
Many natural and artificial high-dimensional time series are often controlled by a set of
lower-dimensional independent factors. In this paper anisotropic diffusion is combined with
local dynamical models to provide intrinsic global modeling that reveals these factors. The
obtained model is shown to be invariant to the measuring equipment and can be efficiently
extended. These two properties are paramount for sequential processing and provide a
foundation for probabilistic analysis. The widely applicable approach is demonstrated on
nonlinear tracking problems based on both simulated and recorded data.
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1 Introduction

Natural and artificial high-dimensional data is often highly structured and does not fill
uniformly the high-dimensional space. In recent years there has been much progress in the
development of new methods for parameterizing and embedding high-dimensional data in a
low-dimensional space [1] [2] [3] [4] [5] [6]. The nonlinear independent component analysis
(NLICA) proposed in ref. [7] is of particular interest since the data is assumed to be
inaccessible and can be observed only via unknown nonlinear functions. By integrating local
principal component analysis with diffusion maps the NLICA approach provides modeling
of the underlying parametric manifold, whereas the classical manifold learning methods
provide parametrization of the observable manifold.

In many natural and artificial systems, the unknown functions that map the low-
dimensional data into a subset of high-dimensional observations may be stochastic. For
example, neurons in the auditory or visual systems map arbitrary external stimuli into
random sequences of electrical pulses. In addition, a random measurement noise usually
corrupts the observations. In [8], we tackled the stochastic nature of measurements by as-
suming Gaussian models and estimating the second order statistics of the data. However, in
many non-Gaussian cases, the second order statistics does not contain all the information
and might not be sufficient.

In this paper, we present a framework for inferring the independent controlling factors
of high-dimensional time series. A “differential stochastic sensing” approach is proposed to
model noisy measurements based on local density estimates and anisotropic diffusion. This
approach is specially adapted to cases where the observation functions are stochastic. We
show that the obtained intrinsic modeling is invariant under different measurement schemes
and is noise resilient. Moreover, it implicitly encodes the temporal dynamics of the data and
can be efficiently extended. Hence, it provides a foundation for sequential processing that is
illustrated on nonlinear tracking problems. Observe that the proposed tracking procedure
is independent of the model construction.

Our implicit assumption is that the processing of time series occurs in three time scales.
The micro time scale is the measurements domain, where we assume that the sampling rate
is sufficiently high to enable us to estimate the varying densities in short windows. The
mezzo scale is the density domain. In this domain, the noise statistics are assumed to be
constant or slowly changing. Finally, the macro scale is the anisotropic diffusion domain
model, where all the available information is aggregated into a global dynamical model.

2 Dynamical and Measurement Models

Let yt denote an n-dimensional observation process in time index t, drawn from a time
varying probability density function (pdf), denoted by py;t;θ(y). Consider a model in which
the pdf is controlled by a d-dimensional process θt consisting of independent factors. The
dynamics of the controlling factors are described by normalized independent Itô processes
as follows

dθit = ai(θit)dt+ dwi
t, i = 1, . . . , d, (1)
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where ai are unknown drift coefficients and ẇi
t are independent white noises. In discrete

time, Eq. (1) can be re-written as

θit = f i(θit−1, ẇ
i
t), i = 1, . . . , d, (2)

where f represents the temporal propagation of the independent factors.
Let zt denote a noisy version of the observation yt, which is given by

z
j
t = gj(yt,vt), j = 1, . . . , n, (3)

where g is an arbitrary (possibly nonlinear) measurement function and vt is a corrupt-
ing n-dimensional measurement noise drawn from an unknown stationary pdf pv(v) and
independent of yt.

Our goal is to recover the original controlling factors by constructing an intrinsic model
based merely on noisy observations.

2.1 Relationship to Bayesian Filtering

In the formulation of the traditional Bayesian filtering problem, the measured process ob-
serves the underlying controlling process, which is often referred to as state, via a determin-
istic possibly nonlinear function [9]. Thus, in our setting it is equivalent to a special case
where py,t,θ(yt) , δ(yt−θt), and δ(·) is the Dirac delta function. If we further restrict f and
g to be linear and ẇt and vt to be independent white Gaussian noises, we obtain the linear-
Gaussian case which can be optimally solved by the Kalman Filter [10]. Many extensions
of the Kalman Filter to nonlinear models have been developed in the last decades. The
most popular among them are the Extended Kalman Filter [9] and the Unscented Kalman
Filter [11]. In addition, sequential Monte Carlo integration methods have been proposed,
which have the advantage of not being restricted to linearity or Gaussianity (See refs. [12]
and [13] and the reference therein). All these methods require at least partial knowledge of
the dynamical and the measurement models and the noise statistics, whereas in this work
we infer the models blindly based solely on observations.

3 Toy Example

We aim to track a moving object on a 3-dimensional sphere. Since the radius of the sphere
is fixed, we assume that the movement of the object is controlled by two independent factors
θt = [θ1t ; θ

2
t ]: the horizontal azimuth angle θ1t and the vertical elevation angle θ2t . Suppose

the temporal propagation of the angles mimics a motion of a particle in a potential field.
Thus, the angles evolve in time according to the following Langevin equation

θ̇it = −∇U(θit) + ẇi
t, i = 1, 2, (4)

where ẇi
t are independent white Gaussian noises, and U is the potential field. See Fig.

1 for an examples of such 2-dimensional trajectory. Let x(θt) denote the 3-dimensional
coordinates of the object position on the sphere. By assuming that the center of the sphere
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is located at the origin of the coordinate system, the position of the object is given by

x1(θt) = r cos(θ1t ) sin(θ
2
t )

x2(θt) = r sin(θ1t ) sin(θ
2
t )

x3(θt) = r cos(θ2t ),

where r is the radius of the sphere. We consider three measurement schemes:

1. The movement of the object is measured in 3 sensors positioned in xj, j = 1, 2, 3
outside the sphere (see Fig. 2 for the setup illustration). The sensors detect the
object and fire spikes through a spatial point process in a varying rate which depends
on the proximity of the object to the sensors. The spikes are fired by each sensor
according to a Poisson distribution with rate λj(θt) = exp{−‖xj − x(θt)‖}. This
enables us to test the challenging non-Gaussian class of tracking models. We obtain
three spike trains yjt in which the temporal rate is higher when the object is closer to
the sensor. The output of each sensor is corrupted by additive noise and is given by

z
j
t = gj(yt, vt) = y

j
t + v

j
t , j = 1, 2, 3,

where vjt is a spike train drawn from a Poisson distribution with a fixed rate λjv.

2. Similarly to the second scheme, each sensor fires spikes randomly according to the
proximity of the object. However, in this scheme we simulate sensors with unreliable
clocks. We measure the time interval between two consecutive spikes, which is given
by z

j
t = y

j
t + v

j
t . Suppose yjt is drawn from exponential distribution with a rate

parameter λj(θt) = exp{−‖xj − x(θt)‖}, and suppose vjt is drawn from a fixed normal
distribution representing the clock inaccuracy.

3. In this scheme we consider a measurement of a different nature. We use three sensors
that measure the location of the source directly, i.e.

z
j
t = x

j
t + v

j
t , j = 1, 2, 3,

where vjt is an additive Gaussian white noise.

4 Intrinsic Modeling

4.1 Histograms

Let pz;t;θ(zt) denote the pdf of the measured process at time index t.

Lemma 1. The pdf of the measured process is a linear transformation of the pdf of the
clean observation component.

The proof of Lemma 1 is straightforward. By relying on the independence of yt and vt,
the pdf of the measured process is given by

pz;t;θ(zt) =

∫

g(yt,vt)=zt

p(yt,vt)dytdvt

=

∫

g(yt,vt)=zt

py;t;θ(yt)pv(vt)dytdvt. (5)
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In the common additive measurement noise case, i.e., g(yt,vt) = yt + vt, only a single
solution v(zt) = zt −yt to g(yt,vt) = zt exists. Thus, pz;t;θ(zt) in Eq. (5) becomes a linear
convolution.

By Lemma 1 and by the definition of the pdf of the clean observation component
py;t;θ(yt) we get the following result.

Corollary 1. The pdf of the measured process is a nonlinear function of the controlling
factors.

In practice, we can only estimate the time varying pdf of the measurements by calcu-
lating histograms in short-time windows. Since histograms are obtained by integrating the
pdf they can be seen as linear transformations. Let hz(θt) be the local histogram of the
measured process zt at time t, whose elements are ideally given by

hkz(θt) =
1

(2δ)n

z1
c
+δ

∫

z1
c
−δ

· · ·

zn
c
+δ

∫

zn
c
−δ

pz;t;θ(z)dz, (6)

where zc is a predefined vector consisting of the centers of the high-dimensional histogram
bins of width 2δ.

One of the emerging challenges is the computation of high-dimensional histograms,
especially when the dimension of the measurement is high. In order to reduce the dimension
without corrupting the information the data may preprocess by applying random filters.

4.2 Noise-robust Metric

The local histograms are viewed as feature vectors for each measurement, i.e.,

zt 7→ hz(θt).

Then, for each feature vector, we compute the local covariance matrix in a time interval of
length L according to

Σt =
1

L

t−L+1
∑

s=t

(hz(θs)− µt)(hz(θs)− µt)
T , (7)

where µt is the local mean of the feature vectors in the interval.
We define a nonsymmetric Σ-dependent squared distance between pairs of feature vec-

tors as
a2Σ(zt, zs) = (hz(θt)− hz(θs))

TΣ−1
s (hz(θt)− hz(θs)) (8)

and the corresponding symmetric distance as

d2Σ(zt, zs) =
1

2

(

a2Σ(zt, zs) + a2Σ(zs, zt)
)

. (9)

Eq. (9) defines the Mahalanobis distance between the feature vectors. Thus, the distance
in Eq. (9) is invariant under linear transformations, and by Lemma 1 and Eq. (6) it is
invariant to the statistics of the measurement noise and to the corruption form (additive,
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multiplicative, etc.). In addition, by Theorem 3.2 in ref. [14] and by Corollary 1, Eq. (9)
approximates the Euclidean distance between the underlying controlling factors, i.e.,

‖θt − θs‖
2 ≈ d2Σ(zt, zs) (10)

by local linearization of the nonlinear transformation. For more details see refs. [7] and
[14]. The dynamic described by independent Itô processes helps to identify a local “cloud”
of each feature vector as a local time interval, which enables to compute the local covariance
matrix in Eq. (7). In case the local clouds are provided, the computation of the noise-robust
distance is independent of the dynamical model of the factors.

We note that the approximation in Eq. (10) is valid as long as the statistics of the
noise are locally fixed (i.e., slowly changing compared to the fast variations of the con-
trolling factors) and the fast variations of the controlling factors are emerged in the local
histograms. The linear transformation employed by the measurement noise on the his-
togram may degrade the available information. For example, an additive Gaussian noise
employs a low-pass “blurring” filter on the clean observation component. In case the depen-
dency on the controlling factors is manifested in high-frequencies, the linear transformation
employed by the noise significantly attenuates the connection between the measurements
and the controlling factors. In practice, when the rank of the local covariance matrices of
the feature vectors is lower than the number of the independent factors, it indicates that
the available measurements are insufficient.

4.3 Anisotropic Kernel and Embedding

Let {zt}
N
t=1 be a finite interval of initially available measurements. We refer to these mea-

surements as a reference set which is utilized to learn the model of the underlying controlling
factors. Given the reference set, we construct an N ×N nonsymmetric affinity matrix A,
whose (t, s)th element is given by

Ats = exp

{

−
a2Σ(zt, zs)

ε

}

, (11)

where ε > 0 is the kernel scale which may be set according to refs. [15] and [16]. Let
D = diag(A1) be a diagonal normalizing matrix, where 1 is a vector of ones, and let
Ā = D−1A be the corresponding normalized affinity matrix. The normalized matrix can be
viewed as a Markov transition probability matrix for a jump process over the measurements.
According to the diffusion analysis in ref. [6], the discrete Markov process converges to the
continuous diffusion process that reveals the underlying structure of the data. We then
define an N ×N symmetric matrix W as

W = ĀT Ā. (12)

It is shown in ref. [14] that each element of the symmetric matrix is proportional to a
Gaussian with the Mahalanobis distance defined in Eq. (9), i.e.

Wts ∝ exp

{

−
d2Σ(zt, zs)

ε

}

.
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Thus, W measures the affinity between the measurements according to the distance between
the corresponding underlying factors. In addition, it encodes the temporal dynamics by
incorporating local covariances and it is resilient to measurement noises. We note that
further normalization of W may be applied to better handle nonuniform distribution of the
measurements [4] [6].

Next, we compute the eigenvalues {λi}
N
i=1 and eigenvectors {ϕi}

N
i=1 of W. By refs.

[7] and [14], the eigenvectors give an approximate parametrization of the low-dimensional
manifold of the controlling factors. Specifically, the leading eigenvectors recover d candidates
of the controlling factors up to a monotonic scaling. Without loss of generality, we may
write

ϕt
i = ϕi(θ

i
t), i = 1, . . . , d; t = 1, . . . , N,

where ϕi(·) are monotonic functions. We define a d-dimensional representation of the ref-
erence set by the following embedding

Φ(zt) ,
[

ϕt
1, ϕ

t
2, . . . , ϕ

t
d

]

, t = 1, . . . , N. (13)

Since each eigenvector is a monotonic function of a controlling factor, the embedded domain
organizes the measurements according to the values of the underlying controlling factors.

The eigenvectors of the kernel form a learned model based on the reference set. In
addition, we store the feature vectors of the reference set along with their local covariance
matrices to enable extension. The construction of the kernel in Eq. (12) yields that the
eigenvectors of W are the singular right vectors of Ā. Thus, as discussed in ref. [14], the left
singular vectors of Ā naturally extend the spectral representation to any new measurement.
Let zt; t > N be a new measurement. Then, the spectral representation of the kernel can
be efficiently extended by

ψi(zt) =
1

λiDii

N
∑

s=1

exp

{

−
a2Σ(zt, zs)

ε

}

ϕs
i , (14)

which involves only the stored information of the reference measurements. We define a
d-dimensional representation of any measurement similarly to (13) by

Ψ(zt) , [ψ1(zt), ψ2(zt), . . . , ψd(zt)] , t > N. (15)

We note that the embedding does not take explicitly into account the dynamical model of
the controlling factors. However, the Mahalanobis distance encodes the time dependency by
using local covariance matrices, and the diffusion kernel reveals the dynamic by integrating
those distances between the entire reference set.

The construction of A based on the Mahalanobis distance in Eqs. (8) and (11) entails
a multivariate Gaussian mixture model in the histogram domain. The mixture consists of
N infinitesimal Gaussian components, where each component s is centered at the reference
histogram hz(θs) and has a covariance Σs. Accordingly, for any measurement at t, Āts

can be viewed as the conditional probability that hz(θt) is associated with with the sth
component. It is further shown in ref. [17] that the extended embedding of a new measure-
ment in Eq. (14) is optimal under the minimum mean square error (MMSE) criterion, i.e.,
ψi(zt) =

1
λi
E[ϕt

i|zt].
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5 Bayesian Tracking

A nonparametric Bayesian framework to sequentially track the controlling factors is pro-
posed by relying on the distribution in the embedded domain. In the Bayesian approach
the posterior pdf of the factors is constructed based on the available information, including
the measurements. Since the proposed embedding organizes the measurements according to
the values of the controlling factors, we assume that the local distribution in the embedded
domain is a good approximation to the local distribution in the controlling factors original
domain. Thus, the desired posterior pdf can be estimated based on statistical information
drawn from the density of the recovered factors. Recently, a Bayesian tracking approach in
the embedded domain was proposed in ref. [18]. However, their embedding does not encode
the temporal dependency and hence the dynamical model has to be adapted explicitly by
assuming a flexible model.

In the spirit of Monte Carlo simulation methods and Gibbs sampling techniques we

represent the posterior pdf by a set of samples. Let {θ
(k)
t (θt−1, zt)}

P
k=1 be a set of P

support samples (“particles”) that characterizes the posterior pdf at time t given the the

factors at t− 1 and the new measurement at t. Let {w
(k)
t (θt−1, zt)}

P
k=1 be a set of weights

associated with the particles. For simplicity, in the remainder of the paper we omit the
dependency on θt−1 and zt. The posterior pdf at t can be approximated as

p(θt|θt−1, zt) ≈

P
∑

i=1

w
(k)
t δ

(

θt − θ
(k)
t

)

, (16)

where the weights are denoted by

w
(k)
t , p(θ

(k)
t |θt−1, zt)

with
∑P

k=1w
(k)
t = 1. We therefore have a discrete weighted approximation of the desired

posterior pdf. By Bayes theorem and the Markov dynamical model we obtain

w
(k)
t ∝ p(θ

(k)
t |θt−1)p(zt|θ

(k)
t ). (17)

The densities in Eq. (17) are estimated based on the embedded domain. Quantities
associated with the embedding are denoted with tilde, e.g., θ̃t denotes the embedding
associated with θt. The likelihood function is determined by

p(zt|θ
(k)
t ) ∝

exp

{

−
(

Ψ(zt)− θ̃
(k)
t

)T [

Σ̃
(k)
t

]

−1 (

Ψ(zt)− θ̃
(k)
t

)

}

,
(18)

where Σ̃
(k)
t is the local covariance of embedded measurements near θ̃

(k)
t . Let Ñt−1 be a set

of time indices of samples in a ξ > 0 neighborhood of θ̃t−1, defined as

Ñt−1 =
{

s
∣

∣

∣

∥

∥

∥
θ̃s − θ̃t−1

∥

∥

∥
< ξ, s < t− 1

}

.

The samples in the neighborhood have known dynamics since their succeeding samples are

available. Accordingly, we collect the set of succeeding samples, i.e.,
{

θ̃s+1

}

s
for s ∈ Ñt−1,
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and compute its mean and its covariance, denoted by θ̃
Ñt−1

and Σ̃
Ñt−1

, respectively. Then,
the pdf of the dynamic of the factors is estimated by

p(θ
(k)
t |θt−1) ∝ (19)

exp

{

−
(

θ̃
(k)
t − θ̃

Ñt−1

)T [

Σ̃
Ñt−1

]

−1 (

θ̃
(k)
t − θ̃

Ñt−1

)

}

.

The estimation of the likelihood function in Eq. (18) implies a local multivariate Gaus-
sian distribution in the embedded domain. The usage of local densities may overcome the
nonuniform density in the embedded domain near the boundaries. The embedding of a new
measurement at t, given that it is associated with the kth particle, is a normal random

vector with mean θ̃
(k)
t and covariance Σ̃

(k)
t . Thus, Eq. (18) measures the likelihood that

the embedding of the measurement at t is associated with the kth particle. Similarly, the
estimation of the pdf of the dynamic in Eq. (20) implies that the embedding of the kth par-
ticle, given the factors at t− 1, is a normal random vector with mean θ̃

Ñt−1
and covariance

Σ̃
Ñt−1

. Thus, Eq. (20) measures the probability that the kth particle is on the trajectory

that passes through θ̃t−1 at t− 1. We note that the estimation of the dynamic is similar in
spirit to the prediction step in Kalman filtering. Instead of using a predefined dynamical
model, we estimate the empirical transitions in each step independently.

Based on the estimate of the posterior pdf in Eq. (16), a new set of particles can be
drawn

θ
(k)
t+1 ∼ p(θt|θt−1, zt).

Since it might be difficult to draw samples from the posterior pdf, we use the assumption of
a multivariate Gaussian model and draw samples from normal distributions. In practice, in
case a sufficient number of measurements are available, the new particles can simply be the
neighbors in the embedded space. According to Eqs. (18) and (20), the particles are the
embedding of factors at s such that s < t that lie near the embedding of the measurement
at t (“likelihood”) and near the embedding of the succeeding factors of similar trajectories
from previous steps (“dynamic”).

Based on the estimate of the posterior pdf, an MMSE estimator of the factors at t can
be computed by

θ̂t = E [θt|θt−1, zt]

=

∫

θtp(θt|θt−1, zt)dθt

=

P
∑

i=1

p(θ
(k)
t |θt−1, zt)θ

(k)
t . (20)

In case the particles are nearest neighbors, then their estimates are already computed in
previous time steps. However, for initial estimates in Eq. (20), we require the values of the

original factors to align the embedding of each particle θ̃
(k)
t with the actual value θ

(k)
t .

An interesting comment is that the likelihood function based on the embedded domain
provides a foundation for synthesis and tracking in the measurement domain. This ability
is highly beneficial in a wide variety of applications and will be addressed in future work.
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6 Application of Stochastic Sensing to the Toy Example

We simulate 2-dimensional trajectories of the two independent controlling factors accord-
ing to Eq. (4) and the corresponding noisy measurements under the three measurement
schemes. A short segment of a 2-dimensional trajectory is depicted in Fig. 1 and a corre-
sponding trajectory on the sphere is presented in Fig. 2.

The first N = 2000 samples of measurements are used as the reference set, which em-
pirically was shown to be a sufficient amount of data to represent the dynamical model.
For each reference measurement we compute a histogram in a short window, which approx-
imates the temporal pdf of the measurement, and a local covariance matrix according to
Eq. (7). Next, the kernels are calculated by Eqs. (11) and (12). Finally, the embedding
of the reference measurements is constructed based on the spectral decomposition of the
kernels by Eq. (13).

Measurements at times t > 2000 are sequently processed. For each measurement the
extended embedding in Eq. (15) is computed. Then, the temporal posterior pdf is estimated
according to the proposed Bayesian framework by relying on the embedded domain. Since a
sufficient amount of “historic” data is available, the particles are chosen as nearest neighbors
in the embedded domain and not drawn from the posterior distribution. Finally, the MMSE
estimator of the factors at each time step t is calculated according to Eq. (20).

Figure 3 depicts three eigenvectors that correspond to the same movement of the object
and represent the vertical angle. Each eigenvector is obtained under a different measurement
scheme. We note that the presented 2000 coordinates of the eigenvectors are computed by
extension. The measurements under the three schemes are very different in their nature,
e.g., spike sequences in Schemes 1 and 2 compared to noisy 3-dimensional coordinates in
Scheme 3. We obtain similar eigenvectors which implies intrinsic modeling and demonstrates
the invariability of the proposed approach to the type of the acquisition system and to
measurement noises. In order to further demonstrate resilience to measurement noise, we
present in Fig. 4 three eigenvectors obtained under Scheme 1 with three different noise
levels.

Figure 5 presents the Bayesian tracking of the vertical angle of the movement under
Scheme 1 in a time interval following the reference segment. The yellow line is the trajectory
of the vertical angle. The vertical gray level at each time slot represents the posterior pdf
estimate. The dotted black line is the expected value based on the posterior pdf estimate.

The proposed stochastic sensing approach is compared to the SIR particle filter [13] in
order to provide objective evaluation. This particular sequential Monte Carlo method was
chosen due to its simplicity. The particle filter requires the dynamical and measurement
models along with the noise statistics as priors, whereas the stochastic sensing approach
utilizes historic reference data. The results under measurement Scheme 1 with different
noise levels are summarized in Table 1. The results are averaged over several realizations
of measurements and noise and several repetitions of the stochastic particle filter tracking.
We note that the typical spike rate ranges between 5 and 15 and the measurement noise
rate ranges between 0 and 5. Thus, we used 20 histogram bins equally divided in [0, 20]. We
observe that the stochastic sensing approach outperforms the particle filter. The proposed
approach exploits the new measurement by embedding it into a domain that implicitly en-
codes the dynamical model of the data. On the other hand, the SIR particle filter uses an
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importance sampling measure that ignores the new measurement. In addition, the perfor-
mance of the particle filter degrades as the noise level increases, whereas the performance
of stochastic sensing is invariance to noise levels and depends on the compatibility of the
measurement values to the choice of predefined histogram bins.

7 Acoustic Localization

We revisit the experiment presented in [19] and test the ability of the proposed algorithm
to recover the location of a sound source. Following is a brief description of the experiment
setup. Inside a reverberant room, we positioned an omni-microphone in a fixed position. A
long “arm” was connected to the base of the microphone, and attached to a turntable that
controlled the horizontal angle of the arm. A speaker was located on the far-end of the arm.
Thus, the turntable controlled the direction of arrival of the sound played by the speaker
with respect to the microphone. Using the turntable we tested 60 different horizontal angles
with 1◦ spacing. From each angle, a zero-mean and unit variance white Gaussian noise was
played from the sound source and recorded in the microphone. The movement of the arm
along the entire range of 60 angles was repeated several times.

We note that the horizontal angle constitutes the sole degree of freedom in this experi-
ment, as the rest of the room parameters are fixed. Mild variations caused by the movement
of the arm are neglected. We calculate histograms of the recorded raw signal in short-time
windows and compute their corresponding local covariance matrices. Then we build the
kernel and obtain the embedding. Similar to the results reported in [19], the leading eigen-
vector represents the horizontal angle. The recovery of the angle based on the embedding
yields a mean square error of 2◦. This result is inferior to the result obtained in [19]. How-
ever in [19], a-priori knowledge of noiseless Gaussian recordings was utilized. In addition,
the features were computed is several scales. On the other hand, no prior knowledge is used
in our approach and the short-term histograms are computed on the raw data.
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Figure 1: A segment of the 2-dimensional trajectory of the two independent factors: the
horizontal and vertical angles.

Figure 2: A segment of the 3-dimensional movement of the object on the sphere. The
locations of the 3 sensors are marked with ∗.
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Figure 3: A comparison between the obtained eigenvectors (corresponding to the vertical
angle) under the three different measurement schemes (measuring the same movement).
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Figure 4: A comparison between the obtained eigenvectors (corresponding to the vertical
angle) under the first measurement scheme with different noise levels (λv = 2, 5, 8).
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Figure 5: Tracking the horizontal angle of the movement in a time interval following the
reference segment. The yellow line is the trajectory of the horizontal angle. The gray level
represents the posterior pdf estimate obtained by the Bayesian tracking. The dotted black
line is the expected value based on the posterior pdf estimate (MMSE estimator).

Table 1: The MSE obtained under Scheme 1 in dB.
Stochastic Sensing SIR Particle Filter

Noise Rate Horizontal Angle Vertical Angle Horizontal Angle Vertical Angle

λv = 0 -5.3 -3.7 -3.1 -2.7

λv = 1 -6.5 -4.1 -3.0 -2.5

λv = 2 -6.2 -4.4 -2.9 -2.4

λv = 3 -5.9 -4.6 -2.5 -2.3

λv = 4 -4.9 -4.7 -2.4 -2.2

λv = 5 -4.1 -4.8 -2.0 -1.9

14


	Introduction
	Dynamical and Measurement Models
	Relationship to Bayesian Filtering

	Toy Example
	Intrinsic Modeling
	Histograms
	Noise-robust Metric
	Anisotropic Kernel and Embedding

	Bayesian Tracking
	Application of Stochastic Sensing to the Toy Example
	Acoustic Localization

