abstract

We propose an algorithm for implementing Newton's method for a general nonlinear system
f(x) = O where the linear systems that arise at each step of Newton's method are solved by a
preconditioned Krylov subspace iterative method. The algorithm requires only function
evaluations and does not require the evaluation or storage of the Jacobian matrix. Matrix-vector
products involving the Jacobian matrix are approximated by directional differences. We develop
a framework for constructing preconditionings for this inner iterative method which do not
reference the Jacobian matrix explicitly. We derive a nonlinear SSOR type preconditioning
which numerical experiments show to be as effective as the linear SSOR preconditioning that uses

the Jacobian explicitly.
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1. Introduction
One of the most common methods for solving an n by n nonlinear systems of the form
f(x) =0 (1)
is Newton’s method:

Start with an initial guess x,,.
Repeat until convergence:
Solve J(x;) 6x = - f(x;) , : (2)

Set  x;,, = x;+ 0x, 3)

where J(x) is the Jacobian matrix f (x).

For many large problems, most of the work is done in solving the linear system (2). This is
usually accomplished by evaluating and LU-factoring the Jacobian J and backsolving for éx.
However, when J is large and sparse, it is natural to consider iterative methods, which usually
require much less storage. Moreover, truncated forms of Newton’s method [4, 22], in which the

linear system (2) is only solved approximately by an iterative method, can be implemented easily.

Among the most popular and successful iterative methods for large sparse systems are methods
based on the Krylov subspace, for example, the Chebychev method [14, 18] and the conjugate
gradient method [14, 15]. These methods all have the property that only matrix-vector products
involving the coefficient matrix are needed. In the context of applications to Newton’s method,
the matrix-vector product Jv can be approximated by the directional difference (f(x+dv)-f(x))/d,
where d is the scalar difference interval. This has the advantage of requiring only function
evaluations and avoiding explicit evaluation and storage of the Jacobian matrix. Thus, it is well-

suited for large sparse problems, especially if the Jacobian is difficult to evaluate or store.

Often, it is desirable to precondition the Krylov subspace methods as the rate of convergence is
often unaccepatably slow otherwise, especially for ill-conditioned problems. However, since most
preconditioning techniques require J explicitly [2, 6, 7, 13, 16], it is not obvious how to apply
them in the context of directional differencing, as J is not explicitly available. We address this

problem in this paper.

After a review of discrete Newton algorithms and Krylov subspace methods in Section 2, we
develop in Section 3 a framework for constructing nonlinear preconditionings that do not require

J explicitly. We then give in Section 4 a specific preconditioning algorithm that is based on




nonlinear SSOR sweeps. The efficiency of this nonlinear preconditioned Krylov subspace Newton
method is discussed in Section 5. Numerical experiments in Section 6 show that this nonlinear
preconditioning is as effective as the linear SSOR preconditioning that require J explicitly. Some

conclusions are given in Section 7.

2. Discrete Newton Algorithms and Krylov Subspace Methods

Newton’s method is among the best methods for solving general nonlinear systems. Part of the
reason for its success is its quadratic rate of local convergence. Also, it is often more robust than
competing methods, for example quasi-Newton methods, especially for optimization

problems [12, 22].

These advantages of Newton’s method are offset by the requirement that, at each step, the
user compute the Jacobian matrix explicitly and solve the linear system (2). For problems for
which the Jacobian is difficult to calculate (for example in optimization the Jacobian corresponds
to the Hessian matrix which consists of second derivatives of the cost function), methods have
been proposed which do not require the user to compute the Jacobian explicitly. Among these
are Quasi-Newton methods [5], Nonlinear Conjugate Gradient methods [8] and Discrete Newton
methods [12, 22, 23].

Discrete Newton methods are perhaps the most natural of the three classes of methods, in that
they retain the form of Newton's method but approximate the Jacobian matrix by finite
differences of the function values. These differences are often taken along the unit coordinate

directions:
of | ox, ~ (f(x+de))-f(x) )/ d , (4)

where d is an appropriately chosen difference interval.? It is easy to see that it takes n function
evaluations to obtain an approximation for J. However, for large and sparse problems, other
directions may be more efficient, in terms of both work and storage. At least two approaches

using finite differences are possible.

The first approach is to order the columns of J into groups according to the sparsity pattern of

4For reliable and automatic techniques for chosing the finite difference interval d, we refer the reader to [11, 12].



J so that the nonzero elements in each group can be evaluated with only one function evaluation
by finite differencing along a carefully chosen direction. For matrices with highly structured
sparsity patterns, this can result in a significant reduction in the number of function evaluations
needed to obtain an approximation for J. For example, a tridiagonal Jacobian can be
approximated by three function evaluations, independent of the dimension of the matrix. Curtis,
Powell and Reid [17] are credited as being the first to make such an observation and they
proposed a heuristic algorithm for obtaining a good (but generally not optimal) column ordering
for matrices with arbitrary sparsity patterns. Recently, there has been a lot of interest in
developing more efficient finite-differencing schemes by solving related graph coloring
problems [3, 19, 26, 27]. We call a Newton method employing this approach to approximate the

Jacobian the standard discrete Newton algorithm.

The second approach is rather different in that it does not attempt to compute an explicit
approximation to the Jacobain matrix at all. Methods in this class use a Krylov subspace
iterative method (e.g. the conjugate gradient method) to solve approximately the linear system &
(2) at each step of Newton's method. In the application of these iterative methods, one does not
need to access the Jacobian matrix explicitly. Instead, all that is required is the ability to form
matrix-vector products of the form Jv for a given vector v. The central theme of the methods in

this class is to approximate matrix-vector products of this form by a directional difference:
IX)ve(fx+dv)-f(x))/d. (5)

Note that the direction v is usually unknown a priort and depends on the iterates in the Krylov
subspace method. Only function evaluations are needed. This method is especially attractive if
only a few matrix-vector products are needed at each Newton step, as is often the case in
truncated Newton algorithms. For general dense matrices that arise in optimization problems,
O’Leary [23] has shown that this method takes fewer operations than the standard discrete
Newton method when n > 39. Garg and Tapia [9] and Nash [22] have also used this technique
in optimization problems. Gear and Saad [10] have employed this idea successfully in solving
stiff ordinary differential equations. We shall call this the Directional Differencing Discrete
Newton (DDDN) Method.

Traditionally, Krylov subspace methods were developed for matrices with special properties,

e.g. symmetric positive definiteness. However, for a general function f, the Jacobian J does not




necessarily possess these properties. Even for optimization problems, although J is often
symmetric, it need not be positive definite. Recently, the application of Krylov subspace
methods to general linear systems has attracted a lot of research interest and significant progress

has been achieved. For a survey of recent research in this area the reader is refered to [7, 16].

In this paper, we are concerned with preconditioning the Krylov subspace methods in order to
accelerate their convergence. Most preconditionings are based upon a splitting of the form
J = M - N and can be implemented by supplying a routine for computing the matrix-vector
product M'lv for a given vector v. A good preconditioning is one for which M is a good

approximation to J and M1y is inexpensive to compute.

The matrix M is usually defined in terms of the elements of J. This is true, for example, of the
most commonly used incomplete LU-factorizations [13,20] and the SSOR-type
preconditionings [1, 2]. This creates a problem in the context of applications to Newton’s method
with directional differencing since the Jacobian matrix J is not available explicitly. Computing
the elements of J explicitly in order to compute and store the preconditioning M would take away
the advantage of the directional differencing. It is thus desirable to be able to apply a
preconditioning algorithm that requires function evaluations only and does not reference the
Jacobian explicitly. In the next section, we derive a class of nonlinear preconditionings with this

property.

3. Nonlinear Preconditioning
In the context of a Krylov subspace method, a preconditioning M is needed only to compute

matrix-vector products of the form

w=Mlv. (6)
That is, we want to be able to solve the linear system

Mw=v. (7)
The optimal preconditioning, at least as far as convergence is concerned, is the choice M =
J. However, this leads to solving the linear system

Jw=v (8)
which is as difficult as the original problem (2). On the other hand, it shows that, for any
preconditioning M, My can be viewed as an algorithm for obtaining an approzimate solution

of (8). With this in mind, we can approximate the term Jw in (8) by a directional difference and



solve

F(w)= (f(x+dw)-f(x))/d - v=0 (9)
for w. At first glance, this appears to be as difficult as the original nonlinear problem (1). The
crucial observation, however, is that any approzimate method for solving (9) will constitute a

preconditioning M for J, where M is generally a nonlinear operator.

We note that (9) does not involve J explicitly. Also, there are many algorithms for solving
nonlinear systems that do not involve the Jacobian J explicitly. Therefore, we have a framework

for constructing many possible preconditionings that require function evaluations only.

One may argue that nothing is gained by this approach, because any method used to solve (9)
approximately can also be applied to the original equation f(x) = 0 as well. There is a difference,
however. Independent of the method used to solve (9), the outer method is still Newton’s
method, and thus for example local quadratic convergence is achievable [4]. If the same method
applied to (9) is applied to (1) directly, that method will determine the convergence of the outer
loop. The resulting method may converge much less quickly and, in particular, quadratic
convergence may be lost. See for example Mittelmann [21] who considered an algorithm for
nonlinear finite element problems in which nonlinear Gauss-Seidel iterates are accelerated by the

conjugate gradient method.

Whether Newton'’s method is the appropriate choice for the outer algorithm probably depends
on the particular problem, but there is some evidence [22] that it is among the best choice for
general nonlinear problems. In any case, the general framework in this section allows any
algorithm for solving (9) to be used as a preconditioning for the Krylov subspace method used to
solve the linear systems in Newton’s method. If the method used for the nonlinear
preconditioning does not require explicit reference to the Jacobian, then the overall directional
differencing discrete Newton algorithm can be implemented using only function evaluations. In

the next section, we derive one such nonlinear preconditioning.

4. A Nonlinear SSOR Preconditioning
A class of methods for solving a nonlinear system F(w) = 0 that does not use the Jacobian

matrix explicitly is the class of



Nonlinear Relaxation Methods [24]:
Start with some initial guess for w and a relaxation factor w.
Repeat until convergence:
Doi=1,..,n,n,..,1

(0) Save (w,) |4 & W,

(1) Solve for w. in F(w,,...,w;,...,.w ) =0
assuming that all other components of w are fixed at
their current values.
(2) Set w, &= (L-w) (W;) )y + w W;.
End do
End Repeat

The above algorithm can be applied directly to (9), provided we specify the initial guess for w,
the relaxation factor w, and the number of times the outer loop is to be repeated. By looking at
the linear SSOR preconditioning for J, we shall show that the initial guess w = 0 and one

iteration of the outer loop are appropriate choices.

Let J be written as
J=D-L-U
where D, L and U are the diagonal, the strictly lower triangular, and strictly upper triangular

parts of J, respectively. The linear SSOR preconditioning for J can be written as [1, 2]

M=w(2-w)([D-wL)D!(D-uwl).
Thus, M'lv can be computed by two backsolves with triangular matrices. However, there is

another well-known interpretation for M"lv. Consider the following two stage iteration:

D-wl)w,=((1-w)D+wU)wy+wv, : (10)

(D-wU)w2=((1-w)D+wL)w1+wv. (11)
It is easily verified that, if wy = 0, then w, = Mly. On the other hand, it is also well-known
that this two stage iteration is equivalent to the nonlinear SSOR algorithm applied to the linear
system F(w) = Jw - v with one iteration of the outer loop [24]. For nonlinear systems, F(w) in
(9) is an approximation to Jw - v. Thus, it follows that, for the nonlinear SSOR preconditioning,
w, = 0 is an appropriate initial guess and the outer loop should be iterated once. It also follows
that, 1f f is linear, the nonlinear SSOR preconditioning reduces to the linear SSOR

preconditioning for J.

We note that the problem to be solved in Step (1) of the nonlinear SSOR preconditioning

algorithm is a scalar one. Any one dimensional nonlinear equation solver can be used. Moreover,



the problem in Step (1) does not have to be solved exactly. For example, if one step of Newton’s
method is used [24], then we have the following algorithm:

Algorithm NSSORP: (One Step Nonlinear SSOR - Newton Preconditioning)
Given w and v. Returns preconditioned v in w.
w < 0.
Fori=1,.,n,n,..,1
Compute (DJ), < the i-th diagonal elements of J(x+dw).
Set w, <= w. - w F,(w) / (DJ), .

The diagonal elements (DJ)i of the Jacobian J can either be supplied by the user or be
approximated by finite differences. We note that, for efficiency, Algorithm NSSORP requires the

function f to be supplied in component form.

5. Efficiency
In this section, we compare the efficiency of the following four discrete Newton algorithms:
(a) Form J using a sparse Jacobian algorithm,

use a Krylov subspace method to solve (2).

(b) Form J using a sparse Jacobian algorithm,
use a linear SSOR preconditioned Krylov subspace method to solve (2).

(c) Use a Krylov subspace method to solve (2), with directional differencing for Jv.

(d) Use a preconditioned Krylov subspace method to solve (2),
with directional differencing for Jv and preconditioned with Algorithm NSSORP.
Note that all four methods do not require the explicit Jacobian. Method (d) is the method that
we proposed in Section 4. Method (c) is the same except the Krylov subspace method is not
preconditioned. Methods (a) and (b) are the corresponding methods except the Jacobian J is

approximated by a sparse Jacobian evaluation algorithm. These are the discrete Newton

methods that one might consider using if the Jacobian is not available explicitly.

Concerning the storage requirements, all four methods need storage for the Krylov subspace
method, which is usually O(n). Methods (a) and (b), however, require additional storage for the
Jacobian J. Thus, methods (¢) and (d) might be preferred for problems where the storage of J
presents difficulties, e.g. J is too large for the machine, or J is dense with no exploitable

structures for storage, or J has a nontrivial sparsity structure which is not convenient to handle.

Next, we compare work. We define one function evaluation of f to be one evaluation of each

component of f. First we consider the case that function evaluations are expensive compared to



matrix-vector operations. All four methods need one function evaluation to evaluate the right
hand side of the linear system (2) in Newton’s method. In addition, Method (c) requires one
function evaluation per step of the Krylov subspace method (to approximate Jv). Method (d)
requires three function evaluations per step (one to approximate Jv and two for the nonlinear
preconditioning). The total number of function evaluations of course depends on the number of
iterations taken by the Krylov subspace method to achieve the desired accuracy. Let us denote
by I_ and I; the number of iterations taken by method (c) and (d) respectively. For methods (a)
and (b), the number of function evaluations needed to evaluate J depends on the sparsity
structure of J and the sparse evaluation algorithm. Let us denote this number by s. The total
number of function evaluations per Newton step are summarized in Table (5-1). Methods (a) and
(b) can easilyfi be modified to reduce the number of function evaluations required at each step by
employing the chord variant of Newton’s method which uses the same Jacobian approximation
for several steps. We note, however, that methods (c) and (d) can be modified in a similar way
to reduce the number of function evaluations required at each step by reusing the projection
generated from previous iterations [25]. Here, though, for simplicity, we assume these savings are

not exploited.

Table 5-1: Total number of function evaluations per Newton step.

B et t-——— - +-—m——- to————— 4o +
| Method Il a | bl ¢ | d |
tom— - o tm————— te————— Hm————— +
| func. eval. | s+1 | s+1 | I+l | 3I,+1 |
e ettt - o o ———— to—————— +
s : number of function evaluations needed to evaluate J.
I, : number of iterations taken by Krylov subspace method for method (c).

I, : number of iterations taken by Krylov subspace method for method (d).

We can make the following observations from the table. If the number of Krylov subspace
iterations needed is small compared to s, then it is more efficient to use directional differencing
(methods (c) and (d)). Such situations arise, for example, in the early stages of a truncated
Newton algorithm [4] or if J has an advantageous distribution of eigenvalues (e.g. stiff ODE’s
with only a few large eigenvalues [10]). On the other hand, if the number of iterations can be
reduced by a factor of more than about three by the nonlinear SSOR preconditioning, then it
pays to use method (d) instead of method (c). Whether the preconditioning can achieve this

depends on the eigenvalue distribution of J and on the accuracy desired. We note that for model



partial differential equations, the linear SSOR preconditioning can be shown to reduce the
number of iterations by a factor of O(h'l/ 2), where h is the mesh size [2]. Thus, for this class of

problems, the benefits of preconditioning is more pronounced for larger problems.

Next, we consider the case that function evaluations are inexpensive compared to matrix-vector
operations. For example, if one function evaluation costs approximately the same as forming the
matrix-vector product Jv (which is often the case for difference methods for PDEs with simple
coefficients), then the costs of methods (c) and (d) would be about the same as that of methods

(a) and (b), respectively.

6. Numerical Experiments

We have performed some numerical experiments with the following model nonlinear partial
differential equation ‘

-u_+2b(e") +ce"=R(x), 0<x<1,

with homogeneous Dirichlet boundary conditions. This problem is discretized on a uniform grid
with n intervals using standard centered finite differencing. The function R(x) is constructed so
that the discrete solution has each component equal to 1. The resulting n by n nonlinear
algebraic system is solved by the methods discussed in earlier sections. The coefficients b and ¢
allow us to control the asymmetry and the diagonal dominance of the Jacobian matrix
respectively. We note that in practice it would not be cost effective to solve a one dimensional
problem like this one by an iterative method. However, the distribution of the eigenvalues of J
for this problem is similar to the distribution of eigenvalues for problems in higher dimensions.

Thus, this problem is quite suitable for testing purposes.

For the Krylov subspace method, we used the Direct Incomplete Orthogonalization Method
(DIOM) of Saad [28]. This method is related to Arnoldi’s method for computing eigenvalues of
general nonsymmetric matrices [29]. At the i-th step, an orthogonal basis for the i-th Krylov
subspace is generated and the new solution is constructed so that the corresponding residual is
orthogonal to this subspace. Saad has improved the basic method so that the same code can be
adapted to symmetric positive definite, symmetric indefinite and general nonsymmetric problems.

For the preconditioning, we fix w = 1 (Symmetric Gauss Seidel).

All computations were carried out on a DEC 20, with a machine precision of about 108 (27 bit

mantissa). For the finite difference interval used in the directional differencing, we use d = 10,
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For the stopping criteria of the inner loop, we use a simple form of truncated Newton strategy:
1| 3xg) 8x + £0¢) I / 1] £xp) 1| < 10771

For the convergence of the outer Newton iteration, we use
|| £(x;) || < 107* and || &x || < 10 + 10 [|x;|I.

All norms used are infinity norms.

The main objective of the experiments is to compare the performance of directional
differencing methods to that of the corresponding methods using the explicit Jacobian. For this
purpose, we also tested the following two methods:

(¢) Exact Jacobian used in Krylov subspace method.

(f) Exact Jacobian used in Krylov subspace method,
linear SSOR preconditioning based on the exact Jacobian.

Another objective is to show the effectiveness of the nonlinear preconditioning. Experiments
were carried out with methods (c), (d), (e) and (f) for various values of n, b and c. The results are
summarized in Table (6-1). In the table, the columns labelled ||f|| and ||error|| denote the values

of ||f(x)|| and the error in the solution x at termination of the Newton iteration.

Tests 1-4 and 5-8 show that the directional differencing algorithms behave almost exactly like
the corresponding algorithm with the explicit Jacobian. They show that the nonlinear
preconditioning (Algorithm NSSORP) is as effective as the linear SSOR preconditioning based on

the explicit Jacobian.

Tests 9-10 show the efffectiveness of the preconditioning for a more nonsymmetric problem
(larger b). The reduction of the number of DIOM iterations caused by the preconditioning is more
pronounced than for more symmetric problems (e.g. Test 5 and 7 and Tests 13-14), especially

near convergence of the Newton iteration where higher accuracy is needed in the inner loop.

Tests 11-12, 15-16 are similar to Tests 1 and 3 (b and ¢ are the same), except that the size n of
the system is larger. They show that the unpreconditioned algorithms converge rather slowly and
take a lot of DIOM iterations to achieve the desired accuracy. On the other hand, the
preconditioned algorithms converged rather fast and took much fewer iterations. These results
confirm that, at least for PDE type problems, the benefit of preconditioning is more pronounced

for larger problems.

We have also performed tests on some other non-PDE type problems (e.g. the PEN1 Problem
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Numerical Results for Model Problem.

Table 6-1:

o e e e e o o e e e e e e e

| No. of DIOM iters.
+--———-t--—4---4-—-4-------—+ step of Newton’s method

] Test | n | b | ¢ | Method |

at each

D et St S e

6 |

| llerrorl] |

FIfL]

2

1

s T ettt St Bt .

61
64
10
10

10
10
T T T e ittt e s

45
45

S OMN~DM
N

O © T %

w0 O N~ 0

o e e e e e e . — —— ——— ————_—— — e e e e —————

| 20 30 50 55

I 201 101 11 ¢

9
10

I
I

T T e et it St

|

4 (-3)
.5 (-4)

.6 (-4)

108 *120
26

| 40 *120

Cc

11 |40l 1] 1|
I
s e ittt e ettt 3

-5)

.6 (

24

15

12

.9 (-4)
.6 (-4)

.8 (-5)
.3 (-5)

74
31

|30 71

| 14

c
d

| 601 0 1 1]

13

28

T T e et B e P et

.2 (-3)
.3 (-4

-4)

| 60 110 #*140 *140 *140 *140] .5 (

| 22
e T T et B ettt T et .

c
d

15 | 60l 1111
16

.5 (-5)

78

55

a x 10°.
*] means that the desired accuracy was not achieved after I iterations.

a (b) means

Notation:
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tested in [22, 23]). The trends are similar to the ones reported here, namely, that the directional
differencing algorithms behave almost exactly like the corresponding algorithms with the exact

Jacobian.

7. Conclusion

In this paper, we propose an algorithm for implementing Newton's method that is particularly
attractive for certain large sparse nonlinear systems. A preconditioned Krylov subspace method
is used to solve the linear systems that arise at each step of Newton's method. However, the
Jacobian matrix is neither stored nor referenced explicitly. The user supplies the nonlinear
function only. The main contribution of the paper is a framework in which various nonlinear
preconditionings can be derived which require function evaluations only. We derived and tested a
nonlinear SSOR preconditioning. Numerical results show that it is as effective as the linear SSOR
preconditioning that uses the exact Jacobian explicitly. These tests also show that the
nonlinerarly preconditioned discrete Newton algorithm is as efficient and as robust as the

standard discrete Newton algorithm.
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