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A popular way of obtaining approximate solutions of a large
class of elliptic boundary value problems is Gaierkin’s method.
In practice, these approximaté solutions are not actually
¢ tainad since the Galerkin formulation involves certain
integrals which cannot be evaluated analytically. Instead
these integrals are approximated numerically and the resulting
equations are solved to give ''quadrature approximations™ to

the Galerkin approximations.

The object of this paper is to investigate a priori bounds
for the difference between the solutions and the quadrature
approximations. In particular, using a technique due to J. Nitsche,
cf. [2], we obtain new bounds in the L2 - norm. These
substantially improve and generalize the weaker results
reported in [1] which involved analogous bounds in Sobolev

spaces.

-

Throughout this paper, let 9 C RN be an open set, m be
a2 positive integer, wg’z (2) denote the closure of the real-~valued

functions f € Cg (9) with respect to the norm

|| £ “m = ( fg ) |Duf‘2 dx] 1/2 ’

0<o]<m

where we have used the standard multi-index notation, cf. [51,

wm’z(ﬂ) denote the closure of the real-valued functions £ C c”(Q)



with respect to | - ”m’ and H be any closed subspace of wm’z(m

such that ng’z(ﬂ) C Hc Wm’z(fz). If wé are considering a problem
of order 2m, the a priori bounds reported in [1] are in the

Sobolev nmorm |||l . Such error bounds trivially induce error bounds

in the lcwer order Sobolev norms, | ° “j , 0<j<m-1, But

these induced error bounds are not sharp.

Let a(u,v) be a real-valued, bounded, bilinear form over

H such that there exist constants 0 < § < p such that

¢h) atu,v) <w Jul IVl
and

2
(2) 8 fjufi, < alu,w)

for all u and v &€ H. Given a real-valued function g € WO’Z(Q) s

our problem is to find u ¢ H such that
(3) a(u,v) = (g,v), = fﬂ g(x)v(x)dx, for all v¢€ H.

If S is any finite dimensional subspace of H, the Galerkin

method is to find ug € S such that

(4) a(uS’ w) = (g,w)o, for all v € S.



If S is the span of the N linearly independent basis functions

{B; (x) | 1 <1 <N}, then the coefficients {Bil 1<i<N}in

1]

N
the expansion us(x) Z BiBi(x) can be characterized as the
. e i_l

solution of the linear system

(5) A8 =k,

where

6) A=la,]= [fn a(Bi,Bj) dx]
and

M k= k1= [f, B xdx].

We recall two key results, which will be essential,
giving bounds for the difference u~ug. The reader is referred

to [3] and [4] for the details of the proofs.

Theorem 1. If (1) and (2) hold, {(3) has a unique solution, u,
(4) has a unique solution, ug s for every finite dimensional

subspace S of H and



-1
(8) Jje - uS“m < 6§y inf jju - y“m.

VAL

We now make the additional assumption that a(u,v) is

gtrongly coercive over H, i.e., that every soluticun, u, of

(3) is in Wzm’z(ﬂ) and that there exists a positive comstant,

p, such that

@ ullyy < eligllys for all g€ W2,

_ Theorem 2. Let (1) and (2) hold, a(u,v) be strongly coercive

over H and C be a collecticn‘of finite dimensional subspaces of

H such that if g ¢ w2m,2

real-valued function E on C such that

(10) 1inf g - vl 2 E(S) |8jl,>
nf e - ¥y liglh,

for some m < p < 2m and all S ¢ C. Then

(11) | o~ uS“O < 06-1 p E(S) inf “u - y”m,
y€S

In practice, instead cf solving (4), we solve

(12) a(ﬁS,W) = (Q,W)O,

() n H, then there exists a positive,

for all S ¢ C.

for all w ¢ S, where g ¢ WO’Z(Q) is a "good" approximation to g



such that the integrals fn §(x) B,(x)dx, 1 < i < N, can be
evaluated analytically. °F:‘Lrst: we give a bound for the error

{u - {ig) in the Wm’z(n) - norm, which generalizes Theorex?x 3 of
[1].

Theorem 3. If the hypotheses of Theorem 1 hold,

a3 e - Gl < 67F fls - Elly + 67 tnf -yl
y€s

for all finite dimensional subspaces S of H and all g € Wo’z(g).
Prcof. By the triangle inequality, we have

(14) e = gl < g = gl + s - gl
From (4) and (12) we have

Glfus-ushm < a(us-us,u -uS) = (g--g,us--us)o

A~

< g -8l g -dgly < lg- &ly lug - ugl
Hence,
(s) Sl < 67 ls - &l

and the result follows from using (8) and (15) to bound the

right-hand side of (14). QED.



Second, using a technique of J. Nitsche, cf. [2] , we give
a bound for the error (u - GS) in the vo’z(ﬂ) - norm, which

extends Theorem 3 of [1].

Theorem 4. If the hypotheses of Theorem 2 hold, then
A "'l ~
(16) - agly < o1+ usTE®) g - &l

+ oo WE(S) inf - v
y€S

for all finite dimensional subspaces S of H and all g & WO’Z(Q) .

Proof. Let wg = (u - us) ! - uS"O and  ¢g be the solution

- u = -3 = - G . . h

of af(u Ugs ¢S) (ws, u uS)O fju uS“O If v € S 1is the
orthogonal projection of ¢S onto S with respect to the inner-—
roduct in Wm’Z(Q) a(u = 0_, ¢o = V) = (Wg, u - a )+ (E -8,V

P ’ s* ¥s s’ Ys’o » Vg

and hence o - usllo = a(u - Ug ¢S -v) + (g -8, v)0 . Thus, using
(1), we have

an M- ggly < w o= ggll lbg = vl + le - &l liv I

iA

< wiE logly le- Sl + logly e - gl

Ia

p ES) | ¢S“2m o - lA’s“m + ¢S“2m le - é“o

A

pu E(S) - ﬁsllm + o lg - &ly



The result follows by using (13) to bound the right-hand side of

(17). QED.

As a rather typical example, let H and a(u,v) be such that

2m+t’2(sz) and C be a

if g € Wt’z(g) , then the solution u €W
one-parameter family of finite dimensional subspaces {Sh(d) | h >0}

4 a fixed integer > m, such that E(S (d))=z inf g - y[g
= h
y€s, (d)

< K, g ]& and inf fa - y[h < thz-m Il u "z , where
y€s, {d)

v z min (2m,d+l) and z = min (2mtt,d+1). For example, Sh(d)

might be a space of polynomial spline functions of degree d with

associated mesh length equal to h, Then

o - gl

A

i A -1 , .2-
le - &, + & ucph ", and

1

~

e = Sl < o @ *us 12 c b ),

r-m ~ -
th ) g - g‘b + pd ou chdh
If in addition, § is given by an interpolation mapping of degree
p such that
le - 8l < Mp% gl » vhere q = min (,0),

then we have

o - S0, < nqhq el + g7t ucgp™



and

T A o S R Rl Y e YR S
In. [1], a quadrature scheme was defined to be (m-) consistent

if and only if q > z-m,i.e., if and only if the error in the

Wm’z (@) - norm due to the quadrature scheme is of the same order

of magnitude as the error dve to Galerkin'e method. However, here

we see that if we demand consistency in the I-JO’Z(Q) - norm , we

must have q > r+z -2m . But r+z -2m > (wtl) + z -2m > z-mtl ,

which is a more stringent condition on the regularity of g and

the degree of the interpolation mapping. In the still further

special case of r=2m and z=d+1 we have m-concistency if and

only if q > d+1 -m and O-consistency if and only if q 2 a+l1 .

Thus, for O-consistency we must have t 2 d+l and p > d.
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