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Convergent Local Search

Abstract

When local search techniques are applied to finite combinatorial problems,
the solution obtained may be globally optimal or may instead be only locallyA
optimal relative to the neighborhood structure used. The main result of this
Qork is the determination, for a wide class of problems, of necessary and
sufficient conditions under which neighborhood search will converge, that is,

obtain the globally optimal solution regardless of starting solution.



I. Introduction

Problems often arise in operations research in which, given a large but finite
set of feasible solutions S, an extreme point of some real valued cost
function on S is sought. This extreme point is known as dn optimal feasible
solution. Algorithms for finding optimal feasible solutions generally fall
into one of'the two following categories.

a) eonstructive algorifhms, which construct a feasible solution

in such a manner that it will be optimal upon completion, or

b) improvement algorithms, which start with a non-optimal feasible

solution and construct from it a sequence of feasible solutions of

monotone improving cost.

An obvious advantage of algorithms of the latter type is that they have
produced a feasible solution at every stage. Thus if such an algorithm
exceeds its limit on computation time, the procedure may be halted and a
"good" solqtion obtained. Examples from the first catégory are dynamic
programing (3,12) and branch and bound (20). Examples-from the second
category are linear programming (8,10) and the more general technique of
neighborhood search.

Unlike the other examples above, neighborhood search does not represent
a specific technique, but rather a general method which can be applied to
almost any discrete optimization problem. The basic idea behind neighborhood
search is to pick an initial feasible solution from S, and search a pre-
defined neighborhood (a subset of S) associated with this initial solufion for

an improved solution. If such a solution is found in this neighborhood, then




a pre-defined neighborhood associated with it is searched for further im-
provement. The search terminates when some solution is found to be optimal
relative to its associated neighborhood.

Clearly such a technique can be applied to an extremely broad spectrum
of problems. But as one might expect, a technique as genéral as this has some

serious limitations. The most obvious of these is that when the search
terminates, one ;as a solution which may be locally optimal, that is optimal
within its neighborhood, but not necessarily'globally optimal.

This drawback notwithstanding, néighborhood search has been used with
considerable success of problems for which more formal.techniques have failed
,5,6,16,19,22,23,27). In such applications, it is hoped that the locally
optimal solutions produced are globally optimal, or very close to globally
optimal in cost a high prqportion of the time.

The maiﬁ result of this work is the determination, for the class of
problems defined below, of necessary and sufficient conditions under which

neighborhood search will produce a solution which is guaranteed to be globally

optimal.

II. The Class of Problems Considered and Neighborhood Search

A broad class of discrete optimization problems can be characterized as
follows. The feasible solutions are represented as a set of vectors
S = (sl...sm) in R®. Given a vector xlé Rn, which is called the parameter of

the problem, the cost of a feasible solution 85 is the inner product of sy



with x, or c(si,x) = §;°X. That feasible solution with maximum cost for this
x is said to be optimal with respect to x. It is reasonable to expect that it
is possible for any feasible solution to be uniquely optimal with respect to
some x. That is, for each s; there is an xi_€ R" for which S{°X; 7 S X, for
all k # i. 1Indeed, we assume that every feasible solutioﬁ in S satisfies this
condition. Geometrically this means that for each s in S ;here exists a
hyperplane with s, on one side and all remaining points of S on the other.
Thus no s; can be a convex combination of other points in S, implying that

S consists of the vertices of some convex polytope. If the hyperplanes
defining this polytope are given explicitly, the problem can be phrased as a
linear program and solved by the simplex method. There are, however, problems
such as the traveling salesman problem, or in general integer programming
problems, for which the feasible solutions S are the vertices of a convex

polytope for which the defining hyperplanes cannot.be determined efficiently.

We refer to this class of problems as discrete linear optimization
(DLO) problems. An important sub-class of problems coﬁsists of those in which
the feasible solutions are vectors of O'Sland 1's. We refer to such problems
as subset problems because the feasible solutions can be characterized as
subsets of a fixed set of size n. The traveling salesman problem (2,4,5,6,
7,9,12,13,19,20,24,28) and minimal spanning tree problem (17) are examples of
subset problems. The optimal binary search tree problem (15) is an example
of a DLO problem which is not a subset problem. See (25) for a further
discussion of these examples.

Given a DLO problem with solution set S and a parameter x, a common



technique for maximizing c(s,x) over S is neighborhood search. For every
solution s € S, a subset of S is defined to be the neighborhood N(s) of s.
When such a neighborhood has been defined for éagh s € S we say that a
neighborhood structure N has been defined on S. A sequence of solutions in S
is then generated as follows.

Sy the initial solution, is arbitrary.
can be any point in N(si) such that c(si+l,x) > c(si,x).

Sitl
When for some k, c(sk,x) > c(s,x) for all s &€ N(sk), Sk is said to be

locally optimal with respect to the structure N. Note that s, is not
necessarily globally optimal, but the cdst of elements of the sequence is
strictly increasing.

We have not discussed the procedure by which 51 is chosen or the order
in which the solutions in N(si) are searched for the improvement Si+1' In
practice, these choices are usually pseudo-random. The algorithm may be
repeated on many different random starts, producing in general several
different local optima of which the best is chosen as the final solution.

Definition: A neighborhood structure N is exact if for any x € R" and
any'si €s,

c(si,x) > c(s,x) for all s € N(Si) = s; is optimal.

That is, a neighborhood structure N is exact if any local optimum with
respect to N is a global optimum. It should bé clear‘that a neighborhood
search technique can guarantee an optimal solution if and only if the
neighborhood structure is exact. Consequently it is of some théoretical
importance to be able to ascertain whether or not a neighborhood structure is

exact.
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In the next section we develop a useful characterization of the
optimality of a given feasible solution. We show that the optimality of the
feasible solution Sj with respect to the parameter x can be interpreted
geometrically as meaning that x lies in a particular convex region R%. We
then show that there is a unique minimal subset of S such thgt whenever
s°*X ;=sj'x for all solutions s in this subset then x lies in the convex region
of interest. We refer to this subset of § as the O-neighborhood of Sj’ or
O(si). In section IV the minimal exact neighborhood structure for a DLO

problem is shown to consist of the O-neighborhoods.



III. Characterization of Optimality

We begin with a further discussion of what it means for a feasible solution to
be optimal. Let the feasible solutions be the finite set S of distinct
vectbrs (sl...sm) in R". Suppose that given an arbitrary vector x in Rp,/we
wish to fina an s € S such that c(é,x) = gex is maximized over S. We call
such an s an optiﬁal feasible solution with respect fo x and write

s = OPT(S,x). By definition

(¢D) _ ' sj = OPT(S,x) ® sj'x 2 8%, i=1...m.

For convenience we restate the above condition as follows. Let Vj be

the set of vectors defined by A =s; - Sj' An equivalent condition to (D)
is then
) sj = OPT(S,x) ®v-'x £ 0, for all vhé Vﬁ.

Notice that for sj to be a feasible solution there must exist an Xj such that
Vexy < 0 for all v € Vj'

We address ourselves now to the problem of determining when the
right-hand side of (2) is satisfied. For this expression to be satisfied the
m-1 linear forms (vi‘x, i # j) must be simultaneously non-positive (vj is by
definition the zero vector). We show, using a geometrical argument, that if a
certain subset of the above linear forms are non-positive, then they are all
non-positive. The following definitions introduce a concept relating the
optimality of sj to a condition on the vector x.

Definition: Let C be a finite set of vectors in R®. The polar cone
of C is defined by ¢~ = {x| ¥y € C, x*y £ 0}.

Definition: We will say that a set of vectors C lies in a closed



half-space if thefé exists a vector x such that x°y < 0 for all y € C, and
that C lies in an open half-space if there exists a vector x such that
x°y < 0 for all y € C.

We make three remarks.

1: For C to be non-empty, C must lie in a closed half-space.

2: Any positive linear combination of vectors in C must also be in
C‘, hence C is convex.

| 3: Any positive linear combination of vecfors in an open half-space

must be non-zero. |

The concept of polar cones allows us to express (2) conveniently as:
3) | sy = OPT(S,x) ®x € V.7
Each v, is the perpendicular to a hyperplane in R®. The boundary of Vj- is
composed of some but not necessarily all of these hyperplanes. To ascertain
that x lies in Vj- one need only ascertain that x lies within the bounding
hyperplanes of Vj-. This is equivalent to ascertaining only that those linear
forms in x whose associated hyperplanes are actually bounds of Vj‘ are
non-positive. |

To state this formally will require some intermediate results.

Notation: When C is a set of vectors in R" we write C-v to mean the
set C less the vector v if v € C, and C if viE Cc.

Definition: Let C be a finite set of distinct vectors in an open
half-space of R®. A vector (or point) v is interior to C if v can be
expressed as a positive linear combination of points in C-v and is extreme on

C otherwise. We denote by C* the set of all extreme points of C belonging

to C.

7.



Definition; A genératar of a set of vectors C is a set of vectors U
such that any point v in C can be expressed as a positive linear combination
of points in U.

Definition: Let u and v be vectors. If there exists no real number b
such that u = bv we say that u and v are non-parallel. A set of vectors is
said to be non-parallel if its members are pairwise non-parallel.

Lemma 1: Let C be a finite set of non-parallel vectors in an open
haif—space of Rp, then C* is the minimum generator of C belonging to C.

Proof: 1f a point v is a member of C* then, by definition, any
positive linear combination of points in C expressing v must contain v. Hence
any generator of C must contain C*. Therefore by showing that C* is a
generator of C, we also show that it is the minimum generator of C. We must
establish that if v € C, then v is expressible as a positive linear
combination of points in C*, There are two cases.-

Case 1: v is extreme on C. The result is immediate.

Case 2: v is interior to C. In this case, v is expressible as a
positive linear combination of other points in C., Pick such a combination.

If it includes only points of C*, we are done. Suppose it includes some point

U which is interior to C. Now u, can be expressed as a positive linear

k
combination of points in C-uk, or
= > i
v Zaiui, ay 0, uy €C,i#k
Case 2a: If v does not appear as any of the ui's in the above sum,
then v is expressible as a positive linear combination of vectors in C—uk-v,

and is hence interior to C-uk.

Case 2b: If v appears as some uj in the above sum, then we have



v=y+ ajv, or
v(l-a.,) =y
J
where y is a positiye linear combination of vectors in C—uk-v. (The premise
that C is a non-parallel set insures that y # 0.) Now l—aj must be positive,
for if it were not, we would haye the positive linear combination (aj—l)v +y=0.

But since C lies in an open half-space this is impossible. Therefore we have

= 1 .
1-a, ¥
J

v

so again v is expressible as a positive linear combination of vectors in C-uk—v,
and is hence interior to C—uk.

We can in this way remove all interior points but v from C, while
keeping v interior to the resulting set, which is C*+y. .This implies thaﬁ v
is expressible as a positive linear combination of points in C*.

A -

Lemma 2: 1f C; < C, then C S C .

Proof: 1I1f x € ¢ then x°v < 0, for all.v‘G C. In particular, x°u £ 0
for all u € C;. Thus C € c, .

| QED

We now state a well known lemma (26) which is fundamental in proving the
main result of the paper. A proof, adapted from (26), may be found in the
appendix.

LEMMA 3 (Minkowski-Farkas lemma): Let v be a vector and C be a set of

. n .. . .
vectors in R not containing v. Then the following statements are equivalent.

1. v is extreme on C.
2. There exists an x such that x*u < 0 for allu € C, and x°v > Q.

For a given solution Sj’ v, will denote si—sj, and Vj will denote the
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set {Vi’i # il Nétice that since we assume the existence of an X, such that
v'xj < 0 for all v € Vj’ Vj must lie in an open half-space. We also have
Lemma 4: Vj is non-parallel for any j.
Proof: Let A and Vi i,k # j be any twoAvectors in Vj and assume
there exists a real b such that v, = bv. . We cannot have b = 0 or 1, or we

k

would have s; = s; or s, = s, respectively, and we have assumed distinct

3j i k
solutions. We discuss the three cases: b < 0, 0 < b < 1, and 1 < b, and show
in each case that one of the vectors sj, éi, s, must not be a feasible
solution.

Case 1: If b < O then there can exist no xj such that vex < 0 for all
v € Vj and hence 55 is not feasible.
Case 2: If 0 <b <1 we have
si-—sj = b(skfsj), or
s; = bsk + (l-b)sj.

Now consider the set Vi of vectors of the form v = s—si. We have

V. = 8§,-8, = sj - bsk - (l-b)sj

h| j i
= —b(sk-sj)
and
v = 878y =5 - bsk - (l—b)sj
= (l-b) (Sk-sj) .
If we set ¢ = —E—-< 0, then
1-b ’
v, = ovp.

Now by applying case 1 on the set Vi’ we see that 84 cannot be feasible.

Case 3: If 1 <bwe set ¢ = %; Then we have Vi = cvi,O <c<1l, and
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" by abplying case 2 to the set Vk we see that Sy is not feasible.
QED
The next lemma makes use of the previous lemmas to arrive at a minimal
condition under which the right-hand side of (3) is satisfied.

Lemma &: Vj* is the unique smallest subset P of Vj such that

Proof: By lemma 1, if v is in Vj, then v is expressible as a positive

linear combination of points in Vj*. Therefore if x*u < 0 for all u € Vj*,

then x*v < 0 for all v € Vj' Hence (Vj*)— < Vj—' But from lemma 2,

Vj— < (Vj*)—. We may conclude that (Vj*)— = Vj—

Proof of minimality: Let U be a subset of Vj’ such that
U = Vj-, and suppose §ome element v of Vj* is not contained in U. Since
v € Vj*, v is extreme on Vj’ and therefore also extreme on U. So by lemma 3,
there exists an x such that u*x < 0 for all u € U and v*x > 0. Hence x € U
but x € (Vj*)-, contradicting the hypothesis that U = Vj—. This proves
that if U = Vj- then U must contain Vj*.

QED

The above results imply that
4) s5 = OPT(S,x) ©x € (vj*)".
This implies that for (1), (2), and (3) to hold, it is sufficient for only
those linear forms associated with the extreme points of Vj to be non-positive.

Each of these extreme points vy corresponds to a feasible solution

s; = Vg + s The importance of these solutions in exact neighborhood search

1

j‘
motivates the next definition.

Definition: We define the O-neighborhood of sj’o(sj), to be the set of
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feasible solutioné {si| v, € Vj*}.

Notice that the line y = ave, where o is a real number, contains the
solutiops h and sj. If v, is extreme on V, the line y = av, is extreme on
the polytope defined b§ the vertex set S, and is thus the intersection of n-1
of the defining hyperplanes of this polytope. iherefore the set O(Si)”
consists of the poiytopal netghdors of s;», that is, just those solutions
which would be compared with 8 by the simplex algorithm. (Of course, the
simplex algorithm cannot be applied unless the pfoblem is converted to a

linear program. As we have mentioned, this can always be done, although not

by efficient methods.)
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1V. Exact Neighborhood Search
]
We now consider neighborhood search as applied to DLO problems. From the

definition of exactnes§,the neighborhood structure N igs exact iff for every

S €S and any x € ", -

(5) sj'x > s*x for all s € N(sj)'“ sj = OPT(S,x).

We are now ready to state our main result which characterizes the
exactness of neighborhood structures for discrete linear optimization problems.

Theorem 1: The minimal exact neighborhood structure for a DLO problem
has neighborhoods N(s) = 0(s).

Proof: Let V denote the set of vectors'{si-s[ s; € N(s)}. For a
neighborhood structure N to be exact we have from (5): for every s € S and
any x € RY,

v, X <0 for all A €V =s = 0PT(S,x)

For each Sj € S the unique smallesﬁ V satisfying the above is Vj* from

lemma 5. This implies that the smallest sets N(s) satisfying (5) must be 0(s)

for all s € S.

QED

The above result immediately provides necessary and sufficient
conditions for neighborhood search to guarantee an optimal solution to a DLO

problem,

We next discuss the O-neighborhoods from a more intuitive point of
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view, and prove a theorem concerning a symmetry among O-neighborhoods.
0-ne1ghborhoods possess a property derived in lemma 6 which is useful in
characterizing such neighborhoods explicitly for particular DLO problems. It
is also possible to arrive at theorem 1 given th;s property of O-neighborhoods
as a definition (25,28).

Lemma 6: S € O(Sj) iff there exists an x € R™ for which sj has the
second highest cost in S and Sk has the unique highest cost in S.

Proof: « If sJ has the second highest cost in S, and Sk is optimal,
then v X = (sk-sj)°x > 0, with vi'x < 0 for all A € VJ, i # k. Now assume
that Sk & O(s,). Then v, is interior to Vj’ or in other words

k

v, = La;v;, a; > 0, i # k.

k
So v, *x £ 0 for all v, € Vj, i # k implies Qk'x < 0 vhich is a contradiction.
= If Sk € O(Sj), then Vi is not interior to Vj’ and hence by lemma 3,
there exists an x € Rn, such that kax > 0, with vi'x < 0 for all A € Vj’
i # k. This implies that for this x, c(sk,x) > c(sj,x), with
c(sj,x) ;:c(si,x) for i ¥ k, so Sk has the unique highest cost and sj has the
second highest cost.
QED
One may view a neighborhood structure on a feasible solution set S as
a direpted graph on a node set associated with S, with an arc pointing from
node s; to sj iff s € N(s, ). If for all s; and sJ, s € N(s. ) = s, € N(s )
an undirected graph is clearly adequate to describe the structure. The next
theorem shows that the structure imposed by the O-neighborhoods obeys this
symmetry.

*Theorem 2: If Sy € 0(s ), then s S 0(s ).

% See endnote.
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Proof: The proof consists of the construction of a parameter x' for
which
(6) vi# 3.k, <:(sj x') > cls,,x") > c(s;,x")
implying by lemma 6 that sj € 0(sk). 3
For (6) to hold we must have
@) v 14 3j,k, 0> vk°x' > v, x'
Since Sy € O(sj) we can choose an x such that
v i#k, vy X > 0 2 v, x
and by the definition of feasible solution we can choose a vector y € R" such
that
v l;# J)vi'y < 0.

Letting x' = x + ay, (7) will hold iff

(8) vy X + a(vk'y) <0
and
€)) v i#j,k, vp'x +alvy) > virx +alv,ey).

Clearly (8) is satisfied for

We now show that there exists an a that simultaneously satisfies (8) and (9).
Denote the maximum of vi;x, i# j,k by m £ 0, and the maximum of vitYs i# j,k by
M < 0. Then a satisfies (9) for

vy *X + a(vk'y) >m + aM
or equivalently

(10)» v, X - m > a(M - vk'y)-

Now if (M - vk'y) 2 0 any a satisfying (8) also satisfies (10) and we are
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done. If (M - v 'y) > 0 then (10) implies

V'Y
But since m,M < O,vk-x -m > VX and M - v 'y < VY and hence a can satisfy
Vv, X - m v, *X
Mk . > a > .= kc M
Vi VY

QED
Corollary: 1f skAE O(Sj) there exists an xl.e R® which renders Sy
uniquely optimal with sj uniquely second to optimal, and an X, € R" for which

s, and sj are tied for optimality.

k
Pféojﬁ Using the values of x and y from the above theorem and choosing

a such that 0 <a < - V.X,we have
vy

v %y > 0 and v 1 # j,k, ViR < 0
for X =X + ay, implying that Sy is uniquely optimal with sj uniquely second.

For b = -

V'X and x, = x + by we have
vy 2
V2

implying that Sk and sj are tied for optimality.

= 0 and V i# j,k, v, %, < 0,

QED

VI. Discussion

We feel the above result may play an important role in the synthesis of
neighborhood search algorithms. It'may also be used in the analysis of the

complexity of DLO problems as follows. The last stage of neighborhood search
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clearly involves exhaustive search of the neighborhood of -the local optimum
produced. The size of the smallest neighborhood provides us with a lower
bound on the run time of the algorithm. Thus if one wishes to develop an
exact neighborhood search algorithm for some DLO problen, but finds that the
O-neighborhoods are difficult to define explicitly, a lower bound on their
size may be enough to show that exact neighborhood search is impractical (25,
- 28).

When the cardinality of 0(s) is uniformly much smaller than the
cardinality of S, neighborhood search may be a reasonable method for finding
the optimal solution (25). Thére are problems for which the sets 0(s) are so
large that exact neighborhood search in inherently inefficient (25,28). There
is reason to believe, however (25), that in problems where only a small
fraction f of 0(s) may be searched, the probability of arriving at a global

optimum can be much greater than £.
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Appendix

Lemma 3 (Minkowski-Farkas lemma): Lef v be a vector and C be a set of vectors
in R® not containing v. Then the following statements are equivalent.
1. v is extreme on C.
2. There exists an x such that x*u < 0 for all u € C, and
xv > 0.
Proof: (2= l) We prove the contrapositive. Thus we assume v to be
interior to C and show that 2 cannot hold. If v is interior to C, then
v = Zai u,, with a; > 0, and ui_e cC.
Thus
XV = Zai(x'ui)
which implies that there exists no x such that
x*u < 0 for all u € C, and x°v > 0.
=2 |
Case'1l: Condition 1 holds, and the subspace épanned by the elements of
Cldoes not contain v. Then v can be expréssed as
| v = Zbi u, + v', uy €c, v #£ 0,
where the bi's are real coefficients, and
v'eu =0, for all u € C.
Then for x = v', 2 is satisfied.
Case 2: Condition 1 holds, and the subspace spanned by the elements of
C does contain v. The proof is by induction on the cardinality of C. For
ICI = 1, C is a single vector u. By hypothesis v is in the subspace spanned

by u, but isnot interior to u. Thus



v=--au, a>0
and 2 is satisfied for x = -u.
Now assume that (1 = 2) for [Cl = k=1. Let condition 1 hold for
C = (ul,...uk);
then it certainly holds for
Cl.= (ul,...uk_l).

By assumption since [Cll = k-1, 2 holds for C That is, there exists an x

1
such that

<0, 1<1i<k-1.

X0V > Q, Xqtug

Now if xl'

up < 0, then X satisfies 2 for C as well, and we are done
If on the other hand xl°uk > 0, let
X uy o
u', =u, + b.u,, where b, = - >0, 1<i<k-1
i i ik i X, 'u, = =T =
1k
and

X,V

v! = v+ cu,, where ¢ = - <0, 1<1i<k-1.

k’ Xq ==

Suppose v' were interior to C' ='{u'l,...u'k_l}. Then we would have

v! =Za.u',,a, >0, i <1 <k-1.
i i i = =T =
Then substituting for the u'i's_and v', and collecting terms, the above
equation becomes
v = )a,u, + -
2 1% (Ebiai c)uk.
1<i<k-1 1<i<k-1

Letting ay denote Zbiai-c, and noting that this is a positive quantity, we

have

1



v =7=Iau,,a 20, 12iz2k
ii> i = = - =

or equivalently, that v is interior to C,

Thus v' is not interior to C', and since IC'l

which contradicts the hypothesis.
that

. <0,1<1 < k-1.
. i= == =
Now set
x"uk
X"'X"’x' Xlo
1%
We have for 1 £ 1 < k-1
x"uk
x.ui = x"ui T x,u xl.ul
1 'k
X, Uy
= ve -
=X (ui X, °u uk)
k
=X"U'i_<_0.
We also have
x"uk
xeu, = X'y - X, 'u
k Y x v 1k
=0
and
x'e
xeov = x'v - TR
1 %
X, 'V
= 'l -
G i
...xl.vl >O'

Thus x satisfieg 2 for C.

= k-1, there exists an x' such

20.
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Endnote

Theorem 2 is eéuivalent to the statement that if sﬁ and s, are extreme points
of a convex polytope such that Sy is a polytopal neighbor of Sj’ then sj is

also a polytopal neighbor of Sy The truth of this statement is evident from
geometrical considerations. We have provided an algebraic, constructive proof

to Theorem 2, which is also used in the proof of the following corollary.

21.
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