one pair.

A full-width permutation mapping on a é-regular network is a permutation
mapping with each pair replicated § times. A set of routes for a full-width
permutation supplies § paths for each pair.

A full mapping on a 6-regular, N-node network is a set of § N pairs such that
each node is a source (resp. destination) of § pairs. Note that full-width
permutation mappings are a special case of full mappings.

A network is said to be routable (resp. full-width routable, fully routable)
with cost c if for any permutation mapping (resp. full-width permutation
mapping, full mapping) a packet can simultaneously be sent from every
source in the mapping to its destination in ¢ communication steps.

Bipartite Graph Tools

In order to produce efficient routes we will need to be able to decompose the
mappings into matchings. The following bipartite graphs along with Lemma 16
ald in the creation of such decompositions into matchings. (Figure 6.1 provides
a pictorial example of these bipartite graphs.)
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The source-to-destination bipartite graph (SDBG) of mapping II on net-
work G is a bipartite multi-graph (S, D). For each vertex in G there is a
corresponding vertex in both S and in D. There is an edge of multiplicity
m between s € S and d € D iff there are m instances of the pair (s,d) in
II. The SDBG of a full mapping on a é-regular network is §-regular.

For a cross-product graph, G x H, and a mapping, II, the factor-SDBG
with respect to G is the bipartite multi-graph (S, D) with the following
properties. For each vertex of GG there is a corresponding vertex in both S
and D. An edge of multiplicity m exists between s € S and d € D iff II
contains m pairs whose source has coordinate s in G and whose destination
has coordinate d in G. The factor-SDBG with respect to H is defined
symettrically.

Lemma 16 (Hall’s Theorem([21]) Any §-regular bipartite graph can be decom-
posed into & perfect matchings.

Cross-Product Routes

We first illustrate the idea of a full routability and the use of SDBGs with the
following simple lemma about complete graphs.

Lemma 17 K, is fully routable with cost 2.

Proof: Create the source to destination bipartite graph of an arbitrary full map-
ping II. By Lemma 16 the edges (and thus the pairs) can be decomposed into
n — 1 perfect matchings. The fact that a pair is a member of a perfect match-
ing means that no other pair in the perfect matching uses the same source or
destination.

IT is routed in two phases. In phase one the messages in all pairs contained in
the ¢th matching are routed to processor i. In phase two all messages are routed
to their destination.

Since each vertex is the source of exactly one pair from each perfect matching
the first phase takes only a single step. Similarly since each vertex is the desti-
nation of exactly one pair from each perfect matchiug the second phase takes a
single step. |

We are now ready to state and prove Annexstein and Baumslag’s cross-
product routing theorem[6].

Theorem 9 If G, and G, are routable with costs ¢; < ¢y then Gy x Gy is routable
with cost 2¢y + c,.
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Figure 6.1: Source Destination Bipartite Graphs
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Proof: If we apply the two phase strategy of first routing along the G; compo-
nents (subgraphs with a fixed address in G3) and then along the G2 component
(subgraphs with a fixed address in G;) then we may run into congestion. If all
the pairs whose source node have the same address in the G; component go to
destination nodes which have the same address in the G; component then they
will all arrive at the same node at the end of the first phase. Thus we add a
preliminary phase which spreads the pairs out so that they can be routed along
the successive components without congestion in the next two phases.

Given an arbitrary permutation, II we need to determine how to route this
preliminary phase. We wish to route within the G; component so that all pairs
arriving at a node with the same address in GG; will have distinct addresses within
G, for their destinations.

By forming the factor-SDBG of II with respect to G, all pairs within a G
component are mapped to a single SDBG node. Consequently, since II is per-
mutation mapping every vertex of the SDBG will have degree N = |G;|. By
Lemma 16 the factor-SDBG can be partitioned into N perfect matchings. The
perfect matchings correspond to sets of N source-destination pairs, such that
there is exactly one source and one destination from each G; component. As we
will see this is exactly what we need.

For each pair, 7 € II, let p(7) be the index of the perfect matching containing
the edge corresponding to = in the factor-SDBG. Since both the vertices of G4
and the perfect matchings have names in the range 0 to N — 1 a reference to
vertex p(m) of G has a natural interpretation.

Consider the following three phase algorithm for routing II.

1. Route each pair 7 = ((s1, 82), (d1,d3)) from (s1, s2) to (p(7), s3).
2. Next route 7 from (p(7), s2) to (p(), d2).
3. Lastly route 7 from (p(7),ds) to (dy,ds).

The following properties derive directly from the fact that p indexes perfect
matchings:

1. Within every G, component the mapping induced by step one (each pair,
T = ((s1,32), (d1,dz2)), maps from (s, s2) to (p(r),ss)) is a permutation.
Consider any G} component, denote by c its address in G,. All the pairs
having source address ¢ in G correspond to edges in the SDBG incident to
a single node; they must each be assigned to a different matching and each
have a different value of p. Thus within each component no two pairs are
routed to the same node.

2. Within every G; component the mapping induced by step two ({p(7), s2)
to (p(r),dz)) is a permutation. All the pairs which reach a given row
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are assigned to the same perfect matching and a perfect matching on the
factor-SDBG is the same as a permutation on the factor.

3. Within every column the mapping induced by step three ({p(r),d;) to
(dy,d2)) is a permutation. The previous steps are permutations and the
entire mapping is a permutation so this step must also be a permutation.

The cost of each phase is now easily bounded. Phases 1 and 3 map permuta-
tions on individual copies of G; and thus complete with cost ¢;. Phase 2 maps
permutations on individual copies of G5 and thus completes with cost ¢;. Thus
all three phases can complete with cost 2¢; + 3. |

Full Cross-Product Routes

In the preceding only one message is sent from each processor and thus at each
time step only a fraction (one over the degree of the graph) of the edges are
used. Rather than starting with a permutation map for each factor, which makes
inefficient use of the edges, we instead assume the ability to fully route the factors.
The result is full routability for the product.

Like multiple-path embeddings, full routability allows us to break messages
of one-to-one communication into pieces and send them in parallel. In a degree-
6 network the full-width version of a permutation allows é§ packets to be sent
from sources to destinations in parallel. Alternatively each processor can send a
separate message to each of § different destinations as long as no processor is the
destination of more than § messages.

Theorem 10 If G, G, of degree § and size N are fully routable with cost 1, Co
then Gy x G (of degree 26) is fully routable with cost 3 max(ey, c;).

Proof: The proof is quite similar to that for Theorem 9. Once again three phases
will be used, with each phase routing within a single factor. The main difference
will be that whereas in the previous theorem a single permutation over the cross-
product was broken into three permutations each over a factor it is now necessary
to break a full-permutation on the cross-product into full-permutations on the
factors.

We start with a full-permutation, II, on Gy x G;. Every vertex is the source
and destination of 26 messages. By forming the SDBG for II we can partition
II into 26 perfect matchings, M;. Call all the messages in the first & perfect
matchings II; and the remaining ones II,. II; will be routed on edges derived
from G in the first and third phase and on edges derived from G5 in the second
phase. II; will use edges from G; in the first and third phase and edges derived
from G, in the second phase.
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We form the factor-SDBGs of each M; € II; with respect to G;. Each factor-
SDBG is N-regular and can be decomposed into N perfect matchings. As in
Theorem 9 each source-destination pair, = € II; gets a routing class 0 < T_(7r) <
N.

The routes for each source-destination pair are now almost identical to those
in Theorem 9.

1. Route each pair, = = ({31, 82), (d1, d2)), to vertex (7(r), s2).
2. Continue the path for m by routing from (r(xj, s2) to (v(r), ds).

3. Complete the path for = by routing from (7(x),d2) to (di,d,).
We need only to verify that each phase is a full-route on individual factors.

1. Phase one is a full-route on G components. Each vertex is the source of §
pairs since we are routing § perfect matchings. Consider any vertex (r,c).
All the pairs having source column ¢ correspond to edges in the SDBG
incident to a single node; only those in matching r of one of the factor-
SDBG decompositions of a M; can have (r,c) as a destination. Since there
are exactly § such matchings, each contributing one pair, the vertex (r,c)
(and all other vertices) are the destination of exactly § pairs in this phase.

2. Phase two is a full-route on G, components. Each component of G, corre-
sponds to a single node in the factor-SDBGs and thus received § complete
perfect matchings from the previous phase. As in Theorem 9 a perfect
matching on the factor-SDBG corresponds precisely to a permutation on

Ga.

3. Phase three is a full route on G, components. Each vertex is the source
of § routes since it was the destination of & routes in the previous phase.
Each is the destination of § because II; routes § pairs to each destination.

The routing of the pairs in II; along edges of G, for phases 1 and 3 and
edges of G for phase 2 proceeds in the same manner and does not conflict since
the edges used for II, are always orthogonal to those used by II,. Thus both
complements of each phase can be routed with cost max{e;,c;} and the entire
route has cost at most 3 max{c,, c.}. |
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Quality of Decomposition

We have now seen two instances, the multiple-path embeddings and the full
routes, in which the cross-product structure aids in making use of all the com-
munication links (and thereby, of course, the chip pins). In each of these cases the
quality of the result, the width of the multiple-path embedding or the number of
messages which can be routed from each node, depends critically on the degrees
of the factors.

Higher minimum degree of the factors corresponds to better performance.
The best efficiency is achieved if the degrees of the two factors are equal.

6.2 Multiple-copy Decompositions

Besides the decomposition of the hypercube into cross-products we also used its
decomposition into edge-disjoint Hamiltonian cycles. In fact, we relaxed the
condition that copies be edge-disjoint and generalized the decompositions to
multiple-copy embeddings. A cost-c multiple-copy embedding ensures that all
copies can send packets to all neighbors in ¢ communication steps. (See Sec-
tion 5.4.)

As mentioned in the previous chapter the multiple-copy embeddings can be
used to amortize the communication costs of several computations which employ
the same processors. Ho[37], for example, used edge-disjoint spanning binomial
trees to allow multiple nodes to simultaneously broadcast a message to all other
nodes. The Hamiltonian decompositions of Alspach, Bermond, and Sotteau(5]
can be used to execute multiple pipelined algorithms with parallel communica-
tion.

Our use of multiple-copy embeddings in this chapter is less direct. An n-
copy embedding of X into G induces n different embeddings of X into G. Call
the image of each embedding a version. The standard use of a multiple-copy
embedding applies all versions to a single copy of G. We will, instead, have
many interconnected copies of G’ and apply a single version to each.

The interconnected copies of G come from a cross-product. The cross-product
of G and H induces many copies of G which when treated as supernodes are
connected as H. Two copies of G which share a neighbor are called 2-neighbors.
We wish to apply a version of X to each copy of G so that no pair of 2-neighbors
are both assigned the same version. In the next section we will discuss how many
versions are necessary for this to be possible but for the remainder of this section
we assume that we have enough versions.

Once we know that no 2-neighbors are assigned the same version then we can
utilize the cross-product structure. The version assigned to each copy of G can
claim its image edges in all neighboring copies of G. All the claims on image
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edges will together form the multiple-copy embedding. When packets are sent
over all the length-three paths which start at the tail of a version edge, cross into
a neighboring copy of G, traverse the image in G, and return to the head of the
version edge then the middle edges of the paths can be simulated in ¢ steps.
The effectiveness of a multiple-copy embedding when combined with a cross-
product to create multiple paths is thus directly dependent on its packet-cost.

6.3 Neighbor-Distinguishing Labellings

In order to use multiple-copy decompositions efficiently with cross-products we
need to assign different versions to each neighbor of each factor. A neighbor-
distinguishing labelling does exactly this; a labelling is neighbor distinguishing
if no two neighbors of any node are given the same label (alternatively, no 2-
neighbors are given the same label). Clearly a neighbor-distinguishing labelling
must use at least a number of labels equal to the degree of the graph being
labelled.

A coloring of the square of the graph will always be neighbor distinguishing
since no two nodes a distance two apart are given the same color. For a degree §
graph 62 — § + 1 colors suffice. In Chapter 4.2 we gave a neighbor distinguishing
labelling for the n-dimension hypercube which uses just n labels when n is a
power of two and always uses fewer than 2n labels. In Section 6.5 we give a
similar labelling of the k-ary n-cube.

The creation of multiple-path embeddings relies on having as many versions
in the multiple-copy as there are labels. Clearly fewer labels are better. If there
are not enough versions than each can be used several times in return for a
multiplicative cost in the congestion. If a k-copy embedding with cost ¢ is used
with a labelling which requires A > k labels then a cost of at most [A/k] - ¢
results.

6.4 From Multiple-copies to Multiple-paths

Multiple-copy embeddings and neighbor distinguishing labellings of two graphs
can be used to create a multiple-path embedding on their cross-product. As
in Theorem 7 of the last chapter a generalized cross-product (the copies of the
factors are permuted with respect to each other) of the versions of the multiple-
copy embeddings will be induced by the cross-product. By assigning version i to
factors with label ¢ it is ensured that multiple paths can be routed for each edge
of each embedded version at the required cost.

Theorem 11 For all graphs G and H; neighbor-distinguishing labellings of G
and H; and k-copy embeddings of X and Y into G and H there exists a width
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min {§(G),6(H)} multiple-path embedding of the generalized cross-product of X
and Y into G x H with cost max{6(X)+ p(X)[AY)/k],86(Y) +p(Y)[NX)/K]}.
Where §() is the degree of a graph, p() is the cost of the embedding into a graph,
and () is the number of labels in a labelling of a graph.

6.5 k-dimension cubes

We illustrate Theorem 11 by producing multiple-path embeddings of cycles into
the k-dimension cube. The k-dimension, length-¢ cube, Gy 4, is defined as the
cross-product of the length-£ cycle with itself k times. Clearly G, has degree 2k
and £* nodes.

G'2k,¢ decomposes naturally into the cross-product of two copies of G .. Each
factor has degree 2k and thus multiple-path embeddings based on this decompo-
sition can have width at most 2k.

As a multiple-copy embedding we will use a Hamiltonian decomposition. The
constructions of Alspach, Bermond, and Sotteau[5] allow Hamiltonian decompo-
sitions of two graphs to be extended into a Hamiitonian decompositions of their
cross-product. Starting with the trivial decomposition of the cycle we can thus
produce k edge-disjoint undirected cycles in Gy . Each cycle can be directed to
yield 2k edge-disjoint directed cycles.

The neighbor-distinguishing labelling will be similar to the labelling induced
by the moments define in Chapter 4.2. The central idea of the moment labelling
was that labels across each dimension differed by a multiple (xor) of a single value.
It is not possible for two neighbors in the same dimension to get the same label
since there is only one neighbor. When £ > 2 then we need two values to multiply
(xor) into the labels for each dimension since ncdes have two neighbors in the
dimension. Our solution is that along dimension 7 the label will be alternately
multiplied by 2: and 2: + 1.

Formally the label of node a = a)a;...4a,,) is

L(v) = @ a; mod 2 - b(2) + [(a; mod 4)/2].
i=1
An argument similar to that in Chapter 4.2 shows that when ¢ is divisible by
four no two neighbors of any node are given the same label. There are 2M1082+]
labels used (2k when k is a power of two).

When k is a power of two then there are exactly as many labels as directed,
edge-disjoint cycles and a different cycle can be assigned to each label. The
construction of the multiple-path generalized cross-product is then the same as
in Chapter 5.4. First and last edges of paths will be disjoint because their origins
(resp. destinations) are unique. The middle edges will be disjoint because they
form Hamiltonian decompositions within each factor cube.
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Corollary 4 For all k = 2° and £ = 45 the 2¢*-node cycle can be embedded in
Gr,e with load 2, width k, and k-packet cost 3. For general £ and k the cost is 6.

When £ is not divisible by four the strict alternation of multiplication by 2¢
and 2: 4+ 1 will not be possible. Both neighbors in a dimension of some node will
get the same label. When the middle edges of the neighbors are projected into the
node’s factor the congestion will thus be doubled. An additional doubling of the
middle edge congestion arises when & is not a power of two and thus the number
of labels is only guaranteed to be greater than half the number of edge-disjoint
cycles rather than equal to the number of cycles.

When the cube is constructed from the cross-product of unequal length cycles
the transformation is unaffected. Since the degree and number of edge-disjoint
cycles remains the same the assignments of labels, special cycles, and length-three
paths are all still possible.
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Wire lengths

In the preceding chapters we have assumed that data transmission time across a
communication link is independent of the length of the wire. Yet at a clock speed
of 40 MHz light can only travel approximately 7.5 meters per cycle. Noakes and
Dally[59] estimate that signal paths longer than just six inches require attention
to length related effects.

The effect of long wires on communication time depends on how transmission
time grows with edge length. Define f(£) as the time to transmit a single bit
along a wire of length £. The resistive model of transmission time argues that the
speed of transmission is limited by the speed of light and thus f(£) = ©(£). The
capacitive model uses “exponential horn” drivers to allow the resistive component
to be neglected and thus make f(¢) = O(logf). In the constant delay model
it is assumed that other factors in communication time outweigh any length
dependent factors and thus f({) = ©(1). (For a more detailed discussion see
Ranade and Johnsson [69].)

As has been mentioned earlier the one and two dimensional N-node meshes
have natural VLSI implementations with unit-length wires and O(V) area. Bi-
nary trees admit less perfect implementations. Bhatt and Leiserson [17] showed
that VLSI layouts of N-node binary trees with ©(N) area and @(v/N/log N)
wire length were the best possible. Any layout of an N-node hypercube also
requires wires of length Q(v/N/log N).

One way of mitigating the effect of long wires is to use them as transmission
lines rather than as single-cycle connections. Instead of sending a single bit
on each clock cycle, bits are placed on the line as a serial signal. When wave
spreading is avoided then multiple bits can reside on the wire at the same time.
The delay in the wire becomes an additive effect rather than multiplicative; the
time to send b bits is O(£+b) rather than O(¢b). The Vulcan group at IBM plans
to take this approach[81].

In this chapter we examine the alternative possibility of making the longer
communication links have more wires. In essencz we will use greater width to
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make up for the delay due to longer length. This examination of using increased
width to compensate for long wire length necessitates a slight shift in our model.
We will still be concerned with the comparative advantages of different networks
and with the importance of off-chip pins but the focus shifts to wire length.

7.1 Length-Weighted Design

The major difference from earlier chapters is that in this chapter the number of
pins per chip and the number of processors per chip are allowed to grow with
the size of the network. The per chip number of both pins and processors in a
N-node network is, however, limited to O(log N). The growth in number of pins
and processors allows investigation of the pin resource necessary to compensate
for longer wire length.

In previous chapters it was assumed that in a single communication time step
one bit could be sent across each pin and transmitted across the attached wire to
the neighboring chip. Thus if W pins were assigned to an edge then a length-m
message could be transmitted in [m/W] steps. In this chapter the time to send
a single bit will be f(¢) for a wire of length ¢, where f is the cost function. Thus
if an edge of the network is of length ¢ in the layout then a length-m message
requires [m /W f(¢) time steps.

Having different delays over different wires complicates the maintenance of
even a weakly synchronous system such as that described in Chapter 2. Syn-
chrony requires either delaying fast wires to wait for slower ones or changing the
routing algorithms to make differential use of the wires depending on their length.
Instead we attempt to restore synchrony by using more pins for the longer edges.

If each edge of length £ is assigned f(¢) pins then a length-m message can be
sent across any length-¢ edge in [m/f(€)]f(¢) time steps. If the messages are of
length greater than f(£,) then all transmissions takes at most m + f(¢) < 2m
time steps regardless of edge length.

Formally we define:

Definition 2 A length-weighted implementation of an N-node interconnection
network is a set of C' chips (each containing at most log N nodes) and a layout
- such that the number of pins assigned to edges of length { equals f(&). An im-
plementation is said to be pin-optimal if each chip uses at most O(f(£m)) pins;
where £, is the minimum over all C-chip layouts of the mazimal edge length.
The implementation is said to be chip-optimal if C = O(N/log N).

- Ifo(f(4n)) pins are allowed then no length-weighted implementation is pos-
sible since there are not enough pins for the longest wire. However, allowing
O(f(¢x)) pins means that any constant-degree graph admits a trivial solution;
one chip is used for each node of a standard optimal layout and then f(¢) pins
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are available for every edge. Interesting solutions for constant-degree networks
thus requiring allowing several nodes to be placed on each chip.

Note that in the logarithmic delay model the wires of trees and hypercubes
will require (log V) pins. Thus the model change to allow the number of pins
to grow with the size of the network is necessary.

7.2 Length-weighted Layouts for Trees

In this section we restrict our attention to logarithmic delay functions. These
include the capacitive and constant delay models but not the resistive model.
We first examine arbitrary binary trees as our interconnection network. As
noted earlier £,, = Q(v/N/log N) and pin-optimal, length-weighted implementa-
tions which assign one node per chip are trivial. We use the following lemma. of
Aiello and Leighton[2] to produce implementations which are also chip-optimal.

Lemma 18 (Aiello and Leighton[2]) For any N-node binary tree T and any
positive integer M < N, it is possible to partition T into subtrees by removing
M — 1 edges so that every subtree has at most %I—V- + 1 nodes and so that each
subtree is incident to at most three removed edges.

By setting M = N/log N, Lemma 18 partitions any tree into N/log N sub-
trees, none of which has more than O(log N) nodes nor more than three con-
nections to other subtrees. This is exactly what we need for a pin-optimal,
chip-optimal, length-weighted implementation of binary trees.

Theorem 12 There exists a pin-optimal, chip-optimal, length-weighted imple-
mentation of every binary tree.

7.3 Length-weighted Layouts for Hypercubes

Length-weighted implementations of hypercubes are more expensive than those
for trees. We begin with a lemma which shows that not only are there long edges
in any layout of the hypercube but that some node will be incident to many
long edges. There are, unfortunately, two distance measures involved: Euclidean
distance on the plane of the layout and graph distance within the hypercube.

Lemma 19 For any 0 < ¢ < 1 and sufficiently large N every layout of a N-node

hypercube has at least one node with clog N incident edges of Fuclidean length
at least N(1=)/5, :
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Proof: Suppose the lemma were false and that there exists a layout in which
every node has fewer than clog IV edges incident to it of Euclidean length greater
than L = N(1-9/5 We will show that there exists a node, v, for which this layout
must place N(~9)/2 nodes within a Euclidean distance of N(1=9)/%]og N/2 from
the layout image of v. Since there are only N?2(1=9)/5]og? N/4 such grid points a
contradiction is reached.

We start at any node, v, and consider the set .S of all nodes which are a graph
distance (1 — c¢)log N/2 from v in the hypercube via only edges of Euclidean
length less than L in the layout. Each node in S corresponds to a path of
graph length (1 — ¢)log N/2 in the hypercube, where each step has a choice of at
least (1 — ¢)log N dimensions to follow. No dimension can be chosen more than
once. There are at least ((1(1-:)61351\/]72) possible paths of this type (the dimensions
available may not always be the same so there may in fact be more choices).
Using standard approximations for the binomial coefficient we find that there
are at least 2(1=918N/2 — N(1-9)/2 podes in S. But at a Euclidean distance
L(1 — c)log N/2 in the layout from the starting node there are at most (L(1 —
c)log N/2)* = N2(1-9/%]og? N/4 grid points. For sufficiently large N there are
thus more hypercube nodes to be assigned than grid points to receive them and
a contradiction is reached. |

Theorem 13 There is no pin-optimal length-weighted implementation of hyper-
cubes.

Proof:

If each node is assigned to its own chip then Lemma 19 shows that some chip
has 1 7 log N incident edges each of length at least N'/1°. In order to be length
welghted each will require f(N'/'°) pins and thus Q(f(N'/1)log N) pins are
required and the layout is not pin optimal. For polylogarithmic f this number
of pins is asymptotically equal to the number of pins used if every edge were
assigned f({,) pins. Thus no careful assignment of pins is significantly better
than the trivial upper bound.

It might seem possible that by placing many hypercube nodes on each chip
that most of the long wires might be placed on chip. Unfortunately, for any set
of s <log N of hypercube nodes the number of distinct neighbors is Q(slog N).
This is true even if only a constant fraction of the neighbors of each node is
considered. Thus for any b < 1 then for N sufficiently large Q(s - log N - f(N?))
pins will be required. 1
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Conclusions

Graph embeddings provide a framework in which to compare the efficacy of
communication networks. The necessity of keeping communication local and en-
suring that communication links are not overloaded can be formulated as a graph
embedding problem. However, the equally important physical costs of network
construction are ignored. Hypercubes will always have longer communication
links and be able to use fewer pins per link than meshes. If these costs are
ignored then biased comparisons result.

We consider two physical costs: pin limitations and wire delays. In order to
investigate the limits imposed by the number of pins on a chip we require that
the capacity of network edges be inversely proportional to the network degree; ie.
edges of the n-dimension hypercube can transmit only 4 /n times as many bits as
mesh edges in a single communication step. In exploring the effects of wire delay
we require that each wire be assigned a number of pins proportional to its delay
and ask how many pins will be required.

In the pin-limited model we showed that multiple-path and multiple-copy em-
beddings can allow high-degree networks to overcome the disadvantage of having
lower capacity edges. Multiple-path embeddings allow efficient use of the pins by
sending messages over many paths rather than using only a single low-capacity
path. The multiple-copy embeddings execute the communication of many graphs
at once in order to amortize the increased cost due to low-capacity edges. In par-
ticular, hypercubes were shown to be able to efficiently simulate meshes, trees,
and FFT variants under this model.

In contrast, our investigation of wire delay in Chapter 7 was less favorable for
the hypercube. When the number of pins available on a chip is allowed to grow
at the same rate as the number of processors on the chip then it is possible to
assign more pins to longer wires in a tree layout. For a capacitive/logarithmic
wire delay each wire can be assigned a number of pins proportional to its delay;
messages over long wires can be divided into many small pieces and arrive at
the same time as messages sent in one piece over a single-pin, short wire. In
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this logarithmic delay model it is impossible, however, to create pin-optimal,
length-weighted implementations of hypercubes; the equalizing of the time to
send a message over all links by assigning more pins to longer links will essentially
require O(log N) pins per link in a N-node hypercube.

8.1 Beyond Network Comparisons

The techniques developed to make efficient use of the pins may have independent
applications. Once there are multiple paths for each communication link a natural
fault tolerance arises. If a redundant data encoding, such as Rabin’s IDA[64], is
used then messages can be reconstructed even if some of the paths fail.

Multiple paths can also be used to facilitate on-line routing. Aiello, Leighton,
Maggs, and Newman[1l] have designed dilated butterflies which allow bit-serial
connections to be made while guaranteeing that no messages are significantly
delayed. An alternative to their embedding of the dilated butterfly into the
hypercube is to use the permuted cross-product of cube-connected-cycles from
Chapter 5. More recently, Aiello and Leighton[2] discovered an embedding of the
cross product of the n-node complete graph and the n-dimension hypercube into
the (n + logn)-dimension hypercube which provides a simpler way of achieving
bit-serial routes.

8.2 Open Questions

Parameter Tuning

The simplest type of open questions ask whether constants can be improved.
Probably the most important such question left by this thesis is to determine
whether width-n embeddings of cycles in hypercubes can be created. The em-
beddings of cycles in this thesis yield only marginal speed-up on current machines.
Although the cost is only three, the number of multiple paths on today’s largest
hypercubes (which have twelve dimensions) is only six. A similar, two-fold speed-
up can be achieved by simply sending messages in both directions on the cycle.
Larger machines will make the advantage of the multiple paths greater but the
missing factor of two could be the margin between being useful in practice and
practically useless.

The constants for meshes and trees appear to be too large for practical con-
sideration even with the improvements made by Aiello and Leighton. Perhaps
there are alternate techniques which will yield better constants.
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Assumptions about Physical Resources

At the end of Chapter 2 we listed some assumptions for this thesis. We decided
to concentrate primarily on pin limitations and secondly on wire delays. Even a
restriction to these resources left many possible questions. We assumed that pins
were dedicated to point to point communication links. The possibility of using
shared buses remains to be explored. We concentrated on the delay across wires.
An analysis in which the throughput of the wires was the key option would be
interesting.

Of course there are many other physical resources to be considered. The
complexity of the switches within the network would be an ideal resource to
include. The question is how to model it. One possibililty is to generalize the
strong switch vs. weak switch of Aiello, Leighton, Maggs, and Newman([1]. They
propose that a weak switch can only establish a single input to output path
through its node on a single step. Once a path is established data can continue
to stream through the path in parallel with other paths. Perhaps the time to
establish a path should be made a function of the degree of the network; a larger
number of potential input/output pairings would lead to slower path formation.

Another possibility is to limit the number or type of input/output permu-
tations available in each switch. Plaxton[62] attributes the following scheme to
Varman and Doshi. The edges at each node are rumbered cyclically. A message
arriving on one edge can only leave on the next time step only on the next edge.
If no new message arrives on the next edge then the original message may be
shunted around the cycle and leave on the edge arter next on the time step after
next. In general, if there are no conflicts with in-coming messages a message
arriving on edge 7 can leave on edge 7 + j after j time steps. Plaxton examines
deterministic sorting on this cyclically restricted hypercube.

Rather than restrict the messages to traversing a cycle of edges a small number
of permutations might be allowed. How general a switch is necessary for efficient
randomized routing? By using the embedding of the FFT into the hypercube of
Chapter 4.3.1 the hypercube can simulate an FFT while requiring only a simple
internal route of messages between two incoming wires and two outgoing wires
at each node. Any permutation can then be routed using randomized routing on
the FFT. However, the hypercube is capable of randomized routing of full-width
permutations. How complicated a switch is necessary for this?

Other Assumptions

We made the decision to concentrate on problems which have structured, iterative
algorithms. This assumption caused us to think in terms of synchronous time
steps. A more asynchronous view, perhaps based on queueing theory might be
more appropriate for other problems.
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The overall load on the network strongly affects the relative importance of
physical parameters. We have assumed a high load, leading to potential conges-
tion and the necessity of maintaining data locality. The concern for locality led
us to base our models on graph embeddings. The work-preservation model[47]
is an alternative to graph embeddings. A model which allows processes to be
relocated depending on network traffic might yield an alternative approach to
avoiding congestion. In addition such a model could help in creating strategies
for dynamically evolving systems.

Other Networks

In this thesis we have only looked at hypercubes, k-ary n-cubes, and trees as can-
didates for networks whose performance is affected by physical constraints. Do
FFTs, Butterflies, and CCCs admit pin-optimal, chip-optimal, length-weighted
implementations? How about Multi-butterflies[7] and Star networks[3]?

Are there multiple-copy embeddings of other constant degree graphs such as
shuffle-exchanges or fat-trees into hypercubes or k-ary n-cubes or Star networks?
Can the conversion techniques be applied to additional networks? Annexstein
and Baumslag[6] point out that although the Star network is not a cross product
it has similar properties that allow the creation of permutation routes. Are these
properties enough to allow the creation of multiple-path embeddings?

New Networks

An important question is whether the structure we have discovered in existing
networks can be used to create new better ones. In order to have more than
two paths between two nodes in the hypercube the paths must be at least length
three; is there a relative of the hypercube with shorter multiple paths?

The ability to be decomposed into cross products and/or into disjoint Hamil-
tonian cycles yielded opportunity to make efficient use of edges. There are related
products, such as the wreath product. Can they be used in similar ways? Other
commonly studied graph properties include path width, tree width, and bisection
width; can they be used to aid in network design?

Suppose we know in advance that only certain communication patterns will
be used. For example, the computer might be designed for finite difference al-
gorithms which use only five point stencils, nine point stencils, and FFTs. We
want to be able to use as many of the communication edges as possible no matter
which pattern is being used. Can a network be designed which can use all its
edges when any of the patterns is in use?
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8.3 Final thought

Ideally there would be a single model which could be used to compare network
designs and allow the choice of a best network. The range of algorithmic require-
ments and physical resources involved, however, makes such a universal model
unlikely. Research has instead focused on various pieces of the problem. Most
factors are held constant and a one or two parameters varied. In this way a better
understanding of the varied parameters can be reached.

In this thesis we chose to look at large scientific computations and see what
the effects of pin limitations would be on their communication costs when run on
hypercube-based machines. The partition of pins among the logarithmic number
of communication links necessitated that even when there was a direct connection
between the source and destination of a message that multiple paths be used. We
found that, although standard single-path embeddings became congested when
multiple paths were used, new multiple-path embeddings could be created which
significantly reduced the effects of pin limitations on hypercubes.
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