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Abstract

We introduce a randomized procedure that, given an m×n matrix A and a positive
integer k, approximates A with a matrix Z of rank k. The algorithm relies on applying
a structured l ×m random matrix R to each column of A, where l is an integer near
to, but greater than, k. The structure of R allows us to apply it to an arbitrary m× 1
vector at a cost proportional to m log(l); the resulting procedure can construct a rank-k
approximation Z from the entries of A at a cost proportional to mn log(k)+ l2 (m+n).
We prove several bounds on the accuracy of the algorithm; one such bound guarantees
that the spectral norm ‖A − Z‖ of the discrepancy between A and Z is of the same
order as

√
max{m,n} times the (k + 1)st greatest singular value σk+1 of A, with small

probability of large deviations.
In contrast, the classical pivoted “QR” decomposition algorithms (such as Gram-

Schmidt or Householder) require at least kmn floating-point operations in order to
compute a similarly accurate rank-k approximation. In practice, the algorithm of this
paper is faster than the classical algorithms, as long as k is neither very small nor very
large. Furthermore, the algorithm operates reliably independently of the structure of
the matrix A, can access each column of A independently and at most twice, and
parallelizes naturally. The results are illustrated via several numerical examples.

1 Introduction

In many applications it is important to be able to construct low-rank approximations to
matrices. Such approximations help to characterize the structure of linear operators, and to
facilitate rapid calculations involving them. One classical form of these approximations is
the singular value decomposition (SVD), which is known in the statistical literature as the
principal component analysis (PCA). Another classical form is the approximation obtained
via subset selection; we will refer to the matrix representation obtained via subset selection

∗Partially supported by NGA Grants HM1582-06-1-2039 and HM1582-06-1-2037, and AFOSR Grants
FA9550-06-1-0197, FA9550-06-1-0239, and FA9550-05-C-0064.
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as an interpolative decomposition. These two types of matrix approximations are defined as
follows.

An approximation to an SVD of a complex m× n matrix A consists of nonnegative real
numbers σ1, σ2, . . . , σk−1, σk known as singular values, orthonormal complex m× 1 column
vectors u(1), u(2), . . . , u(k−1), u(k) known as left singular vectors, and orthonormal complex
n× 1 column vectors v(1), v(2), . . . , v(k−1), v(k) known as right singular vectors, such that∥∥∥∥∥A−

k∑
j=1

u(j) σj (v(j))∗

∥∥∥∥∥ ≤ δ, (1)

where k, m, and n are positive integers with k < m and k < n, δ is a positive real number
specifying the precision of the approximation, and, for any matrix B, ‖B‖ denotes the
spectral (l2-operator) norm of B, that is, ‖B‖ is the greatest singular value of B. An
approximation to an SVD of A is often written in the equivalent form

A ≈ U Σ V ∗, (2)

where U is a complex m× k matrix whose columns are orthonormal, V is a complex n× k
matrix whose columns are orthonormal, and Σ is a real diagonal k× k matrix whose entries
are all nonnegative. See, for example, [14] for a more detailed discussion of SVDs.

An interpolative decomposition of a complex m×n matrix A consists of a complex m×k
matrix B whose columns constitute a subset of the columns of A, and a complex k×n matrix
P , such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2, and

3. A = B P .

See, for example, [12], [5], [13], [9], [18], or Sections 4 and 5 of [4] for a discussion of
interpolative decompositions.

The present article introduces an algorithm for the computation of a low-rank approxi-
mation of either type to an arbitrary matrix. The algorithm is generally at least as efficient
as pivoted Gram-Schmidt and the other classical pivoted “Q R” decomposition algorithms,
and often substantially more efficient. In order to construct a nearly optimal rank-k approx-
imation to a complex n× n matrix, any of the standard schemes (such as Gram-Schmidt or
Householder) requires at least

O(kn2) (3)

floating-point operations (see, for example, Chapter 5 in [8]). In contrast, the algorithm of
Subsection 5.2 of the present paper requires

O(n2 log(k) + nl2) (4)

floating-point operations, where l is an integer near to, but greater than, k.
In practice, the scheme of the present article is more efficient than standard methods

whenever l < n and k is not extremely small (see Section 6 below). Furthermore, the scheme
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of the present paper requires less storage whenever the input matrix is to be preserved,
applies naturally to matrices whose entries are to be evaluated on-the-fly, rather than stored
in memory, and parallelizes trivially. Thus, the algorithm described below would seem to
be preferable to the classical algorithms for the construction of low-rank approximations to
medium- and large-scale dense matrices, or (more or less equivalently) for the computation
of a few of the greatest singular values of matrices and their corresponding singular vectors.

Unlike the classical algorithms, the scheme of the present paper is a randomized one, and
fails with a small probability. However, one can determine rapidly whether the algorithm
has succeeded, using a verification scheme such as that described in Subsection 3.4. If
the algorithm were to fail, then one could run the algorithm again with an independent
realization of the random variables involved, in effect boosting the probability of success at
a reasonable additional expected cost. In fact, the randomized algorithm succeeded during
every trial reported in the numerical experiments of Section 6, obviating the need to run the
algorithm again.

The algorithm of [13] is similar to the algorithm of the present paper. The core steps
of both algorithms involve the rapid computation of the product of a random matrix and
the matrix to be approximated. The algorithm of [13] assumes that the matrix to be ap-
proximated (and its transpose) can be applied rapidly to arbitrary vectors, thus enabling
the rapid computation of the product of the matrix to be approximated (or its transpose)
and any matrix. In contrast, the algorithm of the present paper utilizes a random matrix R
which can be applied rapidly to arbitrary vectors, thus enabling the rapid computation of
the product of R and any matrix.

The matrix R employed in the present paper consists of several uniformly randomly se-
lected rows of the product of a discrete Fourier transform matrix and a random diagonal
matrix. The fast Fourier transform and similar algorithms allow the rapid application of
R to arbitrary vectors (see, for example, [14] for a discussion of the fast Fourier transform
algorithm and its applications). The idea of using a random matrix with such structure has
been introduced in [1]. The idea of using such a matrix in numerical linear algebra (specifi-
cally, for the purpose of computing a solution in the least-squares sense to an overdetermined
system of linear-algebraic equations) has been introduced in [15], utilizing both [1] and [7].

It should be observed that there is nothing magical about our choice of the matrix R.
In our experience, several other constructions work just as well; for example, the Fourier
transform utilized in the present paper can be replaced with the Walsh-Hadamard transform
(see [1] or [19]). We are investigating several possible alternatives (see [2]). For simplicity,
we discuss here only complex matrices; our preliminary report [19] discusses an early version
of the algorithm tailored for real matrices.

The present paper has the following structure: Section 2 sets the notation. Section 3
collects together various known facts which later sections utilize. Section 4 provides the
principal lemmas which Section 5 uses to construct algorithms. Section 5 describes the
algorithm of the present paper, providing details about its accuracy and computational
costs. Section 6 illustrates the performance of the algorithm via several numerical examples.
Section 7 draws several conclusions and proposes directions for further work.
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2 Notation

In this section, we set notational conventions employed throughout the present paper.
We denote an identity matrix by 1, and a matrix whose entries are all zeros by 0. For

any matrix A, we define the norm ‖A‖ of A to be the spectral (l2-operator) norm of A, that
is, ‖A‖ is the greatest singular value of A. For any matrix A, we define A∗ to be the adjoint
of A. For any complex number z, we define z to be the conjugate of z. We use i =

√
−1

and e = exp(1). For any nonnegative integers n and m, we define l = (n mod m) to be the
integer l such that n − l is a multiple of m and 0 ≤ l ≤ m − 1, that is, n mod m is the
remainder after integer division of n by m. We use P to take the probability of an event, and
E to take the expectation of a random variable. We abbreviate “independent, identically
distributed” to “i.i.d.”

For any positive integer m, we define the unnormalized discrete Fourier transform F (m)

to be the complex m×m matrix with the entry

(F (m))j,k = e−2πi(j−1)(k−1)/m (5)

for j, k = 1, 2, . . . , m − 1, m; if the size m is clear from the context, then we omit the
superscript in F (m), denoting the unnormalized discrete Fourier transform by simply F .

We will frequently utilize the following subsampled randomized Fourier transform. For
any positive integers l and m with l < m, we define the l×m SRFT to be the complex l×m
random matrix

R = S F D. (6)

In (6), S is the l×m matrix whose entries are all zeros, aside from a single 1 in column sj of
row j for j = 1, 2, . . . , l− 1, l, where s1, s2, . . . , sl−1, sl are i.i.d. integer random variables,
each distributed uniformly over {1, 2, . . . ,m−1, m}. Moreover, F is the m×m unnormalized
discrete Fourier transform, and D is the diagonal m×m matrix whose diagonal entries d1, d2,
. . . , dm−1, dm are i.i.d. complex random variables, each distributed uniformly over the unit
circle. We call R an “SRFT” for lack of a better term.

3 Preliminaries

In this section, we summarize various facts from linear algebra, and describe efficient algo-
rithms for computing an arbitrary subset of the outputs of a discrete Fourier transform, as
well as for identifying matrices whose spectral norms are larger than desired.

3.1 General facts from linear algebra

In this subsection, we summarize various general facts from linear algebra.
The following lemma states that, for any m×n matrix A whose rank is k, there exist an

m× k matrix B whose columns constitute a subset of the columns of A, and a k× n matrix
P , such that

1. some subset of the columns of P makes up the k × k identity matrix,
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2. P is not too large, and

3. B P = A.

Moreover, the lemma provides an analogous approximation B P to A when the exact rank
of A is not k, but the (k + 1)st singular value of A is nevertheless small. The lemma is a
reformulation of Theorem 3.2 in [12] and Theorem 3 in [5].

Lemma 3.1 Suppose that m and n are positive integers, and A is a complex m× n matrix.
Then, for any positive integer k with k ≤ m and k ≤ n, there exist a complex k × n

matrix P , and a complex m× k matrix B whose columns constitute a subset of the columns
of A, such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 1,

3. ‖P‖ ≤
√

k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k + 1)st

greatest singular value of A.

Remark 3.2 Properties 1, 2, 3, and 4 in Lemma 3.1 ensure that the interpolative decom-
position B P of A is numerically stable. Also, Property 3 follows directly from Properties 1
and 2, and Property 4 follows directly from Property 1.

Observation 3.3 There exists an algorithm which computes B and P in Lemma 3.1 from
A, provided that we require only that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2,

3. ‖P‖ ≤
√

4k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

4k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k +1)st

greatest singular value of A.

For any positive real number ε, the algorithm can identify the least k such that ‖B P−A‖ ≈ ε.
Furthermore, there exists a real number C such that the algorithm computes both B and
P using at most Ckmn log(n) floating-point operations and Cmn floating-point words of
memory. The algorithm is based upon the Cramer rule and the ability to obtain the minimal-
norm (or at least roughly minimal-norm) solutions to linear-algebraic systems of equations
(see [12], [5], and [10]).
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The following lemma provides an approximation Q Z to an n× l matrix Y via an n× k
matrix Q whose columns are orthonormal, and a k × l matrix Z.

Lemma 3.4 Suppose that k, l, and n are positive integers with k < l ≤ n, and Y is a
complex n× l matrix.

Then, there exist a complex n × k matrix Q whose columns are orthonormal, and a
complex k × l matrix Z, such that

‖Q Z − Y ‖ ≤ ηk+1, (7)

where ηk+1 is the (k + 1)st greatest singular value of Y .

Proof. We start by forming an SVD of Y ,

Y = U Σ V ∗, (8)

where U is a complex n × l matrix whose columns are orthonormal, V is a complex l × l
matrix whose columns are orthonormal, and Σ is a real diagonal l × l matrix whose entries
are all nonnegative, such that

Σj,j = ηj (9)

for j = 1, 2, . . . , l − 1, l, where Σj,j is the entry in row j and column j of Σ, and ηj is the
jth greatest singular value of Y . We define Q to be the leftmost n× k block of U , and P to
be the rightmost n× (l − k) block of U , so that

U =
(

Q P
)
. (10)

We define Z to be the uppermost k× l block of Σ V ∗, and X to be the lowermost (l− k)× l
block of Σ V ∗, so that

Σ V ∗ =

(
Z
X

)
. (11)

Combining (8), (9), (10), (11), and the fact that the columns of U are orthonormal, as are
the columns of V , yields (7). 2

Observation 3.5 In order to compute the matrices Q and Z in (7) from the matrix Y , we
can construct (8), and then form Q and Z according to (10) and (11). (See, for example,
Chapter 8 in [8] for details concerning the computation of the SVD.)

The following technical lemma will be needed in Section 4; Lemma 6 of [13] provides a
proof.

Lemma 3.6 Suppose that k and l are positive integers with k ≤ l. Suppose further that G
is a complex l × k matrix such that G∗ G is invertible.

Then, ∥∥(G∗ G)−1 G∗∥∥ =
1

σk

, (12)

where σk is the least (that is, the kth greatest) singular value of G.

6



3.2 More specialized facts from linear algebra

In this subsection, we summarize various facts from linear algebra that are useful specifically
for the randomized approximation of matrices.

The following lemma states that the product B P of matrices B and P is a good approx-
imation to a matrix A, provided that there exists a matrix R such that

1. the columns of B constitute a subset of the columns of A,

2. ‖P‖ is not too large,

3. RB P is a good approximation to RA, and

4. there exists a matrix T such that ‖T‖ is not too large, and T RA is a good approxi-
mation to A.

Lemma 3.7 Suppose that k, l, m, and n are positive integers with k ≤ n. Suppose further
that A is a complex m× n matrix, B is a complex m× k matrix whose columns constitute a
subset of the columns of A, P is a complex k × n matrix, T is a complex m× l matrix, and
R is a complex l ×m matrix.

Then,
‖B P − A‖ ≤ ‖T RA− A‖ (‖P‖+ 1) + ‖T‖ ‖RB P −RA‖. (13)

Proof. We observe that

‖B P − A‖ ≤ ‖B P − T RB P‖+ ‖T RB P − T RA‖+ ‖T RA− A‖, (14)

‖B P − T RB P‖ ≤ ‖B − T RB‖ ‖P‖, (15)

and
‖T RB P − T RA‖ ≤ ‖T‖ ‖RB P −RA‖. (16)

Since the columns of B constitute a subset of the columns of A, it follows that the columns
of B − T RB constitute a subset of the columns of A− T RA, and therefore,

‖B − T RB‖ ≤ ‖A− T RA‖. (17)

Combining (14), (15), (16), and (17) yields (13). 2

Remark 3.8 Since the columns of B constitute a subset of the columns of A in Lemma 3.7,
it follows that the columns of RB constitute a subset of the columns of RA. Conversely,
whenever a matrix Z is formed by gathering distinct columns of Y = RA together into Z,
then clearly Z = RB for some matrix B whose columns constitute a subset of the columns
of A.

The following lemma states that the product A Q Q∗ of matrices A, Q, and Q∗ is a good
approximation to a matrix A, provided that there exist matrices R and Z such that

1. the columns of Q are orthonormal,
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2. Q Z is a good approximation to (RA)∗, and

3. there exists a matrix T such that ‖T‖ is not too large, and T RA is a good approxi-
mation to A.

Lemma 17 of [13] provides a proof for the following lemma.

Lemma 3.9 Suppose that k, l, m, and n are positive integers with k ≤ n. Suppose further
that A is a complex m×n matrix, Q is a complex n×k matrix whose columns are orthonormal,
Z is a complex k× l matrix, T is a complex m× l matrix, and R is a complex l×m matrix.

Then,
‖A Q Q∗ − A‖ ≤ 2 ‖T RA− A‖+ 2 ‖T‖ ‖Q Z − (RA)∗‖. (18)

The following lemma provides an efficient means of computing an SVD of a complex
m× n matrix A from a complex m× k matrix B and a complex k × n matrix P such that
A = B P and k is much less than both m and n. If, in addition, ‖B‖ ≤ ‖A‖ and ‖P‖ is not
too large, then the scheme described by the lemma is numerically stable. We observe that,
if B and P arise from an interpolative decomposition, then indeed ‖B‖ ≤ ‖A‖ and ‖P‖ is
not too large, and so the scheme described by the lemma is numerically stable.

Lemma 3.10 Suppose that k, m, and n are positive integers with k ≤ m and k ≤ n.
Suppose further that A is a complex m× n matrix, B is a complex m× k matrix, and P is
a complex k × n matrix, such that

A = B P. (19)

Suppose in addition that L is a complex k×k matrix, and Q is a complex n×k matrix whose
columns are orthonormal, such that

P = L Q∗. (20)

Suppose finally that C is a complex m×k matrix, U is a complex m×k matrix whose columns
are orthonormal, Σ is a real k× k matrix, and W is a complex k× k matrix whose columns
are orthonormal, such that

C = B L (21)

and
C = U Σ W ∗. (22)

Then,
A = U Σ V ∗, (23)

where V is the complex n× k matrix given by the formula

V = Q W. (24)

Moreover, the columns of V are orthonormal (as are the columns of U), and

‖L‖ = ‖P‖. (25)
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Proof. Combining (19), (20), (21), (22), and (24) yields (23). Combining (24) and the facts
that W is unitary and that the columns of Q are orthonormal yields that the columns of
V are orthonormal. Combining (20) and the fact that the columns of Q are orthonormal
yields (25). 2

Remark 3.11 The matrices L and Q in (20) can be computed from P as follows. Using
the algorithms described, for example, in Chapter 5 of [8], we construct an upper triangular
complex k × k matrix R, and a complex n × k matrix Q whose columns are orthonormal,
such that

P ∗ = Q R. (26)

We thus obtain Q. We then define L to be the adjoint of R, that is,

L = R∗. (27)

3.3 An accelerated fast Fourier transform

In this subsection, we describe an efficient algorithm for computing an arbitrary subset of
the outputs of a discrete Fourier transform, based on the fast Fourier transform (see, for
example, [14] for a discussion of the fast Fourier transform algorithm and its applications).
The algorithm requires O(n log(l)) floating-point operations in order to compute l samples
of the discrete Fourier transform of a vector of length n. [17] discusses an extremely similar
algorithm.

The following lemma is easily verified by identifying the summation indices k, k1, and k2

via the equation k = m(k1 − 1) + k2.

Lemma 3.12 Suppose that l, m, and n are positive integers with n = l · m, and v is a
complex n× 1 column vector.

Then,

n∑
k=1

e−2πi(j−1)(k−1)/n vk

=
m∑

k2=1

e−2πi(j1−1)(k2−1)/m · e−2πi(j2−1)(k2−1)/n ·
l∑

k1=1

e−2πi(j2−1)(k1−1)/l vm(k1−1)+k2 (28)

for j1 = 1, 2, . . . , m− 1, m and j2 = 1, 2, . . . , l − 1, l, where j = l(j1 − 1) + j2.

Suppose that l, m, and n are positive integers with n = l ·m, and v and z are complex
n × 1 column vectors, such that z = F (n) v, where F (n) is the n × n unnormalized discrete
Fourier transform. Then, it follows from (28) that the following procedure computes z from
v:

1. Viewing the vector v as an l×m matrix V stored in row-major order, form the product
W of the l × l unnormalized discrete Fourier transform F (l) and V , so that

W = F (l) V. (29)

9



2. Multiply the entry in row j and column k of W by e−2πi(j−1)(k−1)/n for j = 1, 2, . . . ,
l − 1, l and k = 1, 2, . . . , m− 1, m, in order to obtain the l ×m matrix X.

3. Transpose X to obtain an m× l matrix Y , so that

Y = XT. (30)

4. Form the product Z of the m×m unnormalized discrete Fourier transform F (m) and
Y , so that

Z = F (m) Y. (31)

View the m× l matrix Z as a vector z stored in row-major order.

If we only need to compute l entries of z = F (n) v, then we can use Steps 1–3 above in
their entirety to obtain Y , and then compute the desired entries of z directly from the entries
of Y . Step 1 costs O(m · l log(l)) using the fast Fourier transform, Step 2 costs O(m · l), and
Step 3 costs O(m · l). It follows from (31) that each entry of z is a linear combination of m
entries of Y . Therefore, computing the l desired entries of z directly from the entries of Y
costs O(l ·m).

Summing up these costs and using the fact that l ·m = n, we find that computing any
specified l entries of z = F (n) v from the entries of v costs

Cl of n = O(n log(l)) (32)

floating-point operations.

3.4 A randomized scheme for estimating the spectral norm of a
matrix

In this subsection, we formalize the intuitively obvious statement that the product A x of a
matrix A and a random vector x has a small norm whenever ‖A‖ is small. Moreover, ‖A x‖
is only rarely not small whenever ‖A‖ is not small. By applying A to a short sequence of
independent vectors x(1), x(2), . . . , x(k−1), x(k) and looking at the results, we can estimate
‖A‖ with very high probability and acceptable accuracy.

Needless to say, other estimates of this type have been constructed previously; those
in [3] are some of the best-known ones. The estimates of [3] are different from ours in several
respects, most notably in that we work in the Euclidean norm, while the authors of [3]
work in the max norm; in addition, the entries of our vectors x(1), x(2), . . . , x(k−1), x(k) are
Gaussian random variables, while in [3] the entries are chosen uniformly at random from
{−1, 1}.

Theorem 3.15 below is the principal purpose of this subsection; we start with two technical
lemmas. The following lemma provides an expression for the probability that a certain trial
will succeed several times, in terms of the probability that the trial will succeed once.

Lemma 3.13 Suppose that µ is a positive real number, k, m, and n are positive integers,
A is a complex m× n matrix, and x and x(1), x(2), . . . , x(k−1), x(k) are n× 1 i.i.d. random
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vectors with i.i.d. entries, each distributed as a complex Gaussian random variable of zero
mean and unit variance.

Then,

P

{
‖A x(j)‖
‖x(j)‖

< µ ‖A‖ for all j = 1, 2, . . . , k − 1, k

}
=

(
P

{
‖A x‖
‖x‖

< µ ‖A‖
})k

. (33)

Proof. Clearly,

P

{
‖A x(j)‖
‖x(j)‖

< µ ‖A‖ for all j = 1, 2, . . . , k − 1, k

}
= P

(
k⋂

j=1

{
‖A x(j)‖
‖x(j)‖

< µ ‖A‖
})

. (34)

It follows from the independence of x(1), x(2), . . . , x(k−1), x(k) that

P

(
k⋂

j=1

{
‖A x(j)‖
‖x(j)‖

< µ ‖A‖
})

=
k∏

j=1

P

{
‖A x(j)‖
‖x(j)‖

< µ ‖A‖
}

. (35)

It follows from the fact that x(1), x(2), . . . , x(k−1), x(k) are all distributed the same as x that

P

{
‖A x(j)‖
‖x(j)‖

< µ ‖A‖
}

= P

{
‖A x‖
‖x‖

< µ ‖A‖
}

(36)

for j = 1, 2, . . . , k − 1, k. Combining (34), (35), and (36) yields (33). 2

Given a matrix A and a random vector x, the following lemma estimates the probability
that ‖A x‖ is small compared to ‖A‖ · ‖x‖. Theorem 1 in [6] provides another formulation
of this lemma.

Lemma 3.14 Suppose that µ is a positive real number, m and n are positive integers, A is
a complex m×n matrix, and x is an n×1 random vector with i.i.d. entries, each distributed
as a complex Gaussian random variable of zero mean and unit variance.

Then,

P

{
‖A x‖
‖x‖

< µ ‖A‖
}
≤ 0.8 µ

√
n. (37)

The following theorem provides an efficient means for testing whether the spectral norm
of a matrix exceeds a user-specified threshold.

Theorem 3.15 Suppose that µ is a positive real number, k, m, and n are positive integers,
A is a complex m× n matrix, and x(1), x(2), . . . , x(k−1), x(k) are n× 1 i.i.d. random vectors
with i.i.d. entries, each distributed as a complex Gaussian random variable of zero mean and
unit variance.

Then,

P

{
‖A x(j)‖
‖x(j)‖

< µ ‖A‖ for every j = 1, 2, . . . , k − 1, k

}
≤
(
0.8 µ

√
n
)k

. (38)
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Proof. Combining (33) and (37) yields (38). 2

We now consider an application of Theorem 3.15.
On the one hand, suppose that ε is a positive real number, m and n are positive integers,

and A is a complex m× n matrix, such that

‖A‖ ≥ 80
√

n ε. (39)

To ascertain computationally that A has a spectral norm greater than ε, we apply A to half
a dozen n × 1 i.i.d. random vectors x(1), x(2), x(3), x(4), x(5), x(6) with i.i.d. entries, each
distributed as a complex Gaussian random variable of zero mean and unit variance. We then
check whether at least one of the numbers

‖A x(1)‖
‖x(1)‖

,
‖A x(2)‖
‖x(2)‖

,
‖A x(3)‖
‖x(3)‖

,
‖A x(4)‖
‖x(4)‖

,
‖A x(5)‖
‖x(5)‖

,
‖A x(6)‖
‖x(6)‖

(40)

is at least ε. Combining (39) and (38) with µ = 1
80
√

n
yields that

P

{
‖A x(j)‖
‖x(j)‖

< ε for every j = 1, 2, 3, 4, 5, 6

}
≤ 10−12. (41)

Thus, we are unlikely to find that all of the numbers (40) are less than ε. Obviously, if the
spectral norm of A is even greater than 80

√
n ε, then we are even less likely to find that all

of the numbers (40) are less than ε.
On the other hand, suppose that ε is a positive real number, m and n are positive integers,

and A is a complex m× n matrix, such that

‖A‖ < ε. (42)

We apply A to half a dozen n × 1 i.i.d. random vectors x(1), x(2), x(3), x(4), x(5), x(6) with
i.i.d. entries, each distributed as a complex Gaussian random variable of zero mean and unit
variance. Then, (42) guarantees that all of the numbers (40) will be less than ε.

Hence, by applying matrices to a few random vectors, we can with very high probability
filter out those matrices whose spectral norms are significantly larger than a user-specified
precision ε, while always passing all of the matrices whose spectral norms are less than ε.
Thus, we can efficiently and reliably identify matrices whose spectral norms are larger than
desired, even when we cannot afford to form the individual entries of the matrices.

Remark 3.16 It is also possible to estimate the spectral norm of a matrix using the power
method (or the Lanczos method when tighter bounds are desired) with a random starting
vector. The analysis in [11] guarantees a better bound for both the power method and the
Lanczos method as compared with the scheme of the present subsection when running-times
are proportional to operation counts, and storage is not an issue. However, the power or
Lanczos methods require successive applications of the matrix being tested (as well as its
transpose) to a sequence of vectors generated on-the-fly, whereas the scheme of the present
subsection requires only the application of the matrix being tested to a collection of indepen-
dently generated vectors. Thus, in some circumstances the scheme of the present subsection
parallelizes better than the power and Lanczos methods.
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4 Mathematical apparatus

In this section, we describe the principal mathematical tools used in Section 5.

4.1 Several technical lemmas

In this subsection, we prove several lemmas needed for the proof of Lemma 4.4 in Subsec-
tion 4.2.

The following lemma evaluates the mean and variance of a certain random variable similar
to a random walk.

Lemma 4.1 Suppose that l and m are positive integers with l ≤ m, s1, s2, . . . , sl−1, sl are
i.i.d. integer random variables, each distributed uniformly over {1, 2, . . . ,m−1, m}, F is the
m×m unnormalized discrete Fourier transform, Gsqb is the complex number

Gsqb = Fsq Fsb (43)

for s, q, b = 1, 2, . . . , m− 1, m, and Hqb is the complex number

Hqb =
l∑

r=1

Gsrqb (44)

for q, b = 1, 2, . . . , m− 1, m.
Then,

Hqq = l, (45)

for q = 1, 2, . . . , m− 1, m,
EHqb = 0 (46)

when q 6= b, and
E |Hqb|2 = l (47)

when q 6= b.

Proof. First, we prove (45). It follows from (43) that

Gsqq = 1 (48)

for s, q = 1, 2, . . . , m− 1, m. Combining (44) and (48) yields (45).
Next, we prove (46). It follows from (44) that

EHqb =
l∑

r=1

EGsrqb (49)

for q, b = 1, 2, . . . , m− 1, m. For any r = 1, 2, . . . , l − 1, l, it follows from the fact that sr

is distributed uniformly over {1, 2, . . . ,m− 1, m} that

EGsrqb =
1

m

m∑
s=1

Gsqb (50)

13



for q, b = 1, 2, . . . , m − 1, m. Combining (43) and the fact that distinct columns of F are
orthogonal yields that

m∑
s=1

Gsqb = 0 (51)

when q 6= b. Combining (49), (50), and (51) yields (46).
Finally, we prove (47). It follows from (44) that

|Hqb|2 =
l∑

r=1

|Gsrqb|2 +
∑
r 6=t

Gsrqb Gstqb (52)

for q, b = 1, 2, . . . , m− 1, m. It follows from (52) that

E |Hqb|2 =
l∑

r=1

E |Gsrqb|2 +
∑
r 6=t

EGsrqb Gstqb (53)

for q, b = 1, 2, . . . , m− 1, m.
It follows from (43) that

|Gsqb| = |Fsq| |Fsb| (54)

for s, q, b = 1, 2, . . . , m− 1, m. However,

|Fsq| = |Fsb| = 1 (55)

for s, q, b = 1, 2, . . . , m− 1, m. Combining (54) and (55) yields that

E |Gsrqb|2 = 1 (56)

for r = 1, 2, . . . , l − 1, l and q, b = 1, 2, . . . , m− 1, m.
It follows from the independence of s1, s2, . . . , sl−1, sl that

EGsrqb Gstqb = (EGsrqb) (EGstqb) (57)

for q, b = 1, 2, . . . , m− 1, m, when r 6= t. Combining (57), (50), and (51) yields that

EGsrqb Gstqb = 0 (58)

for q, b = 1, 2, . . . , m− 1, m, when r 6= t.
Combining (53), (56), and (58) yields (47). 2

We will need the following technical lemma in order to prove Lemma 4.4 below.

Lemma 4.2 Suppose that k, l, and m are positive integers, such that k ≤ l < m. Suppose
further that Hqb is the complex number defined in (44) and (43), for q, b = 1, 2, . . . , m−1, m.
Suppose finally that R is the l×m SRFT defined in Section 2, U is a complex m× k matrix
whose columns are orthonormal, C is the complex k × k matrix defined via the formula

C = (RU)∗ (RU), (59)

14



and E is the complex k × k matrix with the entry

Epa =
m∑

q=1

dq Uqp

∑
b6=q

db Uba Hqb (60)

for p, a = 1, 2, . . . , k − 1, k, where d1, d2, . . . , dm−1, dm are the i.i.d. complex random
variables, each distributed uniformly over the unit circle, used in the construction of D in (6)
for the SRFT R.

Then,
C = l · 1 + E. (61)

Proof. For any integers a and p with 1 ≤ a ≤ k and 1 ≤ p ≤ k, combining (59) and (6)
yields that

Cpa =
l∑

r=1

m∑
q=1

Fsrq dq Uqp

m∑
b=1

Fsrb db Uba. (62)

Combining (62), (43), and (44) yields that

Cpa =
m∑

q=1

|dq|2 Uqp Uqa Hqq +
m∑

q=1

dq Uqp

∑
b6=q

db Uba Hqb. (63)

Combining (63), (45), the fact that |dq| = 1, and the fact that the columns of U are
orthonormal yields that

Cpp = l +
m∑

q=1

dq Uqp

∑
b6=q

db Ubp Hqb, (64)

and

Cpa =
m∑

q=1

dq Uqp

∑
b6=q

db Uba Hqb (65)

when p 6= a.
Combining (64), (65), and (60) yields (61). 2

The following lemma states that the spectral norm of the matrix E defined in (60) is
reasonably small with high probability.

Lemma 4.3 Suppose that α and β are real numbers greater than 1, and k, l, and m are
positive integers, such that

m > l ≥ α2 β

(α− 1)2
k2. (66)

Suppose further that R is the l×m SRFT defined in Section 2, U is a complex m×k matrix
whose columns are orthonormal, and E is the complex k×k matrix defined in (60), with Hqb

being the complex number defined in (44) and (43), and with d1, d2, . . . , dm−1, dm being the
i.i.d. complex random variables, each distributed uniformly over the unit circle, used in the
construction of D in (6) for the SRFT R.
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Then,

‖E‖ ≤ l

(
1− 1

α

)
(67)

with probability at least 1− 1
β
.

Proof. We first derive an upper bound on E |Epa|2, for p, a = 1, 2, . . . , k − 1, k, and then
use this bound to prove (67). It follows from (60) that

E |Epa|2 = E

(
m∑

q=1

dq Uqp

∑
b6=q

db Uba Hqb

)(
m∑

r=1

dr Urp

∑
c 6=r

dc Uca Hrc

)
. (68)

Performing the summation over q and r separately for the cases when q = r and when q 6= r,
and using the fact that |dq| = 1, we obtain that

E
m∑

q,r=1

(
dq Uqp

∑
b6=q

db Uba Hqb

)(
dr Urp

∑
c 6=r

dc Uca Hrc

)

= E
m∑

q=1

|Uqp|2
∣∣∣∣∣∑

b6=q

db Uba Hqb

∣∣∣∣∣
2

+ E
∑
q 6=r

dq dr Uqp Urp

∑
b6=q

db Uba Hqb

∑
c 6=r

dc Uca Hrc. (69)

To bound the first term in the right-hand side of (69), we observe that

E
m∑

q=1

|Uqp|2
∣∣∣∣∣∑

b6=q

db Uba Hqb

∣∣∣∣∣
2

=
m∑

q=1

|Uqp|2 E

∣∣∣∣∣∑
b6=q

db Uba Hqb

∣∣∣∣∣
2

. (70)

But,

E

∣∣∣∣∣∑
b6=q

db Uba Hqb

∣∣∣∣∣
2

= E
∑
b6=q

db Uba Hqb

∑
c 6=q

dc Uca Hqc. (71)

Moreover,

E
∑
b6=q

db Uba Hqb

∑
c 6=q

dc Uca Hqc =
∑
b,c6=q

Uba Uca E db dc Hqb Hqc. (72)

Performing the summation over b and c separately for the cases when b = c and when b 6= c,
and using the fact that |db| = 1, we obtain that∑

b,c6=q

Uba Uca E db dc Hqb Hqc =
∑
b6=q

|Uba|2 E |Hqb|2 +
∑

b,c6=q and b6=c

Uba Uca E db dc Hqb Hqc. (73)

It follows from (47) that ∑
b6=q

|Uba|2 E |Hqb|2 = l
∑
b6=q

|Uba|2. (74)

It follows from the fact that the columns of U are normalized that∑
b6=q

|Uba|2 ≤
n∑

b=1

|Uba|2 = 1. (75)
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Combining (74) and (75) yields that∑
b6=q

|Uba|2 E |Hqb|2 ≤ l. (76)

It follows from the independence of the random variables involved that∑
b,c6=q and b6=c

Uba Uca E db dc Hqb Hqc =
∑

b,c6=q and b6=c

Uba Uca (E db) (E dc) (EHqb Hqc). (77)

Combining (77) and the fact that E db = 0 (or E dc = 0) yields that∑
b,c6=q and b6=c

Uba Uca E db dc Hqb Hqc = 0. (78)

Combining (70), (71), (72), (73), (76), and (78) yields that

E
m∑

q=1

|Uqp|2
∣∣∣∣∣∑

b6=q

db Uba Hqb

∣∣∣∣∣
2

≤ l
m∑

q=1

|Uqp|2. (79)

Combining (79) and the fact that the columns of U are normalized yields that

E
m∑

q=1

|Uqp|2
∣∣∣∣∣∑

b6=q

db Uba Hqb

∣∣∣∣∣
2

≤ l. (80)

To bound the second term in the right-hand side of (69), we observe that

E
∑
q 6=r

dq dr Uqp Urp

∑
b6=q

db Uba Hqb

∑
c 6=r

dc Uca Hrc

= E
∑
q 6=r

dq dr Uqp Urp

(
dr Ura Hqr +

∑
b6=q,r

db Uba Hqb

)(
dq Uqa Hrq +

∑
c 6=q,r

dc Uca Hrc

)
. (81)

Expanding the product, we obtain that

E
∑
q 6=r

dq dr Uqp Urp

(
dr Ura Hqr +

∑
b6=q,r

db Uba Hqb

)(
dq Uqa Hrq +

∑
c 6=q,r

dc Uca Hrc

)
= E

∑
q 6=r

dq dr Uqp Urp dr dq Ura Uqa Hqr Hrq

+ E
∑
q 6=r

dq dr Uqp Urp

∑
b6=q,r

db Uba Hqb

∑
c 6=q,r

dc Uca Hrc

+ E
∑
q 6=r

dq dr Uqp Urp dr Ura Hqr

∑
c 6=q,r

dc Uca Hrc

+ E
∑
q 6=r

dq dr Uqp Urp dq Uqa Hrq

∑
b6=q,r

db Uba Hqb. (82)

17



To evaluate the first term in the right-hand side of (82), we observe that

E
∑
q 6=r

dq dr Uqp Urp dr dq Ura Uqa Hqr Hrq =
∑
q 6=r

Uqp Urp Ura Uqa E (dq)
2 (dr)2 Hqr Hrq. (83)

It follows from the independence of the random variables involved that

E (dq)
2 (dr)2 Hqr Hrq = (E (dq)

2) (E (dr)2) (EHqr Hrq) (84)

when q 6= r. Combining (83), (84), and the fact that E (dq)
2 = 0 (or E (dr)

2 = 0) yields that

E
∑
q 6=r

dq dr Uqp Urp dr dq Ura Uqa Hqr Hrq = 0. (85)

To evaluate the second term in the right-hand side of (82), we note that the independence
of the random variables involved implies that

E
∑
q 6=r

dq dr Uqp Urp

∑
b6=q,r

db Uba Hqb

∑
c 6=q,r

dc Uca Hrc

=
∑
q 6=r

Uqp Urp (E dq) (E dr)

(
E
∑
b6=q,r

db Uba Hqb

∑
c 6=q,r

dc Uca Hrc

)
. (86)

Combining (86) and the fact that E dq = 0 (or E dr = 0) yields that

E
∑
q 6=r

dq dr Uqp Urp

∑
b6=q,r

db Uba Hqb

∑
c 6=q,r

dc Uca Hrc = 0. (87)

To evaluate the third term in the right-hand side of (82), we observe that

E
∑
q 6=r

dq dr Uqp Urp dr Ura Hqr

∑
c 6=q,r

dc Uca Hrc =
∑
q 6=r

Uqp Urp Ura E dq (dr)2 Hqr

∑
c 6=q,r

dc Uca Hrc.

(88)
It follows from the independence of the random variables involved that

E dq (dr)2 Hqr

∑
c 6=q,r

dc Uca Hrc = (E dq) (E (dr)2)

(
EHqr

∑
c 6=q,r

dc Uca Hrc

)
(89)

when q 6= r. It follows from the fact that E dq = 0 (or E (dr)
2 = 0) that

(E dq) (E (dr)2)

(
EHqr

∑
c 6=q,r

dc Uca Hrc

)
= 0. (90)

Combining (88), (89), and (90) yields that

E
∑
q 6=r

dq dr Uqp Urp dr Ura Hqr

∑
c 6=q,r

dc Uca Hrc = 0. (91)
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Similarly,

E
∑
q 6=r

dq dr Uqp Urp dq Uqa Hrq

∑
b6=q,r

db Uba Hqb = 0. (92)

Combining (81), (82), (85), (87), (91), and (92) yields that

E
∑
q 6=r

dq dr Uqp Urp

∑
b6=q

db Uba Hqb

∑
c 6=r

dc Uca Hrc = 0. (93)

Combining (68), (69), (80), and (93) yields that

E |Epa|2 ≤ l. (94)

It follows from (94) that

E
k∑

p,a=1

|Epa|2 ≤ k2 l. (95)

However,

‖E‖2 ≤
k∑

p,a=1

|Epa|2. (96)

Combining (96) and (95) yields that

E ‖E‖2 ≤ k2 l. (97)

Combining (97) and the Markov inequality yields that

‖E‖ ≤
√

β k2 l (98)

with probability at least 1− 1
β
. Combining (98) and (66) yields (67). 2

4.2 Spectral norms of various random matrices

In this subsection, we derive bounds on the spectral norms of several random matrices.
With the choice α = 8 and β = 2, the following lemma states that, with probability at

least 1
2
, the least singular value of the complex l × k matrix RU is at least

√
l
8
, and the

greatest singular value is at most
√

15l
8

, where R is the l×m SRFT defined in Section 2, U

is a complex m× k matrix whose columns are orthonormal, and m > l ≥ 3k2. This lemma
is similar to the subspace Johnson-Lindenstrauss lemma (Corollary 11) of [16].

Lemma 4.4 Suppose that α and β are real numbers greater than 1, and k, l, and m are
positive integers, such that

m > l ≥ α2 β

(α− 1)2
k2. (99)
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Suppose further that R is the l×m SRFT defined in Section 2, U is a complex m×k matrix
whose columns are orthonormal, and C is the complex k × k matrix defined via the formula

C = (RU)∗ (RU). (100)

Then, the least (that is, the kth greatest) singular value σk of RU satisfies

σk =
1√
‖C−1‖

≥
√

l

α
(101)

and (simultaneously) the greatest singular value σ1 of RU satisfies

σ1 =
√
‖C‖ ≤

√
l

(
2− 1

α

)
(102)

with probability at least 1− 1
β
.

Proof. Combining (61) and (67) yields (102).
We now prove (101). It follows from (61) that

‖C−1‖ =
1

l

∥∥∥∥∥
(
1 +

1

l
· E
)−1

∥∥∥∥∥ . (103)

However, ∥∥∥∥∥
(
1 +

1

l
· E
)−1

∥∥∥∥∥ ≤
∞∑

j=0

∥∥∥∥−1

l
· E
∥∥∥∥j

. (104)

It follows from (67) that
∞∑

j=0

∥∥∥∥−1

l
· E
∥∥∥∥j

≤ α (105)

with probability at least 1− 1
β
. Combining (103), (104), and (105) yields (101). 2

The following lemma states that the spectral norm of the l×m SRFT defined in Section 2
is at most

√
lm.

Lemma 4.5 Suppose that l and m are positive integers with l < m, and R is the l × m
SRFT defined in Section 2.

Then,
‖R‖ ≤

√
lm. (106)

Proof. It follows from (6) that

‖R‖ ≤ ‖S‖ ‖F‖ ‖D‖. (107)

However,
‖S‖ ≤

√
l, (108)
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‖F‖ ≤
√

m, (109)

and
‖D‖ = 1. (110)

Combining (107), (108), (109), and (110) yields (106). 2

The following lemma states that, for any matrix A, with high probability there exists a
matrix T with a reasonably small spectral norm, such that T RA is a good approximation
to A, where R is the SRFT defined in Section 2.

Lemma 4.6 Suppose that k, l, m, and n are positive integers with k ≤ l, such that l < m
and l < n. Suppose further that α and β are real numbers greater than 1, such that

m > l ≥ α2 β

(α− 1)2
k2. (111)

Suppose finally that A is a complex m × n matrix, and R is the l × m SRFT defined in
Section 2.

Then, there exists a complex m× l matrix T such that

‖T RA− A‖ ≤
√

αm + 1 σk+1 (112)

and

‖T‖ ≤
√

α

l
(113)

with probability at least 1− 1
β
, where σk+1 is the (k + 1)st greatest singular value of A.

Proof. We prove the existence of a matrix T satisfying (112) and (113) by constructing one.
We start by forming an SVD of A,

A = U Σ V ∗, (114)

where U is a complex unitary m × m matrix, Σ is a real m × n matrix whose entries are
nonnegative everywhere and zero off of the main diagonal, and V is a complex unitary n×n
matrix, such that

Σi,i = σi (115)

for i = 1, 2, . . . , min{m, n} − 1, min{m, n}, where Σi,i is the entry in row i and column i of
Σ, and σi is the ith greatest singular value of A.

Next, we define auxiliary matrices G and H. We define G to be the leftmost l× k block
of the l ×m matrix RU , and H to be the rightmost l × (m− k) block of RU , so that

RU =
(

G H
)
. (116)

We define G(−1) to be the complex k × l matrix given by the formula

G(−1) = (G∗ G)−1 G∗. (117)
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Finally, we define T to be the m× l matrix given by

T = U

(
G(−1)

0

)
. (118)

Combining (12), (117), (116), and (101) (using the leftmost k columns of the matrix U
from the present proof as the matrix denoted U in (101) and (100)) yields that∥∥G(−1)

∥∥ ≤√α

l
(119)

with probability at least 1 − 1
β
. Combining (118), (119), and the fact that U is unitary

yields (113).
We now show that T defined in (118) satisfies (112).
We define Φ to be the leftmost uppermost k × k block of Σ, and Ψ to be the rightmost

lowermost (m− k)× (n− k) block of Σ, so that

Σ =

(
Φ 0
0 Ψ

)
. (120)

Combining (114), (116), and (118) yields that

T RA− A = U

((
G(−1)

0

)(
G H

)
− 1

)
Σ V ∗. (121)

Combining (117) and (120) yields that((
G(−1)

0

)(
G H

)
− 1

)
Σ =

(
0 G(−1) H Ψ
0 −Ψ

)
. (122)

Furthermore, ∥∥∥∥( 0 G(−1) H Ψ
0 −Ψ

)∥∥∥∥2

≤
∥∥G(−1) H Ψ

∥∥2
+ ‖Ψ‖2. (123)

Moreover, ∥∥G(−1) H Ψ
∥∥ ≤ ∥∥G(−1)

∥∥ ‖H‖ ‖Ψ‖. (124)

Combining (120) and (115) yields that

‖Ψ‖ ≤ σk+1. (125)

Combining (121), (122), (123), (124), (125), and the fact that U and V are unitary yields
that

‖T RA− A‖ ≤
√
‖G(−1)‖2 ‖H‖2 + 1 σk+1. (126)

Clearly,
‖H‖ ≤

∥∥( G H
)∥∥ . (127)

Combining (116) and the fact that U is unitary yields that∥∥( G H
)∥∥ = ‖R‖. (128)

Combining (127), (128), and (106) yields that

‖H‖ ≤
√

lm. (129)

Combining (126), (119), and (129) yields (112). 2
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4.3 Randomized linear least-squares regression

In this subsection, we derive bounds regarding randomized methods for the solution in the
least-squares sense of overdetermined systems of linear-algebraic equations.

The following lemma states that, with high probability, there exists a matrix Θ with
a reasonably small spectral norm, such that Θ is the inverse of the SRFT R (defined in
Section 2) on the image under R of a certain subspace.

Lemma 4.7 Suppose that α and β are real numbers greater than 1, and k, l, and m are
positive integers, such that

m > l ≥ α2 β

(α− 1)2
(2k)2. (130)

Suppose further that R is the l×m SRFT defined in Section 2, A is a complex m×k matrix,
and B is a complex m× k matrix.

Then, there exists a complex m× l matrix Θ such that

ΘRA = A, (131)

ΘRB = B, (132)

and

‖Θ‖ ≤
√

α

l
(133)

with probability at least 1− 1
β
.

Proof. We define U to be a complex matrix whose columns constitute an orthonormal basis
of the subspace of Cm spanned by the columns of A and the columns of B. We define j to
be the number of columns in U . Combining the facts that A has k columns and that B has
k columns yields that

j ≤ 2k. (134)

Combining (130), (134), (101), and the fact that the columns of U are orthonormal yields
that the least (that is, the jth greatest) singular value σj of RU satisfies

σj ≥
√

l

α
(135)

with probability at least 1− 1
β
. It follows from (135) that (RU)∗ (RU) is invertible, so we

can define Θ to be the complex m× l matrix

Θ = U ((RU)∗ (RU))−1 (RU)∗. (136)

It follows from (136) that
ΘRU = U. (137)

Combining (137) and the fact that the columns of A and the columns of B are in the column
space of U yields (131) and (132).
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Combining (136) and the fact that the columns of U are orthonormal yields that

‖Θ‖ ≤ ‖((RU)∗ (RU))−1 (RU)∗‖. (138)

Combining (12) and (135) yields that

‖((RU)∗ (RU))−1 (RU)∗‖ ≤
√

α

l
. (139)

Combining (138) and (139) yields (133). 2

The following lemma states that, with high probability, a k × k matrix X minimizing
‖RA X − RB‖ also minimizes ‖A X − B‖ to within a small factor, where R is the l ×m
SRFT defined in Section 2, A is an m × k matrix, and B is an m × k matrix. Whereas
solving A X ≈ B in the least-squares sense involves m simultaneous linear equations, solving
RA X ≈ RB in the least-squares sense involves just l simultaneous linear equations.

Lemma 4.8 Suppose that α and β are real numbers greater than 1, and k, l, and m are
positive integers, such that

m > l ≥ α2 β

(α− 1)2
(2k)2. (140)

Suppose further that R is the l×m SRFT defined in Section 2, A is a complex m×k matrix,
B is a complex m× k matrix, X is a complex k × k matrix which minimizes the quantity

‖RA X −RB‖, (141)

and Y is a complex k × k matrix which minimizes the quantity

‖A Y −B‖. (142)

Then,
‖A X −B‖ ≤

√
2α− 1 ‖A Y −B‖ (143)

with probability at least 1− 1
β
.

Proof. Combining (131) and (132) yields that

‖A X −B‖ = ‖ΘRA X −ΘRB‖. (144)

However,
‖ΘRA X −ΘRB‖ ≤ ‖Θ‖ ‖RA X −RB‖. (145)

It follows from the fact that X minimizes (141) that

‖RA X −RB‖ ≤ ‖RA Y −RB‖. (146)

We next define U to be a matrix whose columns constitute an orthonormal basis for the
subspace of Cm spanned by the columns of A and the columns of B, and define j to be the
number of columns in U . Then, there exists a complex j × k matrix Z such that

A Y = U Z, (147)
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and there exists a complex j × k matrix C such that

B = U C. (148)

Combining (147) and (148) yields that

‖RA Y −RB‖ = ‖RU Z −RU C‖. (149)

Yet,
‖RU Z −RU C‖ ≤ ‖RU‖ ‖Z − C‖. (150)

Combining the facts that A has k columns and that B has k columns yields that

j ≤ 2k. (151)

Combining (140), (151), (102), and the fact that the columns of U are orthonormal yields
that

‖RU‖ ≤

√
l

(
2− 1

α

)
(152)

with probability at least 1− 1
β
.

It follows from the fact that the columns of U are orthonormal that

‖Z − C‖ = ‖U Z − U C‖. (153)

Combining (147) and (148) yields that

‖U Z − U C‖ = ‖A Y −B‖. (154)

Combining (153) and (154) yields that

‖Z − C‖ = ‖A Y −B‖. (155)

Combining (144), (145), (146), (149), (150), (152), (155), (133), and the fact that the
matrix U used in the proof of (133) is identical to the matrix U used in the present proof
(so that (133) and (152) hold simultaneously with probability at least 1− 1

β
) yields (143). 2

Remark 4.9 Theorem 12 in [16] motivated us to use Lemma 4.8. Lemma 4.8 and its proof
are modelled after Theorem 12 in [16].

The following lemma states that, with high probability, the product P X Q∗ of matrices
P , X, and Q∗ is a good approximation to a matrix A, provided that

1. A∗ P P ∗ is a good approximation to A∗,

2. A Q Q∗ is a good approximation to A,

3. the columns of Q are orthonormal, and
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4. X minimizes ‖RP X −RA Q‖, where R is the SRFT defined in Section 2.

Lemma 4.10 Suppose that α and β are real numbers greater than 1, and k, l, m, and n are
positive integers, such that

m > l ≥ α2 β

(α− 1)2
(2k)2. (156)

Suppose further that R is the l×m SRFT defined in Section 2, A is a complex m×n matrix,
P is a complex m× k matrix, Q is a complex n× k matrix whose columns are orthonormal,
and X is a complex k × k matrix which minimizes the quantity

‖RP X −RA Q‖. (157)

Then,
‖P X Q∗ − A‖ ≤

√
2α− 1 ‖A∗ P P ∗ − A∗‖+ ‖A Q Q∗ − A‖ (158)

with probability at least 1− 1
β
.

Proof. It follows from the triangle inequality that

‖P X Q∗ − A‖ ≤ ‖P X Q∗ − A Q Q∗‖+ ‖A Q Q∗ − A‖. (159)

To derive a bound on the first term in the right-hand side of (159), we observe that

‖P X Q∗ − A Q Q∗‖ ≤ ‖P X − A Q‖ ‖Q‖. (160)

Combining (156), (143), and the fact that X minimizes (157) yields that

‖P X − A Q‖ ≤
√

2α− 1 ‖P (P ∗ A Q)− A Q‖ (161)

with probability at least 1− 1
β
. However,

‖P P ∗ A Q− A Q‖ ≤ ‖A∗ P P ∗ − A∗‖ ‖Q‖. (162)

It follows from the fact that the columns of Q are orthonormal that

‖Q‖ ≤ 1. (163)

Combining (160), (161), (162), and (163) yields that

‖P X Q∗ − A Q Q∗‖ ≤
√

2α− 1 ‖A∗ P P ∗ − A∗‖ (164)

with probability at least 1− 1
β
.

Combining (159) and (164) yields (158). 2

5 Description of the algorithm

In this section, we describe the algorithm of the present paper. In Subsection 5.1, we discuss
approximations to interpolative decompositions. In Subsection 5.2, we discuss approxima-
tions to SVDs. In Subsection 5.3, we discuss a usually more efficient alternative method
for constructing approximations to SVDs. In Subsection 5.4, we tabulate the computational
costs of various parts of the algorithm.
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5.1 Interpolative decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a complex
m×n matrix. In this subsection, we will collect together k appropriately chosen columns of
A into a complex m× k matrix B, and construct a complex k × n matrix P , such that

‖P‖ ≤
√

4k (n− k) + 1 (165)

and
‖B P − A‖ .

√
kmn σk+1, (166)

where σk+1 is the (k + 1)st greatest singular value of A. We may assume without loss of
generality that m is the product of prime factors no greater than a small constant (say 2),
if necessary by adjoining to A rows consisting entirely of zeros. Then, to construct matrices
B and P satisfying (165) and (166), we choose an integer l near to, but greater than k, such
that l < m and l < n (for example, l = k + 8), and make the following three steps:

1. Using the algorithm of Subsection 3.3, compute the l × n product matrix

Y = RA, (167)

where R is the l ×m SRFT defined in Section 2. (This step amounts to applying A∗

to R∗, in order to identify the range of A∗.)

2. Using Observation 3.3, form a complex l × k matrix Z whose columns constitute a
subset of the columns of Y , and a complex k × n matrix P satisfying (165), such that

‖Z P − Y ‖ ≤
√

4k (n− k) + 1 ηk+1, (168)

where ηk+1 is the (k + 1)st greatest singular value of Y .

3. Using the fact that the columns of Z constitute a subset of the columns of Y , for
j = 1, 2, . . . , k− 1, k, let ij denote an integer such that the jth column of Z is the ij

th

column of Y . Form the complex m× k matrix B whose jth column is the ij
th column

of A for j = 1, 2, . . . , k − 1, k.

It is easy to see that the matrices B and P satisfy (165) and (166). Indeed, Step 2 above
guarantees (165) by construction. Moreover, combining (167), (168), and Remark 3.8 yields
that

‖RB P −RA‖ ≤
√

4k (n− k) + 1 ηk+1, (169)

where ηk+1 is the (k + 1)st greatest singular value of Y . Combining (167) and the fact that
ηk+1 is the (k + 1)st greatest singular value of Y yields that

ηk+1 ≤ ‖R‖σk+1, (170)

where σk+1 is the (k + 1)st greatest singular value of A. Suppose that α and β are real
numbers greater than 1, such that

m > l ≥ α2 β

(α− 1)2
k2. (171)
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Then, combining (13), (112), (113), (165), (169), (170), and (106) yields that

‖B P − A‖ ≤
(
(
√

4k (n− k) + 1 + 1)
√

αm + 1 +
√

4k (n− k) + 1
√

αm
)

σk+1 (172)

with probability at least 1− 1
β
, where σk+1 is the (k + 1)st greatest singular value of A. The

bound (172) is a precise version of (166). We can use the verification scheme described in
Subsection 3.4 to estimate ‖B P − A‖ during each run of the algorithm.

Strictly speaking, we require that (171) hold in order to prove our theoretical bound (172).
However, numerical experiments (some of which are reported in Section 6) indicate that in
fact l need be only very slightly greater than k; l = k + 8 always worked in our experiments.

5.2 Singular value decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, such that m and n are
products of prime factors no greater than a small constant (2, for example). Suppose further
that A is a complex m × n matrix. In this subsection, we will construct an approximation
to an SVD of A such that

‖U Σ V ∗ − A‖ .
√

max{m, n} σk+1, (173)

where U is a complex m× k matrix whose columns are orthonormal, V is a complex n× k
matrix whose columns are orthonormal, Σ is a real diagonal k × k matrix whose entries are
all nonnegative, and σk+1 is the (k + 1)st greatest singular value of A. To do so, we choose
an integer l near to, but greater than k, such that l < m and l < n, and make the following
ten steps:

1. Using the algorithm of Subsection 3.3, compute the l × n product matrix

Y = RA, (174)

where R is the l ×m SRFT defined in Section 2. (This step amounts to applying A∗

to R∗, in order to identify the range of A∗.)

2. Using the algorithm of Subsection 3.3, compute the l ×m product matrix

Ỹ = R̃A∗, (175)

where R̃ is the l× n SRFT defined in Section 2. (This step amounts to applying A to
R̃∗, in order to identify the range of A.)

3. Using an SVD, form a complex n× k matrix Q whose columns are orthonormal, such
that there exists a complex k × l matrix Z for which

‖Q Z − Y ∗‖ ≤ ηk+1, (176)

where ηk+1 is the (k +1)st greatest singular value of Y , and Y is defined in (174). (See
Observation 3.5 for details concerning the construction of such a matrix Q.)
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4. Using an SVD, form a complex m× k matrix P whose columns are orthonormal, such
that there exists a complex k × l matrix Z̃ for which

‖P Z̃ − Ỹ ∗‖ ≤ η̃k+1, (177)

where η̃k+1 is the (k +1)st greatest singular value of Ỹ , and Ỹ is defined in (175). (See
Observation 3.5 for details concerning the construction of such a matrix P .)

5. Using the algorithm of Subsection 3.3, compute the l × k product matrix

W = RP (178)

where R is the same realization of the l ×m SRFT as in (174), and P is from (177).

6. Compute the l × k product matrix

B = Y Q (179)

where Y is defined in (174), and Q is from (176).

7. Compute the complex k × k matrix X which minimizes the quantity

‖W X −B‖, (180)

where W is defined in (178), and B is defined in (179). (See, for example, Section 5.3
in [8] for details concerning the construction of such a minimizing X.)

8. Construct an SVD of X from (180), that is,

X = UX Σ (V X)∗, (181)

where UX is a complex k×k matrix whose columns are orthonormal, V X is a complex
k×k matrix whose columns are orthonormal, and Σ is a real diagonal k×k matrix whose
entries are all nonnegative. (See, for example, Chapter 8 in [8] for details concerning
the construction of such an SVD.)

9. Compute the m× k product matrix

U = P UX , (182)

where P is from (177), and UX is from (181).

10. Compute the n× k product matrix

V = Q V X , (183)

where Q is from (176), and V X is from (181).
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It is easy to see that the matrices U , Σ, and V satisfy (173). Indeed, combining (180), (178),
(179), and (174) yields that X minimizes the quantity (157). Suppose that α and β are real
numbers greater than 1, such that

m > l ≥ α2 β

(α− 1)2
(2k)2. (184)

Then, combining (184) and the fact that X minimizes the quantity (157) yields (158), that
is,

‖P X Q∗ − A‖ ≤
√

2α− 1 ‖A∗ P P ∗ − A∗‖+ ‖A Q Q∗ − A‖ (185)

with probability at least 1− 1
β
.

We bound ‖A Q Q∗ − A‖ first, then ‖A∗ P P ∗ − A∗‖. It follows from (174) that

ηk+1 ≤ ‖R‖σk+1, (186)

where ηk+1 is the (k + 1)st greatest singular value of Y , and σk+1 is the (k + 1)st greatest
singular value of A. Combining (18), (112), (113), (176), (174), (186), and (106) yields that

‖A Q Q∗ − A‖ ≤ 2
(√

αm + 1 +
√

αm
)

σk+1 (187)

with probability at least 1− 1
β
.

Similarly,

‖A∗ P P ∗ − A∗‖ ≤ 2
(√

αn + 1 +
√

αn
)

σk+1 (188)

with probability at least 1− 1
β
.

Combining (185), (187), and (188) yields that

‖P X Q∗ − A‖ ≤ 2 (
√

2α− 1 + 1)
(√

α max{m, n}+ 1 +
√

α max{m, n}
)

σk+1 (189)

with probability at least 1− 3
β
. Combining (189), (181), (182), and (183) yields that

‖U Σ V ∗ − A‖ ≤ 2 (
√

2α− 1 + 1)
(√

α max{m, n}+ 1 +
√

α max{m, n}
)

σk+1 (190)

with probability at least 1 − 3
β
. The bound (190) is a precise version of (173). We can use

the verification scheme described in Subsection 3.4 to estimate ‖U Σ V ∗ − A‖ during each
run of the algorithm.

Remark 5.1 Step 7 is motivated by an idea from [15], [1], [7] of using the SRFT defined in
Section 2 for the purpose of computing a solution in the least-squares sense to an overdeter-
mined system of linear-algebraic equations.

Remark 5.2 It is possible to replace the l×n matrix Y defined in (174) with a k×n matrix,
by applying the algorithm of Subsection 5.1 to Y T and using the transpose of the obtained
n × k matrix in place of Y . Similarly, it is possible to replace the l × m matrix Ỹ defined
in (175) with a k ×m matrix, by applying the algorithm of Subsection 5.1 to Ỹ T and using
the transpose of the obtained m × k matrix in place of Ỹ . Furthermore, it is possible to
obtain replacements for Y and Ỹ by using “Q R” decompositions or SVDs in place of the
interpolative decompositions employed by the algorithm of Subsection 5.1.
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5.3 Singular value decomposition by means of the interpolative
decomposition

In this subsection, we provide an alternative to the algorithm of Subsection 5.2 for computing
an approximation to a singular value decomposition. This alternative is usually somewhat
more efficient.

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a complex
m× n matrix. We will compute an approximation to an SVD of A such that

‖U Σ V ∗ − A‖ .
√

kmn σk+1, (191)

where U is a complex m× k matrix whose columns are orthonormal, V is a complex n× k
matrix whose columns are orthonormal, Σ is a real diagonal k × k matrix whose entries are
all nonnegative, and σk+1 is the (k+1)st greatest singular value of A. To do so, we choose an
integer l near to, but greater than k, such that l < m and l < n (for example, l = k+8), and
use the algorithm of Subsection 5.1 to construct the matrices B and P in (165) and (166).
Then, we make the following four steps:

1. Construct a lower triangular complex k × k matrix L, and a complex n× k matrix Q
whose columns are orthonormal, such that

P = L Q∗. (192)

(See Remark 3.11 for details concerning the construction of such matrices L and Q.)

2. Compute the m× k product matrix

C = B L. (193)

3. Construct an SVD of C, that is,

C = U Σ W ∗, (194)

where U is a complex m×k matrix whose columns are orthonormal, Σ is a real diagonal
k×k matrix whose entries are all nonnegative, and W is a complex k×k matrix whose
columns are orthonormal. (See, for example, Chapter 8 in [8] for details concerning
the construction of such an SVD.)

4. Compute the n× k product matrix

V = Q W. (195)

It is clear that the columns of U are orthonormal, as are the columns of V , and that the
entries of Σ are all nonnegative and are zero off of the main diagonal. It is easy to see that
the matrices U , Σ, and V satisfy (191). Indeed, suppose that α and β are real numbers
greater than 1, such that

m > l ≥ α2 β

(α− 1)2
k2. (196)
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Then, combining (172) and Lemma 3.10 yields that

‖U Σ V ∗ − A‖ ≤
(
(
√

4k (n− k) + 1 + 1)
√

αm + 1 +
√

4k (n− k) + 1
√

αm
)

σk+1 (197)

with probability at least 1− 1
β
, where σk+1 is the (k + 1)st greatest singular value of A. The

bound (197) is a precise version of (191). We can use the verification scheme described in
Subsection 3.4 to estimate ‖U Σ V ∗ − A‖ during each run of the algorithm.

Strictly speaking, we require that (196) hold in order to prove our theoretical bound (197).
However, numerical experiments (some of which are reported in Section 6) indicate that in
fact l need be only very slightly greater than k; l = k + 8 always worked in our experiments.

Remark 5.3 Steps 2 and 4 in the procedure of the present subsection are somewhat subtle
numerically. Both Steps 2 and 4 involve constructing products of matrices, and in general
constructing the product Ξ Ω of matrices Ξ and Ω can be numerically unstable. Indeed, in
general some entries of Ξ or Ω can have unmanageably large absolute values, while in exact
arithmetic no entry of the product Ξ Ω has an unmanageably large absolute value; in such
circumstances, constructing the product Ξ Ω can be unstable in finite-precision arithmetic.
However, this problem does not arise in Steps 2 and 4 above, due to (165), (25), the fact
that the columns of B constitute a subset of the columns of A (so that ‖B‖ ≤ ‖A‖), and
the fact that the columns of Q are orthonormal, as are the columns of W .

5.4 Costs

In this subsection, we tabulate the numbers of floating-point operations required by the
algorithm described in Subsections 5.1, 5.2, and 5.3, as applied once to a complex m × n
matrix A.

5.4.1 Interpolative decomposition

The algorithm of Subsection 5.1 incurs the following costs in order to compute an approxi-
mation to an interpolative decomposition of A:

1. Computing Y in (167) costs O(mn log(l)).

2. Computing Z and P in (168) costs O(lkn log(n)).

3. Forming B in Step 3 requires retrieving k columns of the m×n matrix A, which costs
O(km).

The verification scheme of Subsection 3.4 requires applying A, B, and P to a fixed number
(say 6) of vectors, at costs of O(mn), O(km), and O(kn). Summing up the costs for Steps 1–
3 above and for the verification scheme, we conclude that the algorithm of Subsection 5.1
costs

CID = O(mn log(l) + lkn log(n)). (198)

Remark 5.4 When “Q R” decompositions are used as in [5] to compute the matrices Z and
P in (168), the cost of the algorithm of Subsection 5.1 is usually less than the cost of the
algorithm of Subsection 5.2, typically

C ′
ID = O(mn log(l) + lkn). (199)
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5.4.2 Singular value decomposition

The algorithm of Subsection 5.2 incurs the following costs in order to compute an approxi-
mation to a singular value decomposition of A:

1. Computing Y in (174) costs O(mn log(l)).

2. Computing Ỹ in (175) costs O(mn log(l)).

3. Computing Q in (176) costs O(l2 n).

4. Computing P in (177) costs O(l2 m).

5. Computing W in (178) costs O(km log(l)).

6. Computing B in (179) costs O(lkn).

7. Computing X minimizing (180) costs O(k2 l).

8. Computing the SVD (181) of X costs O(k3).

9. Computing U in (182) costs O(k2 m).

10. Computing V in (183) costs O(k2 n).

The verification scheme of Subsection 3.4 requires applying A, U , Σ, and V ∗ to a fixed
number (say 6) of vectors, at costs of O(mn), O(km), O(k), and O(kn). Summing up the
costs for Steps 1–10 above and for the verification scheme, we conclude that the algorithm
of Subsection 5.2 costs

CSVD = O(mn log(l) + l2(m + n)). (200)

Remark 5.5 With the modifications described in Remark 5.2, the scheme of Subsection 5.2
costs

C ′
SVD = O(mn log(l) + k2(m + n) + kl2 log(l)). (201)

(201) can be less than (200) when l is large. However, while our current theoretical bounds
require l > k2 to guarantee good accuracy, our numerical experiments (some of which are
reported in Section 6) indicate that l ≥ k + 5 suffices. For l = k + 5, the estimate (200) is
as tight as (201).

5.4.3 Singular value decomposition by means of the interpolative decomposition

The algorithm of Subsection 5.3 incurs the following costs in order to compute an approxi-
mation to a singular value decomposition of A, in addition to (198):

1. Constructing L and Q in (192) costs O(k2 n).

2. Computing C in (193) costs O(k2 m).

3. Computing the SVD of C in (194) costs O(k2 m).
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4. Computing V in (195) costs O(k2 n).

The verification scheme of Subsection 3.4 requires applying A, U , Σ, and V ∗ to a fixed
number (say 6) of vectors, at costs of O(mn), O(km), O(k), and O(kn). Summing up the
costs for Steps 1–4 above and for the verification scheme, plus (198), we conclude that the
algorithm of Subsection 5.3 costs

CSVD(ID) = O(mn log(l) + lkn log(n) + k2 m). (202)

Remark 5.6 As in Remark 5.4, when “Q R” decompositions are used as in [5] to compute
the matrices Z and P in (168), the cost of the algorithm of Subsection 5.3 is usually less
than the cost of the algorithm of Subsection 5.2, typically

C ′
SVD(ID) = O(mn log(l) + lkn + k2 m). (203)

6 Numerical examples

In this section, we describe the results of several numerical tests of the algorithm of the
present paper. Tables 1–6 summarize the numerical output of applying the algorithm to the
matrix A defined below for each of the examples.

In all of the tables, we set l = k + 8 for the user-specified parameter l, where k is the
rank of the approximations constructed by the algorithms. As described below, many of the
entries in the tables report the worst or average results over multiple trials of the randomized
algorithms. We conducted 30 randomized trials for Tables 1 and 4, 100 randomized trials
for Tables 2 and 5, and 500 randomized trials for Tables 3 and 6. For the verification scheme
of Subsection 3.4, we ran 6 independent tests of each randomized approximation matrix,
exactly as described in Subsection 3.4.

Tables 1–3 display the results of applying the interpolative decomposition algorithm of
Subsection 5.1 once to the matrix A defined below for each example. Tables 4–6 display
the results of applying the singular value decomposition algorithm of Subsection 5.3. The
numerical experiments reported in [19] indicate that the algorithm of Subsection 5.2 is not
competitive with the algorithm of Subsection 5.3 in terms of either accuracy or efficiency.

In all of the tables, k is the rank of the approximations constructed by the algorithms,
and σk+1 is the (k + 1)st greatest singular value of A; σk+1 is also the spectral norm of the
difference between the original matrix A and its best rank-k approximation.

In Tables 1–3, δdirect is the spectral norm of the difference between the original matrix
A and the approximation B P to an interpolative decomposition obtained via the pivoted
“Q R” decomposition algorithm of [5] that is based upon plane (Householder) reflections. In
Tables 4–6, δdirect is the spectral norm of the difference between the original matrix A and the
approximation U Σ V ∗ to an SVD obtained via following up a pivoted “Q R” decomposition
algorithm based upon plane (Householder) reflections with a call to the LAPACK 3.1.1
divide-and-conquer SVD routine dgesdd.

In Tables 1–3, δfast is the maximum over multiple randomized trials of the spectral norm of
the difference between the original matrix A and the approximation B P to an interpolative
decomposition obtained via the randomized algorithm. In Tables 4–6, δfast is the maximum
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over multiple randomized trials of the spectral norm of the difference between the original
matrix A and the approximation U Σ V ∗ to an SVD obtained via the randomized algorithm.

In Tables 1–3, δfast/δest is the maximum over multiple randomized trials of the factor by
which the randomized verification scheme underestimated the spectral norm of the difference
between A and the approximation B P to an interpolative decomposition obtained via the
randomized algorithm. In Tables 4–6, δfast/δest is the maximum over multiple randomized
trials of the factor by which the randomized verification scheme underestimated the spectral
norm of the difference between A and the approximation U Σ V ∗ to an SVD obtained via
the randomized algorithm.

In Tables 1–3, tdirect is the number of seconds of CPU time taken by the pivoted “Q R”
decomposition algorithm of [5] that is based upon plane (Householder) reflections. In Ta-
bles 4–6, tdirect is the number of seconds of CPU time taken by the combination of a pivoted
“Q R” decomposition algorithm based upon plane (Householder) reflections and the LA-
PACK 3.1.1 divide-and-conquer SVD routine dgesdd.

In all of the tables, tfast is the average over multiple randomized trials of the number of
seconds of CPU time taken by the randomized algorithm plus the number of seconds taken by
the verification scheme; every approximation produced by the randomized algorithm passed
the verification test during our experiments (as well as during all of our experiments with
l ≥ k + 5).

The values of δdirect and δfast displayed in the tables are those obtained via the power
method for estimating the spectral norm of a matrix.

Tables 1 and 4 report the results of applying the algorithms of Subsections 5.1 and 5.3
to the 4,096 × 4,096 matrix defined via the formula

A =
l+2∑
k=1

u(k) σk (v(k))∗, (204)

where
σk = 10−120·([k−1] mod 10)/(l+1) (205)

for k = 1, 2, . . . , l + 1, l + 2,

(v(k))j =
1√
4096

e2πijk/4096 (206)
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for j = 1, 2, . . . , 4,095, 4,096 and k = 1, 2, . . . , l + 1, l + 2, and

(u(1))T =
1√

n− 1

(
1 1 . . . 1 1 0

)
, (207)

(u(2))T =
(

0 0 . . . 0 0 1
)
, (208)

(u(3))T =
1√

n− 2

(
1 −1 1 −1 . . . 1 −1 1 −1 0 0

)
, (209)

(u(4))T =
1√
2

(
1 0 −1 0 0 . . . 0 0

)
, (210)

(u(5))T =
1√
2

(
0 0 0 0 1 0 −1 0 0 . . . 0 0

)
, (211)

(u(6))T =
1√
2

(
0 0 0 0 0 0 0 0 1 0 −1 0 0 . . . 0 0

)
, (212)

(213)

and so on. More precisely, for k = 4, 5, . . . , l + 1, l + 2, the (4k − 15)th and (4k − 13)th

entries of u(k) are 1√
2

and − 1√
2
, and all other entries of u(k) are zero. Obviously, σ1, σ2, . . . ,

σl+1, σl+2 are the nonzero singular values of A. We note that ‖A‖ = σ1 = 1.
Tables 2 and 5 report the results of applying the algorithms of Subsections 5.1 and 5.3 to

the 2,048 × 2,048 matrix A effecting convolution with the complex 2,048 × 1 column vector
γ with the entry

γj =
1

2048

2048∑
k=1

e−2πi(j−1)(k−1)/2048 σk (214)

for j = 1, 2, . . . , 2,047, 2,048, where

σk = 10−24·([k−1] mod 2)/(l+1) (215)

for k = 1, 2, . . . , l + 1, l + 2, and
σk = 0 (216)

otherwise (for k = l + 3, l + 4, . . . , 2,047, 2,048). Combining the facts that A effects
convolution with γ, and that γ is a discrete Fourier transform of σ1, σ2, . . . , σ2047, σ2048,
yields that σ1, σ2, . . . , σ2047, σ2048 are the singular values of A. We note that ‖A‖ = σ1 = 1.

Tables 3 and 6 report the results of applying the algorithms of Subsections 5.1 and 5.3
to the 1,024 × 1,024 matrix A defined via the formula

A =
l+2∑
k=1

u(k) σk (v(k))∗, (217)

where
σk = 10−12·(k−1)/(l+1) (218)

for k = 1, 2, . . . , l + 1, l + 2, and u(1), u(2), . . . , u(l+1), u(l+2) and v(1), v(2), . . . , v(l+1), v(l+2)

are two independent sets of orthonormal vectors obtained by applying the Gram-Schmidt
process to vectors whose entries are drawn i.i.d. from a pseudorandom number generator
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with a complex Gaussian distribution of zero mean and unit variance. Obviously, σ1, σ2,
. . . , σl+1, σl+2 are the nonzero singular values of A. We note that ‖A‖ = σ1 = 1.

We performed all computations using IEEE standard double-precision variables, whose
mantissas have approximately one bit of precision less than 16 digits (so that the relative
precision of the variables is approximately .2E–15). We ran all computations on one core of a
1.86 GHz Intel Centrino Core Duo microprocessor with 2 MB of L2 cache and 1 GB of RAM.
We compiled the Fortran 77 code using the Lahey/Fujitsu Express v6.2 compiler, with the
optimization flag --o2 enabled. We used a double-precision version of P. N. Swarztrauber’s
FFTPACK library for the fast Fourier transforms required by Step 1 in the algorithm of
Subsection 3.3.

Remark 6.1 Tables 1–6 indicate that the algorithms of Subsections 5.1 and 5.3 are generally
more efficient than the classical pivoted “Q R” decomposition algorithm based on plane
(Householder) reflections, followed by either the algorithm of [5] or the LAPACK 3.1.1 divide-
and-conquer SVD routine.

Remark 6.2 The numerical experiments reported in [19] indicate that the algorithm of
Subsection 5.2 is not competitive with the algorithm of Subsection 5.3 in terms of either
accuracy or efficiency. However, the algorithm of Subsection 5.2 is of theoretical interest.

Remark 6.3 The entries in the tables for δfast/δest are all less than 8
√

n, in accord with (38)
for 6 verification trials, where A is n× n (in fact, the values are all less than

√
n).

7 Conclusions and generalizations

This paper provides an algorithm for the low-rank approximation of arbitrary matrices.
Given the entries of a matrix A, the algorithm provides a means for computing several of
the greatest singular values and corresponding singular vectors of A; it is generally faster
than existing schemes, can access each column of A independently and at most twice, and
parallelizes easily.

The theoretical bounds derived in the present paper should be considered preliminary.
Our numerical experiments indicate that the algorithm performs better than our estimates
guarantee. Comfortingly, the verification scheme of Subsection 3.4 provides an inexpensive
means for determining the precision of the approximation obtained during every run. If
the algorithm were to produce an approximation that were less accurate than desired, then
one could run the algorithm again with an independent realization of the random variables
involved, in effect boosting the probability of success at a reasonable additional expected
cost.

Nevertheless, the randomized algorithm produced an approximation accurate to within
3 digits of the best possible during every trial reported in the numerical experiments of
Section 6, obviating the need to run the algorithm again (assuming that k was chosen
sufficiently large that the accuracy of the best possible rank-k approximation was sufficiently
high). We are currently investigating our empirical observation that the algorithm produces
a nearly optimal approximation whenever the user-specified parameter l is only very slightly
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greater than the rank k of the approximation. Our current theoretical bounds require l > k2

in order to ensure good accuracy.
The algorithm of the present article admits several generalizations along the lines dis-

cussed in [13], namely:

1. If the singular values of the matrix being approximated decay sufficiently fast, then
the factors of

√
m in (166) and (191), and of

√
max{m, n} in (173), would appear to

be superfluous, both in theory and in practice.

2. In the present article, the rank k of the approximation to be constructed and the user-
specified parameter l are fixed. In practice, one adjusts k and l during the course of the
algorithm in order to guarantee that the approximation attains a prescribed accuracy,
preferably using as small a number l as possible.

3. The present article constructs approximations to interpolative decompositions and to
singular value decompositions. We have constructed a similar algorithm for approxi-
mating the Schur decomposition (see, for example, Theorem 7.1.3 in [8] for a description
of the Schur decomposition).

4. The present paper uses complex arithmetic. When processing real matrices, one should
use only real arithmetic.

Acknowledgements

We would like to thank Nir Ailon, Tamás Sarlós, Yoel Shkolnisky, and Amit Singer for useful
discussions.

38



k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 .100E1 .100E1 .177E1 41.7 .29E1 .17E1 1.7
24 32 .534E–7 .755E–7 .364E–6 41.2 .79E1 .19E1 4.1
56 64 .588E–9 .578E–7 .997E–8 34.5 .18E2 .22E1 8.2
120 128 .687E–11 .178E–7 .514E–9 39.0 .37E2 .29E1 13
248 256 .622E–11 .561E–6 .407E–9 46.2 .76E2 .60E1 13
504 512 .201E–11 .162E–6 .339E–9 29.9 .16E3 .28E2 5.7
1016 1024 .150E–11 .651E–6 .285E–9 34.1 .32E3 .12E3 2.7

Table 1: ID of the 4,096 × 4,096 matrix A defined in (204)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 .225E–5 .319E–5 .823E–5 5.06 .72E0 .42E0 1.7
24 32 .187E–8 .148E–7 .184E–7 7.58 .20E1 .48E0 4.1
56 64 .459E–10 .119E–7 .793E–9 9.59 .44E1 .58E0 7.6
120 128 .687E–11 .569E–7 .118E–9 12.7 .92E1 .96E0 9.6
248 256 .263E–11 .181E–8 .774E–10 10.8 .18E2 .24E1 7.4
504 512 .162E–11 .981E–11 .759E–10 11.1 .36E2 .13E2 2.8
1016 1024 .127E–11 .851E–11 .723E–10 11.9 .72E2 .46E2 1.6

Table 2: ID of the 2,048 × 2,048 matrix A effecting convolution with γ defined in (214)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 .225E–5 .342E–5 .100E–4 14.2 .17E0 .10E0 1.7
24 32 .187E–8 .383E–8 .163E–7 18.1 .47E0 .12E0 3.9
56 64 .459E–10 .127E–9 .819E–9 14.5 .11E1 .16E0 6.5
120 128 .687E–11 .246E–10 .213E–9 19.7 .21E1 .32E0 6.7
248 256 .263E–11 .133E–10 .119E–9 14.9 .46E1 .97E0 4.7
504 512 .162E–11 .956E–11 .117E–9 16.8 .86E1 .48E1 1.8

Table 3: ID of the 1,024 × 1,024 matrix A defined in (217)
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k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 .100E1 .100E1 .177E1 41.7 .29E1 .17E1 1.7
24 32 .534E–7 .755E–7 .364E–6 41.2 .80E1 .20E1 4.1
56 64 .588E–9 .575E–7 .997E–8 34.5 .19E2 .28E1 6.7
120 128 .687E–11 .682E–8 .514E–9 39.0 .41E2 .59E1 6.9
248 256 .622E–11 .127E–7 .407E–9 46.2 .87E2 .19E2 4.7
504 512 .201E–11 .150E–7 .339E–9 29.9 .19E3 .79E2 2.4
1016 1024 .150E–11 .689E–8 .285E–9 34.1 .46E3 .35E3 1.3

Table 4: SVD of the 4,096 × 4,096 matrix A defined in (204)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 .225E–5 .319E–5 .823E–5 5.06 .73E0 .41E0 1.8
24 32 .187E–8 .148E–7 .184E–7 7.58 .20E1 .52E0 3.9
56 64 .459E–10 .956E–8 .793E–9 9.59 .47E1 .85E0 5.5
120 128 .687E–11 .273E–7 .178E–9 12.7 .11E2 .23E1 4.6
248 256 .263E–11 .159E–8 .774E–10 10.8 .24E2 .86E1 2.8
504 512 .162E–11 .981E–11 .759E–10 11.1 .58E2 .42E2 1.4
1016 1024 .127E–11 .851E–11 .723E–10 11.9 .16E3 .18E3 0.9

Table 5: SVD of the 2,048 × 2,048 matrix A effecting convolution with γ defined in (214)

k l σk+1 δdirect δfast δfast/δest tdirect tfast tdirect/tfast

8 16 .225E–5 .342E–5 .100E–4 14.2 .18E0 .11E0 1.6
24 32 .187E–8 .383E–8 .163E–7 18.1 .51E0 .15E0 3.4
56 64 .459E–10 .127E–9 .819E–9 14.5 .12E1 .30E0 3.9
120 128 .687E–11 .246E–10 .213E–9 19.7 .27E1 .90E0 3.0
248 256 .263E–11 .133E–10 .119E–9 14.9 .68E1 .41E1 1.7
504 512 .162E–11 .956E–11 .117E–9 16.8 .20E2 .20E2 1.0

Table 6: SVD of the 1,024 × 1,024 matrix A defined in (217)
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