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In this dissertation, we study the problem of load sharing in distributed com-
puter systems. The underlying system consists of a number of autonomous host
computers (nodes) interconnected by a communication network. Jobs arrive at
each node according to some arrival process. The jobs may either be processed
locally or at a remote node, after being transferred through the communication
network. Significant delays are encountered during job transfers and state updates.
While load balancing has been an active research area for some time, there has been
very little work done that specifically addresses the problem of delays. Two impor-
tant consequences of these delays are the following: The first is that the delays in
job transfers can potentially increase the average system response time. The sec-
ond important effect of delays pertains to the quality of remote state information.
This information can become out of date because of delays, resulting in incorrect

decisions and hence poor performance.

We consider a class of load sharing policies that use thresholds at each node

in-order to make job transfer decisions. These policies are dynamic because they

vi



gather state information at decision time, and decentralized because each node is
equal to every other node and there exists no central scheduler. Initially, the study is
restricted to homogeneous systems, i.e., the nodes are identical as regards job arrival
rates and processing speeds. We formulate analytical models of the load sharing
algorithms under the above conditions. These models are solved using the Matrix-
Geometric solution technique. The queueing models are then extended to study
load sharing in heterogeneous systems where the arrival rates and/or processing
speeds of the nodes may differ. The analytical solutions are valid over a very large
range of system parameters. From these solutions, we have been able to study the

effects of various important parameters on load sharing.

Next, we study the applicability Entropy Minimax, an Information Theoretic
estimation technique to determine the operating threshold of the policies as a func-
tion of job transfer delay and load. Finally, we consider the problem of load sharing
in systems where the arrival rates of jobs may change over time. We study the
applicability of simple techniques to estimate the values of the changed parameters
(e.g., arrival rate, load, etc), and develop simple algorithms to adapt the control

policy in response to these changes.
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Chapter 1

INTRODUCTION

Here bygynneth the Book of the tales of Canterbury

Chaucer

1.1 Problem Statement

Job and task scheduling are integral functions of any distributed operating system.
The boundary between what is called a job versus what is a task is not always very
precise. However, the general rule of thumb is that a job is the initial entity of work
designated by the user, for example, the 3-D interpretation of an object by an image
understanding system. A task is a smaller entity of work, for example, recognition
of the object by the image understanding system may involve several tasks like
pattern recognition, feature extraction, semantic interpretation and so on. Each of
these tasks could, in turn, consist of several subtasks. Actual implementations of
the scheduling function normally consist of the job and task schedulers at each node
in the system cooperating to improve the performance of the distributed system as

a whole.

In this study, we focus upon one aspect of distributed operating system design,
namely network-wide job scheduling. This is often referred to as load balancing or
load sharing. The system under consideration is assumed to be comprised of a
number of autonomous nodes (host computers) interconnected by a communication
medium. We make no specific assumptions regarding the nature of this medium,

except that each node is able to communicate with every other node in the system



within a finite time interval. The actual implementation of the network could be in

the form of a local area network or a store-and-forward network.

It is assumed that local jobs arrive at each node according to some arrival
process. A job can be executed either locally, i.e., at its point of arrival in the system,
or it can be transferred to some other node in the system via the communication
network. Thus, nodes are assumed to be identical in their functional capabilities.
However, nodes may not necessarily possess identical processing speeds. If a job
is transferred to a remote node for processing, it is assumed that it incurs a delay
during the transfer. This delay is due to the processing involved in the protocols
at the sender and destination nodes, as well as the delay in physical transmission
of the messages over the network. The remote execution of a job normally requires
transmission of the results of the computation back to the original node. In practice,

delays will also occur in this process.

The reason that jobs need to be transferred to remote nodes for execution is
the following: Under certain assumptions regarding arrival and departure processes,
it can be shown that the instantaneous load at a node undergoes tremendous fluctu-
ations. One major consequence of this fact is that even if the system is homogeneous
(i.e., the time averaged arrival rate of local jobs is identical at each node and the
nodes have the same processing speeds), there exists a very high probability that

some nodes will be idle while others have waiting jobs at the same time [LIVN82].

It is the function of the job scheduler at each node to recognize such condi-
tions (which are obviously detrimental to performance) and try to rectify them by
transferring jobs from very busy nodes to less busy ones, in the hope of reducing the
average waiting time of jobs. While at times we refer to the algorithm used by the
scheduler as the load balancing policy, we are less concerned with the specific act
of load balancing than we are with load sharing. The distinction between these two
concepts is not always very clear but we choose to make the following point: Tra-
ditionally, load balancing has been concerned with balancing the load between the

nodes over an interval of time. Load sharing however, is concerned with smoothing



out the instantaneous variations in load, with no particular emphasis placed upon

balancing the load between the nodes over any interval of time.

As is common with this type of study, the main metric by which the per-
formance of any algorithm will be judged is the average response time of jobs for
the entire system. Thus, it behooves any good scheduling policy to be fair and not
improve the performance of jobs at a particular node by subjecting the rest of the
network to harmful decisions, if by that policy, the overall system response time is

degraded as a consequence.

There are various schemes used to classify load sharing policies. A reasonable
method is based upon the kind of state information used by the policy; namely, is
the policy static as opposed to being dynamic. Static load sharing policies generally
utilize information about the average characteristics of the system, e.g., the utiliza-
tion of the nodes over a certain window of time. Dynamic load sharing policies are
generally designed to react to the current state of the system, for example the queue
lengths of the nodes at any instant of time. Various studies have shown that dy-
namic policies are, in general, able to achieve better performance over a large range
of system parameters, than are static policies. However, because most of these
policies very actively gather state information, they tend to generate higher system
overheads than do static policies. Further, because of the very nature of distributed
systems, the state information that is so critical to dynamic policies can be out of
date by the time the decisions are effected. Thus, the system designer needs to keep

these tradeoffs in mind before selecting a particular policy for implementation.

Load sharing policies can also be separated on the basis of the type of control
strategy utilized; namely is the control policy centralized as opposed to being decen-
tralized. In a centralized policy, a designated node collects relevant state information
about the entire network and on that basis, it schedules jobs to particular nodes.
Decentralized policies, on the other hand, do not possesé the concept of a central
scheduler for the entire system. In such policies, the scheduler at each node is free

to take any action for jobs that arrive at that node. Each of the above schemes has



its advantages and disadvantages: For example, centralized schemes are inherently
unreliable (although their reliability can be enhanced considerably by designating
backup nodes in the event that the scheduler node fails). Further, a central node
places a very heavy burden on some links in the network, causing large communica-
tion delays. Decentralized policies, while being immune to the above shortcomings,
have their own problems. For instance, it is not always easy to orchestrate a group
of schedulers to work in harmony towards solving a particular problem. This is par-
ticularly relevant when all or some of the schedulers may possess different views of

the state of the system, very easily resulting in anarchic behavior by the schedulers.

1.2 Motivation and Goals of this Research

Distributed systems are different from their centralized counterparts in many ob-
vious ways. One of the consequences of physical distribution of nodes over large
distances is the time delay involved in sending messages over the interconnecting
network. While it is true that delays are also experienced by messages in a shared-
memory shared-bus type of architecture, these delays are typically very small and
there exist simple and relatively inexpensive strategies for nodes to maintain glob-
ally consistent and exact system states, as may be exemplified by the various cache-

coherence algorithms described in the literature.

In relation to load sharing in distributed systems, the two primary contrib-
utors to delays are the following: Packetizing and depacketizing of jobs for load
sharing is a time consuming task, particularly given the sizes of jobs that we already
see these days and what can be expected in the future. Aside from the processing
delays at the sender and destination nodes, there is also the delay incurred by the
messages during transmission over the network. However, it has been observed by
practitioners [LANT85] that the first contribution is the more significant of the
two, because network transmission rates are high but the network controllers which

perform most of the processing are slow, in comparison.



The two main consequences of transmission delays are the following: Jobs
that are transferred over the network experience an additional waiting time due to
the delays involved in the transfer process. Thus, there exists the possibility that a
sub-optimal policy may actually cause degradation of performance as a consequence
of load sharing, by transferring jobs when delays are very high. Further, delays
can degrade the quality of remote state information. Because the policies we are
interested in studying actively acquire state information, the load sharing decisions
could very easily become sub-optimal, if they are based upon an incorrect view of

the system state.

One of the goals of this dissertation is to examine simple load sharing policies
that are able to perform adequately in the presence of significant delays. In partic-
ular, we are interested in studying a class of policies which utilize thresholds at each
node in order to make decisions about job transfers. These policies are dynamic
in the sense that every time an action is warranted, a node requests the state of a
subset of the nodes in the system. For our study, this state comprises of the queue
length of the nodes in question. Further, the policies are decentralized because each
node is able to make decisions about its own jobs, i.e., whether to execute a job
locally or to transfer it to a remote node. As a matter of fact, there need only be
consensus between schedulers at the the sender and destination nodes regarding the

conditions of the transfer.

The policies we study can be divided into three groups, depending upon which
node initiates the job transfer. For instance, in sender-initiated policies, the node
which possesses a spare job initiates the process of transfer. In receiver-initiated
policies, the node which requires a job initiates the transfer process and in symmetric
policies, the process works in both directions, i.e., a node may initiate a transfer to

or from itself, depending upon the state in which it finds itself.

The class of load sharing policies under consideration have internal parameters
(e.g., thresholds) that must be tuned in order to obtain good performance of the

system. In this dissertation, we study two methods to achieve adequate (and in some



cases optimal) parameters of the policies. The first method is based upon Entropy
Minimax [CHRI85] [CHRI81], which is a non-parametric estimation technique based
upon Information Theory [GALL68]. While this method is quite elegant in its
formulation of the problem, the utility of this method is limited. For example, we
have determined that this method has applicability for homogeneous systems (i.e.,
where the arrival rates at the nodes are identical and the nodes possess identical
processing speeds and capabilities), and for a limited range of parameter values.
Extending this particular aspect of our study to include heterogeneous systems did
not seem very feasible. Another limiting factor was that this study was based upon
simulations which are computationally very expensive. In any case, this part of our
study provides valuable insight into the dynamics of the load sharing process, as it

particularly relates to delays and imperfect state information.

For a more general solution of the problem, we develop approximate queueing
models which represent the behavior of the load sharing policies in the presence of
delays associated with job and probe transfers. These models are then solved using
the Matrix-Geometric Solution technique. Using these models, we have been able
to study the load sharing problem over a vast range of system parameter values
and produce many interesting results. Because the assumption of homogeneity may
sometimes be restrictive (althoﬁgh a large fraction of the work in the literature does
make this assumption), we have extended our models to include systems where the
arrival rates and/or processing speeds of the nodes may not all be the same; in other
words, for heterogeneous systems. It has been possible to analyze the behavior of
the load sharing policies in such systems, providing us a great deal of insight into
the feasibility of load sharing in the presence of delays in heterogeneous systems.
In this study, we have been able to formulate solutions of two different types of

heterogeneous architectures.

In the research outlined above, we have assumed that the arrival process
at each node is time-invariant. Although the time between arrivals is a random

variable, the mean and higher moments of this random variable are assumed to be



fixed. We know from experience that many systems do not exhibit such behavior
over reasonable windows of observation. For instance, averaged over an entire week,
the mean interarrival time between jobs at an installation may be the same as any
other week. However, observed over the period of a day, there may be significant
changes in arrival patterns. In this connection, we consider the efficacy of load
sharing in systems where the arrival rates can vary over time. We study several
simple methods to track the changes in arrivals and formulate high-level policies
which supervise the changes in the internal parameters of the policy in operation.
In the extreme, the changes in the arrival rates may warrant a change of the load
sharing policy itself. The studies conducted by us on time-invariant systems provide
the values of the internal parameters of the policies (or even a change of the policy
itself) for effective control in time-varying systems, once a stable estimate of the

new arrival rate is produced.

1.3 Contributions of the Dissertation

The main contributions of this dissertation lie in providing an understanding of the
various important issues that arise when delays are encountered in job transfers
as well as in acquiring remote state information, for the purposes of distributed
job scheduling. The specifics of the contributions, as regards to particular aspects
of our research will be deferred to the relevant chapters. This is because many
of the interesting phenomenon we have observed, do not lend themselves to easy
explanation unless the background of the experiments and the various important
terminology has been introduced. Nevertheless, we would like to provide a brief

summary of some of the important contributions of this dissertation.

We have developed analytical models and have solved these models using the

Matrix-Geometric solution technique, for the following load sharing policies:

¢ A sender-initiated policy called Forward.

e A receiver-initiated policy called Reverse.



¢ A combination policy called Symmetric.

The analytical solutions are valid over a very large range of system parameters.
From these solutions, we have been able to study the effects of various important
parameters on load sharing, particularly in relation to delays. In order to simplify
the above analytical models, we had made certain assumptions which we believed
were reasonable. For example, we had assumed that probes were transferred in zero
time, in spite of large delays during job transfers, that K, the maximum number
of pending remote jobs was one, that the probing and probed nodes have the same
thresholds and so on. To address the validity of these assumptions, we have de-
veloped analytical models and solved these, using the Matrix-Geometric solution

technique, for the following receiver-initiated load sharing policies:

o Policy Ry, where K is a parameter representing the maximum number of

allowable pending remote jobs.
e Policy Rg.,., which is a threshold probing variation of Rg...

¢ Policy Rr:, where the probing and probed nodes may have different operating

thresholds.
¢ Policy Rp, where probes take non-zero times.

e Policy Rp,, which is a threshold probing variation of Rp.

From the results of the studies conducted on the above algorithms, we con-
cluded that our assumptions were in fact, quite reasonable, in the first instance and
that our intuition was by and large, correct. Thus far, our study had assumed that
the underlying system was homogeneous. We know that in practice, this is a re-
strictive assumption and that many systems are comprised of heterogeneous nodes.
Consequently, we have extended our analytical models and determined solutions for

policies operating in such systems. These are:



e A sender-initiated policy called Forward

e A receiver-initiated policy called Reverse

From the solutions of the above models, we have observed several interesting
phenomena. For instance, load sharing in heterogeneous systems is effective for
much higher delays than for homogeneous systems, especially when the degree of
imbalance in the loads is large. The performance of the policies is more or less
sensitive to the probe limit (the maximum number of nodes that may be queried by
a node in search of a spare task or to find a placement for its spare task), depending

upon the degree of imbalance between the nodes, and so on.

In order to be able to determine the threshold on-line, based upon the average
job transfer delay, we conducted simulation studies and summarize the salient points

of this part of our study as follows:

e To determine the internal parameters of the load sharing policies (e.g., thresh-
olds), one of the methods we have utilized is based upon Entropy Minimax, an
Information theoretic estimation technique. This method has the advantage
of being non-parametric (which is particularly relevant in the context of load

sharing), is computationally inexpensive and has adaptive capability.

o From our experiments, we have seen that simple policies perform quite well
and the performance of these policies using the thresholds generated by En-
tropy Minimax, is found to either be optimal or very near optimal, in most

instances.

e Further, this part of our study provides valuable understanding about how
to deal with the uncertainty inherently present in distributed systems, as for
example by designing state classification techniques which reduce the impact

of this uncertainty.

Finally, we consider systems in which the arrival rates at the nodes may

be time varying. We have developed several simple strategies to recognize these
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variations and adapt the parameters of the policies and in some cases, change the
policy itself, as a means of providing effective control in such situations. The reason
we emphasize the word simple is because we have observed that the policies are
quite stable in relation to small errors in the values of the estimated parameters. We
conjecture that sophisticated techniques to solve the problem will in all likelihood,

provide little or no advantage over simple techniques.

1.4 Overview of the Dissertation

Load Sharing has been an active research area for some time. In Chapter 2, we
briefly describe some of the interesting contributions made in this field of study.
Further, in Chapter 2, we also point out the lack of emphasis placed by these
studies, on the problem of delays. In Chapter 3, we develop queueing models for
three probing policies to study the effects of delays on load sharing, over a very
large range of system parameters. For the study in Chapter 3, we felt that it was
necessary to make certain assumptions, in order to simplify the Markov processes
resulting from the policies. It is our belief that these assumptions are valid, over
most reasonable values of system parameters. In Chapter 4, we specifically address
these assumptions by relaxing them, one at a time. The setting for this study is the
class of receiver-initiated load sharing policies. It was seen from the results of this
chapter that the assumptions were, in fact, quite reasonable in the first instance.
In Chapter 5, we study the problem of load sharing in the presence of delays as it
relates to heterogeneous systems. We study heterogeneity in the form of classes of
nodes with both different arrival rates and/or processing speeds. This chapter is in
some sense a generalization of Chapter 3. In Chapter 6, we study the problem of
load sharing in the presence of delays in homogeneous distributed systems where
each node has the same processing power and the same external workload. We
study the performance of four threshold based load sharing policies, three based on
probing and one being a random assignment policy. The threshold is used at each

node in order to make decisions for job transfer. These thresholds are obtained
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on-line, using Entropy Minimax, an Information-Theoretic estimation technique.
We study the performance of the policies that use the thresholds as estimated
by Entropy Minimax, and compare this performance to the no load balancing or
the M/M/1 system and the perfect load balancing M/M/K system. Chapter 7
addresses the problem of adaptation of load sharing policies and parameters in
time-varying systems. The main thrust of Chapter 7 is to determine strategies that
are able to react to changes in the arrival patterns and determine the load sharing
parameters on-line in such a way that near-optimal performance may be achieved
as a consequence. Finally, in Chapter 8, we summarize the main contributions of

this dissertation and discuss suggestions for future research.






Chapter 2

LITERATURE SURVEY

Those who cannot remember the past are condemned to repeat it.

Santayana

There have been numerous studies concerning job scheduling in distributed
systems. Some researchers have chosen to perform simulation studies of their al-
gorithms, while others have tried to formulate their problems in a mathematical
framework, generally performing some kind of queueing analysis of the system un-
der consideration. In the past few years, there has been a proliferation of distributed
systems being built and the designers of some of these have actually implemented
load sharing algorithms. Most of the research done this in field, particularly the
analytical studies, has tended to ignore the effects of delays. In some models,
the authors have contended that delays will be small and hence can be neglected.
While this assumption may be true in some cases, it is our belief that in many
instances, delays cannot be wished away. Some of the simulation studies, particu-
larly [MIRC86] [STAN85a] [STAN84] have peripherally studied the impact of delay
as one parameter among many others. In Theimer et al., [THEI85], the authors
report their concerns with task transfer delays and develop a heuristic to reduce
the impact of these delays. However, these studies have not specifically addressed
many of the interesting issues that arise as a consequence of transfer delays. We now
present a brief summary of some of the interesting works in the field of distributed

job scheduling.

Simulation studies provide tremendous flexibility in choosing system models

and enable us to evaluate load balancing algorithms which may be very hard to study

12
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analytically. However, simulations are extremely time consuming and computation-

ally expensive and consequently should be used in very limiting circumstances.

Some of the interesting works using the simulation approach are the follow-
ing: Stankovic [STAN84| simulated three load balancing algorithms under a large
range of parameters. It was seen that simple algorithms, using very rudimentary
state information, were able to generate very good performance. In another study,
Stankovic [STAN85a] studied the load balancing problem in the presence of imper-
fect state information. The author utilized Bayesian decision theory in the decision
making process. In this approach, determination of a proper utility function was

determined to be crucial to the performance of the system.

Wang and Morris [WANGS85] studied load balancing problems in a very gen-
eral setting. They proposed a taxonomy of load balancing policies that draws a
basic dichotomy between source-initiative and server-initiative approaches. Under
these classifications they compared a variety of different algorithms using either
an exact analysis or by simulation. Livny and Melman [LIVNS82] studied simple
load sharing algorithms by means of simulations. They showed that, over a very
large range of system parameters, the probability of some nodes being idle while
others have waiting jobs at the same time, is very high. Thus, load sharing is
likely to provide significant performance improvements in these instances. Bryant
and Finkel [BRYAS81] performed simulation studies on a load balancing algorithm
that was seen to be stable. The authors have designed a very elaborate scheme for
pairing spare jobs with under-utilized processors. A node that wishes to transfer
a job queries the other nodes. If a queried node is in the ”idle” state, it responds
to the query, forming a pair. The job is sent to the node which has the potential
for the best response time for the transferred job. The authors have used several
alternative methods to estimate the current load on the system. One is based upon
the memoryless assumption, another on what they call ”pastrepeats”, and one on
utilizing distributions of service times. The method based upon distributions is

the most accurate (as might be expected), but is computationally expensive, so
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the study concludes that the method based upon ”pastrepeats” appears to be the
best compromise. Ni et al. [NI85b] utilized what they call a drafting approach to
perform load balancing. In this technique, a node that enters a Low state ” Drafts”
a task from a set of High nodes. This approach has the flavor of reverse bidding.
The authors determine that their algorithm performs better than one that is based
upon bidding, for the parameter values tested. Further, they conclude that load

information need not be very accurate, in order to achieve good performance.

Mirchandaney and Stankovic [MIRC86| determined the feasibility of using
a job scheduler based upon an enhanced Stochastic Learning Automaton. It was
shown that in systems where the state information possesses a great deal of un-
certainty, a learning approach to acquiring job scheduling information is workable,
for certain ranges of system parameters. Recently, several studies have been con-
ducted in the area of load sharing where the tasks have hard real-time constraints.
Stankovic et al. [STAN85b] considered the load sharing problem in the framework
of distributed hard real-time systems. Several heuristics are evaluated by simula-
tion studies. Zhao et al. [ZHAOS85] used simulations to evaluate hard real-time
scheduling based upon bidding and focussed addressing. Such techniques have also

been shown to be applicable in non hard real-time systems.

The sheer number of analytical studies conducted on the load sharing problem
makes it impossible to list them all. We will try to discuss the more relevant con-
tributions. Many of the studies [AGRA82| [BUZE74] [CHOW77] [CHOW79] [NI86]
[NI85a] have been concerned with a system consisting of two or more (heteroge-
neous) processors with one common job arrival stream. Jobs arrive in this stream
at a single controller which then makes a decision on the assignment of jobs to pro-
cessors. Obviously, this assumption seems to be quite restrictive for distributed
systems. Chow and Kohler [CHOW?77] [CHOW79| developed queueing models
for heterogeneous multiprocessor systems where one job stream is distributed to
a number of processors according to some state-dependent job routing policies.

The authors used an approximate numerical method to analyze two-processor het-
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erogeneous models, and showed that a deterministic strategy that maximizes the
expected throughput during the next interarrival period gives the best performance

among a class of policies.

Agrawala, Tripathi and Ricart [AGRA82] studied the problem of how to route
a job stream to servers of different speeds. A routing strategy was devised, called
virtual waiting time technique that minimizes the average completion time for a
job. Ni and Hwang [NI86] [NI85a| studied the problem of probabilistically balancing
loads among processors in a heterogeneous multiple processor system with many job

classes. They developed an algorithm which allocates workloads among processors.

Another solution approach to study the load balancing problem is to for-
mulate an optimization problem for which there might exist a standard op-
timization technique or an efficient, approximate algorithm may be devised
[BANNS83] [BUZE74] [dSeS84] [DUTT82] [INDU86] [KRAT80| [K URO86a] [LEES7]
[STON78a] [STON78b] [TANT84] [TANTS85] [TOWS86]. These works use different
system models and/or focus on different aspects of load balancing problems. Buzen
and Chen [BUZE74] studied the problem of determining optimal loading factors in

memory hierarchies and devised an optimization algorithm for its solution.

Stone [STON78a] [STON78b] solved the problem of allocating program mod-
ules to processors in multiprocessor systems with the help of network flow algo-
rithms. The interprocessor communication cost due to interacting tasks is explicitly
accounted for and the minimum delay placement of tasks is determined. Most of
the work on task placement assumes complete a priori knowledge about the exe-
cution times (in case of stochastic scheduling, the mean execution times) of tasks
as well as the communication between pairs of tasks. Towsley [TOWS86] devised
two polynomial time assignment algorithms for allocating program modules to pro-
cessors. Two optimization problems are formulated, one called Restricted and the
other, Unrestricted, in which the author utilizes a graph-theoretic computational
model of distributed programs containing loops and branches. Kratzer and Ham-

merstrom [KRAT80]| formulated the problem of allocating jobs to processors in
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multiprocessors and distributed computer systems as an assignment problem. It is
shown in the paper that the general problem is NP-complete. An algorithm was
devised that yields optimal solutions in restricted instances of the problem and an-
other heuristic bidding algorithm was used for general problems. Dutta, Koehler
and Whinston [DUTT82] formulated a quadratic assignment problem for task al-
location in a distributed processing environment. For uncapacitated problems (no
capacity constraint at each processor), they used a probabilistic branch and bound
technique for its solution. For capacitated problems, heuristic algorithms are de-
veloped. Bannister and Trivedi [BANNS83| considered the problem of allocating
tasks in fault-tolerant distributed systems. They formulated a constrained sum of
squares minimization problem for which an efficient approximate algorithm is de-
veloped. Silva and Gerla [dSeS84| studied the load balancing problem in distributed
systems that can be modeled by product-form queueing networks. It is assumed
that there exist multiple classes of jobs in the system with site constraints for ex-
ecution of each class of jobs. The optimal solution is found by a downhill search
method in which the steepest descent direction can be easily calculated using mean

value analysis(MVA).

Tantawi and Towsley [TANTS85] formulated a nonlinear optimization problem
for a probabilistic static load balancing in distributed systems that can be modeled
by a product-form queueing network. An efficient algorithm is developed for its so-
lution, based on sorting the nodes according to their incremental delays. This tech-
nique is also applied to obtain a static load balancing strategy for star-configured
systems [TANT84]. Kurose and Singh [KURO86a] mapped the static load balanc-
ing problem into the problem of planning in the field of mathematical economics,
from which they derived a distributed optimization algorithm. Similar distributed
optimization algorithms have been developed for the minimum delay routing prob-
lem in communication networks {GALL77]. The load balancing problem in soft
real-time distributed systems is also considered, in which a job arriving at a node
must begin execution within a specified amount of time after its initial arrival in

the system [KUROB86b|. It is shown that a simple approach may perform equally
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as well as more sophisticated ones. Recently, Lee [LEE87] studied load balancing in
homogeneous and heterogeneous systems. The author developed efficient heuristic
algorithms based upon distributed integer optimization where each node computes
its own load balancing parameters. Indurkhya et al., [INDUS86| utilize 2 Random-
Graph model Qf distributed programs and explore the important dichotomy between
the parallel execution of the modules (tasks) of a program which tends to distribute
the tasks evenly among the processors, and the communication overhead incurred
between modules executing at different nodes, which tends to keep the tasks on a
few processors. A simple example they show consists of two processors; with low
communication overheads, the optimal solution divides the tasks equally between
the two processors. When the overhead increases above a certain threshold, all the
tasks are either placed on one or the other processor, with no other states besides

these two.

Eager, Lazowska and Zahorjan [EAGES86a] [EAGES6b| studied a class
of threshold load balancing policies in homogeneous distributed systems. In
[EAGES6a], they studied the effect of state information used in load balancing
policies to the performance of the system. It is shown that extremely simple poli-
cies which use primitive system state information, are very effective. In [EAGES86b],
load balancing policies are classified into two categories depending upon which node
initiates the process of job transfer; namely, sender-initiated policies and recerver-
initiated policies. It is shown that sender-initiated policies outperform receiver-
initiated policies at light to moderate system loads, and that receiver-initiated
policies are preferable only if the costs of job transfer under the two strategies
are comparable. The class of policies considered in this dissertation is similar to
those in [EAGE86a] and [EAGES6b], except that we also utilize symmetric poli-
cies, which are a combination of sender and receiver-initiated policies and our wotk
is quite closely related to theirs. The main difference between our system model
and that of Eager et al. is that in their model, the transfer overheads appear as
additional service times on the CPU, while for the most part we assume that the

overheads are either small or even negligible (this assumption is actually relaxed in
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Chapter 6) but that the delays are prominent. This is because of the general trend
towards intelligent network controllers which would offload most of the scheduling

related functions from the CPU.

Finally, the proliferation of distributed systems has given rise to actual imple-
mentations of simple load sharing algorithms, as for example [AGRA85] [AYACS82]
[BUTT84] [KIRR84] [NEED82| [POWES3| [THEI85| [VANT84]. Theimer et al.
[THEI85) have implemented a simple load sharing scheme for their network of work-
stations. A node that is overloaded (i.e., the response time of tasks at that node
appears to be high), polls a subset of the remaining nodes and transfers a task
to the first one that is lightly loaded. In their implementation, a transfer of a 2
Mb program space takes on the average about 6 seconds to complete. Because the
workstations are diskless, no files need to be transferred along with the task image
and the authors acknowledge that in systems which require the movement of all the
associated files along with the task (which may be a reasonable practice), the delays
could become very high, and possibly unbounded. The results from this experimen-
tal system give credence to the importance of studying the effects of large delays
in distributed systems. Locus [BUTTS84] provides preemptable remote execution
across a network of multiuser machines. Several of the systems that have imple-
mented load sharing algorithms have been very application specific, for instance, in
the field of real-time process and industrial control, as in [AYAC82] [KIRR84]. Van-
Tilborg and Wittie [VANT84] describe a task scheduling heuristic based upon wave
scheduling of task forces (parallel programs). This algorithm is conjectured to be
applicable for a large class of homogeneous multicomputer systems like CM*, MI-
CRONET and others and was designed as a scheduling algorithm for the MICROS

distributed operating system.

2.1 Summary

In this chapter, we have provided a brief survey of the studies conducted in the field

of distributed job scheduling. We have classified these studies into three groups,
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i.e., simulation studies, analytical studies and implementations of job scheduling
algorithms for distributed systems. While there has been considerable research
in this field, very little emphasis has been placed upon studying the impact of
job transfer delays and decisions based on imperfect state information, in spite of
several experimental studies indicating the possible importance of delays. In the
following chapter, we formulate analytical models of simple load sharing algorithms
and determine the performance characteristics of these algorithms, when significant

delays are encountered in job transfers.



Chapter 3

LOAD SHARING IN HOMOGENEOUS SYSTEMS

3.1 Introduction

In this chapter, we study the performance characteristics of simple load sharing al-
gorithms for distributed systems. In the system under consideration, it is assumed
that non-negligible delays are encountered in transferring jobs from one node to
another and in gathering remote state information. Because of these delays, the
state information gathered by the load sharing algorithms is out of date by the
time the load sharing decisions are taken. This chapter analyzes the effects of these
delays on the performance of three algorithms that we call Forward, Reverse and
Symmetric. We formulate queueing theoretic models for each of the algorithms op-
erating in a homogeneous system under the assumption that the job arrival process
at each node is Poisson and the service times and job transfer times are exponen-
tially distributed. Each of the models is solved using the Matrix-Geometric solution

technique and the important performance metrics are derived and studied.

In this connection, we have developed analytical models that help us better
understand the above issues. Various relevant performance metrics are derived from
these models and the load sharing algorithms are compared on the basis of these
metrics. By studying the results obtained from the model solution, we are able
to determine the exact effects of delays and out of date state information on load
sharing in general. Furthermore, we are able to determine the range of delays and
loads over which state information is worth gathering and useful load sharing can

be performed.

The remainder of this chapter is organized as follows: In Section 3.2, we pro-

vide a brief description of the system architecture and the load sharing algorithms.

20
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Section 3.3 comprises the description of the Markov process corresponding to the
Symmetric algorithm and its Matrix Geometric solution. The analysis correspond-
ing to the Forward and Reverse probing algorithms will only be described in brief.
This is because the analysis of Symmetric subsumes that of Forward and Reverse.
In Section 3.4, we describe the important results of this research and we summarize
our work in Section 3.5. Appendix A describes the internals of the matrices involved

with the solution of the Markov processes.

3.2 System Architecture and Load Sharing Algorithms

3.2.1 System Architecture and Motivation

Processing and transmission of communication messages for state updates (probes)
and for jobs can potentially generate considerable overhead at the nodes. Different
system architectures can impose very different costs for these overheads. At one
end of the spectrum, nodes can have dedicated processors to handle communication
overheads, supported by a very high bandwidth fiber-optic bus communication. On
the other end of the spectrum, nodes can be multiplexed between application jobs

and communication packet processing.

We have made the following assumptions about the system that we will be
considering. The architecture of the individual nodes includes a powerful Bus In-
terface Unit(BIU), which is used to process most of the overhead generated by job
and probe movement. For instance, the BIU will have a DMA capability to access

main memory without much interference to the CPU.

While the bulk of the overhead processing for job transfer is transferred to
the BIU, delays will nevertheless occur during this processing. There will also be
network delays in the transmission of probes and jobs. We are interested in studying
the combined effects of these delays. Furthermore, we believe that it is reasonable
to assume that the relative sizes of jobs and probes will be quite different. The

physical transfer of a job may require tens of communication packets, while a probe
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or a response to one would in all likelihood need at most one packet. Thus, it
is reasonable to imagine a ratio of 50:1 or more in the relative sizes of jobs vs.
probes. Consequently, it appears that the delays incurred by jobs in the BIU'’s
and the network will be significantly larger than those incurred by the probes. In
our analysis, the delays incurred by probes will be assumed to be negligible when

compared with those incurred by job transfers.

3.2.2 Load Sharing Algorithms

The three algorithms that we have studied in the context of this research are called
Forward, Reverse and Symmetric. Each algorithm is provided with a threshold 7.

The algorithms are described in the following few paragraphs.

e Forward: The algorithm is activated each time a local job arrives at the
node. If the number of jobs at this node (including the job currently being
executed) is greater than T + 1, an attempt is made to transfer the newly
arrived job to another node. A finite number, L,, of nodes (usually L, = 2
or 3 is adequate) is probed at random to determine a placement for the job.
A probed node responds positively if the number of jobs it possesses is less
than T + 1 and it is not already waiting for some other remote job. If more
than one node responds positively, the sender node transfers the job to one of
these respondents, picked at random. If none of the probed nodes responds
positively, i.e., this probe was unsuccessful, the node waits for another local

arrival before it can probe again.

¢ Reverse: This algorithm is activated every time a job completes at a node
and the total number of jobs at the node is less than 7'+ 1 and the node is not
already waiting for a remote job to arrive. If so, the node probes a subset of
size L, remote nodes at random to try and acquire a remote job. Only nodes

that possess more than T + 1 jobs, (including the currently executing one)
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can respond positively. If more than one node can transfer a job, the probing

node chooses one of these at random from which it requests a job.

e Symmetric: This algorithm combines the two schemes of Forward and Re-
verse. Thus, if a node goes above T + 1 upon the arrival of a local job, it
attempts to transfer a job and if it drops below T+ 1 upon a job completion,

it attempts to acquire a remote job.

In all the algorithms described above, it is assumed that probing takes zero
time. This is based upon the initial assumption that probes are much smaller entities
than are jobs. Thus, the overhead for processing a probe at the BIU is much smaller
than for jobs. Further, probes occupy much less of the communication bandwidth
than jobs. Thus, the entire delay is assumed to occur during actual job transfer.
Furthermore, we have seen in separate studies (not described in this chapter) that
as long as the ratio of job transfer times to probe transfer times is sufficiently large
(> 20), the system essentially behaves as if the probes actually take zero time. We

are currently investigating this phenomenon in greater detail.

3.3 Mathematical Analysis

It is assumed that the job arrival process at each node is Poisson, with parameter
A. Also, the service times and job transfer times are assumed to be exponentially
distributed, with means 1/x and 1/+, respectively. The job transfer time includes
the time between the initiation of a transfer from a node and the successful reception
of the job at the destination node. The nodes are assumed to be homogeneous, i.e.,
the nodes have identical processing power and the arrival process at each node is
the same. Jobs are assumed to be executed on a First-Come-First-Served (FCFS)

basis at each node.

Let N,(i) be the number of jobs at node ¢ at time ¢ and J,(i) be the probe state

of node 7, at time ¢. The probe state indicates whether the node is probing or being
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probed, etc. For example, in a system of M nodes, the instantaneous state of the

network can be represented by the 2M-tuple
(Nt(l)a Nt(Z)’ sorey Nt(M); Jt(l)7 Jt(Z)a "Jt(M))

If the probe state Jt(i) is defined appropriately then, due to the Poisson ar-
rival assumption and the exponential service and job transfer times, the process

corresponding to the above state description is Markovian.

It is clear that the model has a very large state space and is difficult to solve,
even for moderately sized systems. Consequently, we decompose the model such
that the model for each node can be solved independently of the others [EAGE86a).
The interactions between the nodes which result in job transfers for the purpose
of load sharing in the distributed system, are modelled by means of modifications
to the arrival and/or departure process at each node. These interactions will be

described in detail further in this subsection.

We conjecture that the method of decomposition is asymptotically exact as
the number of nodes tends to infinity. Actual experimental results indicate that
there exists very good agreement between the model and simulations even when
the systems are of relatively small size (= 10 nodes). Thus, the approximation
is likely to be even better for larger systems. These analytical results have been

validated through simulation for networks of at least 10 nodes.

The analysis of the algorithms is performed using the Matrix-geometric so-
lution technique [NEUTS81], which yields an exact solution of the model for each
node. The model for the Symmetric probing algorithm will be described in detail.
However, the analysis of the Forward and Reverse algorithms will only be described

in brief, with a presentation of the main performance metrics.

The material in this chapter involves several Jacobi matrices, whose detailed

definitions will be provided as in Latouche [LATO81|. A matrix such as
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Figure 3.1 represents the state diagram for the Symmetric algorithm operating
at a single node using an arbitrary threshold T. The state of the node is represented
by a tuple (N, J;), where N, is the number of jobs at a node and J; is the probe
state that indicates if the node is either probing, being probed, neither of the above,

or both. The probe states have the following codes:

e 0 : if not probing and not being probed,
e 1: if reverse probing,
e 2: if being forward probed,

e 3: if reverse probing and being forward probed.

The actual representation of this process takes the form of an infinite cylinder.
However, for ease of description, we have chosen to open out this cylinder and
consequently, the row corresponding to probe state 3 is duplicated, once as the top
row and again as the bottom row in Figure 3.1. In 3-Space, the top and the bottom

rows would be merged together.
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Figure 3.1: State Diagram of Symmetric Algorithm
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We define

y(n,j) = lim P(Ne =n, J; =j),0<n,0< 5 <3,

Pn = (y(n,0),y(n,1),y(n,2),y(n,3)), 0 < n,

ﬁ': (po’plap2, ----- pi,--..).

If the Markov process (N, J) is ergodic then P is its steady state probability
vector satisfying pQ = 0, where @ is the infinitesimal generator of this Markov pro-
cess. Qs, the infinitesimal generator for the Symmetric algorithm, has the structure

of a block-tridiagonal matrix of the form

Boy ... Boy By Ao A
Qs ={ Boo Buy ... Bu Ba A A
By B ... Bio Ay Az A

where we define the matrices By, Bo1, B1o, B11, B21, A2, A1 and Ay in Ap-
pendix A at the end of the dissertation.

In the subsequent discussion, h is the probability of failure in finding an
assignment for a spare job in response to a set of forward probes. Thus, h = 1 — h,
is the probability that at least one of the probed nodes will accept a remote job. ¢
is the probability of failure in finding a remote job for a set of reverse probes, and
g=1-gq.

The effect of a node sending a forward probe when it goes above T + 1 is
represented by the transition Ah. When the node makgs a transition anywhere
below T + 1 on the completion of a job, it sends out reverse probes in order to get
a remote job. A successful transition is represented by ug and an unsuccessful set

of reverse probes is represented by the transition uq.
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Thus, on the completion of a job when the node goes below T + 1, it sends
out reverse probes, if it is not already waiting for a remote job to arrive in response
to an earlier reverse probe. A transition of this type is represented from (n,0) to
(n—1,1) or (n,2) to (n —1,3), where 0 < n < T + 1. When a remote node sends a
forward probe into this node, it makes the transition from (n,0) to (n,2) or (n,1)
to (n,3), where 0 < n < T. This means that the remote node is going to transfer a
job to this node, on the basis of a successful probe. The rate of receiving forward
probes is denoted by a. The rate at which this node sends out jobs in response
to nodes that asked it for jobs is x'. Thus, the rate at which a node makes the
transition (n,j) to (n — 1,j), for n > T + 2 equals u + 4'.

As can be seen from the generator Qg, the Markov process has a regular
structure comprised of the Ag, A; and A, matrices, preceded however by the irreg-
ular boundary conditions. The size of the irregular portion of the matrix depends
upon the threshold at which the process is operating. There will be exactly T — 1

columns of the matrices (B, B11, Bio).

Neuts [NEUTS81] examined Markov processes with such generators and de-
termined the conditions for positive recurrence when the infinitesimal generator
A = Ay + A, + A, corresponding to the geometric part of the'Markov Process, is
irreducible. However, for our problem, A is lower triangular and reducible. In such

cases, the stability criterion has to be determined explicitly.

Consider the non-linear matrix equation
Ao+ RA, + R?A; =0

such that R is its minimal non-negative solution. It can be shown that R is lower
triangular, given the structure of Ay, A, and A, [NEUT81]. Furthermore, R = [r; ;],

where

T,',j = 0, Vt <j

6 — (6% —4(u + ') AR)V/?
2(p + )
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where § = (Ah + u + 4).
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Thus, the diagonal elements of R can be written explicitly in terms of the

parameters of the Markov process. Once the diagonal elements are determined,

the elements below the diagonal are computed recursively from the solution of the

diagonal elements.

By adapting Theorem 1.5.1 from Neuts [NEUT81], the Markov process Qs is

positive recurrent if and only if sp(R) < 1 and that the matrix M (defined below)

possesses a positive left invariant probability vector. Because R is lower triangular,

its eigenvalues are its diagonal elements. One can show that sp(R) < 1 if

A< p+u

The matrix M, given by

BOl BOl BOl
Boo Bu Bu le + RAz
BIO BIO BIO
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is an irreducible, aperiodic matrix. The second condition holds because of the

irreducibility of M. The vector (po,P1,...., Pr+1) is the left eigenvector of M.

Intuitively, the stability condition means that the rate of processing jobs (in-
cluding the ones that are sent out of this node) is greater than the total arrival rate
of jobs into this node. Thus, on the average, whenever there are more than T + 1
jobs at a node, the process drifts towards the boundary specified by the thresh-
old T. Similar analysis may be carried out for the Forward and Reverse probing

algorithms, with the appropriate substitution of parameters.

We now assume that all the values of all the parameters are known. First,
the boundary conditions are determined, by solving a system of linear equations.

Thus, for an arbitrary threshold T, we have

By ... By By

(pOapla"--apT+l) By By ... By B+ RA; | =0
By By ... By

where the number of columns in the matrix is exactly T + 1. We know from

Neuts [NEUTS81] that
Pi =pra R7VVLVi>T +1
Thus,
Z pi = pr+1(I - R)™!

12T+1

Also,

T
D _pi+prs1({ —R) Ye=1.
=0

E[N], the expected number of jobs at a node, and E[D], the expected response

time of a job, are given by the following expressions:

EIN] = Y ipie

21
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T
= pra{l—R)*e+ T+ [praa(f — R) e + Z i1pie
=1
(Total—Flow—In
(E[N]+ <)
A

il

E(D]

where Total — Flow — In is the flow into a node of remote jobs due to for-
ward and reverse probes. In the next subsection, we derive the equations required
to determine the values of the unknowns h,q,u' and a and describe the iterative

algorithm used to solve the resulting model.

3.3.1 Computational Procedure

Initially, it is assumed that the values for h, ¢, and a are known and the model is
solved using these values. In a typical step, a model solution is used to derive new
values for h,q, 4’ and a, and a new solution is computed. The iteration procedure

that we use is described in a step-wise form, after the following definitions.

e FFRO : Flow rate out of jobs, as a result of forward probes made by this

node.

e FFRI : Flow rate in of jobs, as a result of forward probes made to this node

by other nodes.

o RFRO : Flow rate out of jobs, as a result of reverse probes made by other

nodes to this node.

e RFRI : Flow rate in of jobs, as a result of reverse probes made by this node.

Let ¢ denote the iteration count. Thus, ) ¢®, 4’0 @ FFROW, RFROW

denote the value of the variables after the i-th iteration. .

Iteration Procedure

1. Let ¢ = 0; choose values for A9, ¢(® 4'(® o FFRO©®) RFRO®



32

2. Determine Q) from h(‘),q(‘),p'(‘), al¥)

3. Determine R

4. Solve the linear system corresponding to the boundary conditions
5. Determine FFRO(+Y) and RFROG*Y from the model solution

6. If ABS(FFROU*Y — FFROU) < ¢ and ABS(RFROV+Y) — RFROW) < ¢,

where ¢ is an arbitrary small number, stop, else

7. Let t =1+ 1. Go to 2

We have observed from experiments that the solution was insensitive to the
initial values chosen for the unknown quantities. Consequently, we conjecture that
there exists a unique solution to the model. Further, the number of iterations

necessary for convergence was usually small, ranging between 10 and 30.

Because of the assumption of homogeneity and because of the symmetric

nature of the algorithm
FFRO = FFRI and, RFRO = RFRI.

To determine o, we use the relation FFRO = FFRI, where

FFRO = AhY pie,
i>T

FFRI = o) p;[1100]7,

i<T

Here, h can be represented as h = z’» where, L, is the number of nodes that
are probed and z is the probability that a particular node will respond negatively

to a forward probe. This is given as

=73 p;[0011]T + > pse.

i<T i>T
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Also,Z=1-~zand h=1-h.

Thus,
FFRO
Yicr Pi [1100]T

a =
To determine u', we use the relation RFRI = RF RO, as follows:

RFRI =) p;[0101]T v,

120

where 1/ is the mean delay in receiving a remote job. Thus, RFRI denotes the

total flow in due to reverse probes made by this node.

RFRO =4 Y pie

i>T+1

Thus,

, RFRI
H = <
2i>T+1Pie

To determine g, the probability that a set of reverse probes result in failure,

we use the following procedure:

Let

y= Z p:e

i<T+1

If the node probes L, nodes to receive a remote job, then the probability
that all of them will be unsuccessful is denoted by: ¢ = y%*, and § = 1 — ¢ is the

probability that at least one of the reverse probes is successful.

3.3.2 Forward and Reverse

As mentioned in Section 3.2, we will only briefly describe the analysis for the For-

ward and Reverse probing algorithms, because these algorithms are in some sense
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subsumed by the Symmetric algorithm. Figure 3.2 represents the state diagram
for the Forward probing algorithm operating at a single node using an arbitrary
threshold T. The state of the node is represented by a tuple (N, J;), where N, is
the number of jobs at a node and J; is the probe state that indicates if the node is

being forward probed or not. The probe states have the following codes:

e 0 : if not being probed,

e 1 : if being forward probed,
The infinitesimal generator matrix corresponding to this process is:

Boy ... By Boi Ap Ao
QrF=| Bow Bn .. By A A A
' A, Ay .. Ay A, A, A

with exactly T — 1 columns of (Boy, B11, Az).

Figure 3.3 represents the state diagram for the Reverse probing algorithm
operating at a single node using an arbitrary threshold T. The state of the node is
represented by a tuple (IV, J;), where N, is the number of jobs at a node and J, is
the probe state that indicates if the node is either probing or not. The probe states

have the following codes:

e 0 : if not probing,

e 1: if reverse probing,

The infinitesimal generator matrix for this process is:

Ao vee Ao Ao AO AO
@r = Boo Bu Bu Bu A A
By By ... Bio A2 Ay A

with exactly T — 1 columns of (Ao, B11, B1o)-
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Figure 3.2: State Diagram of Forward Algorithm
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Figure 3.3: State Diagram of Reverse Afgorithm



36

All the parameters for the Forward and Reverse probing algorithms have the
same meanings as their counterparts in the Symmetric algorithm. For instance, u’
in Reverse probing is the rate at which a node sends out jobs in response to reverse

probes made by other nodes, as in the case of Symmetric probing.

The computational procedure for both these algorithms is very similar to that
for the Symmetric probing algorithm, which was described earlier in this section
in detail. Iteration is used to solve the system in both these cases. The unknown
parameters in the case of Forward are @ and h and in the case of Reverse, the
unknowns are x' and g. The internals of the matrices of Forward and Reverse are

described in Appendix A.

In both these cases, initial values of the unknown parameters are used to solve
the model. Based upon this solution, new values of the parameters are determined.
The iteration continues until the stopping criterion has been satisfied. It was seen
that the iteration was insensitive to the initial values chosen for the unknown pa-

rameters. Further, the number of iterations was usually small, between 10 and

20.

3.4 Performance Comparisons

In this section, the performance of the three load sharing algorithms will be com-
pared to each other and to two bounds, represented by the no-load-balancing
M /M /1 model (also referred to as NLB) for K nodes and the perfect load sharing
with zero costs, i.e., the M/M/K model. Wherever relevant, we will also compare
the algorithms against a Random assignment algorithm, which transfers jobs based
only upon local state information. This algorithm is similar to Forward in the sense
that a node that goes above T + 1 transfers a job. However, the node does not send
any probes. Instead, it picks a destination node at random and transfers a job to
this node. The key performance metric for comparison is the mean response time

of jobs.
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A large number of parameters such as the service time, the threshold T', the
probe limit L,, the communication delay 1/, the number of nodes in the network
etc., can affect the performance of load sharing algorithms. In this connection, we
will try to present the results that we believe are the most relevant. The presentation

will be in the following sequence:

¢ Validation of the analytical results with simulations.

Nominal comparisons between the algorithms.

Relation between delays and thresholds.

Optimal response times as a function of delays.

Optimal thresholds as a function of delays.

Unless specifically mentioned otherwise, L, = 2 in all the runs. Also, S = 1/u
and C = 1/~ are the means of the service time and job transfer delay, respectively.
Further, it will be assumed that S = 1 unit and all measurements of response times

will be in terms of this unit.
Validation with Simulations

We mentioned in Section 3.2 that the decomposition used in this chapter is
only an approximate solution which is conjectured to be exact for infinitely large
systems. Thus, it is important to determine how well this approximation compares
to simulations of finite sized systems. The simulation model consisted of 10 nodes
in all cases except when p = 0.9, where the model consisted of 20 nodes. Figure 3.4

depicts a representative set of curves regarding this study.

Because the simulation results were almost identical to.the analytical model,
we have chosen not to depict the actual sample means of the response times from
the simulations. Instead, the 95% confidence intervals of the simulation results are
presented, as computed by the Student-t tests. On the average, the confidence

interval for the response time is about +3% about the sample mean. The only
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exception to this is at p = 0.9, when the confidence interval is about 6% about

the sample mean.

We have observed (results not presented here) that in most of the cases, the
variation between the simulation results and the analytical models is less than 2%.
Furthermore, the model is almost invariably optimistic, compared to the simula-
tion results. The maximum variation that we observed was about 15%, and such
numbers were very infrequent and were seen to occur at low communication de-
lays and high loads (p > 0.9). As the delays increase however, the model tends
to become more accurate. In any case, for loads < 0.8, the model is a very good
approximation, even for reasonably small systems. In cases where the variation was
more than 2%, it was seen that by increasing the size of the simulation system to 20
nodes, the results generated better agreement with those of the analytical model.
For instance, the variation at p = 0.9,C = 0.1S, which was about 15% when the
simulation system comprised of 10 nodes, decreased to about 5% for a system of 20

- nodes.
Comparison of the Algorithms

In an earlier study by Wang and Morris [WANG85|, it was postulated that at
low loads, Forward probing is likely to perform best, while at high loads, Reverse
would be more suitable. However, it was not known exactly where one policy
became better than the others, especially when there are significant communication

delays involved.

Another factor that takes on a degree of importance in this comparison be-
tween algorithms, is that of probe overhead. While we have assumed that probes
take zero time, there is the potential for the probes to interfere with other mes-
sages, especially if they are generated in large enough numbers. It has been shown
in [MIRC87a] that the Symmetric algorithm generates probes at a higher rate than
do Forward and Reverse. While we have not included the effects of such overhead

in our model thus far, this aspect of the study is currently under progress.

Figure 3.5 shows the performance curves of the algorithms for C = 0.1S and
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T = 0. From this figure, we can make the following observations:

At low delays and low loads (p < 0.5), Forward performs essentially like
Symmetric but Reverse is worse by as much as 30%. This can be explained
by the fact that in most cases, Reverse is ineffective in load sharing as most
nodes will not have a spare job. Thus, the Reverse component of Symmetric

does not improve its performance over Forward.

At moderate loads, Symmetric performs much better than both Forward and

Reverse, by as much as 20%, while Forward and Reverse are about the same.

At high loads (p > 0.9), it is seen that Reverse is better than Forward by
a substantial margin of about 25% while Symmetric is still the best overall,

being better than Reverse by about 25%.

At all the loads tested, there appears to be a substantial gain in load sharing
as opposed to NLB. This is true for all three algorithms. However, the
improvement is much more pronounced as the load increases. For instance, at
p = 0.9, the response time for Symmetric is about 2 units whereas the NLB

response time is 10 units, a significant difference.

As may be expected, the algorithms perform worse than the exact M/M/K
model. However, Symmetric generates close performance to the M/M/K
model. For instance, at p = 0.9, M/M/K results in a response time of 1.3

units while Symmetric generates 2 units.

Figure 3.6 shows the performance curves of the algorithms for C = 2S5 and

2). From Figure 3.6, we can reach the following conclusions:

For moderate communication delays and low to moderate loads (p <0.7), the
behavior of the three algorithms is virtually the same. It would appear that

the delay overhead predominates at these loads.
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¢ At moderate loads, (p = 0.8), Symmetric is about 10% better than Reverse

but almost identical to Forward.

e Only at very high loads (p > 0.9) does Symmetric actually perform signifi-

cantly better than both Forward and Reverse.

¢ In comparison with NLB, it is seen that at low loads (p < 0.5), there is
little or no improvement by load sharing. However, as the load increases, load
sharing becomes more viable. At p = 0.9, Symmetric generates a response

time of 3.5 units as opposed to 10 units for NLB.

e The comparison against the M/M/K model is not very flattering at high
delays, as might be expected. For instance, Symmetric at p = 0.9 is about 2.5

times worse than the M/M/K value of about 1.3 units.

Thus, one can conclude that at moderately high delays, the performance of the
three algorithms is virtually identical. A surprising result though is that Symmetric

is significantly better at very high loads.

All the subsequent discussion is based on the results obtained from the Sym-
metric algorithm. Unless explicitly mentioned otherwise, the conclusions reached
are also applicable to Forward and Reverse. In cases where the performance of these
algorithms is markedly different from that of Symmetric, a separate discussion will

be provided.

Delays vs Thresholds

Figures 3.7, 3.8 and 3.9 show the response times for the Symmetric algorithm
tested over a wide range of communication delays and thresholds, for the loads of
0.5, 0.7 and 0.9. It can be seen from Figure 3.7, that at low delays (C = 0.15), the
optimal threshold is 0 and the performance is a monotonically increasing function
of the threshold. Also, the response time generated at T = 0 is only about 20%
worse than the exact M/M/K value for moderate loads (p < 0.7). For example, at
p = 0.7, the Symmetric response time is about 1.3 units whereas the exact M/M/K
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value is approximately 1.04 units. Further, the N LB response time for this load is
3.3 units, which is much worse than the performance of the Symmetric algorithm.
The performance improvement due to load sharing in this case can be explained by

the following arguments:

e At low delays, the cost of transferring a job is much lower than the potential
improvement due to the effect of load sharing. Thus, T = 0 permits very

active load sharing.

e Because the delays are small, much greater certainty exists in the knowledge
that an idle node will continue to remain idle during the time it takes to
transfer a job to it. Thus, in some sense, T' = 0 ensures that all job transfers

are useful in that a remote job arrives at the node soon after it becomes idle.

For moderate delays (C = S, Figure 3.8), the behavior is as follows: Even
at p = 0.5, there is a gain of about 22% from load sharing. For instance, the
best response time at this load is about 1.56 units while the corresponding NLB
performance is 2 units. The improvements over NLB by load sharing at higher
loads are even more substantial, being as high as about 73% for p = 0.9. The NLB
response time in this case is 10 units whereas the optimal Symmetric value is about
2.7 units, as can be seen from Figure 3.8. Further, T = 1 for p = 0.5 and 0.7, while
T = 2 for p = 0.9, are the optimal thresholds.

When the communication delays increase to the order of 10S (Figure 3.9), it
is seen that the best that can be achieved for p = 0.5 is the N LB performance which
is 2.0 units response time. Thus, it would be appropriate to turn off load sharing
here. For p = 0.7, a small gain of about 5% is seen, at T = 5. This improvement
is small enough that if the interference of probes could be accounted for, the best
strategy might very likely be to turn off load sharing. However, at p = 0.9, the
reduction in response time from the NLB is about 40% and this occurs at T = 6,
where the Symmetric response time is about 6.0 units. In any case, the response

times at high delays are significantly worse than the M/M/K values as might be
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expected. For instance, at p = 0.7, the M/M/K response time is 1.04 units whereas

the best load sharing value is about 3.1 units.

Optimal Response Times

The purpose of this set of tests is to determine the best possible performance
of the algorithms under a very large range of transfer delays, ranging from as small
as 1/100 S, to as large as 100 S. Thus, in this study, one can assume very fast local
area networks will form one end of the spectrum and slow, long-haul networks the

other end. Figure 3.10 shows the results of the tests for the algorithm.

The response time in each case is normalized by the M/M/1 response times.
Thus, a lower ratio indicates greater improvements as a consequence of load sharing.
Corresponding to each curve representing a particular load, there is a curve for the
performance of the Random assignment algorithm, to be used as a baseline. From
the figure, one can see that at low delays (< 1/2S), the gain from load sharing is
quite substantial, at all loads considered. Further, the gains are greater for higher
loads. At loads of 0.9, the response times are 0.25 times those for the no load

sharing case.

As can be seen from the curves representing the performance of the random
assignment, there is a definite advantage in probing. However, as the delays increase,
(> 18), this advantage of probing seems to disappear. Random with a suitable
threshold is able to perform as well as any probing policy, giving the impression
that the state information due to probing is so out of date as to not really be
useful. Also, the best that can be achieved in lower loads (< 0.5) is no better
than the M/M/1 response time at these delays. However, there is still a marked
improvement in the performance of load sharing at higher loads, for example at 0.8
and 0.9. The remarkable fact that should be noticed here is that even at delays as
high as 100 S, there is about an 8% improvement over no load sharing for load 0.9.

We postulate that at higher loads, this effect will be even more prominent.

Optimal thresholds
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Figure 3.11 indicates the variation of the optimal thresholds corresponding to
the optimal response times indicated in Figure 3.10. Note that the thresholds are
low at lower delays and get higher as the delays increase. Further, this effect is seen
to be more prominent at higher loads. At p = 0.9, the optimal threshold varies
‘between 0 when the delay is 1/10.S and 25, when the delay is 100 S. The variation

is significantly lower at low loads.

3.5 Summary and Conclusions

This study was concerned with the performance analysis of simple load sharing
algorithms in the presence of significant job transfer delays. The three algorithms
that we tested were called Forward, Reverse and Symmetric. The analysis of the

algorithms was carried out using the Matrix-Geometric solution technique.

The Markov process of the entire network appeared to be computationally
intractable. Thus, we employed a decomposition technique to solve the Markov
process. While this resulted in an approximate solution of the original system, it
was seen by means of simulation studies, that the variation between the exact and
approximate solutions was minimal for systems of 10-20 nodes. Consequently, the
analytical solution is likely to be more accurate for larger systems. This leads us to
hypothesize that the decomposition is an exact solution of the system in the limit

as the number of nodes tends to infinity.

The three load sharing algorithms were tested over a large range of parameter

values. Some of the salient observations that we made were as follows:

e There is considerable difference between the performance of the three algo-
rithms at low to moderate delays (< S), with Symmetric providing the best
results. As delays increase, the algorithms tend to. provide almost identical
performance, especially when (D > 10S). Further, at such delays, Random
assignment performs as well as any probing scheme, leading us to believe that

at moderate to high delays, probing is wasted effort.
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At high delays (> 10S), the optimal response times are no better than those
for the NLB case, leading us to believe that load sharing is not useful in
such situations, for low to moderate loads. However, at high loads (p > 0.9),

substantial benefits accrue from load sharing even at these delays.

Reverse probing is outperformed by Forward over most of the range of loads
tested, except when p > 0.9. While Symmetric is the best of the three al-
gorithms tested, it does have the potential for generating high probing over-
heads. Given these observations, Forward would appear to have even greater

applicability if realistic overhead costs might be assigned to probes.

The benefits of load sharing are more pronounced at high loads (p > 0.8).
This is evidenced by the fact that the percentage reduction in response times

in these cases is greatest over the corresponding N LB values.

At extremely high loads p = 0.9, it is seen that about 8% reduction is achieved
over the corresponding N LB response time, even when the delays are as high

as 100S.

The optimal threshold was seen to be a function of the load and the job
transfer delay. At low delays, the optimal threshold was O for all the loads
tested. However, as the delays increased, the optimal threshold increased

correspondingly, becoming about 24 for p = 0.9 and delay = 100S.






Chapter 4

ANALYSIS OF RECEIVER-INITIATED LOAD SHARING

4.1 Introduction

In Chapter 3, we had determined the effects of delays upon three algorithms called
Forward, Reverse and Symmetric. To provide a large breadth of study, we had made
some simplifying assumptions in the analysis. For instance, K was always equal to 1
and probing times were assumed to be zero. In this chapter, we relax the simplifying
assumptions made in our previous work and study Receiver-Initiated load sharing
algorithms in greater depth and in a more general setting. By studying the results
obtained from the model solutions, we are able to determine the exact effects of
delays and out of date state information on Receiver-Initiated load sharing policies.
Furthermore, we are able to determine the range of delays and loads over which

state information is worth gathering and useful load sharing can be performed.

Various relevant performance metrics are derived from these models and the
load sharing algorithms are compared on the basis of these metrics. Some of the
interesting observations that we have made are as follows: The analytical models
are shown be very good approximations of the underlying system. It is seen that the
algorithms are insensitive to the parameter K and the effects of probing delays are

determined to be negligible, under reasonable assumptions regarding probe sizes.

The remainder of this chapter is organized as follows: In Section 4.2, we pro-
vide a brief description of the system architecture and the load sharing algorithms
called Rk, Rk,,Rp, Rp, and Rr:. Section 4.3 comprises the description of the
Markov process corresponding to the Rg algorithm and its Matrix Geometric solu-

tion. The analysis corresponding to the Ry,., Rp, Rp, and Rr: probing algorithms
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will only be described in brief since it is similar to the solution for Rg. In Section
4.4, we study the performance characteristics of the algorithms. The analytical
models are validated against simulation studies. We summarize our work in Sec-
tion 4.5. Appendix B at the end of the dissertation describes the internals of the

matrices involved with the solution of the Markov processes.

N

4.2 System Architecture and Load Sharing Algorithms

4.2.1 System Architecture and Motivation

In this research, we assume a network of nodes that contain the algorithms and
mechanisms necessary for distributed load sharing. As discussed in the earlier

chapters, we assume that delays occur during the act of load sharing.

4.2.2 Load Sharing Algorithms

In this subsection, we briefly describe the reverse probing algorithms that we study

in this chapter. Each algorithm utilizes a threshold T.

e Algorithm Ry : This reverse probing algorithm with parameter K is activated
every time a job completes at a node and the total number of jobs at the node
is < T. If so, the node probes a small subset of remote nodes at random to
try and acquire a remote job. Only nodes that possess more than T + 1 jobs,
(including the currently executing one) can respond positively. If more than
one node respond positively, the probing node chooses one of these nodes at
random from which it requests a job. Because there is a delay in acquiring
a remote job, a node can request another remote job in the meantime, if a
local job completes and the node is still < T. However, a node may only have
a maximum of K remote jobs pending at any time. An important aspect of

this study is to determine the impact of varying the parameter K.
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e Algorithm Rk, : This algorithm is similar to Rk, except that the node sends
out reverse probes only when a job completes and the number of remaining
jobs is exactly T. In this case too, a node may only have a maximum of
K remote jobs pending. The reason that we are interested in studying this
algorithm is because Rx has the potential to generate a large number of
probes, especially if the threshold is high. In many instances, these probes
are not likely to result in job transfers. Consequently, we postulate that in
some situations, the extra probing of Ry may not provide any significant

performance improvements over Rg...

e Algorithm Rpz : Threshold based load sharing algorithms have been generally
designed with one threshold. Thus, the threshold below which a node sends
out reverse probes is the same as the one the probed node needs to be above,
to provide a spare job. In general, this may not always be the optimal strategy,
especially at high delays, where the sending threshold may have to be higher.
Thus, we are interested in determining the conditions under which a dual
threshold algorithm, in which the probing node utilizes a threshold T, and
the probed node uses a higher threshold T;, may be useful.

In the above algorithms Ry, Rk, and Rre, it is assumed that probes take
zero time. Thus, a probing node has instantaneous knowledge about the status
of the probed nodes. In general, this may not be a realistic assumption, although
probes on the average experience much smaller delays than do jobs. The reason
for making this assumption at this point is the resulting simplicity achieved in the
analysis, because we believe that the issues of interest in the above algorithms are

orthogonal to the effects of probing time. This assumption is subsequently relaxed.

To test the effect of the assumption of zero probing times, we study two
algorithms Rp and Rp,, corresponding to Rx and Rk, respectively, except that
probes experience a delay. Thus, if the node sends probes which do not result in
a job transfer, this fact is made known to the probing node after an exponentially

distributed time interval, with mean 1/a. Further, in Rp and Rp,, we restrict
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the maximum number of pending remote jobs, K to exactly one, because of our
results concerning the effects of parameter K (results presented in this chapter). In

summary,

e Algorithm Rp corresponds to Rk in the sense that upon completion of a job,
a node sends out reverse probes if the number of remaining jobs at the node

is < T, but negative replies to probes experience a non-zero delay.

e Algorithm Rp, corresponds to the Rg, algorithm in the sense that upon
completion of a job, a node sends out reverse probes if and only if the number
of remaining jobs at the node is exactly T, but negative replies to probes

experience a non-zero delay.

4.3 Mathematical Analysis

In this section, we develop the analytical model for Rg. It is assumed that the job
arrival process at each node is Poisson, with parameter A. Also, the service times
and job transfer times are assumed to be exponentially distributed, with means 1/u
and 1/, respectively. The job transfer time includes the time between the initiation
of a transfer from a node and a successful reception of the job at the destination
node. Further, we assume that the job transfer times are independent of the origin
and destination of the jobs and the load placed on the network. The nodes are
assumed to be homogeneous, i.e., the nodes have identical processing power and
the arrival process at each node is the same. Jobs will be assumed to be executed

on a First-Come-First-Served (FCFS) basis at each node.

Let N; ) be the number of jobs at node 7 at time ¢ and J,i) be the probe state
of node ¢, at time ¢ and 7 be the condition code that indicates whether the node is
not probing, or if it is probing, then how many remote jobs are pending. The codes

are as follows:

e 0: if not probing,
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e k : if reverse probing and waiting for k jobs.

For example, in a system of M nodes, the instantaneous state of the network

can be represented by the 2M-tuple
(N N N, g @ a0y

Due to the Poisson arrival assumption and the exponential service and job
transfer times, the process corresponding to the above state description is Marko-

vian.

It is clear that the model has a very large state space and would become
difficult to solve, even for moderately sized systems. Consequently, we decompose
the model such that each node can be solved independently of the others [EAGE86a].
The interactions between the nodes which result in job transfers for the purpose of
load sharing in the distributed system, are modelled by means of modifications to

the arrival and/or departure process at each node.

We conjecture that the method of decomposition is asymptotically exact as
the number of nodes tends to infinity. Actual experimental results indicate that
there exists very good agreement between the model and simulations even when
the systems are of relatively small size (= 10 nodes). Thus, the approximation is

likely to be even better for larger systems.

The analysis of the algorithms is performed using the Matrix-geometric so-
lution technique [NEUTB81]|, which yields an exact solution of the model for each
node. The model for the Ry algorithm will be described in detail. However, the
analysis of the Rk,., Rp and Rp, algorithms will only be described in brief, with a

presentation of the main performance metrics.

The material in this chapter involves several J'acobi‘matrices, whose detailed

definitions will be provided as described in Latouche [LATO81]. A matrix such as
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will be displayed as
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Figure 4.1 represents the state diagram for the Ry algorithm using an arbi-
trary threshold T. We define

y(n,7) = lim P(Ny =n, J; =7),0<n,0< j <K,

13': (pOaplap2, ----- p,',....).

If the Markov process (V;, J;) is ergodic then p is its steady state probability
vector satisfying pQx = 0, where Qg is the infinitesimal generator for this Markov

process. Qg has the structure of a block-tridiagonal matrix of the form

Ao Ao Ao AO AO
Qk =1 Boo Bu .. Bu By A A
By By .. Bip Az A; A,

where we define the matrices Byg, Byo, By, 4z, A; and Aq in Appendix B.
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Figure 4.1: State Diagram for Algorithm Rg
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In the subsequent discussion, g is the probability of failure in finding a remote

job for a set of reverse probes,and g =1 —gq.

When the node makes a transition below T + 1 on the completion of a job,
it sends out reverse probes in order to get a remote job. A successful transition is
represented by g and an unsuccessful set of reverse probes is represented by the

transition ugq.

Thus, on the completion of a job when the node goes below T + 1, it sends out
reverse probes, if it is not already waiting for K remote jobs to arrive in response
to earlier reverse probes. A transition of this type is represented from (n,j) to
(n—1,7+1),where0 <n<T+1and 0 < j < K —1. The rate at which this node
sends out jobs in response to nodes that asked it for jobs is u'. Thus, the rate at

which a node makes the transition (n,j) to (n — 1,5), for n > T + 2 equals u + '

As can be seen from the generator Qg, the Markov process has a regular
structure comprised of the Ag, A; and A, matrices, preceded however by the irreg-
ular boundary conditions. The size of the irregular portion of the matrix depends
upon the threshold at which the process is operating. For example, there will be

exactly T — 1 columns of the matrices (Ao, By1, Bio)-

Neuts [NEUT81| examined Markov processes with such generators and de-
termined the conditions for positive recurrence when the infinitesimal generator
A = Ap + A, + A,, corresponding to the geometric part of the Markov Process, is
irreducible. However, for our problem, A is lower triangular and reducible. In such

cases, the stability criterion has to be determined explicitly.

Consider the non-linear matrix equation
Ao + RAl + R2A2 =0

such that R is its minimal non-negative solution. It can be shown that R is lower
triangular, given the structure of Ay, A, and A, [NEUTS81]. Also, R = [r;;] for
arbitrary K can be determined by the following procedure. By solving K quadratic



61

equations resulting from the matrix equation shown above, we can directly deter-

mine the values of the diagonal elements of R, as shown below.

rij; = 0, V]‘>t'
ra = A(e+u)

_ 2 _4 ANz
I T Tt (G et R LR

2(p +u)

where ¢ = A+ p+p'.

Once the diagonal elements of R have been determined, the elements of the
next lower diagonal can be determined from the solution of the main diagonal el-
ements. This structure holds true for all subsequent diagonals as well (i.e., the
elements of any diagonal depend upon the diagonals above that one) and this pro-

cedure is continued until all the diagonals are exhausted.

By adapting Theorem 1.5.1 from Neuts [NEUT81], the Markov process Q is
positive recurrent if and only if sp(R) < 1 and that the matrix M (defined below)
possesses a positive left invariant probability vector. Because R is lower triangular,

its eigenvalues are its diagonal elements. One can show that sp(R) < 1 if
A<p+ u'

The matrix M, given by

Ag ... Ap Ap
Boo Bu Bu B11 + RA:
By B ... By

is an irreducible, aperiodic matrix. The second condition holds because of the

irreducibility of M. The vector (po,p1,-..-, Pr+1) is the left eigenvector of M.
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Intuitively, the stability condition means that the rate of processing jobs (in-
cluding the ones that are sent out of this node) is greater than the total arrival rate
of jobs into this node. Thus, on the average, whenever there are more than T + 1
jobs at a node, the process drifts towards the boundary specified by the thresh-
old T. Similar analysis may be carried out for the Forward and Reverse probing

algorithms, with the appropriate substitution of parameters.

Intuitively, this means that the rate of processing jobs (including the ones
that are sent out of this node) is greater than the total arrival rate of jobs into this
node. Thus, on the average, whenever there are more than T + 1 jobs at a node,

the process drifts towards the boundary specified by the threshold T.

We now assume that the values of all the parameters are known. First, the
boundary conditions are determined, by solving a system of linear equations. Thus,

we have.

Ay ... Ag Ag
(PosP1s++esPT+1) | Boo By ... By Buu+ RA; | =0
By By ... By

where the number of columns in the matrix is exactly T + 1. We know from
Neuts [NEUTS81] that

pi =praRTTL Vi > T +1
Thus,
z Pi = Prua(l - R)—l

i>T+1
Also,

[z Pi + pr1(l — R)_I]e =1

1=0
where R is the minimal solution of

Ao+ RA; + R*A; =0
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with R > 0 and the spectral radius of R,sp(R) < 1, and I is the identity matrix.

E[N], the expected number of jobs at a node, and E[D], the expected response

time of a job, are given by the following expressions:

E[N] = > ipie

21
T
= prai(I—R) e+ T x[prs1i(I — R)le] + > ipie
=1
Flow-In
(E[N] + {Fren=tnl)
A

E(D] =

where Flow — In is the flow into a node of remote jobs due to reverse probes.
In the next subsection, we derive the equations required to determine the values
of the unknowns ¢, and u' and describe the iterative algorithm used to solve the

resulting model.

4.3.1 Computational Procedure

Initially, it is assumed that the values for ¢ and u' are known and the model is
solved using these values. In a typical step, a model solution is used to derive new
values for ¢, and x', and a new solution is computed. The iteration procedure that

we use is described in a step-wise form, after the following definitions.

e RFRO : Flow rate out of jobs, as a result of reverse probes made by other

nodes to this node.

o RFRI : Flow rate in of jobs, as a result of reverse probes made by this node.

Iteration Procedure

In the iteration procedure described below, i denotes the iteration count.

¢, 1'® and RFRO© represent the initial values selected for the unknowns.
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1. Let ¢ = 0; choose values for ¢©,u'©), RFRO®

2. Determine QY from ¢®,u'®

3. Determine R(*)

4. Solve the linear system corresponding to the boundary conditions
5. Determine RFRO(+Y) from the model solution

6. If ABS(RFRO%+!) — RFROU)) < ¢, where ¢ is an arbitrary small number,

stop, else

7. Let 1 =1+ 1. Goto 2

We have observed from experiments, that the solution was insensitive to the
initial values chosen for the unknown quantities. Consequently, we conjecture that
there exists a unique solution to the model. Further, the number of iterations was

usually small, ranging between 10 and 30.

Because of the assumption of homogeneity and because of the principle of

equivalence of flow:

RFRO = RFRI.

RFRI =) p;[011...1]T v,
>0
where 1/4 is the mean delay in receiving a remote job. Thus, RFRI denotes the

total flow in due to reverse probes made by this node.

RFRO = ,u' Z pi ¢
i>T+1
Thus,
r_ _RFRI

2isT+1Pie
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To determine q, the probability of a set of reverse probes resulting in failure,

we use the following procedure:

Let
y= Z Pce
i<T+1
If the node probes L, nodes to receive a remote job, the the probability that

all of them will be unsuccessful is denoted by: ¢ = y*», and § = 1 — q is the

probability that at least one of the reverse probes is successful.

Algorithm Ry,

Figure 4.2 depicts the birth-death process for the Rg,. algorithm, correspond-
ing to a threshold T'. Let N,‘) be the number of jobs at node i at time ¢ and J,(‘)
be the probe state of node ¢, at time ¢t and ¢ be the condition code that indicates
whether the node is not probing, or if it is probing, then how many remote jobs are

pending. The codes are as follows:

e 0 : if not probing,

e k : if reverse probing and waiting for k£ jobs.

As can be seen from Figure 4.2, the only time the node sends out reverse
probes in when a transition is made from (T + 1,7) to (T, + 1) on the completion
of a job, Vi < K. The infinitesimal generator for the Markov process corresponding

to Rk,, VT > 1, has the following form:

Ao Ao Ao Ao AO AO
Qky, =| Boo Bun .. Bu Bn Bu A A
By By ... By By A; A; A

with exactly T — 1 columns of (A, By, B1o). For T = 0, the generator takes

the following form:
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Figure 4.2: State Diagram for Algorithm Ry,
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Ay Ay Ag
Qkpr =| Boo B A A
By Ay A, A

Algorithm Rrp:

Figure 4.3 depicts the birth-death process for the Ry: algorithm. As can be
seen from the figure, the process has two thresholds, T, and T;, which represent
the threshold at which probing can be performed and the threshold above which a
node can transfer a job, respectively. Thus, when a job completes at a node and
the remaining number of jobs is < T, and the node is not already waiting for a job,
it sends out reverse probes. Upon receiving a probe, a node may agree to transfer

a job if it possesses at least T; + 2 jobs.

The infinitesimal generator for the Markov process corresponding to Rrs has

the following form:

Ay ... Ay Ay ... Ay Ay Ao Ao
Qr2=| Boo By ... Bu Bu ... Bu By A A
By By .. By By ... By Az A; A,

with T, — 1 columns of Ag, By, Bio and T; — T, columns of A, By, Bo. The

computation procedure for this algorithm is identical to that for algorithm R.

4.3.2 Non-Zero Probing Times

Figures 4.4 and 4.5 depict the birth-death process for the Rp and Rp,. algorithms
respectively, corresponding to a threshold T. It is assumed that the job arrival
process at each node is Poisson, with parameter A. Also, the service times and job
transfer times are assumed to be exponentially distributed, with means 1/u and
1/~, respectively. In the previous algorithms Ry and Rg,., negative probes took

zero time. We relax this assumption in this model. The time to receive a negative
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reply to a set of reverse probes is exponentially distributed, with mean 1/a. It is

assumed that o is independent of the number of probed nodes.

Let N,'.) be the number of jobs at node ¢ at time ¢ and J,'.) be the probe state
of node 1, at time ¢t and ¢ be the condition code that indicates whether the node is
not probing, or if the node is probing and that the probe will result in a job transfer,

or that the probe will not result in a job transfer. The codes are as follows:

e 0 : if not probing,
e 1 : if reverse probing and waiting for a job,

e 2 : if reverse probing and waiting for a negative reply.

The infinitesimal generator for the Markov process corresponding to the Rp

algorithm has the following form:

Ao Ao Ao Ao AO
QD - Boo Bu Bu Bu A A
on on w. Byg Ay A; A,

The infinitesimal generator for the Markov process corresponding to REp,,

VYT > 1 has the following form:

Ay ... Ay Ay Ay A
@pr =| Bew By .. By By A A
By By ... By A; A; A;

with exactly T — 1 columns of (Ao, By, Byo). The form for T = 0 is as follows:

Ag Ao Ao
@pr = | Boo B A1 A
By A:; A; A;

The computational procedure for both these algorithms is very similar to

that for the Ry algorithm, which was described in detail in the previous subsection.
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Also, the parameters of the Markov Processes corresponding to these algorithms

have the same meanings as in Rx and Rk...

Initial values of the unknown parameters are assumed to solve the model.
Based upon this solution, new values of the parameters are determined. The it-
eration continues until the stopping criterion has been satisfied. It was seen that
the iteration was insensitive to the initial values unknown parameters. Further, the

number of iterations was usually small, between 10 and 20.

4.4 Performance Comparisons

In this section, the performance of the Receiver-Initiated load sharing algorithms
will be compared to each other and to two bounds, represented by the no load
balancing M/M/1 model for K nodes (also referred to as NLB) and the perfect load
sharing with zero costs, i.e., the M/M/K model. Wherever relevant, we will also
compare the algorithms against a Random assignment algorithm, which transfers
jobs based only upon local state information. The key performance metric for

comparison is the mean response time of jobs.

A large number of parameters such as the service time, the threshold T, the
probe limit L, the job transfer delay 1/+, the number of nodes in the network etc.,
can affect the performance of load sharing algorithms. In this connection, we will
try to present the results that we believe are the most relevant. The presentation

will be in the following sequence:

e Validation of the analytical results with simulations.

Selection of parameter K.

o Comparison between Ry and Rk...

Effect of non-zero negative probe times.

Relation between response time and thresholds.
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e Effects of multiple thresholds

e Network traffic density

Unless specifically mentioned otherwise, L, = 2 in all the runs. Also, S =1/,
D =1/~ and A = 1/« are the means of the service time, the job transfer delay and
negative probe delay, respectively. Further, it will be assumed that § = 1 unit and

all measurements of time will be in terms of this unit.
Validation with Stmulations

We mentioned in Section 4.2 that the decomposition used in this chapter is
only an approximate solution which is conjectured to be exact for infinitely large
systems. Thus, it is important to determine how well this approximation compares
to simulations of finite sized systems. The simulation model consisted of 10 nodes
in all cases except for p = 0.9, when the model consisted of 20 nodes. Figure 4.6

depicts a representative set of curves regarding this study.

The results presented here correspond to algorithm R (i.e. K = 1), but the
conclusions are generally representative of all five of the algorithms described in
this chapter. Because the simulation results were almost identical to the results of
the analytical model, we have chosen not to depict the actual sample means of the
response times from the simulations. Instead, the 95% confidence intervals of the
simulation results are presented, as computed by the Student-t tests. The curves
correspond to the results obtained from the analytical model. On the average, the
confidence interval for the response time is less than +3% about the sample mean.
The only exception to this is at p = 0.9, when the confidence interval is about +5%

about the sample mean.

We have observed (results not presented here) that in most of the cases,
the variation between the simulation results and the analytical models is less than
2%. Furthermore, the model is invariably optimistic, compared to the simulati;)n
results. In any case, for loads < 0.8, the model is a very good approximation,

even for reasonably small systems. In cases where the variation is more than 2%,
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it was seen that by increasing the size of the simulation system to 20 nodes, the
results generate better agreement with those of the analytical model. For instance,
the variation at p = 0.9, D = 0.15, which was about 10% (results not depicted in

figure), decreases to less than 5% for a system of 20 nodes.
Selection of K

In this set of tests, we determine the effects of varying K, the maximum
number of pending remote jobs at a node. We would like to determine when, if at
all, there is any significant gain in sending out probes while waiting for one or more
remote jobs to arrive. Thus, we have compared the performance of R,, R;, Rs and

R4 under a variety of conditions.

Figure 4.7 depicts the effect of K on optimal response times generated by
various values of K for delays 0.1S5, .S and 10S. The load under consideration is 0.8.
Also shown is the NLB response time. As can be seen, the effect of varying K is
almost negligible. The best improvement over R, is less than 1% and this occurs at
delay of S. In fact, we have observed very similar behavior for all loads less than
0.8. At p = 0.9 (results not depicted here), marginally better performance (about
4%) is exhibited by Rz at delay = S. For delay = 10S, the improvement is about
2.5%. The conditional mean number of pending probes (conditioned on the event

that at least one probe is pending), E[P|, was computed for all the tests.

The insensitivity to K may be explained by the following reasons:

e At low delays, remote jobs arrive much quicker than the node is able to com-
plete a job (and send out another probe, as a result). For p = 0.8, and delay
= 0.15, it was seen that E[P] = 1.0044 (K = 4), for the optimal threshold,

which is zero.

e At moderate to high delays E[P] = 1.242 (K = 4,Delay = S) and E[P] =
1.636 (K = 4, Delay = 10S). However, the effect of the corresponding increase
in load sharing is in all likelihood balanced out by the added costs due to high

transfer delays.
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Thus, we can conclude that the effect of K on optimal response times is

negligible. In the following discussion, K will equal 1, unless mentioned otherwise.
Comparison between R, and R,

The results of performance comparison between R; and R, is depicted in
Figures 4.8 and 4.9. The loads represented in the graphs are 0.6 and 0.9. The job
transfer delay in Figure 4.8 is 0.1S while in Figure 4.9 it is 10S. It is seen that at
low loads, the performance of the two schemes is almost identical for the most part,
with R; being marginally superior in some cases, especially at low delays. This can
be explained by the fact that at low delays, R, is unable to take as much advantage

of the low cost of job transfer as is R;.

For high loads, R, appears significantly better than R, for low as well as
high delays. For low job transfer delays, the same argument applies as in the earlier
paragraph. Thus, we will not study the performance of the threshold probing

variations of the algorithms any further in this chapter.

Effect of non-zero negative probe times

Figures 4.10 and 4.11 depict the effect of non-zero negative probe times
on Rp. The loads under consideration are 0.5 and 0.9. The job transfer delay
corresponding to the results in Figure 4.10 is 10S and in Figure 4.11, the delay
is 0.15. Also shown in the figures are the baseline results corresponding to zero

negative probe times.

At high transfer delays and low loads (p = 0.5), it is seen that the effect of non-
zero probe times are not significant. The dominant effects are due to the job transfer
delays. As a matter of fact, the response times actually become slightly worse as the
negative probes arrive at higher speeds. However, for high loads, (p = 0.9), there
is about 15% improvement by increasing the rate of negaj;ive responses. However,

in both cases, the performance of Rp approaches that of R, when A < 1/10D.

The effects of non-zero probe times appear more prominent at small job trans-

fer delays = 0.15, as depicted in Figure 4.11. This is especially evident at p = 0.9
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where the slow negative probes cause a significant deterioration in performance.
Here again, Rp approaches R, when A < 1/10D. Thus, it appears that as long
as the average probing time is less than 1/10th the average job transfer time, the
system essentially behaves like one with zero probing time. This brings us back to
the argument that probes being much smaller entities than jobs (one packet of in-
formation as opposed to several hundreds or thousands in the case of jobs), it would
not be unreasonable to believe that probes might take a fraction of the transfer time

associated with jobs.

Response Time vs. Thresholds

Figures 4.12, 4.13 and 4.14 show the response times for the R, algorithm
tested over a wide range of communication delays and thresholds, for the loads of
0.5, 0.7 and 0.9. It can be seen from Figure 4.12, that at low delays (D = 0.15)
and low to moderate loads (< 0.7), the optimal threshold is 0 and the performance
is a monotonically increasing function of the threshold. Also, the response time
generated at T = O is only about 50% better than the NLB value for moderate
loads (p < 0.7). For example, at p = 0.7, the R, response time is about 1.7 units
while the corresponding NLB is 3.33 units. However, at low to moderate loads,
there is significant room for improvement as compared to the M /M /K model, which
produces a response time of about 1.04 units at p = 0.7. These observations can be

explained by the following arguments:

o At low delays, the cost of transferring a job is much lower than the potential
improvement due to the effect of load sharing. Thus, T = 0 permits very

active load sharing.

e Because the delays are small, much greater certainty exists in the knowledge
that an idle node will continue to remain idle during the time it takes to
transfer a job to it. Thus, in some sense, T' = 0 ensures that all job transfers

are useful in that a remote job arrives at the node soon after it becomes idle.

For moderate delays (D = S, Figure 4.13), the behavior is as follows: Even
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at p = 0.5, there is a gain of about 15% over the corresponding NLB performance.
The response time for the NLB is 2 units while the algorithm generates about 1.7
units. The improvements at higher loads are even more substantial, being as high
as 66% for p = 0.9. The response time values for the algorithm and NLB in this
case are 3.4 units and 10 units respectively. However, as might be expected the
results do not compare very favorably against the M/M/K model, which generates
a response time of 1.3 units, for p = 0.9. Further, T = 1 for p = 0.5 and 0.7, while
T = 2 for p = 0.9, are the optimal thresholds.

When the communication delays increase to the order of 10S (Figure 4.14),
it is seen that the best that can be achieved for p = 0.5 is the NLB performance.
Thus, it would be appropriate to turn off load sharing here. For p = 0.7, a small
gain of about 5% is seen, at T = 6. This improvement is small enough that if the
interference of probes could be accounted for, the best strategy might very likely
be to turn off load sharing. However, for p = 0.9, the reduction in response time
over the corresponding M/M/1 is about 35% (6.5 units as opposed to 10 units for
N LB) and this occurs at T = 8.

Effects of Multiple Thresholds

To determine the usefulness of multiple thresholds, we studied the Ry: algo-
rithm over a wide range of loads and delays. The loads were varied between 0.5 and
0.9 and the delays ranged from 0.01S to 100S. Initially, the optimal performance
generated by algorithm R, (the single threshold counterpart of Rr:) for the above
loads and delays was recorded. The results for algorithm Rr2 indicated that the
optimal threshold-pair (T}, T;) (corresponding to probing and job transfers) resided
in the near neighborhood of the original threshold T (generated by R;), as might
be expected.

From the results of the model (details not presented here), it was seen that
for low to moderate delays, the pair (T,,7;) was identical to T. This was seen
to occur for all loads tested until delays of about 5S. At delay = 10S, and p =
0.7, T = 5, the optimal performance was generated by T, = 5 and T; = 6. At
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p = 0.9 and delay = 10S, T = 7 for R, whereas T, = 7 and T; = 8 generated the
optimal performance. However, the response time improvements in both these cases
were almost insignificant, being less than 0.25%. As the delays were increased, the
pattern was very similar, with little or no improvement being noticed over the single
threshold algorithm. Thus, we can conclude that there appears to be no benefit in

utilizing dual thresholds for the types of load sharing policies we have studied.

Network Traffic Density

Figure 4.15 depicts the effects of transfer delays on the amount of network
traffic generated by the nodes running algorithm R, for loads 0.5, 0.7 and 0.9.
For each load, two curves are presented, one depicting the rate at which a node
generates probes and other the rate at which jobs are transferred, which is the
same as the flow into or out of a node. These results correspond to the optimal
behavior generated by this algorithm under the delays indicated. For p = 0.5 and
0.7, we can see the following behavior: The job flow rate drops to zero at about 105
for p = 0.5 and at about 40S for p = 0.7. The probe curves for these loads follow a
more or less increasing function until the delays corresponding to zero job transfer
rate are reached. At this point, the curves stabilize at the value corresponding to

the following equation:

T+1

7= Lop ) _ pi[10]7,
=1
where 7 is the probe rate for a node at a particular load. The optimal thresholds
for extremely high delays (about 40S) and loads < 0.7 are very high (in essence,
they are infinite because no load sharing is being performed). Thus, every time a

job completes, a node sends out reverse probes.

At first glance, the behavior for load of 0.9 appears to violate the above rules.
One is inclined to believe that probe rates should increase with loads, for high
delays. However, this is not borne out by the probe curve for p = 0.9. The reason

for this behavior is the following: As the delays increase, the optimal performance
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produces very little load sharing. However, as long as the flow rate of jobs is greater
than zero, a large fraction of the time is spent waiting for remote jobs to arrive and
consequently the nodes do not send out probes upon completion of jobs (recall that
for algorithm Rg, there can be at most K pending remote jobs. In this set of tests,
we have set K = 1). From Figure 4.15, we can see that even at delay = 1005, the
flow rate of jobs is about 0.01 units. From the above equation, we can predict that
at even larger delays, when load sharing at p = 0.9 will cease completely, the probe
rate will stabilize at 1.8 units. Thus, Receiver-Initiated load sharing algorithms
appear to have the shortcoming that even though no load sharing is performed at
very high delays, the nodes continue to generate probes at a very high rate. These
probes could potentially interfere with other traffic on’ the network. Sender-Initiated

load sharing algorithms do not possess this property [TOWS87].

4.5 Summary and Conclusions

This study was concerned with the performance analysis of Receiver-Initiated load
sharing policies in the presence of job transfer and probing delays. The algorithms
that we tested were called Ry, Rk.,., Rp, Rp, and Rr:. All of the above algorithms
were tested over a large range of parameter values. In addition to the job transfer

delays, Rp and Rp, were subjected to the effects of probing delays.

The analysis of the distributed load sharing algorithms was carried out using
the Matrix-Geometric solution technique. Because the Markov process of the entire
network appeared to be computationally intractable, the system was solved by
decomposing the state of the Markov process. This decomposition resulted in an
approximate solution for the original Markov process. However, comparisons with
simulation studies of 10-20 node systems indicated that the decomposition was very

accurate, with the variation being less than 5%.

Some of the key observations that we made from our studies were as follows:

e In Chapter 3, we had restricted the value of K (the maximum number of
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pending remote jobs at a node) to exactly one. The motivation for this was
the resulting simplicity, because in the general case, the value of K could be
infinite. In this chapter, we studied the effect of varying K on algorithm Rg
and concluded that under most values of parameters, K = 1 is a very good

approximation for the general case.

In comparison studies between R; and R;,, it was seen that when the transfer
delays were small, R, outperformed R;,. quite convincingly, over most of the
range of loads tested. This effect is more prominent at high loads and low to

moderate delays because more active load sharing can be performed.

In order to simplify the analysis for the Rx and Ry, algorithms, we had
assumed that probes took zero time, while jobs were subject to transfer delays.
Subsequently in this study, we relaxed this assumption and determined the
effect of probing delays. In the context of reverse probing schemes, this meant
that negative replies to probes took non-zero times. In all the studies that we
conducted for this aspect of the problem, it was seen that as long as probing
time was less than 1/10th of the job transfer times, the system essentially
behaved like one with zero probing times. We postulate that that probing
will take a small fraction of the job transfer time, because of the possible
relative sizes of these two entities. Thus, it seems reasonable to assume that

probes take zero time.

A representative study of algorithm R, over a large range of loads and delays
was performed. It was seen that the most significant gain in performance over
N LB was seen at high loads (> 0.8). At low to moderate delays, load sharing
was viable even for low loads. At very high loads, p > 0.9 there appeared to
be a substantial benefit from load sharing, even when delays were very high,

as much as 10S5.

We studied the effects of dual thresholds on an algorithm called Ryz and

noticed that very little or no benefits accrued from this change.
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o We studied the effects of delays on network traffic densities. It was seen
that as delays increase, the optimal performance generates fewer and fewer
job transfers, with complete cessation of load sharing when delays become
very high. However, nodes continue to generate probes at a fairly high rate
(which stabilizes after a specific value of delay which is dependent upon load).
This would appear to be a shortcoming of Receiver-Initiated load sharing

algorithms.
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Chapter 5

LOAD SHARING IN HETEROGENEOUS SYSTEMS

5.1 Introduction

In the previous chapters, we studied load sharing in homogeneous systems where
the arrival rates and processing speeds of jobs were identical at each node. In this
chapter, we study the performance characteristics of simple load sharing algorithms
for heterogeneous distributed systems. Heterogeneity in distributed systems can
arise primarily in the following two ways: In the first instance, all the nodes in the
system may be identical with regard to their processing capabilities and speeds.
However, the rate at which external jobs arrive at one or more nodes may differ
from that at other nodes in the system. In the second instance, nodes although
functionally identical, may process jobs with different speeds (in such systems, the
arrival rates of jobs at various nodes may also differ. We refer to these kinds of
heterogeneous systems as type-1 and type-2 systems, respectively. Thus, type-2
systems may indeed be a generalization of type-1 systems). The study of such
systems is interesting because many real systems tend to satisfy either one or both
of the above conditions. In this chapter too, we assume that non-negligible delays
are encountered in transferring jobs from one node to another and in gathering
remote state information. This chapter analyzes the effects of these delays on the
performance of two algorithms that we call Forward and Reverse. We formulate
queueing theoretic models for each of the algorithms operating in heterogeneous
systems under the assumption that the job arrival process at each node is Poisson
and the service times and job transfer times are exponentially distributed. Each
of the models is solved using the Matrix-Geometric solution technique and the

important performance metrics are derived and studied. Wherever relevant, we
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compare the results of these algorithms against a Random job assignment algorithm
as well as the no-load-balancing M/M/1 and perfect load balancing at zero cost

M/M/K models.

The remainder of this chapter is organized as follows: In Section 5.2, we pro-
vide a brief description of the system architecture and the load sharing algorithms
and describe the differences in the assumptions made in this chapter as compared
to the previous chapters. Section 5.3 contains the description of the Markov process
corresponding to the algorithms and their Matrix Geometric solution. In Section
5.4, we describe the important results of this research and we summarize our work

in Section 5.5.

5.2 System Architecture and Load Sharing Algorithms

We assume that the system under consideration is comprised of C distinct classes
of nodes. This classification is performed on the basis of external arrival rates of
jobs and/or the processing speeds of nodes. All the nodes in a particular class are

assumed to be identical in every way.

5.2.1 Load Sharing Algorithms

The two algorithms that we have studied in the context of this research are called
Forward and Reverse. Each algorithm is provided with thresholds T,, ¢ = 1,...,C,
one for each class of nodes. The algorithms are described in the following para-

graphs.

o Forward: The algorithm is activated each time a local job arrives at a node.
If the number of jobs at this node (including the job currently being executed)
is greater than T + 1 (the node in question belongs to class-c), an attempt is
made to transfer the newly arrived job to another node. A finite number, L,,

of nodes (usually L, = 2 or 3 is adequate) is probed at random to determine



93

a placement for the job. A probed node responds positively if the number
of jobs it possesses is less than T; + 1 (the probed node belongs to class-
d) and it is not already waiting for some other remote job. If more than
one node responds positively, the sender node transfers the job to one of
these respondents, chosen at random. If none of the probed nodes responds
positively, i.e., this probe was unsuccessful, the node waits for another local

arrival before it can probe again.

¢ Reverse: This algorithm is activated every time a job completes at a node
and the total number of jobs at the node is less than T, + 1 and the node is not
already waiting for a remote job to arrive. If so, the node probes a subset of
size L, remote nodes at random to try and acquire a remote job. Only nodes
that possess more than T; + 1 jobs, (including the one currently executing)
are allowed to respond positively. If more than one node can transfer a job,
the probing node chooses one of these nodes at random from which it requests

a job.

Implicit in the above algorithm descriptions is the assumption that a node
randomly probes other nodes, i.e., a class-¢ node is as likely to be probed as a
class-d node. In general, this assumption may be relaxed for potential performance
benefits. For instance, if nodes possess information about the membership and load
of each class, it might be possible to bias probing towards one or more classes.
Thus, at each probe, class-c nodes may be selected with probability f. (with nodes
in a class being selected in an equiprobable manner). In the general case, f. 4 is the
probability that a probing node of class ¢ will choose class d nodes, Zle fea =1, Ve.

We will study the effects of varying these class selection probabilities in this chapter.

In the algorithms described above, it is assumed that probing takes zero time.
This is based upon the assumption that probes are much smaller entities than are
jobs. Thus, the overhead for processing a probe is much smaller than for jobs.
Further, probes occupy much less of the communication bandwidth than jobs. Thus,

the entire delay is assumed to occur during actual job transfer. We have seen in
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Chapter 4 that as long as the ratio of job transfer times to probe transfer times
is sufficiently large (> 20), the system essentially behaves as if the probes actually

take zero time.

5.3 Mathematical Analysis

It is assumed that the job arrival process at each class-¢ node is Poisson, with
parameter A.. Also, the service times and job transfer times for class-c nodes are
assumed to be exponentially distributed, with means 1/u, and 1/~,, respectively.
In our study, we have assumed that «, is independent of the class of nodes under
consideration. Thus, for the remainder of this chapter, v, = v, Ve. The job transfer
time includes the time between the initiation of a transfer from a node and the
successful reception of the job at the destination node. The nodes in each class
are assumed to be identical, i.e., the nodes have identical processing power and the
arrival process at each node is the same. Jobs are assumed to be executed on a

First-Come-First-Served (FCFS) basis at each node.

Let N, “*) be the number of jobs at node ¢ in class-c¢ at time ¢t and J; ") be the
probe state of the ¢th class-¢ node, at time ¢. The probe state indicates whether
the node is probing or being probed, etc. For example, in a system which has M,
nodes in class-c, the instantaneous state of class-c nodes can be represented by the

2M,-tuple

(N(c) , J(c)) d__g-f (Nt(c»l), Nt(cnz) oo t(C:M); Jt(c,l), Jt(cvz)’ s t(cvM'?))

The instantaneous state of the entire network (over all the node classes) may be

represented by the following:

(N,J) E (N, J), (N@), J@), . (N(©), 7))

If the probe state J,(c’i) is defined appropriately then, due to the Poisson ar-

rival assumption and the exponential service and job transfer times, the process
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corresponding to the above state description is Markovian. It is clear that the
Markov process representing multiple classes has a very large state space and ap-
pears extremely difficult to solve, even for moderately sized systems. Consequently,
we decompose the model in the following way: Each node is modelled independently
of the others. Because there are C different classes, this results in C distinct sin-
gle node queueing models. Further, we assume that the behavior of each node in
the system is Markovian. The interactions between the nodes which result in job
transfers for the purpose of load sharing in the distributed system, are modelled by
means of modifications to the arrival and/or departure process at each node. These

interactions will be described in detail further in this subsection.

We conjecture that the method of decomposition is asymptotically exact as
the number of nodes in each class tends to infinity. Actual simulation results indicate
that there exists very good agreement between the model and simulations even when
the systems are of relatively small size (10-15 nodes in each class). We expect the

approximation to be even better for larger systems.

The analysis of the algorithms is performed using the Matrix-geometric so-
lution technique [NEUTS81], which yields an exact solution of the model for each
node. The analysis of the Forward and Reverse algorithms will be described in

detail along with a presentation of the main performance metrics.

The material in this chapter involves several Jacobi matrices, whose detailed

definitions will be provided as in Latouche [LATO81]. Again, a matrix such as

[ bp ¢ 0 O
ay bl Ci 0
0 asz bz Co

Am—2 bm—2 Cm—-2 0
0 Q-1 bm— 1 Cm-1
0 0 am bm

will be displayed as
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€0 €1 -+ Cm-3 Cm-2 Cm-1
bo by by . bmog bn_y b
a, a as ... Qm-_y Ay

5.3.1 Forward Probing

Figure 5.1 represents the state diagram for the Forward probing algorithm operating

at a single node of class-c using an arbitrary threshold T.. The state of the node is

represented by a tuple (Nt(c), ,(c)), where N9 is the number of jobs at a node and

J,(C) is the probe state that indicates if the node is being probed or not. The probe

states have the following codes:

e 0 : if not being probed,

e 1: if being forward probed,
We define

y(r,j) = lim P(N{) =n, ) =7),0<n,0<5 <1,

Szc) = (y(n,O),y(n, 1))’ 0<n,

5 = (p¥,pl, pi,....p, ).

If the Markov process (N(¢), J(9)) is ergodic then 5(®) is its steady state prob-
ability vector satisfying 5Q§f) = 0, where Q}f) is the infinitesimal generator this

Markov process. Q;f), the infinitesimal generator for the Forward probing algo-

rithm for class-c nodes, has the structure of a block-tridiagonal matrix of the form
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BY) .. BY) BY) af 4f
Q¥ =| BY BY .. BY AP 4P 4
AG 4G Al 400 40 400

with exactly T, — 1 columns of (B, B{?, A1) Each class of nodes in the

system will be associated with a unique generator.

In the subsequent discussion, k. is the probability that a class-c¢ node is un-
successful in finding an assignment for a spare job in response to a set of forward
probes. Thus, h, = 1 — h., is the probability that at least one of the probed nodes
will accept a remote job. The effect of a node sending a set of unsuccessful forward
probes when it surpasses T, + 1 is represented by the transition Ach.. When a re-
mote node sends a forward probe into this node, it makes the transition from (n,0)
to (n,1), where 0 < n < T,. This means that the remote node will transfer a job
to this node, on the basis of a successful probe. The rate at which a class-¢ node

receives forward probes is denoted by a..

5.3.2 Reverse Probing

Figure 5.2 represents the state diagram for the Reverse probing algorithm operating
at a single class-c node using an arbitrary threshold T.. The state of the node is
represented by a tuple (N,(c),J,(c)), where N{? is the number of jobs at a node and

J,(c) is the probe state that indicates whether the node is probing or not. The probe

states have the following codes:

e 0: if not probing,

e 1: if reverse probing,

The infinitesimal generator matrix for this process (for class-c nodes) is:



Figure 5.1: State Diagram of Forward Probing Algorithm

Figure 5.2: Stace Diagram of Reverse Probiﬁg Algorithm
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AP LoAD 4l 4l 4l
o= | Bg BY .. BY BY AP A
B By .. By 4P a4 4y

with exactly T, — 1 columns of (4!, B{, B{). Each class of nodes will be

associated with a unique generator.

We define g, to be the probability that a class-c node is unsuccessful in finding
a remote job from a set of reverse probes, and §; = 1 — ¢.. When the node makes a
transition on the completion of a job and the remaining number of jobs is less than
T. + 1, it sends out reverse probes if it is not already waiting for a remote job to
arrive in response to an earlier reverse probe. Thus, at any time a node may wait
for at most one remote job to arrive. In Chapter 4 we specifically addressed this
assumption for Receiver-Initiated algorithms and concluded that there was almost
no difference in performance for these algorithms if multiple outstanding remote jobs
were allowed. A successful transition is represented by u.g; and an unsuccessful set
of reverse probes is represented by the transition u.g.. A transition of this type is
represented from (n,0) to (n — 1,1), where 0 < n < T, + 1. The rate at which this
node sends out jobs in response to nodes that asked it for jobs is u.. Thus, the

rate at which a node makes the transition (n,j) to (n — 1,7), for n > T, + 2 equals
fe + -

As can be seen from the generators Q% and Q%, the Markov processes possess

a regular structure comprised of the A(()c), Agc) and Agc) matrices, preceded however

by the irregular boundary conditions. The size of the irregular portion of the matrix

depends upon the threshold at which the process is operating. There are exactly

T. — 1 columns of the matrices (Bécl), Bﬁ), Agc)) in the case of Forward probing and

exactly T, — 1 columns of (A!”, B{, B{J) in the case of Reverse probing.
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5.3.3 Matrix-Geometric Solution

Neuts [NEUT81] examined Markov processes with such generators and determined
the conditions for positive recurrence when the infinitesimal generator A{®) = Ag’) +

Aﬁ" +Ag°), corresponding to the geometric part of the Markov Process, is irreducible.
However, for our problem, A4 is lower triangular and reducible. In such cases, the

stability criterion has to be determined explicitly.

Consider the non-linear matrix equation
AP + ROAP + [ROPAY =0
such that R(®) is its minimal non-negative solution. It can be shown that R(®) is lower

triangular, given the structure of A\, 4!” and Al [NEUTS81]. Also, R9) = [r(c)]

%)

can be written as follows:
Tm = /\chc/:u'c

0: + Y ((0c + '7)2 - 4:u'c’\chc)l/2
2u,

A =

{e) 7
6. - (rﬁ + rgf%)'u'c

s

where 8, = A.h, + p.. It can be shown that the stability criterion for the
Forward probing algorithm is

Ache < ..

Thus, the diagonal elements of R can be written explicitly in terms of the
parameters of the Markov process. Once the diagonal elements are determined,
the elements below the diagonal are computed recursively from the solution of the

diagonal elements.

By adapting Theorem 1.5.1 from Neuts [NEUT81], the Markov process Qp

is positive recurrent if and only if sp(R;) < 1 and the matrix M, (defined below)
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possesses a positive left invariant probability vector. Because R, is lower triangular,

its eigenvalues are its diagonal elements.

The matrix M., given by

Bf) .. Bf} | B} |
BY) BY .. BY A+ ROAf
AP AP LAY

is an irreducible, aperiodic matrix. The second condition holds because of the

irreducibility of M.. The vector (p(()c), pﬁ", ....,pgf_)H) is the left eigenvector of M..

Intuitively, the stability condition means that the rate of processing jobs (in-
cluding the ones that are sent out of this node) is greater than the total arrival rate
of jobs into this node. Thus, on the average, whenever there are more than 7'+ 1
jobs at a node, the process drifts towards the boundary specified by the threshold
T. Similar analysis may be carried out for the Reverse probing algorithm, with the

appropriate substitution of parameters.

For the Reverse probing algorithm, R, = [r(c)

. 7] can be written as follows:

P = A/ (s + 1)

r(c) — ¢c +v- ((¢c + ’7)2 - 4(/‘: + l‘;)Ac)l/z
i 2(ke + 1)

i) =0

rgfi = (¢) c

¢ —(r1q + rz,%)(#a + )

where ¢, = A, + 1. + u’c. It can be shown that the stability criterion for the Reverse
probing algorithm is

Ac < po + U,

Intuitively, this means that the rate of processing jobs (including the ones

that are sent out of this node) is greater than the total arrival rate of jobs into this
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node. Thus, on the average, whenever there are more than T. + 1 jobs at a node,

the process drifts towards the boundary specified by the threshold T..

We now assume that all the values of all the parameters are known. First,
the boundary conditions are determined, by solving a system of linear equations.

Thus, for an arbitrary threshold T,, we have, for the Forward probing algorithm

o @ . BY) .. B} Bf;
(Ps”, Py, Prt) | BYY B .. B Al +ROAP | =0
AL Al Al

where the number of columns in the matrix is exactly T, + 1. The equation

corresponding to the Reverse probing algorithm is described as follows:

o “ AlY LAY Al
(Po”,Pi" s Prs1) | Bl B ... B BY +ROAY | =0
B BY .. BY

We know from Neuts [NEUTS81] that
(¢) — nl) R(C) Yi>T 1
P Pryfir, i Ve 2 I+
Thus,

> P =P, (I - R9)™
i2T.+1

Also,

T.
3P + P, (1 - RO) e =1

i=0
where R(9 is the minimal solution of
AY + ROAY 4+ (RO =0

with R(9 > 0 and the spectral radius of R(°),sp(R(c)) < 1, and I is the identity

matrix.
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E[N.], the expected number of jobs at a node of class-c, and E[D,], the
expected response time of a job of the same class, are given by the following ex-

pressions:

E[N] = Y iple

i>1
= pgfc)H(I—R( )) e+ T, *[PT+1 (I - R e]+Zzp‘

(E[Nc] + jFlow;In!c“)
e

E{Dc] =

where ¢, is the throughput of class-¢ nodes and Flow — In(¢) is the flow into a
node of remote jobs due to forward or reverse probes, depending upon the algorithm

being used.

Further, the average response time of jobs over all classes in the system is

given by:

1 C
MM:EZ@ED
c=1

where

is the throughput of the system over all classes.

In the next subsection, we derive the equations required to determine the
values of the unknowns h, and ¢, for Forward and ¢q, and p.'c for Reverse and describe

the iterative algorithms used to solve the resulting models for the two algorithms.
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5.3.4 Computational Procedure

We now describe the computational procedure used to determine the unknowns in
the case of Forward probing. A similar procedure is used for Reverse probing, with
the proper substitution of parameters. Initially, it is assumed that the values for
h. and «, are known for all classes and the model is solved using these values. In
a typical step, a model solution is used to derive new values for k. and «a., for all
classes, and a new solution is computed. The iteration procedure that we use is

described in a step-wise form, after the following definitions.
e FFRO, : Flow rate out of jobs from a class-¢ node, as a result of forward
probes made by it.

e FFRI, : Flow rate of jobs into a class-c node, as a result of forward probes

made to it by other nodes in the network.

e RFRO, : Flow rate out of jobs from a class-c node, as a result of reverse

probes made to it by other nodes in the network.
e RFRI. : Flow rate of jobs into a class-c node, as a result of reverse probes

made by it.

Let + denote the iteration count. Thus, hici), ey, FF ROS‘) denote the value

of the class-¢ variables after the i-th iteration.

Iteration Procedure
1. Let 1 =0;¢=1
2. Choose values for h(.q), a(c0), FFROV

3. Determine Qg;f") from h ), a(c

4. Determine Rl(gf")
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5. Solve the linear system corresponding to the boundary conditions
6. Determine FF ROE‘*‘) from the model solution
7. Repeat steps 2 through 6 for classes 2 through C

8. If ABS(FFROU+Y) — FFROW) < ¢ for all classes, where ¢ is an arbitrary

small number, stop, else

9. Lett=1t+1;¢=1Goto3

A similar procedure is used for Reverse probing, with the unknowns being ¢,
and u; and the stopping criterion being based upon RFRO,, similar to that in the
case of Forward prob‘ing. We have observed from experiments that the solution was
insensitive to the initial values chosen for the unknown quantities. Consequently, we
conjecture that there exists a unique solution to the models. Further, the number
of iterations required for convergence was usually small, ranging between 20 and

40.

We define the following quantities:

o Probe — Out, : Rate of successful forward probes made by a class-c node.

e Probe — In, : Rate of successful reverse probes made to a node of class-c.

To determine the values of the unknowns k. and a, for the Forward probing

algorithm, we use the following equations:

C
FFRI, = z,%_ FFRO; fi., Ve,

d=1

Probe — Outy/hy,

FFROy

Probe — Outy = Mjhg Z pfd)e,

>Ty+1
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Further,

z.= Y p? 017 + 3 ple.

i<T. i>T,

is the probability that a class-c node is unable to accept a remote job. Also,

T, =1-— z,.

where rqy = Ec(’;l fa.T., is the probability that a forward probe made by a
class-d node is unsuccessful and 7; = 1 — r4 is the probability of a successful probe.
And hy = (r4)f», is the probability that L, forward probes made by a class-d node
are unsuccessful. hq = 1 — hy is the probability that at least one of the probes is

successful.

FFRI, can also be expressed as follows:

FFRI, = a.ZT;

In order to determine a., the the rate at which a class-¢ node receives forward

probes, we can rewrite the above equation as:

a. = FFRI. /%,

To determine the unknowns p,'c, and ¢. for the Reverse probing algorithm, we

use the following equations:

RFRO, = Probe—In %,

(o}
Probe — In, = Y RFRI, fi /¥,

d=1

T+l 4
RFRI; = paga ). p\” [10]

=1

where
T. = Z pSC)e

i<T,+1
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is the probability that a class-c node is unable to provide a spare job and , = 1—z,.

Further,
c
Y = E fc,dzd
d=1

is the probability that a reverse probe made by a class-c node is unsuccessful and
Yo = 1 — y.. Also, ¢. = (y.)™ is the probability that L, reverse probes made by a
class-¢ node are unsuccessful. g; = 1 — ¢, is the probability that at least one of the
probes is successful. The rate at which a class-c node sends out jobs in response to

reverse probes made to it is

' RFRI,

e = ST 753~
Zist.+1Ple

In summary, we have now developed the procedure and determined the equations
necessary to solve for the unknown parameters of the two Markov processes. Next,
we study the performance of the algorithms under a large range of system parame-

ters.

5.4 Performance Comparisons

In this section, we study the performance characteristics of the algorithms in the
two main classes of heterogeneous systems, i.e., where the external job arrival rates
at nodes may differ, and second, where the nodes themselves may have different
processing speeds. Even though the analysis presented in the previous section is
valid for an arbitrary number of node classes, we restrict our study to systems with
two distinct classes. The reasons for this restriction are the following: Firstly, the
computational effort required to study heterogeneous systems grows at a higher
than linear, and may at times, grow exponentially. For example, a brute force
search of the optimal thresholds for a set of parameters is easily seen to grow
asymptotically as O(T), where 0...T is the range of thresholds and C is the

number of classes under consideration. Secondly, even from the results of systems
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with only two classes, we believe that it is feasible to predict many of the interesting
characteristics of more complex systems. For the subsequent discussion, when we
refer to the quantities in both classes, we use the following system: For example,
(T1,T;) refer to the operating thresholds at nodes of the two classes. All other

parameters are represented in a similar fashion.

Wherever relevant, we compare the algorithm’s performance to that of the
Random assignment, the no-load-balancing or M/M/1 results, and the M/M/K
system or an appropriate lower bound for heterogeneous systems of type-2 (called
L B;, which we describe in Appendix C at the end of the dissertation). The Random
assignment algorithm is the same as that described in Chapter 3. Briefly, a class-c
node that has a local arrival and its total queue length is > T. + 2, transfers the
new arrival to another node, chosen at random. In the simplest case, the nodes
do not possess information regarding classes. However, in this algorithm too, as
in Forward and Reverse, it is possible to bias the selection of classes, with nodes
in a class being picked randomly. In all the subsequent studies in this chapter we
will assume that, the probe limit, L, = 2, unless mentioned otherwise. Further,
S. = 1/u. is the mean service time for jobs executing at class-c nodes. For type-1
systems, S} = S; = § = 1 unit. Also, p; and p, are the loads for nodes of class-1

and class-2, respectively.

5.4.1 Type-1 Heterogeneous systems

In this study, p, = 0.9, is kept fixed for all the tests conducted. However, p; is
varied between 0.1 and 0.7, in steps of 0.2. Thus, we examine systems in which the
degree of heterogeneity (in this case the ratio of loads of the two classes) is varied
over a large range. Although we have conducted tests for all four values of p;, we
will present only those results which are most interesting. In general, we always
present detailed discussion of the results when p; = 0.1 and 0.7, representing very
high and very low degrees of heterogeneity, respectively. Wherever relevant, we also

comment on the results of the other two loads of 0.3 and 0.5.
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As might be imagined, the number of parameters that it is possible to vary
in the study of these algorithms is very high. We will try to limit this study to
what we believe are its most interesting aspects. These items are presented in the

following list:

e Validation of analytical models with simulations

¢ Effects of varying the probe limit L,

o Effects of varying (T}, T3)

o Effects of biasing the probing probabilities, (f.q4, 1 < ¢,d < 2)
o Performance of Biased Random

¢ Optimal response times under a large range of job transfer delays

Validation of models with simulations

As mentioned in Section 5.2, the solution technique we have used is only
an approximation for finite sized multiple class systems, which is conjectured to
be exact for infinitely large systems. Consequently, we have conducted simulation
studies of systems executing the load sharing algorithms and compared these with
the results of the analytical models. These comparisons help us determine the
minimum sized systems for which our analysis is valid. We present the results for
the Forward probing algoritﬁm. The results of Reverse probing are very similar and

consequently we will not describe these.

Figure 5.3 depicts the results of the analytical model for (p;,p;) values of
(0.9,0.1) to (0.9,0.7), with p, increasing in steps of 0.2. The three curves are for
three values of delays tested, i.e., 0.15,5 and 10S. These curves represent the
average total system response times of the aralytical results. Also shown in the
curves are the 95% confidence intervals, as computed by the Student-t tests, with
simulations performed using the method of independent replications. We have cho-

sen not to specifically show the results of the simulation experiments because they
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were very close to the analytical results, with the variation being less than 2 — 3%.
The simulation experiments were conducted on systems of increasing size, until the
results showed good agreement with those of the analytical model. The curves in
Figure 5.3 represent results of simulations where the classes comprised of 15 nodes

each.

From the simulation experiments, we have seen that with about 15 nodes or
more in each of the two classes, the results appear to be very good. Smaller systems
tend to generate larger errors, as might be expected. For example, with classes of
10 nodes, the errors were as large as about 5-7% (these results are not depicted in
Figure 5.3). In Chapter 3, we had seen that for homogeneous systems, systems of at
least 15 nodes provided very good agreement with the analytical results. It might
thus appear that for heterogeneous systems, at least 15 nodes per class might be
the requirement, in order to have very high agreement between the analytical and

simulation results.

Effect of varying L,, the probe limit

In this study, we consider the effect of varying the probe limit on the perfor-
mance of the two algorithms. In general, probes can generate processing overheads
which may degrade system performance and in real systems, this overhead would
need to be traded off against the response time improvements that increased probing
may offer. Figures 5.4 and 5.5 depict the results of varying L, between 1 and 10 for
two different sets of loads for the Forward probing algorithm. In Figure 5.4, (py, ps)
=(0.9,0.1) and in Figure 5.5, (0.9,0.7). The three curves in each graph correspond
to different values of delays, i.e., 0.15, S and 10S. These three values of delays serve
as examples of small, moderate and high delays respectively. From Figures 5.4 and

5.5 we can make the following observations:

¢ Increasing the probe limit beyond 3 or 4 appears to provide little or no im-
provement (3-4%) in response times. However, increasing L, may increase the

overhead on the processors and network.
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e When the degree of heterogeneity is large, as in the case of Figure 5.4 the
system response time is less sensitive to L, than in a more balanced system.
From Figure 5.4, which represents a a highly heterogeneous system, it is easily
seen that going beyond L, = 2 does not provide significant performance benefit
(at most 3-5%). On the other hand, slightly different behavior is depicted in
Figure 5.5, where at delays of 0.15 and perhaps even at S, L, = 3 seems
the proper limit (with about 10% gain over L, = 2). The main reason for
this behavior is the following: When systems are very highly unbalanced, a
forward probe made by a node is very likely to find a recipient (even when
the class selection is equiprobable). However, as the degree of heterogeneity
decreases, a probing node needs to work harder to find a placement for a spare

job.

e At very high delays > 108, the performance is less sensitive to L, than at
lower delays. This is because of reduced load sharing at high delays, caused

by the high operating thresholds.

From our tests on systems with (p,, p2) = (0.9,0.3) and (0.9,0.5) in connection
with Ly, (results not presented here), we have seen that a gradual change occurs in
the behavior. Thus, (0.9,0.3) behaves more like (0.9,0.1) than (0.9,0.7) while the
behavior of (0.9,0.5) approaches (0.9,0.7), as might be expected. Further, we have
seen that when p, is smaller, for example, 0.8 and less, there appears to be less
sensitivity to probe limit. Again, this is because a probing node is more likely to

find a recipient for a spare job, because the net load on the entire system is lower.

Figures 5.6 and 5.7 depict the results of identical tests performed on the
Reverse probing algorithm. The loads indicated in Figures 5.6 and 5.7 are (0.9,0.1)
and (0.9,0.7), respectively. From Figures 5.6 and 5.7, we can make the following

observations:

¢ Reverse probing appears more sensitive to probe limit, particularly when the

degree of heterogeneity is large, as in the tests corresponding to Figure 5.6.
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This is because a probing node is less likely to find a spare job since class-2
nodes are very lightly loaded. Thus, a probing node needs to work harder to
find a spare job. In general, it would appear that three or even four probes

offer significant performance benefits.

e When delays are larger, the effect of increased probe limit is not as pro-
nounced, except when p;=0.1. This effect is due to the high thresholds which

reduce load sharing in the first instance.

o Another possible explanation for the higher sensitivity to L, when the degree
of heterogeneity is large is as follows: Very few jobs execute at class-2 nodes.
Thus, after an unsuccessful set of reverse probes, the node waits for a long
time before another probe can be made. Thus, each time probes are made, it

becomes much more critical that a spare job be found.

Effect of varying thresholds (T}, T:)

The motivation behind these tests is to determine the sensitivity of thresholds
in either class. This may provide some clues about how critical it is to choose the
proper thresholds. Initially, the optimal threshold pair, (T}, T:) is determined for
the loads and delays of interest. Then, while keeping T}, fixed at its optimal value,
we vary T over a large range. Next, we keep T} fixed at its optimal value and vary
T;. Figures 5.8 and 5.9 show the effects of varying T; and T3, respectively, for load
(0.9,0.1), and delays 0.15,S, and 10S. Also shown in the graphs are the results
from the M/M/1 and the perfect load balancing at zero cost M/M/20 systems.
Figures 5.10 and 5.11 depict the results of identical tests conducted when the loads

were (0.9,0.7), respectively, for the two classes.

From Figures 5.8 and 5.9, we can see that the performance of the algorithm
is very sensitive to T, particularly when the delays are < S. In these cases, T} = 0,
for optimal performance. For a delay of 10S, the optimal value for T} is 4. In
comparison, the performance is insensitive to changes in T3, showing an almost flat

behavior in Figure 5.9. This is because the nodes of class-2 are so lightly loaded that
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increasing the threshold does not substantially increase load sharing. Even when T,
is low (=1), there is high probability that a class-2 node is at or below its threshold
(because p; = 0.1). However, from Figures 5.10 and 5.11, it is clear that when the
degree of heterogeneity is small (py, p2) = (0.9,0.7), the effects of varying T} and T,
are almost identical, although the performance appears marginally more sensitive
to T1. Furthermore, we have seen that this behavioral change occurs gradually, over
the range of heterogeneity we have tested the algorithm (results for p,= 0.3 and 0.5

are not presented here for brevity).

We have conducted similar tests for the Reverse probing algorithm and the
results of these tests have shown us behavior similar to that of the Forward probing
algorithm. Here too, the performance of the system is much more sensitive to
changes in T} than it is to T, especially in systems with greater load imbalance.
The reasons are as follows: When T; is increased above a certain amount (1-2), there
is no increase in load sharing as the class-2 nodes are so lightly loaded that they
rarely go above 1 or 2. However, increasing T} above a certain amount drastically
reduces the transfer of jobs to class-2 nodes, thus resulting in poor performance. As
might be expected, when the systems become more alike, the effects of varying the
two thresholds become very similar. Consequently, we will not present the results

of these tests conducted on the Reverse probing algorithm.
Effect of biased probing

In all the studies conducted thus far in this research, a probing node was
equally likely to choose a class-1 or a class-2 node. Using our earlier notation,
fe,a = 0.5, Ve,d (this is asymptotically exact as the number of nodes in each class
grows equally large). Intuitively, one is inclined to believe that some type of focussed
probing could be useful in heterogeneous systems. For example, when (p1,p2) =
(0.9,0.1), a node trying to make a forward probe is more likely to find a placement
at a class-2 node, while a node making a reverse probe is more likely to find a
spare job with a class-1 node. The question then is to determine if and when biased

probing can make a substantial difference in performance and reduce the probe limit
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in the process. To conduct this part of our study, we have adopted the following
procedure. The optimal and next-to-optimal threshold pair (T},T:) were chosen
from the earlier experiments on the variation of thresholds. Recall that L, was 2 in
those tests and that probing was unbiased. These two threshold pairs were taken
and the performance under biased probabilities was plotted. Here too, we have

conducted more tests than we depict.

Initially, fi1 = f21 = fi, and fi2 = fo2 = f2. Also, fi + f2 =1, at all times.
Recall that f, is the probability that a class-¢ node will be selected by a probing node
of any class. Figures 5.12 and 5.13 depict the results of the experiments conducted
on the effects of biasing the probes in the study of Forward probing. Each graph
shows 6 curves, two each for three values of delays, 0.15,S and 10S. The two
curves for each delay correspond to the two threshold pairs that we mentioned
in the previous paragraph. From Figure 5.12 (load (0.9,0.1)), we see that the
equiprobable selection of classes is only marginally worse (at most 5%) than the
optimal fractions. However, from Figure 5.12, it is clear that when the classes are
more or less balanced, (0.9,0.7), it is best to have unbiased (or close to it) selection

of classes for Forward probing in heterogeneous systems.

The reader might wonder as to why we have chosen to depict results from the
next-to-optimal threshold pair along with the results of the optimal pair. The de-
cision to select the next-to-optimal was arbitrary. However, we wished to illustrate
that there are a large number of parameters that can affect the "optimal” perfor-
mance. From both Figures 5.12 and 5.13, we have seen that the optimal threshold
pair under the equiprobable assumption may not always be ”optimal” under the

biased selection strategy.

Finally, we study the effect of biased probing upon the Reverse probing al-
gorithm. Here, we will only depict one set of curves, for load (0.9,0.1), because
this is quite different from its Forward probing counterpart. The same values of
delays are tested as well as again the optimal and next-to-optimal thresholds under

the equiprobable assumption are selected. Figure 5.14 shows the results from these
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tests. From the curves shown in the figure, we can see that there is between 30-
40% improvement by correctly biasing the probabilities, when the delays are < S.
The effect is less pronounced for higher delays. This result is explained by the fact
that Reverse probing is much more sensitive to probe limit when the imbalance
in systems is large. Thus, each probe is very important and when L, = 2, biasing
appears to provide substantial benefits. In any event, as the degree of heterogeneity
is decreased, the effect of biased probing becomes less prominent, as was seen in the

case of Forward probing.

Thus, from our studies concerning biased probing, we are able to reach the
following conclusions: Biasing appears to have a second or third order effect on
response times, except in the case of Reverse probing in highly heterogeneous sys-
tems. However, even with the inclusion of proper biasing, Reverse is unable to
outperform unbiased Forward for such systems. We have seen from the graphs on
biasing that choosing incorrectly biased probabilities has a much more detrimental
effect on performance than equiprobable selection. If the biasing probabilities were
optimized for a certain load pattern and the system load changed over time (for
example, a load of (0.9,0.1) changed to (0.1,0.9) for the two classes) the old values

of the bias could result in highly sub-optimal performance.
Performance of Biased Random

In the description provided for the Random assignment algorithm, it was
stated that any node in the system was equally likely to be a recipient for a trans-
ferred job (Unbiased Random). Thus, in a system with two classes, a node executing
the ”Unbiased” Random algorithm will transfer approximately half its spare jobs to
either class of nodes (in the limiting case as the number of nodes in each class be-
come equally large). We now present results of Random assignment when the class
selection for transferring a job is biased towards one class or another (with nodes
within a class being selected in an equiprobable rnannef, similar to the probing

case).

Figures 5.15 and 5.16 depict the results of the tests conducted on the Random



o W3 oT UV OR

o B He-3

6.5‘*['

f1

Delay=0.18
"""""""""""" Delay=S
----- Delay=108S

Figure 5.15: Effect of Biased Random (p, = 0.1)

1.0

128



o nwbowunwo™

o B r-3

f1

Delay=0.18S
"""""""""" Delay=S
----- Delay=108S

Figure 5.16: Effect of Biased Random (p; = 0.7)

129



130

algorithm. (py, p2) are (0.9,0.1) and (0.9,0.7) in Figures 5.15 and 5.16, respectively.
The X-axis depicts the probability that a class-1 node is selected to be a recipient

of a transferred job. From the two figures, we can make the following deductions:

e When the degree of heterogeneity is high, as in Figure 5.15, there is an impact
of biasing the probabilities when the job transfer delays are high (10S). The
improvement in that case over the unbiased Random is about 20%. However,
for moderate delays, the difference is almost nil (delay=S) and the unbiased

version actually performs better by about 7% at delay = 0.1S.

e When the systems become more balanced, as in Figure 5.16, unbiased Random
is clearly superior to any biased Random (except at delay = 105, where it is

worse by about 4%).

Because the gain due to biasing does not appear very significant, all further

references to Random will imply an ”Unbiased” version of that algorithm.
Optimal Normalized Response Times

In this study, we vary the job transfer delay from 0.01S to 100S and deter-
mine the optimal performance achieved by the two probing algorithms as well as
the Random assignment algorithm. The results of these experiments are shown in
Figures 5.17 and 5.18. The Y-coordinate depicts the optimal response time normal-
ized by the corresponding M/M/1 response time. Thus, the smaller the value on
a curve, the greater is the gain over the corresponding M/M/1 value. The results
for each of the four loads are depicted in each curve, along with the corresponding
results from the Random assignment. The reason we are interested in comparing
the probing algorithms against the Random algorithm is because it will provide an

idea of the range of parameters over which probing is useful.

Figure 5.17 depicts the results for the Forward probing and Random assign-

ment algorithms. From the figure, we are able to infer the following facts:
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o There is performance benefit from probing when delays are < 2 — 3 times
the average service time, as can be seen from the curves. For higher values
of delays, the curves for the probing and random algorithms become almost
indistinguishable, from the standpoint of response time. This probably means
that the delays are so large that there is almost no correlation between the
state of a remote node when a probe is made and the state of that node after

a job is transferred to it.

e While probing may cease to be useful at high delays, load sharing provides
considerable benefits over the M/M/1 performance. This is very easily seen
from the curves, which show that even at delays up to 100S, there is about 7-
10% performance gain. We had seen this phenomenon even for homogeneous
systems. However, there is one major difference: For example, when (p1, p2) =
(0.9,0.1), the net load over all the nodes in the system is 0.5. For homogeneous
systems with load of 0.5, the maximum delay at which load sharing is useful
is about 3S. Thus, the imbalance in the loads greatly increases the range of
delays for which load sharing is applicable. Further, the greater the imbalance
in the systems, the larger is the gain over the corresponding M/M/1 value.
Thus, the curves for (0.9,0.1) are situated lower than those for (0.9,0.3) and

SO Oon.

o The greater the imbalance in the systems, the smaller is the difference between
the random and probing algorithms. This effect is more pronounced for lower
delays as can be seen from Figure 5.17, where the pairs of curves appear to
be more separated at higher values of p;. This may be explained as follows:
When both classes of nodes are busy, there is a greater likelihood that a

random assignment will result in a transfer to an already busy node.

Figure 5.18 depicts the results of similar tests conducted on the Reverse prob-
ing algorithm. From Figure 5.18, we are able to see that the behavior for Reverse

probing is quite different from that of Forward probing (Figure 5.17) The main
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points worth noting are as follows:

¢ When the imbalance between the classes is high, Random assignment is signif-
icantly better than Reverse probing. For example, the curves corresponding
to loads (0.9,0.1) show that the Reverse curve approaches the Random curve
only asymptotically. This is easily explained as follows: Recall that Reverse
probes are sent by a node only when it is below the threshold when a job
completes. Now, in very lightly loaded nodes, very few jobs actually execute.
Thus, there are few opportunities to balance the load. On the other hand, the
Random assignment strategy is quite effective in highly unbalanced systems,

with a high probability of transferring jobs to idle nodes in class-2.

o As the degree of heterogeneity decreases (i.e., the systems become more alike),
the gap between Reverse and Random decreases. From the curves, it is
seen that Reverse actually performs better than Random when the loads are
(0.9,0.7). At this point, class-2 nodes are able to perform reasonably effec-
tive load balancing and the higher loads make the Random assignment less

suitable.

In the previous two graphs, we have determined the optimal response times
of the algorithms under different values of total system load. We kept p; fixed at
0.9 and varied p; between 0.1 and 0.7, in steps of 0.2. In Figure 5.19, we depict
results of tests where the total system load is kept fixed at 0.5, while changing the
distribution of the load between the classes. Thus, the three sets of curves depict
results for (p1,p2) = (0.5,0.5), (0.7,0.3) and (0.9,0.1), i.e., from a homogeneous

system to a very heterogeneous one.

From Figure 5.19, we are able to make the following observations:

¢ As might be expected, the benefits of load sharing over the M/M/1 response
time is greater as the degree of heterogeneity is increased. Thus, the curves for

(0.5,0.5) lie at the top with (0.7,0.3) next and the curves for (0.9,0.1) are the
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lowest in the graph. In systems with greater heterogeneity, the performance
of Random is less distant from the probing curves. This is because when the
classes are highly unbalanced, a Random job transfer is likely to reach an
idle node, particularly when the average system load is low. The separation
between the Random and probing curves is most pronounced when (py, pz) is

(0.5,0.5).

e At delay = 1005, (0.9,0.1) generates about 10% improvement over the corre-
sponding M/M/1 response time. However, for (0.5,0.5) and (0.7,0.3), delays
of about 55 and 20S produce the M/M/1 response time, respectively.

5.4.2 Type-2 Heterogeneous systems

In this set of experiments, we study systems in which the nodes in the two classes
process jobs at different speeds. Thus, transferring a job from a longer queue to
one that is shorter may not necessarily resu’lt in lower response times (even after
accounting for delays). Nodes of class-1 have the same service rate as in type-1
systems, i.e., u; = 1. The service rate for nodes of class-2, on the other hand, is
varied from 0.2 to 0.8. Thus, we will study systems where the nodes possess different
degrees of heterogeneity, as in type-1 systems. The loads at nodes of either class
is kept fixed at 0.8. This is for ease of comparison and we believe that in no way
does this limit the validity of our experiments. It is relatively easy to conjecture

the behavior of systems in which the above restriction may not apply.

Because the results of type-2 systems are at times similar to those of type-1,
we will only emphasize those aspects of type-2 systems that are startlingly different
from type-1 systems. The remainil}g results will be described in brief. Before we
conducted any substantial tests for type-2 systems, we compared the results of
the analytical models with simulations. This is for the same reason as in type-1
systems: The solution technique we have adopted is only an approximation and we

need to determine how close the model is to practical, finite sized systems. Exactly
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the same kind of tests were conducted as for type-1 systems and the results were
very similar. The average response times generated by the analytical model for u.
= 0.2, 0.4, 0.6 and 0.8 are plotted for three values of delays, 0.15,S and 10S in
Figure 5.20. It was seen that between 10-15 nodes were needed in each class for
the simulation results to be very close 2 — 5% to the analytical models. The 95%
confidence intervals for the simulation results were computed using the Student-
t tests and were seen to be within £5% of the sample mean. These confidence

intervals are also depicted in the curves of Figure 5.20.

While we have conducted all the subsequent tests on all four values of pus, we
will only present curves for y; = 0.2 and 0.8. The results corresponding to the other
two values of u; will only be described in brief unless they happen to be counter-
intuitive. The reasons for adopting this approach are identical to those given in the

case of type-1 systems. Furthermore, we assume that S; = S.
Effect of probe limit L,

These tests were conducted to determine a good choice for the probe limit
L,. Figure 5.21 depicts the results of such tests for the Forward probing algorithm
in a system in which pu; = 0.2 (i.e., class-2 nodes process jobs at 1/5th the speed of
class-1 nodes). It is seen from this figure that there appears to be some advantage
if L, = 3 when the delays are < 0.1S. For higher delays, however, a limit of 2 seems
adequate. Low delays encourage active load sharing and this in turn makes the
performance more sensitive to probe limit, as opposed to very high delays like 10S,
where the load sharing performed is minimal. Similar behavior was observed for
values of u; = 0.4, 0.6 and 0.8. Thus, although L, = 3 might be more appropriate

for low delays, we will maintain L, = 2, unless specifically mentioned otherwise.

Effect of varying (T1,T3)

The effect of thresholds on performance was studied for type-1 systems. It
was seen that incorrect values of operating thresholds could lead to poor perfor-

mance. Thus, we are interested in determining the relationship between thresholds



® B3 o' N o ™

® B »#1

O
‘‘‘‘‘

..........

Figure 5.21:

Probe Limit

Delay=0.18
————— Delay=S
e Delay=108

Effect of Probe Limit (FP,u; = 0.2)

139



140

and performance in the case of type-2 systems as well. The strategy adopted here
is the same as in type-1 systems. For the loads and delays tested, (T;,T:) corre-
sponding to the optimal response time is determined. Then, keeping T, fixed at its
optimal value, we vary T} over a large range. Next, T; is varied, keeping T) fixed at
its optimal value. In each of the figures, we will present the results of the M/M/1
and LB, response times corresponding to the parameters in question. Recall that
LB, is the lower bound for type-2 systems that we had mentioned earlier in this

section. Details of this algorithm and its analysis are presented in Appendix C.

The results of these tests for u; = 0.2 are depicted in Figures 5.22 and 5.23.
From Figure 5.20, the behavior of t;le system in response to varying T; can be
explained by the following arguments: For the most part, the optimal value of T is
0. This implies that very few jobé are transferred to class-2 nodes although they are
more likely to transfer jobs out. This is facilitated by the fact that the optimal value
of T} is 2 or higher, depending upon the delay. If T} were lower, say O or 1, fewer
jobs could be transferred between class-1 nodes, resulting in poor performance, as
may be seen from the curves in Figure 5.22 (class-1 nodes are likely to be higher
than T; for low values of T}). However, if T; was set higher than a certain value
(2 or 3 in the case of delays < S), this would mean that virtually no jobs may be
transferred out of class-1 nodes to balance the instantaneous loads among class-1

nodes.

The results obtained by varying T; are presented in Figure 5.23. From this
figure, it is observed that the performance is much more sensitive to changes in T}
and actually gets much worse than the M/M/1 value for delays < S. The reasons
for this behavior are as follows: As mentioned earlier, the optimal value for T; is 0
for delays < S and 1 for delay = 10S. If T; is increased beyond the optimal value,
there is greater likelihood that jobs will be transferred to class-2 nodes. Because
the service rate of class-2 nodes is low, long queues build up and the response times
get worse. In fact, there is the possibility that the class-2 queues can approach

saturation, particularly in the case of delays = 0.15 and S. This behavior appears
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to occur when T; is around 3 or 4 and the rate of increase of response time appears

to be very high.

Figures 5.24 and 5.25 depict similar tests conducted when u, was set to 0.8.
Thus, jobs execute 25% longer on class-2 nodes as compared to class-1 nodes and
the degree of heterogeneity between the classes is not very high. From these figures,
we can the effect of varying the thresholds is very similar to the earlier set of tests
when p; was equal to 0.2. The only effect is that the curves are shifted along the
X-axis. The optimal value of T is lower than in the previous case. For delay =
0.1S8, Ty = 1 is optimal, while for delay = S, it is 2. This implies that class-1 nodes
are likely to be more active in load balancing. Because class-2 nodes are not much
slower than class-1 nodes, they are able to accept more jobs than in the case of the
earlier set of tests. The phenomenon of saturation in class-2 nodes is also observed
in Figure 5.25. The explanation is the same as given for u; = 0.2. High thresholds
in class-2 nodes result in many job transfers to these nodes from class-1 nodes.
Because p, is only 25% less than u;, many more jobs need to be transferred to
class-2 nodes before this unstable behavior occurs. Thus, the thresholds are higher

here than the case when p, was 0.2.

Similar tests concerning the effects of varying T} and T; were conducted for the
Reverse probing algorithm. It was seen that when Tj is increased (particularly when
the imbalance is high), the performance gets worse. This is because high values of T;
result in more jobs transferred to class-2 nodes as well as fewer jobs transferred out
of class-2 nodes to class-1 nodes (which should be the ideal strategy). Thus, class-2
nodes have a tendency become saturated if T; is higher than its optimal value. This
effect, although less dramatic, is also seen when u, is 0.8, i.e., the imbalance is not

very high.

The effect of varying T} is seen to be much less pronounced than T, especially
when the degree of heterogeneity is high. For delays of < S, the optimal value of
Ty is 1. Increasing T; beyond that results in worse performance because higher

thresholds result in much less active balancing among class-1 nodes, even though
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they further restrict jobs being transferred to class-2 nodes (particularly since the

optimal value of T3 is 0 or 1, for the range of delays tested).

Optimal Normalized Response Times

Figure 5.26 depicts the results of subjecting the Forward probing algorithm
to a large range of delays. The optimal response times are plotted for each value of
delay along with the optimal response time generated by the Random assignment
algorithm. The tests are conducted for all four values of us, as indicated earlier.

From Figure 5.26, we are able to infer the following facts:

e The benefits from load sharing are more pronounced for systems in which the
degree of heterogeneity is large. From example, the curve for u, = 0.2 is the
lowest of all curves, for most of the range of delays tested (except for very
low delays around 0.055). The fact that the curve is the lowest signifies that
the response time improvement over the corresponding M/M/1 value is the

greatest.

e The curves for the Random assignment algorithm are seen to be located much
higher than their respective probing curves. This means that Random per-
forms much worse than Forward probing for certain values of parameters (at
delay = 0.1S and y; = 0.2, Random is about 55% worse). Further, the greater
the degree of heterogeneity, the more the displacement. This is quite easily
understood by the following argument: Because class-2 nodes are slow, the
job transfers that occur to these nodes by random assignment slow down the

system by a large amount.

e For large degrees of heterogeneity, the curves corresponding to Random ap-
proach their respective probing curves after fairly high values for delays, as
compared with type-1 heterogeneous systems. For example, when u; = 0.2,
there appears to be about 5 — 6% benefit by probing, even with delays as high

as 55. Thus, the value of remote state information is more pronounced and
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its effect is significant for higher delays in highly unbalanced type-2 systems

as compared with type-1 systems.

Figure 5.27 depicts the results of similar tests conducted on the Reverse prob-
ing algorithm. The results in this case are very similar to that of the Forward prob-
ing example. In general, Random assignment performs quite poorly in comparison
to probing, be it forward or reverse. Also, the greater the degree of heterogeneity,
the more advantageous it is to probe, as opposed to Random assignment. Here too,
as in Forward probing, we see a more significant effect of probing at higher delays

than at type-1 systems.

5.5 Conclusions

In this chapter, we have studied the load sharing problem in the presence of delays
when the underlying system is heterogeneous. We have studied two main types
of heterogeneous systems, i.e., type-1 systems where all the nodes have the same
processing speeds and capabilities but the arrival rate of local jobs at nodes may
not all be the same, and type-2 systems, where different nodes may process jobs
at different speeds (however, the nodes are assumed to be functionally identical).
The two algorithms which were studied in this context were called Forward and
Reverse. The resulting Markov processes from these algorithms were solved using

the Matrix Geometric solution technique, as in Chapters 3 and 4.

The analytical models were then subjected to many interesting tests and the
results of these tests and their implications were described in the previous section.
In this section, we summarize the most interesting results obtained. Although the
tests were conducted for systems with 2 classes, we will attempt to generalize many

of the results for an arbitrary number of classes.

¢ As in the case of homogeneous systems, the solution technique of studying the
nodes independently is an approximation of the Markov process for the sys-

tem. In this chapter too, we compared the analytical results with simulations
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of finite sized systems and determined that the results were very accurate,
with the variation between the analytical and simulation results being about
2-4%. This was true for type-1 as well as type-2 systems, with the simula-

tions consisting of 15 nodes per class.

For type-1 systems, the sensitivity to probe limit was observed to depend
upon the degree of heterogeneity. In the case of Forward probing, the sensi-
tivity was smaller with greater imbalance and the opposite was observed to be
true for Reverse probing. If the number of distinct classes is increased beyond
two, the effect on probe limit will in all likelihood depend upon whether the
new system ha.é become less or more heterogeneous. For instance, if (p1,p2)
= (0.9,0.1) and p; = 0.5, one can say that the system with the addition of
class-3 is more balanced than it was with only two classes of nodes. Then, one
may safely conjecture that under equiprobable selection of classes, Forward
probing will become more sensitive to probe limit in this case (recall that
when the system was more balanced, it became harder to find a placement for
a spare job). On the other hand, under similar conditions of loads, Reverse
probing will show decreased sensitivity to probe limit. Of course, in order
to determine the exact response times, it will be necessary for the system

designer to run the analytical models with the new parameters.

In type-1 systems, the effect of varying (T},T:) showed that when the im-
balance in systems was large, the performance was relatively insensitive to
changes in T,. However, choosing the appropriate value for T} was quite crit-
ical. The above observations were also hold for Forward as well as Reverse
probing. Furthermore, as the imbalance between the classes decreased, the

effect of changes in T; and T; became more alike.

We determined the optimal performance of the two algorithms operating in
type-1 systems and compared these results against the optimal performance
of the Random assignment, for a large range of delays. It was seen that

when the systems were highly heterogenous, Random was much better than
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Reverse. However, Forward always performed better than Random, although
the advantage of probing was more pronounced when the systems were more
balanced. Further, the advantages of probing seemed to disappear when the
delays were > 2S5 — 3S. If the system was enhanced to include class-3 nodes
as well, one might be able to postulate certain behavioral trends, depending
upon the values of the loads at the three classes. For instance, if (p;,p2) =
(0.9,0.1) and p3 = 0.5, quite clearly the system will become less heterogeneous
with the inclusion of class-3 nodes and the behavior of the new system is likely

to be closer to a two class system with (py, p;) = (0.9,0.3) than to (0.9,0.1).

e In the case of type-2 systems it was seen that when T3 is increased beyond
a certain small number and the nodes are executing Forward probing, there
is the potential for class-2 nodes to get saturated. The effect of varying T} is
much less dramatic, however. The above effects are much more pronounced
when class-2 nodes are much slower than class-1 nodes. Thus, selection of
appropriate thresholds is much more critical for type-2 heterogeneous systems

than it is for homogeneous as well as type-1 heterogeneous systems.

e In the case of type-2 systems, we determined the optimal performance for the
two algorithms over a large range of delays and compared these results against
the Random assignment algorithm. It was seen from these tests that probing
does significantly better than Random for type-2 systems where very few
jobs should be executed on class-2 nodes (depending upon how slow they are
in comparison to class-1 nodes and some other factors). In type-2 systems,
the advantages of probing are seen to exist for greater values of delays (<
45 - 55) than in type-1 systems. Again, as in previous hypotheses regarding
extensions to systems with more than two classes, it will be relevant to ask if
the extended system becomes more or less heterogeneous as compared to the
one with two classes. Of course, exact values of reéponse times can only be

determined by running the models.

e In the case of type-2 systems, the job transfer delays are compared to the
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processing time of the fastest class. This decision was purely arbitrary. The
comparison could very easily have been made to the processing times of the
slowest class or even an average of the two classes (which, in hindsight may
be more reasonable than any other alternative). However, it should be quite
clear that this will not make any qualitative difference to the results we have

presented. Of course, the exact response times generated will be different.



Chapter 6

ENTROPY MINIMAX ESTIMATION FOR LOAD SHARING

6.1 Introduction

In the previous chapters, we have been concerned with analytical studies of the
Markov models resulting from simple load sharing algorithms. These models provide
significant insight into the relation between the performance metrics and the various
important parameters of load sharing algorithms. One of these parameters, i.e., the
threshold, may in general, need to be determined on line, particularly in cases where
the load at a node is not explicitly made available to the job scheduling algorithm.
In this chapter, we study a method to estimate the threshold as a function of average
job transfer delay (known explicitly beforehand) and load (which is unknown). The
main contributions of this chapter include the application of Entropy Minimax, an
information theoretic estimation technique that reduces the uncertainty of state
information arising due to the delays. This is accomplished by classifying the states
into High or Low, based upon the load and delays (a node that is classified as High
at any instant may be a potential source of jobs or be neutral, while a node that is

classified as Low is a potential sink for remote jobs).

The remainder of this chapter is organized as follows: In Section 6.2, we
discuss the motivation for this research. The relation between delays and state
classification is also addressed in Section 6.2. In Section 6.3, we address the question
of load sharing in systems where the algorithms utilize thresholds that are generated
by Entropy Minimax. It is observed that these thresholds are able to provide
optimal response times for most of the cases tested. In Section 6.3, we study load

sharing under exponential as well as non-exponential service time distributions. We
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also determine the effect of probe and job transfer overhead costs on the performance
of the load sharing algorithms. Finally, in Section 6.4, we summarize the main

contributions of this chapter.

6.2 Delays and Load Sharing

6.2.1 Motivation for Entropy Minimax

In the model that we consider, the minimization of the number of empty (or zero)
states while some other nodes have more than one job, is the main objective of load
sharing algorithms. This objective follows from the discussion by Livny and Melman
[LIVN82| where it was shown that significant performance degradation occurs when

idle nodes coexist with nodes which possess waiting jobs.

The optimal strategy under the negligible delay assumption is to exactly em-
ulate the M/M/n behavior. However, this may not be the right strategy to utilize
in the face of delays. For example, suppose a node becomes idle. It tries to ac-
quire a remote job by probing the other nodes in the system. Because of the job
transfer delays, the node remains idle until the remote job arrives (unless it receives
a local job). Obviously, performance can suffer for this period. If the delays are
non-trivial (for example, on the order of one service time or more), the degradation

in performance can be severe.

It may then become necessary to try and acquire a remote job even before
a node becomes idle. The question then is: When should the process of searching
for a remote job begin? Is it possible to determine the correct subset of states
which corresponds to the idle state in the negligible delay assumption? An esti-
mation technique that appears to possess the suitable characteristics in this regard
is called Entropy Minimax [CHRI85|, which has its roots in Shannon’s theory of

communication.

One of the main problems associated with distributed algorithms which ac-

tively acquire remote state information is related to the uncertainty in this remote
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information. Entropy Minimax has the intuitive appeal of extracting all but no
more than the truly available information from the remote and delayed observations
[CHRI85]'. Furthermore, this method has the advantage of being non-parametric.
This is particularly relevant in our context, because the very act of load sharing
transforms an initial known arrival distribution into some unknown distribution,

thus limiting the applicability of parametric estimation methods.

Broadly speaking, Entropy Minimax utilizes two meta-level states, as follows:
One is called Low, which indicates that a remote job is needed in order to prevent
the node from becoming idle, and the other is called High, which indicates that a
job is not needed. The intuition behind using this method is to find a threshold
which partitions the state description (in this case the queue length) at each node
into these two meta-level states, High and Low, as a function of delay and load.
This partition has the property that when a job is transferred from a High node to
a Low node, the probability that it arrives when the destination node just becomes

idle, is maximized.

6.2.2 Entropy Minimax

Conceptually, Information

is a measure of the uncertainty associated with the outcome of a random variable
X = z. If the outcome is certain i.e., p(z) = 1, then we have no information gain
from observing the outcome and I(z) = 0. On the other hand, if the outcome is very
uncertain, i.e., p(zr) << 1, then the information gain from observing the outcome is
large. Entropy H(X) is the average information associated with a random variable

X, i.e.,

!For a detailed comparison between this and other well known estimation techniques like maxi-

mum likelihood estimation, least squares etc, see [CHRI85]
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1

H(X) = _i milog )

The concepts of conditional information, I(X|Y) and conditional entropy
H(X|Y) follow in a similar manner. If there are no errors associated with the
observation of the events [GALL68], the outcome of the random variable Y per-
fectly determines the outcome of the random variable X, then P(X = z[Y = y) =1
and we have H(X|Y) = 0. Since H(X|Y) = 0 is in general unattainable, Entropy

Minimax attempts to minimize its value.

Let us now try to see how this is related to the problem of estimation in the
context of load sharing. If 7 is the delay in acquiring a job, can we determine a

threshold T such that the following criteria hold?

If Ni(t) < T, then N;(t + r) = 0, where N;(t) is the number of jobs at node 1

at time ¢, and,
If N;(t) > T, then N;(t + 1) > 0.

The above requirements are for an idealized threshold such that the node is
able to perfectly predict its future state, in case no action is taken by it to try to try
and acquire a remote job. The threshold serves the purpose of classifying the states
into two meta-level states, one corresponding to Low (which includes all states to
the left of T as well as T, i.e., 0...T) and the other corresponding to High (which
includes all states to the right of T'). While it would be ideal to possess such a
threshold that acts as a perfect predictor for future states, it may not be achievable
in practice, because most systems are stochastic in nature. Thus, the question is
whether this idealized threshold can be approximated to any degree such that in a
majority of the cases, the prediction is correct. In other words, on the average, a

requested remote job arrives when the requesting node becomes idle.

We now describe the Entropy Minimax algorithm that is used to compute the

threshold. Let the nodes have local arrivals which are serviced in a FCFS manner.
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There is no load-sharing being performed at this stage. Every 7 units of time
(average job transfer delay), the number of jobs in the node is recorded. Associated
with each state ! (queue length), are two counters, a; and b,. If the node is idle at
time t, the b; counter corresponding to the number of jobs ! in the node at time t — 7
is incremented by one. In any case, the a; counter corresponding to the number in
the node at time ¢ — 7 is incremented by one. Basically, what this process does is

provide a set of conditional probabilities as follows. We define

pi = P(Nyyr =0|N; =1),0< 1< Ty,

as the probability that the node becomes idle at time ¢ + 7, given that its queue
length at time ¢t is equal to ¢ and T}, is the the maximum number of states needed.

The conditional probabilities are computed as follows:

pi=bi/a;,0< 1 < T,

where ¢ is a particular value of the queue length. These conditional probabilities are
collected for the states (queue lengths) that a node enters. Let the instantaneous
threshold (during the Entropy Minimax computation stage) be { = [0,T,]. In
practice, it is observed that no more than 8-10 states are really needed, for the
loads and delays that we have studied. Thus, only T,, + 1 partitions of the queue
lengths are examined by the Entropy Minimax algorithm [CHRI85].

For a threshold [, the following sums are defined:

BI(L) = zl: b,’

AI(L) = Z a;

B[(R) = Z b,'

i=l+1
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Tm
Al(R) = Z a;

i=l+1

where 0 <! < T,, and L and R denote the left and right partitions respec-
tively, generated by the threshold I. The conditional probabilities associated with

the partitions are:

 B(L) = B(L)/4(L)

and

P(R) = Bi(R)/A(R).

The logarithm of each of these conditional probabilities is the conditional
information received from the observation. The expected value of the information
is the conditional Entropy of observation, H(X|Y = [), when the instantaneous

threshold = (.

S(L) = -PA(L)lnP(L)~ (1~ R(L))In(1 - R(L))
S(R) = —P(R)InP(R)~ (1~ P(R))In(1 - RA(R))
H(X|Y =1) = P(L)S(L) + (1 - P(L))Si(R)

)
)

where P(L) = A_(LAT-(FEA(LRT‘ The threshold is computed using the following

optimization procedure:

minimize H(X|Y =1)

subject to simple probabilistic constraints as described in [CHRI85].

The entropy minimax algorithm steps through the queue lengths, starting
at zero. The conditional entropy is computed at each step and the queue length

corresponding to the minimum entropy is selected as the threshold. What this
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threshold implies is that if a node reaches this threshold, it is very likely to become
idle at time ¢ + 7 unless a remote job is made available to it. Further, if the queue
length is greater than the threshold, the likelihood is that the node will not become
idle in the given interval of time. In order to determine the relation between delays,
load and state classification, we have conducted several experiments. The results

and their implications are described next.

6.2.3 Results from Threshold Experiments

In this section, we present the results from simulation studies which specifically
address the issue of the threshold and the two factors that affect it greatly, namely
delays and the load. The algorithm that computes the threshold samples the queue
length of the node at intervals of time = 7 (the average job transfer delay). The
conditional probabilities are computed from the above observations, as described in
the previous subsection. The threshold is computed after a large enough number
of samples have been gathered. This can be verified by noting if the threshold
has stabilized. It was seen that if S was the expected service time for jobs, then a
window of about 400S to compute the threshold appeared to be adequate. Table 6.1
depicts the variation of the threshold over a range of delays and loads. Three
different service time distributions (with identical means) were studied. They were:
exponential (Exp), 2 stage Erlang(Erl) and hyperexponential(Hyp) with C? = 2.0.
The utilizations tested were 0.4, 0.6 and 0.8 and the average job transfer delays
were 0.55, S, 1.55 and 2S5, for each of the loads tested.

From Table 6.1, it can be seen that:

¢ The threshold is a non-decreasing function of delays. This is because greater
delays increase the uncertainty in the information, leading to a greater lump-

ing of low states, represented by the higher thresholds.

e As the delays tend to zero, the threshold approaches zero for all loads. This

is intuitively satisfying because at insignificant delays, it is appropriate to
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emulate the optimal M/M/n strategy. A threshold of zero makes this possible.

e For a given delay, higher loads tend to increase the threshold, because the

holding time of a state decreases with increase in load, resulting in a greater

lumping of states.

¢ In some cases, the thresholds appear to be dependent upon the service time

distributions, as may be seen in Table 6.1 (e.g., p = 0.6, delay = 25). However,

the exact relation between distributions and thresholds is not altogether clear

at this point.

In this chapter, we restrict our study to the situation under which delays are

significant but remote state information is still useful in the sense that a stable

Entropy Minimax threshold can be found. In extremely high delays, we have seen

that the threshold is undefined?.

Furthermore, at such high delays, it may be

the case that load sharing will actually make the performance worse because the

transferred jobs will be in neither the sender’s queue nor the receiver’s queue for

the duration of the delay time.

2In these cases, the conditional entropy associated with different threshold values are approxi-

mately equal to each other.
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6.2;4 Description of Algorithms

The algorithms studied in this chapter are the same as those in Chapter 3 but their
description is repeated here for convenience. Each node is provided with a threshold

T and probe limit L,.

Symmetric: As soon as a node’s queue length goes below T + 1 on the
completion of a job and the node is not already waiting for a remote job, it probes
L, nodes in the system, until a node can provide it with a job or all the nodes have
been exhausted. If more than one node can transfer a job, one of these nodes is
selected at random. A remote node will only transfer a job if it possesses at least
T + 2 jobs. Also, as soon as a local arrival occurs at a node and it has at least T + 2
jobs (including the new arrival), it probes L, nodes in the system, until it finds a
node which has < T jobs and is not already waiting for another remote job. If all
the probed nodes have at least T jobs, no transfer will take place. If more than
one node can accept a spare job, only one of these will be selected at random for

transfer.

Forward: If a local arrival occurs and the node has at least T + 2 jobs
(including the newly arrived one) it probes L, nodes to determine if any one is < T
and is not already waiting for a remote job. If so, it transfers this job there, else,
it keeps this job. If more than one node is able to accept a spare job, one of these

nodes is selected at random for transfer.

Reverse: Assoon as a node goes below T'+ 1 on the completion of a job and
it is not already waiting for a remote job to arrive, it probes L, nodes to determine
if any node has a spare job (at least T + 1), the remote node transfers a job to this
node. If more than one node responds positively, one of these nodes is selected at

random.

Random: In this algorithm, the nodes do not perform any probing. As
soon as a node receives a local job, it checks if it has at least T + 1 other jobs. If

so, it transfers this new job to one of the other nodes, selected at random. There



162

is no state update overhead generated by this algorithm and it serves to provide a

reasonable bound for comparison against probing algorithms.

6.2.5 Description of the Experiments

The simulation system consisted of 10 identical nodes, connected in a network. The
inter-arrival and job transfer times were exponentially distributed. However, the
service times were selected from three different distributions, depending upon the
test being conducted. These were, exponential, 2-stage Erlangian and hyperexpo-
nential distributions. Further, the arrival and service rates were identical at the
nodes. The entropy minimax thresholds for the various loads and delays were com-
puted off-line for convenience, but they could as well have been computed on-line.
The delays were varied from 0.5*S to 2*S, where S the expected service time of
jobs, was 1.0 units. The load was varied from 0.4 to 0.8, which encompassed a large

range for load sharing.

Every time a job was transferred, it immediately disappeared from the
sender’s queue and appeared at the receiver’s queue after the mean time equal
to the transfer delay. Thus, a transferred job was not available for execution at
either node during this interval. While jobs encountered delays, probes were as-
sumed to take zero time. Although it was possible to exactly determine the state
of remote node at the time of decisions, the delay in actual job transfer caused the
uncertainty in the state information, because the load sharing decisions were based
upon states that may have changed by the time a transferred job arrived at the

remote node.

The maximum number of probes that a node was allowed to make was tuned
initially as a parameter. It was seen that 2 was a good number in most instances, in
a 10 node system, particularly if the probe overhead would be accounted for in some
way. The incremental gain in performance by allowing L, = 3 over 2 was marginal
in all cases tested. Experiments conducted with complete probing (L, = 9) showed

very little improvement over L, = 2 or 3. Thus, the simulation runs in the following
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section were made with 2 probes. Also, the nodes to be probed were selected at

random.

6.2.6 Experimental Results

In this section, we present the results that we have obtained from simulations con-
ducted on a network of 10 nodes. The main metric of interest is the average response
time generated by the algorithms. As mentioned in Chapter 3, the overhead gener-
ated by load sharing will be assumed to be entirely transferred to the BIU’s, except
when we specifically address the issue of overhead costs. The results include the
effects of thresholds on performance, the performance of the various algorithms un-
der different loads and delays, the effects of various overhead costs for probes and

job transfers and the study of load sharing with non-exponential service times.

All the results indicated are averages of at least three independent simulation
runs with different random number seeds (i.e., the method of independent replica-
tions). It was seen that in typical cases, the sample standard deviation was less
than 0.2%, and the 95% confidence interval lay between +0.3% of the sample mean.
These confidence intervals were computed using the Student-t distribution. Unless

otherwise stated, the service times are assumed to be exponentially distributed.

Choosing an Algorithm

Figures 6.1, 6.2, and 6.3 depict the performance of the four algorithms under delays
for the loads of 0.4, 0.6 and 0.8 respectively. In general, one can see that Forward
with 2 probes performs well over the range of parameters tested. For the case of
low loads, Random is very effective and generates only slightly worse response times
than Forward. However, there is point of discontinuity at p = 0.8 and delay = 0.0.
It is seen that the performance of Random improves whén the delay in increased
to 0.5*S. This counter-intuitive behavior has to do with the fact that in general,

Random does not fulfill the requirement imposed by the Entropy Minimax state
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representation that a transfer should take place from a High node to a Low node.
This is particularly true at p = 0.8 and zero delay where a transferred job is likely to
arrive at a High node quite often. However, at higher delays, the threshold increases
and so does the probability that a transferred job will arrive at a Low node. In
other words, the threshold that might be optimal for probing algorithms may not
necessarily be optimal in the case of Random assignment, particularly at low to

moderate delays.

Reverse does not perform as well as Forward, particularly when the load is <
0.6. This is because more nodes are likely to be in the Low state, making it harder
for Reverse to find a spare job. In zero delay experiments with extreme (p > 0.9)

loads it performed better than Forward (observed in Chapter 3).

It can be seen from Figures 6.1, 6.2 and 6.3 that as the job transfer delays
increase, the following observations may be made. Firstly, the benefits of load
sharing become less significant and the performance under load sharing approaches
that of the M/M/1 system. In fact, the response time may actually get worse
than M/M/1 at even higher transfer delays and we have seen this occur in other
experiments (results not presented here). This is particularly evident at p = 0.4
(Figure 6.1) where at delay = 25, the performance under load sharing is only about
5% better than the M/M/1 response time at that load. On the other hand, at
p = 0.8, the benefits of load sharing are more substantial even at the maximum
delay tested (Figure 6.3). It is seen that for delay = 25, the performance under
load sharing is about 45% better than the corresponding M/M/1. Thus, it is
possible to hypothesize that at even higher loads greater delays may be tolerated.
At low loads, it might make sense to turn off load sharing when the job transfer
delays increase beyond 2S. Furthermore, the performance of the probing algorithms
become almost identical and at low loads, Random performs as well as any probing

algorithm tested (at p = 0.8, there is about 5% improvement on account of probing).

Effect of Thresholds on Three Service Distributions
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Until this point in this chapter and dissertation, we have concentrated on the per-
formance of the load sharing algorithms when service times are exponentially dis-
tributed (except for the case of obtaining thresholds for Erlangian and hyperexpo-
nential servers as depicted in Table 6.1). In general, the exponential assumption
may be considered restrictive and we would like to see how appropriate are the En-
tropy Minimax thresholds when the service times are not exponentially distributed.
In addition, we are interested in comparing the performance of load sharing for the
three service distributions, i.e., exponential, 2 stage Erlangian and hyperexponential

with C? = 2.0, all having the same mean, 1.0 units.

Figures 6.4, 6.5, 6.6 and 6.7 depict the behavior of the Symmetric probing
algorithm for the three service time distributions discussed above. The arrival rates
were 0.4 and 0.8 jobs/unit and the job transfer delays were 0.55, S, 1.5S and 2.0S
in Figures 6.4, 6.5, 6.6 and 6.7, respectively. The curves in the graphs represent
not the actual response times obtained but the response times normalized by the
corresponding no load balancing response times generated by the M/M/1, M/H,/1
and M/E,/1 values for the appropriate service time distributions. Thus, the results
of load sharing with exponential service time are normalized by the M/M/1 values,
the Erlangian by M/E;/1 and hyperexponential by M/H,/1. Further, the thresh-
olds were varied between 0 and 5, and the response times under these conditions

were recorded.

From the above set of figures, we are able to make the following interesting

observations:

o The improvement by load sharing over the corresponding no load sharing is
greater as the load increases. The curves for p = 0.4 are located higher than
those for p = 0.8 (p = 0.6 curves are located in between, although we have not
depicted these in the graphs). For example, from Figure 6.5, delay = S, the
best improvement for Hyp is 60% over no load balancing when p = 0.8 but
only 25% when p = 0.4. Similar numbers may be determined from the other

three figures in this set. This occurs because of the higher inherent waiting
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times at high loads and the load sharing is consequently most advantageous.

e For most of the range of thresholds and delays tested, it seems that the im-
provements are greater when the variability in service rates is higher. Thus,
in general, the curves for hyperexponential are located lowest, Erlangian are
highest with exponential in the middle of these two (an exception is seen in
Figure 6.4, p = 0.8 when the Exp curve crosses the Erl). For instance, in
Figure 6.4, p = 0.8, the gain by Hyp is greater than 65% whereas Erl is bet-
ter by about 50% over its no load balancing value. Again, this is because
higher variability in service times implies longer waiting times. We postulate
that similar behavior may be expected when different arrival distributions are

examined.

e Varying the threshold over a large range of values helps us determine whether
the thresholds predicted by Entropy Minimax are correct (i.e., they provide
the optimal response times). In this connection, we refer back to Table 6.1
which encapsulates the Entropy Minimax thresholds for the loads 0.4, 0.6 and
0.8 for the 4 values of job transfer delays. From Table 6.1 and the graphs
under consideration, it is seen that for most of the parameters tested, the
thresholds generated by Entropy Minimax are optimal. In fact, out of the 36
different threshold tests conducted (results of which are depicted in Table 6.1),
the optimal threshold as obtained by simulations of the Symmetric algorithm
was different in only 3 instances. For example, for Erlang-2 service times with
p = 0.4 and delay = 285, the optimal threshold was 2 but Entropy Minimax
predicted 1. However, the differential in response times using one or the other

threshold is less than 2% (see Figure 6.7, topmost curve).

Effects of Probe and Job Transfer Overheads

Thus far in this chapter, the response times generated by the algorithms did not

include the effect of probe and job overhead. The reasons for doing this were as
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follows: Firstly, we had assumed that the overhead of processing jobs and probes
for load sharing is completely transferred to the network controllers (BIU). In a
perfect world, the CPU at a node would not be slowed down owing to interference
from the network controller. Secondly, it was our conviction that it is very hard
to estimate reasonable costs for potential interference since these costs are highly
dependent upon the underlying system architecture and protocols and at this stage

we have made only very general assumptions regarding the node architecture.

The response to the above arguments may be the following: In reality, network
controllers will tend slow down the CPU to some extent because of the common
resources they may need to access, e.g., shared memory, system bus and so on.
System designers will consequently be interested in determining the effects that
the interference may have on the system performance as a whole. In order to
provide a feel for how a range of overhead costs might affect the net response
time of jobs, we have conducted several experiments where the effect of probe and
job transfer overhead is modelled as an interference to the jobs executing on the
CPU. We have chosen to use a simple interference model because it is our belief
that these simplifications will affect all the algorithms equally and that the relative

comparisons will consequently be unaffected.
Probe Overheads

To study the effect of probe cost, each node in the simulation system accu-
mulates the number of probes it sends out and receives. As soon as the number
increases above a prescribed value, the next job to be executed at this node exe-
cutes at a slower rate. The normal mean service time of jobs was 1.0 units, as in all
the earlier experiments. However, the interference is assumed to increase the mean
service time of the slower job to 1.25 units, an increase of 25%. The amount of
increase is arbitrary and is used solely for the purpose of illustration. The counters
which hold the probe counts are then reset and the monitoring process continues.
When the effect of job transfer overh<ead is to be studied, the nodes accumulate the

number of jobs transferred. When this count increases above a prescribed value,
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the next job executes at the slower rate and the job transferred count is reset to

zero and the monitoring process continues.

Figure 6.8 depicts the results for the case of probe overheads (job transfers
do not cause interference in these experiments). The horizontal axis represents the
probe count at which the job execution time is increased. For instance, a count of
10 means that as soon as a node processes 10 probes, it schedules the next job to
execute at the slower processing rate. This count is varied between 10 and 100, with
10 generating the highest overheads. Sy, Re, Fo represent the results for Symmetric,

Reverse and Forward probing respectively.

From Figure 6.8, we can make the following observations: At p = 0.4, the
effect of probe overhead is most felt by Reverse probing. Most of the reverse probes
do not result in job transfers and only contribute to overhead. As the probe costs
decline, Forward and Symmetric show identical behavior. However, when probes
costs are high, Symmetric performs slightly worse than Forward. Similar behavior
is seen at p = 0.6 where Forward is better than Symmetric at high probe costs,
because Symmetric generates a large number of wasted reverse probes. However, at
low loads, Reverse is inherently worse than Forward or Symmetric in the first place.
At p = 0.8, Reverse does better than Forward and Symmetric at high probe costs,
by about 20% when the probe costs are the highest. This is because nodes are more
likely to make forward probes at this load and high costs of probes will adversely
affect Forward and Symmetric probing. When probe costs decrease, Symmetric
is clearly superior to either Forward or Reverse and even Forward ends up being

slightly better (about 2%) than Reverse at the lowest probe costs tested.

Job Overheads

In the next set of tests, each node monitors the number of jobs it sends out
and receives. As soon as the number increases above a prescribed value, the next job
to be executed at this node executes with the slower rate. The counters which hold
the job counts are then reset and the monitoring process continues. In Figure 6.9,

we present the results of the experiments wherein probes generated no overhead.
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Instead, job transfers causes interference to the currently executing CPU job and
increases the average service time of the delayed job by 25%, as in the case of
the previous experiments on probe overheads. The horizontal axis in Figure 6.9
represents the job count at which the execution time is increased. This count is
varied between 1 and 25, with 1 generating the highest overheads. The significance
of the job count is similar to the probe count in Figure 6.8. As soon as the job
transferred count is reached, the next CPU job is executed at the slower speed.
For comparison purposes, we have included the curves for the Random assignment
algorithm in the presence of job transfer overheads. These curves are represented

by the code Ra. The other codes are the same as those for Figure 6.8.

From Figure 6.9, we can make the following observations: The effects of job
overheads is most felt by Symmetric and Random. This is because they tend to
transfer the most number of jobs, especially as the loads increase. This is shown
by the fact that extremely high (with the potential of becoming unstable) response
times are generated by Random at p = 0.8 and high job overheads. While Sym-
metric is stable, it does perform worse than the other two probing algorithms at
p = 0.8, when the overheads are relatively high (about 5-10% worse). As the over-
head costs decrease, the behavior becomes more predictable with Symmetric clearly

performing better than all the other algorithms.

To reiterate our earlier reservations about assigning overhead costs, we be-
lieve that these costs are very tightly linked to the underlying system architecture.
Designers of such systems have to estimate the potential interference that might
be caused by probes and job transfers, given the underlying node architecture. If
estimates of these quantities are available, then Figures 6.8 and 6.9 can provide
some help in selecting the algorithm that might be most appropriate. For instance,
if probe costs are very high and the load is > 0.8, it might be appropriate to select
Reverse probing. At low loads (< 0.7) and high probe costs, Forward appears to be
the best bet. If however, the probe costs are low, Symmetric will easily outperform

either of the other two probing strategies. For high job costs and high loads (> 0.8),
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Symmetric is definitely worse than either of the probing algorithms. However, when
job costs are not very high, it is probably best to go with Symmetric. This fact
was also noted in Chapter 3, where Symmetric outperformed Forward and Reverse

when overhead costs were zero.

6.3 Summary and Conclusions

This study was primarily concerned with studying the effects of delays in load
sharing. We presented an application of Entropy Minimax, an information theoretic
estimation technique, to reduce the uncertainty in the delayed state information.
It was seen that the performance of the algorithms using the state classification
provided by Entropy Minimax was for the most part optimal. In the few instances
that the thresholds were not optimal, the response times were off the optimal results
by at most a few percent. This fact was verified for a large range of parameter values
as well as three different service distributions: exponential, 2 stage Erlang and
hyperexponential. However, it was seen that the performance of the algorithms is
less sensitive to appropriate selection of operating thresholds than we had originally
imagined. If the chosen threshold was off by one from the optimal threshold, the

performance could be worse by 5-10%.

As regards the state update protocol and algorithm design, it was seen that
Symmetric probing with probe limit of 2 probes performed uniformly well over the
range of parameters tested with Forward being next best. For higher values of load
(> 0.9), Reverse is likely to outperform Forward, as we have seen in the results
of Chapter 3. We studied the effects of probe and job transfer overheads on the
CPU service rates and concluded that for high overhead costs, Symmetric performs
poorly because it has the tendency to generate large numbers of probes and job
transfers. On the other hand, with low to moderate overhead costs, none of the

other algorithms could match its performance over the range of parameters tested.






Chapter 7

ADAPTIVE LOAD SHARING IN DISTRIBUTED SYSTEMS

7.1 Introduction

Computer systems are normally subject to various changes during their operation.
For instance, the system load may change continuously or periodically, nodes may
fail and then recover, the processing power at nodes may change (e.g. addition of
vector processing unit, fast I/O processors etc.) and so on. It appears that some or
all of these changes might warrant a dynamic modification of the control strategy

utilized by the scheduling algorithms utilized by these systems.

In this chapter, we study the problem of dynamically adapting the the load
sharing strategies and parameters when the system load may change over time. We
separate the adaptation problem into two logical parts: The first part is concerned
with the estimation of the relevant parameters (e.g., utilization at a node, the arrival
rate of jobs, etc.) as they change and the second relates to the adaptation of the
control strategy in response to these changes. In Section 7.2, we present the system
model and describe the load sharing algorithms under consideration. The estimation
problem is examined by three simple methods, as described in Sections 7.3 and
7.4. The efficacy of these methods is compared using the mean percentage error of
estimation as the main metric. Also used as means of comparison is the convergence
speed of the various techniques in obtaining a good estimate of the load. From
the experiments conducted, it is seen that simple techniques are able to estimate
the loads fairly quickly. The performance of a simple adaptive control strategy is
compared against the optimal control strategy (one that always utilizes the optimal

parameters for load sharing) and these results are presented in Section 7.5. From
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these experiments, it is seen that any one of the three simple estimation techniques
used in conjunction with a simple adaptive load sharing algorithm provide very
good performance in comparison with the optimal strategy. Finally, we summarize

the results of this chapter in Section 7.6.

7.2 System Model and Load Sharing Algorithms

The system model used in this chapter is similar to that assumed in the earlier
chapters. However, in brief, the distributed system under consideration consists
of N identical nodes, connected in a network. Each node executes a load-sharing
algorithm. Further, node-t is provided with a threshold T;. The algorithm that we

use in this study is called Symmetric, described in the following paragraph.

Symmetric: As soon as node t’s queue length goes below T; + 1 on the
completion of a job and the node is not already waiting for a remote job, it probes
L, nodes in the system, until a node can provide it with a job or all the nodes have
been exhausted. If more than one node can transfer a job, one of these nodes is
selected at random. A remote node j will only transfer a job if it possesses at least
T; +2 jobs. Also, as soon as a local arrival occurs at node ¢ and it has at least T; +2
jobs (including the new arrival), it probes L, nodes in the system, until it finds a
node 5 which has < T; jobs and is not already waiting for another remote job. If
all the probed nodes have at least as many jobs as their threshold, no transfer will
take place. If more than one node can accept a spare job, only one of these will be

selected at random for transfer.

From our results in Chapter 6 of this dissertation, we noticed the need to
consider two levels of changes in such systems, relating to load sharing. We call
Level-1 changes those that need a radical modification in the control strategy; For
instance, Forward probing versus Reverse (algorithms described and analyzed in
earlier chapters) if the changes in the load are drastic. Level-2 changes are less dra-

matic and involve adaptation of the internal parameters of the currently executing
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control algorithm, as for example, the thresholds. In this dissertation, we only focus
on Level-2 changes. This is because in our initial model (described in Chapter 3),
all the processing overhead for job transfers and probes is transferred to the DMA
processor at the nodes and without the inclusion of these overheads, Symmetric is
clearly superior to either of the other two algorithms (results depicted in Chapters
3 and 6). Thus, our only concern will be to adapt the internal parameters of this
algorithm. We now describe the general approach that is adopted in the following

sections to study the problem of adaptive load sharing.

¢ Initially, we assume that the underlying system is homogeneous and that
this assumption is satisfied even when changes occur in the loads. Under
these assumptions, we study two estimation techniques and determine their

performance in relation to tracking changes in the arrival rates.

e Next, we relax the homogeneity assumption. In this case, some of the nodes
are subject to changes in loads that are quite different from the others. We
commence these tests with a homogeneous system where a designated node is
subjected to surges of jobs over and above its regular arrivals and determine
how quickly and accurately these surges can be monitored. Studies of large

heterogeneous systems will not be conducted in this research.

At an abstract level, the adaptation mechanism at a node is represented by
the interaction of two main modules. The Est-State module continuously monitors
the relevant local parameters (e.g. arrival rate of jobs, utilization etc., depending
upon the estimation strategy being used). At periodic intervals, the information
regarding the estimated parameter is passed onto the Controller module which may

make one of the following decisions based upon the intensity of the changes:

1. Use a different load sharing algorithm at this node (not examined in this

dissertation).

2. Modify the parameters of the current load sharing algorithm.
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3. Do not make any changes.

We now study the estimation problem as it relates to homogeneous systems

and present two methods to estimate the changing loads.

7.3 Homogeneous Systems

In the case of homogeneous systems, a simple approximation that we have studied
is the following: Let us assume that all the changes occur at each node at the
same time. This implies that even though the nodes are subject to changing loads,
the homogeneity assumption‘is never violated. This may be a reasonable coarse-
grained assumption for some types of systems. For example, computing facilities
at universities and services used by research labs where systems are quite evenly
loaded at any time. From our earlier studies [MIRC87b], we know the answers to

the following questions:

1. What is the best algorithm for a given set of system parameters?

2. What should be the values of the internal parameters of the above algorithm?

In the following subsection, we describe two simple procedures that we have
utilized in order to estimate the changing loads on the system. Because of the homo-
geneity assumption and the fact that all the nodes use identical control strategies,
the effective load at a node is unaffected by the act of load sharing. This leads us
to investigate very simple methods to adaptively determine the load at the nodes.
Further, in the simulation model, only Node-1 monitors its load and broadcasts its

value at prespecified periods to the rest of the system.

7.3.1 Estimation Procedures

The simulation model for the study of the estimation techniques consisted of a

network of 10 nodes executing the Symmetric algorithm. Each node possessed the
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same operating threshold. The arrival rates at the nodes were changed periodically,
always maintaining the homogeneity assumption. The inter-arrival, service and job
transfer times were all exponentially distributed random variables. The expected

service time of a job at any node was assumed to be § = 1 unit.
Method-1

The first method assumes that there exists some mechanism built into the
node that is able to keep track of idle CPU cycles during a prescribed window
of observation. For instance, the VAX architecture provides hardware support for
this purpose [Vax85|. In case there does not exist special purpose hardware, this
function can be programmed into the job scheduler, which will need to maintain

the data regarding the idle CPU cycles.

Let po be the steady state probability that a node is idle. Hence, the processor
utilization is p = 1 — po. The designated node continuously monitors its idle time.
During a given window of observed time t,,, the idle time at the node is denoted
by t;, where ¢; < t,. Thus, pm = 1.0 —¢t;/t,, is the fraction of time the node is busy
during the time interval ¢,,. In the limit, as m tends to infinity, p,, will approach
p, the exact load at the node (assuming that the load has not changed over this

interval).

A relevant aspect of this study is to determine the minimum ¢,, needed to
generate a reasonably close approximation of the load. The reason we do not insist
upon exact values of the load is that although the parameters are affected by the
load, small (< 5 — 10%, depending upon system load) variations in estimating the
load are seen not to affect the performance of the system to any appreciable degree.
This is because the optimal thresholds change quite slowly as a function of load.

For more details regarding this assertion, refer to Chapter 3 of this dissertation.

The internals of the tables in this chapter have the following significance:
The column denoted by t,, represents the window of estimation. The other three
columns represent the estimates provided by the technique for particular values of

tm- In each box which denotes the estimates, there are three elements: The topmost
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Table 7.1: Performance of Method-1, Load = (0.8,0.6,0.4)

tom 08 | 0.6 | 0.4
0.81 | 0.61 | 0.4
7500 | 0.81 | 0.61 | 0.4
1.0 | 1.0 | 0.0
0.82 | 0.62 | 0.41
2500 | 0.86 | 0.65 | 0.36
4.0 | 3.0 | 2.5
0.81 | 0.62 | 0.41
1250 | 0.71 | 0.69 | 0.45
50 | 6.5 | 2.5
0.83 | 0.64 | 0.43
750 | 0.70 | 0.69 | 0.31
6.0 | 6.5 | 7.0
1 0.76 | 0.55 | 0.47
250 | 0.68 | 0.44 | 0.59
10.0 | 14.0 | 17.0

element is the best estimate for a given t,, and load, the second element is the
worst estimate obtained and the bottom element denotes the mean % error in the
estimates. The sign of the error in the estimate is disregarded in the computation
of the mean % error. Thus, estimates of 0.72 and 0.88 for a load of 0.8 will each
generate an error of 10%. Unless specified otherwise, this structure is assumed to

hold for all the tables that appear in the discussion that follows.

In the first set of tests, the loads Were varied from 0.8 to 0.6 to 0.4, at intervals
of 7500 units. Thus, for the first 7500 units of simulation time the average load
was 0.8 and for the next 7500 units it was 0.6 and finally, 0.4. The simulations
were run with different values of t,,, the time window used to estimate the load.
The window was varied from the entire 7500 units to 250 units and the results of
these experiments are shown in Table 7.1. Table 7.2 shows the results of similar

experiments conducted with loads of 0.5, 0.7 and 0.9. t; is reset at the end of each

tm.

The results shown are the means of the load as observed from 3 sets of ex-



Table 7.2: Performance of Method-1, Load = (0.5,0.7,0.9)

tm 0.5 | 0.7 | 0.9
0.5 | 0.7 | 091
7500 | 0.5 | 0.7 | 091
0.0 | 00 | 1.0
0.51{0.71 | 0.92
2500 | 0.54 | 0.67 | 0.86
20 | 1.5 | 3.3
0.53 | 0.68 | 0.88
1250 | 0.58 | 0.74 | 0.84
6.0 | 2.5 | 4.0
0.54 | 0.66 | 0.85
750 | 0.42 ;{ 0.78 | 0.96
7.5 1 5.0 | 5.0
0.42 | 0.63 | 0.79
250 | 0.38 {0.80 | 0.72
20.0 | 13.0 | 15.0
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periments conducted with different random number seeds. The main observations

that can be made from Tables 7.1 and 7.2 are the following:

e In general, the larger the value of t,,, the more accurate is the outcome of

the estimation procedure. This can be expected because the estimate of the

load will converge to its exact value when t,, tends to infinity. For example,

load=0.4 and t,,=7500 units (Table 7.1), the error is 0%.

o If we accept that exact values of the load are not needed to perform effective

load sharing, then errors of around 5% should be tolerable. From the numbers,

it is seen that this requirement is met by setting ¢,, > 750 units.

e For values of t,, < 750 units, the estimation procedure does not provide very

stable results. This means that the value of the lo;d is either over or under

estimated, depending upon the actual set of events during that particular

period. For example, about 15-20% errors are noticed in Table 7.1, when

tm = 250 units. For values of t,, > 750 units, the results are much more
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stable and the variation between the actual load and the estimate is small.

Method-2

Many computer systems do not possess the special purpose utilization moni-
toring hardware that was alluded to in the discussion on Method-1. In such cases,
the processor utilization may need to be determined by software intervention. There
are several alternative methods by which this can be achieved. We use the follow-
ing simple procedure. At regular intervals of time separated by ¢, units, the queue
length at the designated node is determined. If there are no jobs in the queue, a
idle counter is incremented by one. In any event, the total counter is incremented

by one, independent of the queue length at the node.

Thus, the utilization may be approximated by p=1 - idle/total, with the
conjecture that as the number of samples tends to infinity, the estimate of the
utilization will tend to become exact. In this method there is likely to be some
amount of context switching overhead incurred because of the periodic monitoring
of the queue length, although the computational effort required by the estimation
procedure to determine the load is negligible. The two parameters which are critical
are the number of observations used to provide one estimate and the period at which
the observations are made. Several simulations were conducted with different values
of t,, which is the time between observations, and ¢,,, which is the time needed for
one estimate of the current load. Further, the counters are reset at the end of each
tm. Clearly, if t, = the smallest unit of measured time in the system, Method-2
reduces to Method-1. Because the processing in case of Method-2 is by means of

software, the idea is to minimize the potential overhead generated by this procedure.

To study the effectiveness of Method-2, we conducted simulations of homo-
geneous systems where the nodes cycle through different loads as in the case of
Method-1. The two sets of loads tested were (0.9,0.7,0.5) and (0.8,0.6,0.4). A large
range of values for t,, and t, were used and the important results of our simulations
of Method-2 are presented in Tables 7.3 and 7.4. From Tables 7.3 and 7.4, we are

able to make the following observations:



Table 7.3: Performance of Method-2, Load = (0.9,0.7,0.5)

to

0.9

0.7

0.5

1

091
0.94
2.0

0.72
0.65
3.0

0.49
0.55
4.0

0.92
0.86
3.3

0.68
0.74
3.0

0.48
0.58
6.0

0.86
0.82
5.0

0.66
0.62
6.0

0.54
0.43
10.0

10

0.84
0.78
10.0

0.75
0.60
10.0

0.46
0.38
18.0

Table 7.4: Performance of Method-2, Load = (0.8,0.6,0.4)

t

0.8

0.6

0.4

1

0.80
0.84
2.5

0.62
0.56
3.3

0.41
0.44
2.5

0.82
0.86
4.0

0.62
0.56
3.3

0.41
0.34
5.0

0.79
0.73
5.0

0.58
0.67
5.0

0.42
0.31
12.0

10

0.77
0.91
8.5

0.64
0.68
10.0

0.37
0.49
15.0
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e When t, = 1 unit (which is the same as the mean service time of jobs), and t,,
= 500 units, the estimates are very accurate, being about 2-4% off the exact
value of the load. However, the rate at which the observations are made is

fairly high and the overhead costs may become a factor.

e When t, = 2 units and ¢,, is again 500 units, only half as many observations
are made during the estimation period as compared to when ¢, = 1. How-
ever, almost no appreciable difference is seen in the accuracy of the estimates
(the error is about 4% as opposed to 2%). Thus, reducing the number of
observations by half does not have a significant impact on the quality of the

estimates.

e When t, = 5 units and ¢,, = 500 (i.e., only 1/5th the observations are made as
compared to the first case), there is greater variability between the estimates
and the actual loads in some instances. However, in most of the cases, the
estimates are again fairly good, being about 5-10% off the exact value. When
t,=10 units the results are not very good; the errors being as high as 18% at

times (Table 7.3).

Thus, it would appear that in most instances, about 100 observations made
over 500 units of time provide reasonably accurate estimates of the loads. If ob-
servations are made more frequently, the estimate does improve. However, when
one considers the potential cost of this method in terms of context switches, one is

inclined to favor making fewer observations.

In order to study the effect of varying t,,, we ran several simulations, the
results of which are summarized in Tables 7.5 and 7.6. In these simulations, ¢, is
fixed at 5 units and t,, is varied over a large range (only a few of the results are
actually presented here). From Tables 7.5 and 7.6, we are able to infer the following
points: Clearly, when t,, is as low as 50 units and ¢, = 5 units, the estimation quality
is very poor, with errors greater than 50% at times, as for instance when. On the

other hand, when ¢, = 1250 units, the estimation is fairly accurate, with errors



Table 7.5: Performance of Method-2, Load = (0.8,0.6,0.4)

tm

0.8

0.6

0.4

2500

0.80
0.83
1.0

0.61
0.58
1.5

0.40
0.47
5.0

1250

0.80
0.83
1.0

0.59
0.68
5.0

0.41
0.33
7.5

500

0.79
0.73
5.0

0.58
0.67
5.0

0.42
0.31
12.0

250

0.84
0.70
10.0

0.64
0.73
15.0

0.37
0.28
20.0

Table 7.6: Performance of Method-2, Load = (0.9,0.7,0.5)

tm

0.9

0.7

0.5

2500

0.90
0.93
1.0

0.70
0.73
1.5

0.51
0.46
2.0

1250

0.91
0.86
3.3

0.71
0.74
2.5

0.52
0.45
6.0

500

0.86
0.82
5.0

0.66
0.62
6.0

0.54
0.43
10.0

250

0.86
0.78
12.0

0.69
0.62
9.0

0.48
0.41
14.0
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being in the range of about 5%. On the whole, we have noticed that ¢, > 500
ﬁnits with t, = 5 is able to provide reasonably good estimates of the changing
loads. Higher values of ¢,, may facilitate the selection of lower t,, but this will tend
to reduce the responsiveness of the adaptation procedure. Decreasing t,, by some
amount will, on the other hand necessitate smaller ¢,, increasing the potential for

overhead costs.

7.4 Heterogeneous Systems

Methods 1 and 2 clearly applicable in cases where the system remains homoge-
neous during the time of its operation. This is because both these methods directly
determine the utilization and not the arrival rates at the nodes. In case of homoge-
neous systems where all the nodes use the exact same load sharing algorithm, this
is adequate because the utilization of the nodes remains unchanged by the process
of load sharing. This will not hold true in the case of heterogeneous systems. It
may become necessary to directly estimate the arrival rate of local jobs. Of course,
any estimation procedure designed for heterogeneous systems can be used for ho-
mogeneous systems as well. We have designed a recursive estimator based upon a

simple filtering technique. A brief background of recursive filtering is presented in

Appendix D.

7.4.1 Estimation Procedure

Method-3

In this method, we utilize the concepts of recursive filtering to design an
estimator which is able to determine the mean inter-arrival time of local jobs at
a node. The arrival of local jobs is continuously monitored. The time between
the last and the new arrival is calculated each time a local arrival takes place.
This value corresponds to the observation y(k) referred to as the value of the kth

observation, in Appendix D. Because of the exponentially distributed inter-arrival
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times, any given observation may be considered to be noisy. This is because from
an estimation standpoint, it is not possible to determine the characteristics of the
arrival process from any one observation. Thus, there is a continual refinement of the
estimate as more arrivals take place. The computation involved in this technique is
quite simple (a few multiplications and divisions on each arrival). Presumably, this
computational overhead can be included with the normal set of system functions
when a new job arrives at a node. Thus, no separate and expensive context switches

may be necessary in order to compute the estimates.

We now present some of the results obtained by using Method-3 as the es-
timation technique. As stated earlier, we directly estimate the mean inter-arrival
time of jobs. Because of this property, we are able to use this method in the study of
heterogeneous systems. In Chapter 5, we presented performance results of hetero-
geneous systems and using these results, it is possible to determine the parameters
necessary for optimal performance. Because the results in Chapter 5 are in terms
of local arrival rates (and not the net arrival rates which may be different because
of load sharing in heterogeneous systems), the inter-arrival time of local jobs only

is determined by Method-3.

Because a new internal estimate of inter-arrival time is computed on each
local arrival, high loads will generate more invocations of the recursive procedure
and may produce better estimates than low loads. In any event, the old values of the
estimate are discarded at the end of each period of estimation and the estimation

process starts from the initial conditions, as was the case in Methods-1 and 2.

The nodes were subject to similar changing loads as in the previous two esti-
mation methods. In one set of tests, the nodes cycle through loads of (0.9,0.7,0.5)
and in the second set of runs, the loads are (0.8,0.6,0.4). Tables 7.7 and 7.8 depict
the results of the estimation when Method-3 was adopted. The period of estima-
tion, t,,, was varied between 125 units and 1000 units, where 1 unit is the mean
service time of a job. For these tests, ¥ = 62 = 2.0. From Tables 7.7 and 7.8, we

are able to make the following observations:



Table 7.7: Performance of Method-3, Load = (0.9,0.7,0.5)

tm

0.9

0.7

0.5

1000

0.91
0.91
1.0

0.69
0.69
1.5

0.52
0.52
4.0

500

0.88
0.84
4.0

0.67
0.76
8.5

0.53
0.42
10.0

250

0.85
0.82
7.0

0.66
0.78
10.0

0.46
0.58
14.0

125

0.82
0.76
13.0

0.64
0.80
15.0

0.45
0.27
24.0

Table 7.8: Performance of Method-3, Load = (0.8,0.6,0.4)

tm

0.8

0.6

04

1000

0.81
0.81
1.0

0.61
0.61
1.5

0.42
0.42
5.0

500

0.82
0.75
2.5

0.63
0.55
5.0

0.38
0.46
7.5

250

0.83
0.73
6.0

0.56
0.65
8.0

0.44
0.33
12.0

125

0.73
0.90
10.0

0.54
0.48
15.0

0.47
0.54
22.0

193
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e Clearly, when t,, is small, i.e., 125 units, the estimates are not very accurate.
For instance, there can be about 10-20% error in estimating the mean inter-

arrival times, as seen in Tables 7.7 and 7.8.

e As we had expected, the effect of short t,, were more pronounced on low arrival
rates, as may be seen by p = 0.5 (Table 7.7), where the error in estimation is

as high as 24%.

e When t,, is increased beyond 500 units, the overall quality of the estimates
is significantly improved, particularly for low arrival rates, because it is now

possible to make many more observations than with short t,,.

7.4.2 Reaction to Surges

Until this point in this chapter, we have concentrated on estimating the varying
loads when all the nodes undergo the same changes. In this subsection, we determine
the effectiveness of the adaptation procedure in the case where one or more nodes in
the system is subjected to a sudden surge of jobs. These types of surges occur quite
often in real systems, particularly in control enginéering applications where sudden
changes in the external system could necessitate the execution of several new jobs.
In many instances, these surges are of a short duration (especially when compared
to the length of the system uptime). The main questions that are of interest here

are the following:
e What is the time needed to estimate that a surge has occurred?
e Is this time short enough to actually change the system parameters and effec-

tively react to the surge?

To study the above problems, we conducted tests on a network of 10 nodes.
The surge jobs are introduced only on the designated node which also performs the

estimation procedure. To detect the occurrence of surges, we use Method-1 which
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determines the utilization and Method-3 which is able to directly compute the mean
inter-arrival time of jobs (including those that belong to the surge). Two sets of
tests were conducted. In the first set, the base load was varied from 0.4 to 0.6 and
0.8 at the nodes, each for 5000 time units. At time 5000, a surge of length = 2500
units which increased the effective load from 0.6 to 0.9, was introduced at Node-1
(the designated node). The tests were conducted with two different thresholds, 0
and 10. In the second set of tests, the base load at each node was varied from 0.9
to 0.7 and to 0.5, at time units 5000, 10000 and 15000, respectively. The surge was
started at the designated node at time 10000 (i.e., base load = 0.5), and increased
the load to 0.8, again for a period of 2500 units. For these set of tests, ¢, is 1000

units.

Surges and Method-1

The results of these tests conducted on Method-1 are shown in Figures 7.1
and 7.2. The X-axis depicts the simulation time and the Y-axis depicts the loads.

From Figures 7.1 and 7.2, we notice the following facts:

e When T = 0, it is seen that although there is a visible effect of the surge on the
estimation procedure, the results are less than satisfactory. The best estimate
provided for the net load of 0.9 (including the surge) is 0.723 (Figure 7.1). For
the second surge (load= 0.8), the best estimate is 0.71 (Figure 7.2). This is
because the threshold of O precipitates very active load sharing and thus many
of the jobs that arrived as a result of the surge are actually transferred to other
nodes. Recall that Method-1 estimates the utilization and jobs transferred out

of the designated node do not affect the utilization.

e When T = 10, much better results are seen from an estimation standpoint.
The best estimate of load during the surge when the effective load is 0.9, is
0.884 (Figure 7.1), which is less than 2% off the actual load. In the second
surge (Figure 7.2), the results are almost identical as regards their accuracy.

Obviously, the high threshold means that very few jobs are transferred out
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of Node-1 and most of the jobs resulting from the surge actually execute at

Node-1. Thus, the utilization of Node-1 reflects this fact.

¢ For both the curves, it is seen that the estimates have a bell shaped curve,
with a sharp increase and decrease as the surge begins and ends. For T' = 10,

the estimated load approaches the exact load at the end of 7000 units.

Thus, we can conclude that reasonably good estimation of surge intensity by
this technique mandates high thresholds and consequently the jobs that arrive as
a result of the surge are not quickly dispersed around the rest of the network. If
the thresholds were set lower (as they might be for low to moderate job transfer

delays), the surges will tend to clear themselves out in a short period of time.

Surges and Method-3

We now present the results of the exact same experiments as above, but
conducted on a simulation system in which the designated node (which receives the
surge jobs) utilizes Method-3 to estimate the arrival rates. The results of these
experiments are shown in Figures 7.3 and 7.4. Figure 7.3 corresponds to the set of
loads (0.4,0.6,0.8), with the surge starting at time = 5000 and raising the effective
load at the designated node to 0.9 for 2500 units of time. Figure 7.4 corresponds
to the load set (0.9,0.7,0.5), with the surge beginning at time 10000 and increasing
the load from 0.5 to 0.8, for a period of 2500 units. From these figures, we are able

to see that:

o The results of the estimation procedure are not affected by the internal pa-
rameters of the algorithm (threshold) as they are in the case of Method-1
and the exact same estimates are provided when T' = 0 and T = 10. This is
because the estimation procedure directly determines the mean inter-arrival
time of local jobs and is unaffected by the process of load sharing, even though

jobs are transferred out of Node-1.
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e It appears that t,, = 500 units is appropriate and at the end of the first ¢,
after the start of the surge, a very good estimate of the arrival rate is available.
In Method-1, on the other hand, it was noticed that the detection of the surge

was much more gradual.

Thus, Method-3 appears to be more responsive in terms of detecting changes

in the arrival rate, particularly in connection with surges, as compared to Method-1.

7.5 Performance Considerations

While we have focussed upon the issue of detecting the changing loads, the final
objective of the adaptation procedure is to improve response time. In this section,
we investigate control strategies which utilize the estimates of the changing loads to
modify the internal parameters (e.g., the thresholds) of the load sharing algorithms
(in this chapter, we are only concerned with the Symmetric probing algorithm).
We utilize the average system response time as the main metric for comparison.
At all times, the adaptive algorithm will be compared against the optimal strategy
(hereafter referred to as Opt) used under the different loads on the system. Because
the estimation procedure only approximates the actual load on the system, it is
likely that the parameters chosen by the algorithm may result in performance that

is less than optimal.

7.5.1 Description of Experiments

In this subsection, we describe the experiments conducted to determine the perfor-
mance benefits that accrue as a result of estimation and reacting to changes in the
system load. In the first set of tests, the system undergoes changes in the load, but

the homogeneous nature of the nodes is not disturbed.

The designated node continuously monitors its local load, using any one of the

estimation techniques described earlier in this chapter. The period of observation
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tm, is a run-time parameter of the system. At the end of a particular period of
observation, the new system parameters are computed and broadcast to the rest
of the network. These new parameters are utilized for the purpose of load sharing
until the end of the next ¢,,, when the parameters are recomputed and rebroadcast.
As mentioned earlier, the estimation techniques discard all statistics of the previous
period of observation once the new period has started. By this we ignore the
questions about historical data and how it should be utilized. More important has
been the observation that ¢,, is not a very large number and the system is able to

adapt reasonably quickly, as seen in Sections 7.3 and 7.4.

We have developed a simulation system in SIMSCRIPT II.5 that is able to
interact with the estimation procedures and the control strategies. From the results
in Chapter 3, we know the optimal strategy to use under different loads and job
transfer delays. This knowledge is codified and made available to the simulation
system at the start of the test. The relation between loads/delays and optimal
thresholds as well as the load sharing algorithm is available to the program in
the form of 2-dimensional look-up tables, easily accessed at run time. One of the
questions here is the following: How should the range of load (0.0 to 1.0) be divided.
In our tests, the load is varied in steps of 0.1, from 0.1 to 1.0. Thus, the look up
tables for each value of job transfer delay have 10 entries (each of these being the
optimal threshold for that combination of delay and load). Thus, while the program
tracks the changing loads in the system, the estimated load and the transfer delay

are used to determine the new operating threshold.

In the subsequent discussions, the tables depict the performance of the adap-
tation procedure from the standpoint of response time. Method-1 with ¢,, = 750
units was used for the purposes of estimation. Also, the load was changed at dura-
tions of 5000 units of simulation time. The results are presented for three different
values of delay and the two numbers in each box represent the optimal response time
(upper number) and that generated by the adaptation procedure (lower number).

Algorithm Opt utilizes the optimal threshold at all times. The adaptive strategy
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Table 7.9: Response Times, Load = (0.4,0.6,0.8)

Delay | 0.4 | 0.6 | 0.8 | Total
1.08 | 1.20 | 1.47 | 1.29
0.15 1.10 { 1.23 | 1.51 | 1.32
1.45 | 1.76 | 2.27 | 1.91
S 149 (1.822.38 1 1.99
1.67 | 2.45 | 4.11 | 3.01
10S 1.82 12,53 {4.23 | 3.15

Table 7.10: Response Times, Load = (0.5,0.7,0.9)

Delay | 0.5 | 0.7 | 0.9 | Total
B 1.13 [ 1.30 | 1.88 | 1.50
0.1S |1.14|1.35|1.97 | 1.56
159 1.97|2.85| 2.25
S 1.66 | 2.05 | 2.94 | 2.34
1.99 | 3.10 | 5.88 | 4.03
10S | 2.13|3.2216.21 | 4.27

uses the thresholds from the look-up tables which are made available beforehand to
the simulation program. There is no estimate available at the start of the run and
any arbitrary threshold may be input to the simulation at that time. For the tests
conducted in this chapter, T was initially set to 2. All the results are averages of
at least three runs. It was observed that the standard deviations as computed by

the Student-t tests, were very small for all the loads tested.

The numbers in Tables 7.9 and 7.10 correspond to two sets of loads. The first
set is comprised of loads 0.4, 0.6 and 0.8, while the second is comprised of 0.5, 0.7

and 0.9. From Tables 7.9 and 7.10, we are able to make the following observations:

e From Tables 7.9 and 7.10, we see that the response time values for Opt and for
the adaptive algorithm are almost identical at low delays. This is explained
by the fact that the optimal threshold is O for delay = 0.15, for almost the
entire range of load (p < 0.9) of interest (when p > 0.9, T,p: = 1). The slight

variation between the results stems from two main reasons, i.e., the initial
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value of T chosen by the adaptive algorithm and the fact that the estimation
technique may generate slight errors in the estimated load. Thus, for p = 0.9,
the times when T = 1 is selected because of slight errors in estimation (i.e., the

estimate of the load is higher than 0.9), the result is sub-optimal performance.

e Because the initial value of T = 2, very active load sharing is performed
resulting in the slightly higher errors for high delays, as seen in Tables 7.9
and 7.10 (the optimal threshold for Delay = 10S and p = 0.4 and 0.5 is
around 10 as seen in Chapter 3). This situation is rectified as soon as the first

estimate of the load is generated.

e It is seen that the performance difference between the adaptive and Opt strate-
gies increases with increasing loads and delays. This is because system perfor-
mance is more sensitive to thresholds as delays and/or loads increase. In any
event, the performance differences between the adaptive and Opt strategies is

seen to lie between 3-8%, in the tests conducted.

7.6 Summary and Conclusions

In this chapter, we have briefly examined the problem of how to detect the changing
loads in a distributed system and adapt the load sharing strategy in response to the
changed loads. We divided the problem into two parts: The first part dealt with
the estimation of the changing parameters and the second involved the modification
of the load sharing strategy in response to the external changes. The estimation
problem was tackled by three simple methods, two of which were only applicable to
homogeneous systems while the third method, based on recursive filtering, was much
more general in its applicability, being effective in heterogeneous systems as well.
It was seen from the tests conducted that these estimation techniques performed
quite adequately. Further, the estimation time required was not very large, even
when the system was subjected to surges (although it is not clear if the durations

of the surges in our simulations were reasonable, from a practical standpoint).
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In relation to response time improvements as a result of adapting the control
strategy, it was seen that in many instances, the performance difference between the
adaptive and Opt strategies was not very significant, particularly at low to moderate
delays. At such values of delays, the optimal thresholds are not highly dependent
upon the system load. From the results in Chapter 3, we know that the probing
algorithms are quite robust with respect to slight errors in the operating threshold
(i.e., the threshold need not always be optimal to generate very good response time,

as long as it is close to the optimal value).



Chapter 8

SUMMARY AND FUTURE WORK

In this chapter, we summarize the main contributions of this dissertation and pro-
pose several interesting extensions of this research which we hope to investigate in

the future.

8.1 Summary and Conclusions

In Chapter 3, we developed analytical models and solved these models using the

Matrix-Geometric solution technique, for the following load sharing policies:

¢ A sender-initiated policy called Forward.
e A receiver-initiated policy called Reverse.

¢ A combination policy called Symmetric.

From the results in Chapter 3, we observed that the analytical solutions were
valid over a very large range of system parameters. From these solutions, we were
able to study the effects of various important parameters on load sharing, particu-
larly in relation to delays. It was seen that Symmetric probing performed consis-
tently well over the entire range of parameters tested and that neither Forward nor
Reverse could outperform it, although Forward approached its performance in the
low end of the traffic intensity. It was also seen that the optimal thresholds were
a function of the job transfer delays and the traffic intensity, with delays being the
more dominant factor. In comparison with a Random assignment algorithm, it was

noticed that probing ceased to be advantageous after delays greater than 2 — 385,
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where S was the average service time of jobs. At high delays, Random performed
almost as well as any probing algorithm tested. Another interesting observation we
made was that even when delays were extremely large (100S), there was about 7%
gain in load sharing over the corresponding M/M/1, when the traffic intensity was
high (0.9).

In order to simplify the above analytical models, we had made certain as-
sumptions which we believed were reasonable. For example, we had assumed that
probes were transferred in zero time, in spite of large delays during job transfers.
Further, K the maximum number of allowable pending remote jobs was one, and
that the probing and probed nodes have the same operating thresholds. To address
the validity of these assumptions, we developed analytical models and solved these,
using the Matrix-Geometric solution technique, for the foilowing Receiver-Initiated

load sharing policies:

e Policy Ry, where K was a parameter representing the maximum number of

allowable pending remote jobs.
e Policy Rg,., which was a threshold probing variation of R...

e Policy Rp2, where the probing and probed nodes may have different operating
thresholds.

e Policy Rp, where probes took non-zero times.

e Policy Rp,, which was a threshold probing variation of Ep.

From the results of the studies conducted on the above algorithms (Chapter
4), we concluded that our initial assumptions were quite reasonable and that our
intuition was by and large correct. For instance, very little or almost no performance
benefits were seen when K was increased beyond 1. In the case of probes taking non-
zero times, it was noticed that as long as probes were about 10-20 times faster than

jobs in reaching their destination, the system essentially behaved as if the probes
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took zero time. Because we believe that probes will tend to be much smaller in size
than jobs (1 packet of data as opposed to hundreds or thousands for a job), the
zero probing delay assumption appeared to be reasonable. Also, a dual threshold
algorithm appeared to have almost no performance gains over one that employed
a single threshold. Further, the threshold probing variations of the algorithms

performed consistently worse than their complete probing counterparts.

In Chapters 3 and 4, we had assumed that the underlying system was homo-
geneous. We know that in practice, this is a restrictive assumption and that many
systems are comprised of heterogeneous nodes. Consequently, we extended our an-
alytical models and determined solutions for policies operating in such systems.

These were:

¢ A sender-initiated policy called Forward

o A receiver-initiated policy called Reverse

These algorithms were tested for type-1 and type-2 systems where type-1
systems consisted of several classes of nodes where the arrival rates of jobs for the
various classes were different but the processing speeds of the nodes were identi-
cal while type-2 systems comprised of heterogeneous nodes which had different
processing speeds. The results of this study were presented in Chapter 5. From
the solutions of the above models, we observed several interesting phenomena. For
instance, load sharing in heterogeneous systems was seen to be effective for much
higher delays than for homogeneous systems, especially when the degree of imbal-
ance in the loads was large. Also, in type-1 systems, it was seen that under a
high degree of heterogeneity, Random performed very well in comparison with the
probing algorithms (it performed better than Reverse at times and was very close
to Forward). The performance of Forward probing was less sensitive to the probe
limit, particularly in highly unbalanced systems. However, for the same parameters,
Reverse probing was much less efficient where probes were concerned. In the case

of type-2 heterogeneous systems, it was seen that Random assignment performed
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quite poorly and probing appeared to provide much greater performance benefits

than in the case of type-1 systems.

In Chapter 6, we described simulation studies of the simple load sharing
algorithms with a particular focus on the problem of estimating the threshold as
a function of delay and traffic intensity. Some the interesting results in this part
of our research were as follows: We utilized Entropy Minimax, an Information
theoretic estimation technique to estimate the thresholds. This method had the
advantage of being non-parametric (which was particularly relevant in the context
of load sharing), was computationally inexpensive and had adaptive capability. It
was seen performance of load sharing policies using the thresholds generated by
Entropy Minimax, was found to either be optimal or very near optimal, in most
instances. We also studied the effect of load sharing in the presence of delays when
the service times of the jobs were not exponentially distributed. In some sense,
this part of our study provided some understanding about how to deal with the
uncertainty inherently present in distributed systems, as for example by designing

state classification techniques which reduce the impact of this uncertainty.

Finally, in Chapter 7, we considered systems in which the arrival rates at the
nodes were time varying. We developed several simple strategies to recognize these
variations and adapt the parameters of the policies and in some cases, change the
policy itself, as a means of providing effective control in such situations. The reason
we emphasize the word simple is because we had observed that the load sharing
policies were quite stable in relation to small errors in the values of the estimated
parameters. We conjectured that sophisticated techniques to solve the problem will
in all likelihood, provide little gain over simple techniques. From the results of this
chapter, we determined that in many instances, the threshold policies that we have
studied are very robust with respect to small changes in traffic intensity. Thus, if the
user was willing to compromise optimal performance by about 5%, simple adaptive
policies which were able to provide coarse grained estimation of loads appeared to

be adequate.
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8.2 Some Directions for Future Work

There are several avenues available for extending this work as part of some later

study. We now discuss a few of the more interesting alternatives.

In Chapter 3, we studied the performance of three simple load sharing algo-
rithms when job transfers experienced significant delays. Implicit in our study was
the assumption that the average transfer delay was the same between all pairs of
nodes. Although this is generally true for simple Ethernet and Ring type mediums,
we believe that it might be interesting to study systems where this assumption may
not hold, for example in a multi-level bus structure where job transfers from nodes
on the same bus may take less time than between nodes on different busses. Con-
sequently, the probing policies may also change to reflect this fact: A node may
provide preferential treatment to others on its bus. Further, this type of system
architecture is practical because of the known limitations of single bus systems. In
our study, job transfer delays were independent of the network traffic. Clearly, for
medium to heavy loading of the network, this assumption may not be valid. Thus,
we are also interested in analyzing more sophisticated models of the underlying

network in conjunction with our load sharing policies.

In the analytical models for non-zero probing times described in Chapter 4,
we had assumed that the replies to a set of probes did not depend upon the probe
limit. In reality, probing delay will be a function of the probe limit and it would
be interesting to determine the effects of varying the average probing delay on
system performance. Implicit in our models was the assumption that there was no
contention for resources between probes and jobs. In reality, it may happen that
depending upon the architecture of the network controller, a probe may not be
accommodated at a node because all the buffers at its controller may be full. If
such a scenario were to be considered, one could try to determine its effect on the
performance of the algorithms, i.e., how often may a set of probes not result in any
response and how this might impact the probe limit. Further, the work on non-

zero probing times was only conducted with Reverse probing algorithms. Although
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we believe that the results generally apply to Forward and Symmetric probing as
well, it would be worthwhile to extend the Forward probing any maybe even the

Symmetric probing models to include this phenomenon.

In the case of heterogeneous systems studied in Chapter 5, there are several
interesting areas of future research. In the work done in this dissertation, we have
assumed that each of the classes possesses a large number of nodes. In fact, many
real systems are typically heterogeneous but have specific network architectures. For
instance, a star network could consist of a powerful central node and a number of less
powerful satellite machines. Such architectures are being designed and implemented
for such diverse applications as telephone switching and research computing where
each user possesses a workstation and only occasionally needs to use the central
node. In such systems, load sharing may be performed between the satellites and
the central node or over the entire network. It is not‘altogether clear what kind of

load sharing policies might be appropriate in these situations.

The work in this dissertation was analytical and simulation oriented. Con-
sequently, we were forced to make several simplifying assumptions in our models,
particularly in the case of the analytical studies. There is considerable interest in
load sharing from an experimental viewpoint and with the proliferation of multi-
processor systems and computer networks, it is now be feasible to implement simple
load sharing algorithms on real systems. Consequently, we feel that it will be in-
teresting to compare the results of the tests performed on real systems against the
results obtained from the more idealistic models that we have studied thus far. In
particular, we will be interested in studying various alternative methods to clas-
sify system load from a standpoint of deciding when it might be worthwhile to try
and move jobs. For instance, an interesting question that begs to be asked is the
following: How effective will threshold policies be, in real systems (in fact, some
implementations have shown that simple load sharing algorithms may provide ade-
quate performance in certain types of systems, e.g., as in the Stanford V-System).

If not, how will we adapt the load sharing policies studied in this dissertation to
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the more realistic circumstances.






Appendix A

In this appendix, we give closed form representations of the matrices Ag, 4y, A2 and

the matrices Byg, Bo1, B1g, B11, and Bj,, for the Symmetric probing algorithm.

—(a+A) 0 a 0
B — 0 —(a+v+A) 0 a
0= 0 0 —(v+}) 0

0 0 0 —(27y+ )
A 000
A 00
Boy = Yy 0 XA O
0 v v A
g ug 0 O
0 u 0 0
By = _
10 0 0 pug ug
0 0 0 u
-0 0 0 0
B 0 —(v+o) 0 0
nT0 o 0 -(v+o0) 0
0 0 0 —(2y+0)
A0 0 O
|7 A 0 O
Ao ¥ 0 XM 0
0 ~ v Ah
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-6 0 0 0
4]0 —(v + 6) 0 0
1o 0 —(v+9) 0
0 0 0 —(27+6)
Ay = (u+p)l,

where

§= (A +p+u),
o= (A+u),
and I, is the identity matrix of size 4.

We now provide closed form representations for the matrices in the case of

the Forward and Reverse probing algorithms.

Forward
By = [ —(a0+ A) -(1a+ " }
o= 3]
By, — [ —(a +0A + 1) " +a7 o ]

z=>Y pi[10]" + > pse

i<T i>T

which is the probability that a node will respond negatively to a forward probe.
Thus, Z = 1 — z is the probability that a node will respond positively to a forward

probe.
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If a node probes L, nodes, then the probability that the set of probes results

in failure is

h=zkr
Ah 0O
SNk

Az = pul;

where I is the identity matrix of size 2.

Also, R = [r; ;] can be written as follows:

Tip = /\h//l.
0+~ — ((8 +~)? — 4urh)!/?
T22 = 20
Tre2 = 0
B
21 =

0 — (rig+r22)u

where § = Ah + u. It can be shown that the stability criterion for the Forward
probing algorithm is

Ah < u.

Reverse

To determine ¢, the probability of a set of reverse probes resulting in failure,

we use the following procedure:
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Let

y= > pie

i<T+1

If the node probes L, nodes to receive a remote job, then the probability
that all of them will be unsuccessful is denoted by: ¢ = y*», and § = 1 — ¢ is the

probability that at least one of the reverse probes is successful.

Boo = [ _oA —(A0+ 7) ]

Ay = (p+u)l
Also, R = [r; ;] can be written as follows:

ri1 o= M(p+u)

¢+ - ((¢+1) — 4l +u)N)"
2(u + ')

r22 =

Tl'z =0

8
¢~ (rin+ra2)(n+u')

re1 =
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where ¢ = A + u + u'. It can be shown that the stability criterion for the Reverse
probing algorithm is

A<u+u'.






Appendix B

We now give closed form representations of the matrices Ay, A;, A2 and the bound-
ary matrices for the Rg, Rk.,., Rr2, Rp and Rp,, algorithms. For ease of representa-

tion, we have assumed K = 1.

To determine q, the probability of a set of reverse probes resulting in failure,

we use the following procedure:

Let

y= Z pi€

i<T+1

If the node probes L, nodes to receive a remote job, the the probability that

all of them will be unsuccessful is denoted by: ¢ = yl», and § = 1 — q is the

probability that at least one of the reverse probes is successful.

Algorithm Ry
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Ay = (p+ p) I,

where I, is the identity matrix of size 2 and 6§ = (u + u+ A)
Algorithm Ry,

The internals of Ay, A; and A; for this algorithm are identical to those of the
Ry algorithm. This is obvious because the two Markov processes have identical
structures after T + 1. This means that the R matrices are also the same in both

the cases. Further, the Byg matrices are also identical. However,

0
e[ 2]

Algorithm Rr

The internals of the matrices Ag, Ay, Az, Boo, B1o and By, for this process are
identical to those for algorithm R;. Thus, the R matrix for this process is the same

as that for algorithm R,. However, there is the matrix B;q which does not have a

0
el :]

counterpart in R;.

Algorithm Rp
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= 0 0
Bo(): 0 —(’Y+/\) 0
a 0 —(a+ A)
0 pug pug
BlO = 0 1 0
0 0 u
-0 0 0
By, = 0 —(v+o) 0
a 0 —(a+ o)
A 0O
Ao = v A0
a 0 A
-6 0 0
0 0 —(a+6)

Az = (e + 1)L,

Also, R = [r; ;| can be written as follows:

Ti; = 0v: < ]
I Y i\ VS
1,1 2(# + 'ul)
U ke b (6% — 4x(p + u'))V?
2,2 2(# + 'u:)
§+a— (67 — 4\(u+p))?
33 —

2(p +u')
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i
T =
i 6 —(rig+r22)(n+u)
. _ a
31 6 —(rig+rss){u+u)
T3’2 = 0

where I is the identity matrix of size 3 and o = (1 + A).
Algorithm Rp,

The matrices Aq, A;, A; and By, for this algorithm are the same as the cor-
responding ones for algorithm Rp. Consequently, the R matrices for the processes

are also identical. However,

0 ug pq
Bzo— 0 1 0
0 0 u



Appendix C

In this appendix, we describe a lower bound called LB;, used as a bound in the
case of type-2 heterogeneous systems. This lower bound was described in Stankovic
[STAN84]. While the analysis will be presented for a system of C classes, we will
study the specific case of the 2 class systems that have been analyzed in this chapter.
It is assumed that NN, is the number of processors in class-c. The arrival rate of jobs
at a class-c node is Poisson with A, and the service is exponential, with rate u.. If it
is assumed that all the arrivals occur at a central queue servicing all the nodes, then
the net arrival process is also Poisson, with rate A = 260:1 N_.A.. The processors
are sorted in decreasing order of service rate. The state diagram corresponding
to this algorithm is shown in Figure 5.26. The basic idea in this algorithm is as
follows: When a new arrival occurs, it is sent to the fastest available processor. If
no processor is available, the job waits in the queue. On completion of a job, the
job at the head of the queue is scheduled on the freed processor. If a job completes
on a processor and no job is waiting in the queue, an executing job (if one exists)
from a slower processor is moved to the faster processor. Thus, at any time, all
the fastest processors are utilized first. Further, it is assumed that transfers of jobs

between processors involves no cost or delays.

We define the effective processing rate at state ¢ as

i-ky—y

d-1
ni:ZNc/Jc+ Z /J'd’ViSN

c=1 i=1

where N is the total number of processors in the system, and

d-1
kd—l = Z N,

c=1
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When : > N,

C
0 = ZNc/J'c

c=1

Further, we have the state probabilities,

(1/21) = (A/ﬂl)iPo
pi = { A/ T (TS Newse + ina)pn
(A/Q)Npn
with
po = 10— Z Pi

21

Thus, the expected number of jobs in the system,

E[N| =Y ip

i>1

Vi < N
N <i1<N
Vi> N

and from Little’s law, the expected response time of jobs is

E[D] = E[N]/A
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Appendix D

Digital filters are divided into two classes: nonrecursive and recursive. A nonrecur-

sive filter whose output is to be the signal estimate % is defined as

m
z=) h(1)y()
i=1
where the y(¢) are the m data signals and the h(7) are the coefficients. One may
choose the h(7) by several different methods. For instance, they may all have equal
weights, i.e., 1/m. However, in case the mean-square error of the estimated signal is
to be minimized, there needs to be another method to determine the weights of the
coefficients. One such optimal nonrecursive estimator is known as the scalar Wiener
filter. There are several computational difficulties associated with the Wiener filter,
as described in [BOZI79]. For example, m, the number of samples needs to be
prespecified and in case more data becomes available, all the calculations need to
be repeated. Also, it requires the inversion of an (m * m) matrix. If m is large, this

can take substantial computer time.

To allow updating of the estimate as more information becomes available and
to save on processing costs, another scheme called the recursive filter has been
developed in the literature. The problem is specified in a way that is similar to
the nonrecursive case: Given successive samples y(k) = = + v(k), provide a linear

estimator

2= i)

? is minimized. From Section 7.1 in

such that the mean-square error p, = E(z — %)
[BOZI79], we know the nonrecursive solution to this problem and state the results

derived there. For k samples,
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where v = 02/02 and o2 is the variance of the input signal and o2 is the variance
of the noise samples. Notation Z(k) refers to the kth estimate of the parameter z,
i.e., the estimate after a batch of k samples have been processed. Similarly, one can
interpret p(k) as the mean-square error of the estimate after k& samples have been

processed.

The recursive equations to update the estimate of the unknown variable can

be derived as shown in [BOZI79] and written as follows:

_ _ p(k)
AR = k) o
Bk+1) = ?’(';(:)I)e(k)#ﬂ;%l—)y(ml)

where given p(k), one can derive p(k + 1) and p(k + 2) and so on. Thus, one
can use equation to determine the current estimate of z, i.e., Z(k + 1), from the
previously computed value of Z(k) and the new data sample y(k+1). This procedure
continually generates the best linear mean-square estimator of £ and provides the
corresponding mean-square error, p(k + 1). It can be proven that p(k) — 0 for k

very large.
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