Yale University
Department of Computer Science

A Model of Onion Routing with Provable Anonymity

Aaron Johnson

YALEU/DCS/TR-1368
August 30, 2006

A Model of Onion Routing with Provable Anonymity

Aaron Johnson*
Department of Computer Science
Yale University
New Haven, CT
ajohnson@cs.yale.edu

Abstract

Onion routing is a scheme for anonymous communication that is designed for practical use. It has
not been modeled formally, however, and therefore its anonymity guarantees have not been rigorously
analyzed. We give an IO-automata model of an onion-routing protocol and, under possibilistic definitions,
characterize the situations in which anonymity and unlinkability are guaranteed.

1 Introduction

Anonymity networks allow users to communicate while hiding their identities from one another and from
third parties. We would like to design such networks with strong anonymity guarantees but without incurring
high communication overhead or much added latency. Designs have been proposed [4, 5, 9, 18, 13, 6, 10, 1]
that meet these goals to varying degrees.

Onion routing [11, 17, 20] is a practical anonymity-network scheme with relatively low overhead and
latency. Several implementations have been made [17, 20], and it was even a basis for a commercial system
[2]. A recent iteration of the basic design is the Tor system [9]. Tor has been implemented and, as of June
2006, consists of over 600 routers, each processing an average of over 7TGB of traffic a week.

However, because onion routing is a practical, rather than theoretical, design, rigorous guarantees of the
anonymity it provides have not been made. To this end, we propose a formal model of onion routing, based
on the connection-oriented Tor protocol, using IO automata. We then suggest possibilistic definitions of
anonymity and unlinkability within this model and provide necessary and sufficient conditions for them to
be provided to a user.

2 Analyzing Onion Routing

An onion-routing network consists of a set of onion routers. To send data, a client chooses a sequence of
routers, called a circuit, through which the data will be routed. Each packet is encrypted multiple times
before sending, once for each router in the circuit and in reverse order of the routers’ appearance in the
circuit. This layered structure is called an onion. Encryption can be done with a private key that is shared
with each router or with the public key of each router. Each router uses its key to decrypt the onion as it is
forwarded through the circuit. The onion structure helps the sender to hide the data contents from all but
the last router in the circuit, and, because the decryption changes the data representation, the onion also
makes it harder for a network observer to follow the path the data takes through the network.

There has been work done to analyze the effectiveness of onion routing. Syverson et al. [21] consider a
system, similar to Tor, under various configurations and adversary models. They examine the probability

*Supported by NSF grant number 0428422 and ONR grant number N00014-01-1-0795.

that certain types of anonymity compromises occur, but leave open whether other types are still possible.
Camenisch and Lysyanskaya [3] give a cryptographic definition of a connectionless version of onion routing
and prove that the cryptography it uses doesn’t leak any information to the onion routers other than the
previous and next routers. Mauw et al. [15] do an analysis of connectionless onion routing that is very
similar to the analysis done in this paper. Their model is expressed in a process algebra. They use a
possibilistic definition of anonymity, and show that onion routing provides sender and receiver anonymity
against a passive global adversary.

Our approach is to formalize an onion-routing protocol with a network of automata. The protocol is
based on Tor. We consider the case of an adversary controlling a fixed set of routers that are allowed to run
any arbitrary automata. Then we show that this adversary cannot distinguish among certain user circuit
configurations. In particular, the adversary cannot determine which user owns a circuit unless the adversary
controls the first hop. The set of users which have an uncompromised first hop form a sender “anonymity
set,” among which the adversary cannot distinguish. Similarly, the adversary cannot determine the last
router of a circuit unless it controls it or the penultimate router. Such circuits provide receiver anonymity.
These two results justify considering only those cases considered in [21]. Also, a user is “unlinkable” to
his destination when he has receiver anonymity or his sender anonymity set includes another sender with a
destination that is different or unknown to the adversary.

We only consider possibilistic anonymity here. An action by user u is considered to be anonymous
when there exists some system in which u doesn’t perform the action, and that system has an execution
that is consistent with what the adversary sees. The actions for which we consider providing anonymity
are sending messages, receiving messages, and communicating with a specific destination. A more formal
treatment of this anonymity concept is given by Halpern and O’Neill [12]. We do not consider our system
probabilistically, as is required in more refined definitions of anonymity [19, 7]. It is possible to examine
probabilistic definitions within our system by defining a probability measure over executions, as discussed
in [12], or over initial states.

3 Model

3.1 Distributed system

Our model of onion routing is based on IO automata [14]. This formalism allows us to express an onion-
routing protocol, model the network, and make precise the adversary’s capabilities. One of its benefits is
that it models asynchronous computation and communication. Another is that every action is performed by
a single agent, so the perspective of the adversary is fairly clear.

Model onion routing as a fully connected asynchronous network of IO automata. The network is composed
of FIFO channels. There is a set of users U and a set of routers R. Let N = U U R. We use the term agent
to refer to an element of N. It is possible that U N R # (). In this case, user and router automata exist on
the same processor. We assume that the users all create circuits of a fixed length [.

Each router-and-user pair shares a set of secret keys; however, the router does not know which of its
keys belong to which user. We assume that all keys in the system are distinct. This separates, for now, key
distribution from the rest of the protocol. Let K be the keyspace.

Let P be the set of control messages, and P be the extension of P by encryption with up to I keys. The
control messages will be tagged with a link identifier and circuit identifier when sent, so let the protocol
message space be M = N, x N, x P. We denote the encryption of p € P using key k with {p}s, and
the decryption with {p}_;. For brevity, the multiply encrypted message {{p}x, }x, will be denoted {p}x, k.-
Brackets will be used to indicate the list structure of a message (i.e. [p1,p2,...]).

The adversary in our system is a set of users and routers A C N. The adversary is active in the sense
that the automata running on members of A are completely arbitrary. We call an agent a compromised if
a€A

3.2 Automata

We give the automata descriptions for the users and routers that are based on the Tor protocol [9]. We have
simplified the protocol in several ways. In particular we don’t perform key exchange, do not use a stream
cipher, have each user construct exactly one circuit to one destination, do not include circuit teardowns,
eliminate the final unencrypted message forward, and omit stream management and congestion control. We
are also using circuit identifiers to mimic the effect of a timing attack. Section 4.7 discusses the effects of
changing some of these features of our protocol.

During the protocol each user w iteratively constructs a circuit to his destination. w begins by sending
the message {CREATE}, to the first router, r1, on his circuit. The message is encrypted with a key, ki,
shared between u and ry. 71 identifies k1 by repeatedly trying to decrypt the message with each one of its
keys until the result is a valid control message. It responds with the message CREATED.

Given a partially-constructed circuit, v adds another router, r;, to the end by sending the message
{[EXTEND, r;, {CREATE},]}x; ...k, down the circuit. As the message gets forwarded down the circuit,
each router decrypts it. r;_; performs the CREATE steps described above, and then returns the message
{EXTENDED}, ,. As the message gets forwarded back up the circuit, each router encrypts it.

Link identifiers are used by adjacent routers on a circuit to differentiate messages on different circuits.
They are only unique to the pair. Circuit identifiers are also included with each message and identify the
circuit it is traveling on. They are unique among all circuits. Circuit identifiers are not used in the actual
Tor protocol, and their only purpose here is to represent the ability of an adversary to insert and detect
timing patterns in the traffic along a circuit. Since the model does not include time, but timing attacks are
very real [16], this is a way to give the adversary this power. It has the advantages of making it clear when
this power is used and of being easy to remove in future model adjustments.

The user automaton’s state consists of a routing circuit, a number that identifies its circuit, and a number
that indicates the state of that circuit. We consider the final router in the circuit to be the destination of
the user. The user automaton runs two threads, one that is called upon receipt of a message and the other
that is called at the start of execution. To be concise, we will express these in pseudocode rather than 10
automata, but it should be noted that the state changes in a particular branch occur simultaneously in the
automaton. h(c,4) indicates the number of occurrences of the ith router in the first ¢ routers of a circuit c.
(u,,1) denotes the ith key shared by user w and router r. The automaton for user u appears in Automaton
1.

The router automaton’s state is a set of keys and a table, T, with a row for each position the router
holds in a circuit. Each row stores the previous and next hops in the circuit, identifying numbers for the
incoming and outgoing links, and the associated key. There is only one thread and it is called upon receipt
of a message. We denote the smallest positive integer that is not being used on a link from r to ¢ or from ¢
to r as minid(T, q). The automaton for router r appears in Automaton 2.

3.3 System execution

We use the standard notions of an execution and fairness. An execution corresponds to a possible run of
the network given its initial state. Fairness in our model simply means that any message an automaton
wants to send will eventually be sent and that every sent message is eventually received. Usually, the
fairness condition makes it easier to design distributed algorithms; however, in our case, fairness makes it
more difficult, because it restricts the executions that the adversary must consider when trying to break
anonymity.

We also introduce the notion of a cryptographic execution. This is an execution in which no agent sends
a control message encrypted with active keys it doesn’t possess before it is sent that encrypted message.
We will restrict our attention to such executions and must appeal to computational intractability to justify
this restriction. Our encryption operation must only allow an attacker to output a control message in P
encrypted with active keys it doesn’t possess with negligible probability. This is reasonable because we can
easily create a ciphertext space that is much larger than the rather limited control message space P. Note
that this precludes the use of public key encryption to construct the onions because such messages can easily

Automaton 1 User

1: c€{(ry,...,m) € RV # rip1}; init: arbitrary > User’s circuit
2: 4 € N; init: random > Circuit identifier
3: b€ N;init: 0 > Next hop to build
4: procedure START

5: SEND(c1, [i,0, {CREATE}(, ¢, 1)])

6: b=1

7: end procedure

8: procedure MESSAGE(msg,j) > msg € M received from j € N
9: if j = c¢; then
10: if b =1 then
11: if msg = [i,0, CREATED] then
12: b+ +

13: SEND(Cl, [i, 0, {[EXTEND, Cp, {CREATE}(u,cb,h(c,b))]}(u,cb_l,h(c,bfl)),...,(u,cl,h(c,l))])

14: end if

15: else if b < [then

16: if msg = [i, 0, {EXTENDED}(u,cb,l,h(c,b—l)),.“,(u,cl,h(c,l))] then

17: b+ +

18: SEND(Cl, [’i, 0, {[EXTEND, Cp, {CREATE}(u,cb,h(c,b))]}(u,cb,l,h(c,bfl)),...,(u,cl,h(c,l))])

19: end if
20: else if b = [then
21: if msg = [ia 0, {EXTENDED}(u,cb,l,h(c,b—l)),.“,(u,cl,h(c,l))] then
22: b+ +
23: end if
24: end if
25: end if

26: end procedure

be constructed with the public keys of the routers.

Definition 1. An execution is a sequence of states of an IO automaton alternating with actions of the
automaton. It begins with an initial state, and two consecutive states are related by the automaton transition
function and the action between them. Every action must be enabled, meaning that the acting automaton
must be in a state in which the action is possible at the point the action occurs. Because there are no
internal actions in the automata, all actions are message sends or message receives. Frequently, we will treat
an execution as a sequence of actions, because the states are implicit from these and the initial states.

Definition 2. A finite execution is fair if there are no actions enabled in the final state. Call an infinite
execution fair if every output action that is enabled in infinitely many states occurs infinitely often.

Definition 3. An execution is cryptographic if no user or router sends a control message in P encrypted by
a key it does not possess before receiving that message at least once. More formally, no router r sends
a message [1, {0} (u,q1,n1),.s(unqrme)) € M, where r # ¢;, for some i, and no user u sends a message
(17, {2} (01,r1,m0) s (vi s imi) s U 7 Vi, for some i, before it receives a message of that form.

3.4 Distinguishability

The actions we want to be performed anonymously are closely related to the circuits the users try to construct
during an execution.

Definition 4. A configuration C : U — {(r1,...,r;,n) € R' x N, |V;r; # r;11} maps each user to the circuit
and circuit identifier in his automaton state.

Automaton 2 Router r

1: keys € K™, where n > |U]| - [5, init: arbitrary > Private keys
2 T C N XN X RXZ X Zjjeys; init:) > Routing table
3: procedure MESSAGE([i, n, pl, q) > [i,n,p] € M received from g € N
4: if [¢,n,0,—1,k] € T then > In link created, out link absent
5: if ElseR—r,bEPp = {[EXTEND, S, b]}k then
6: SEND(s, [minid(T, s), b])
7: T=T-[q,n,0,—1,k] + [g,n, s, —minid(T, s), k]
8: end if
9: else if [s,m,q,—n, k] € T then > In link created, out link initiated
10: if p = CREATED then
11: T=T-—[s,m,q,—n, k| + [s,m,q,n,k|
12: SEND(s, [i,m, {EXTENDED}])
13: end if
14: else if 3,,50[q,n,s,m, k] € T then > In and out links created
15: SEND(s, [i,m, {p}_k])
16: else if [s,m,q,n,k] € T) then > In and out links created
17: SEND(s, [i,m, {p}k])
18: else
19: if Jickeysp = {CREATE}, then > New link
20: T=T+][q,n,0,—1,k]
21: SEND(g, [¢,n, CREATED])
22: end if
23: end if

24: end procedure

In our model, all messages are sent along links of a circuit; these messages are all circuit-creation messages
and thus are entirely determined by the circuit, so the sender or receiver of a given message corresponds
directly to the path of the circuit. Therefore, in order to prove that certain actions are performed anony-
mously in the network, we can just show that the adversary can never determine this circuit information.
This is a possibilistic notion of of anonymity. We will do this by identifying classes of configurations among
which an adversary cannot distinguish.

Because i € N only sees those messages sent to and from 4, an execution of a configuration C' may appear
the same to ¢ as a similar execution of another configuration D that only differs from C in parts of the
circuits that are not adjacent to ¢ and in circuit identifiers that ¢ never sees. To be assured that ¢ will never
notice a difference, we would like this to be true for all executions of C' that could occur. These are the fair,
cryptographic executions of C, and likewise the execution of D should be fair and cryptographic.

We will say that these configurations are indistinguishable if, for any fair cryptographic execution of C,
there exists a fair cryptographic execution of D that appears identical to i, i.e. in which 7 sends and receives
what appear to be the same messages in the same order.

Agent i’s power to distinguish among executions is weakened by encryption in two ways. First, we allow
a permutation on (user,router,position) triples, which identify the keys in the system, to be applied to the
keys of encrypted or decrypted messages in an execution. This permutation can map a key from any router
other than ¢ to any other key of any other router other than ¢, because ¢ can only tell that it doesn’t hold
these keys. It can map any key of ¢ to any other key of 4, because i doesn’t know for which users and circuit
positions its keys will be used. Second, ¢ cannot distinguish among messages encrypted with a key he does
not possess, so we allow a permutation to be applied to control messages that are encrypted with a key
that is not shared with 4. This second requirement must be justified by the computational intractability of
distinguishing between encrypted messages with more than a negligible probability in our cryptosystem.

Definition 5. Define D4 to be a relation over configurations that indicates which configurations are indis-

tinguishable to A C N. For configurations C,C’, C' ~p, C' if, for every fair cryptographic execution a of
C, there exists some action sequence 3 such that the following conditions hold when C’ is the initial state:

1. Every action of § is enabled, except possibly for actions performed by a member of A.

2. (3 is fair for all agents, except possibly those in A.

®

[is cryptographic for all agents.

4. Let = be the subset of permutations on U x R x fé] such that each element restricted to keys involving

a € A is a permutation on those keys. We apply £ € = to the encryption of a message sequence by
changing every list component {p}(,, ;) in the sequence to {p}e(u,ri-

Let II be the subset of permutations on P such that for all = € II:

(a) 7 is a permutation on the set {{p}k, ... k; }per

(b) 7({p}r1,... kika) = T({P}ky,... ks), Where k, is shared by the adversary

We apply 7 € II to a message sequence by changing every message {p}x,,. k, in the message sequence
to W({p}kl,»--,ki)'

Then there must exist £ € = and 7w € II that such that applying £ and 7 to the subsequence of «
corresponding to actions of A yields the subsequence of 3 corresponding to actions of A.

If C ~p, C', we say that C is indistinguishable from C' to A. It is clear that an indistinguishability
relation is reflexive and transitive.

3.5 Anonymity and Unlinkability

The sender in this model corresponds to the user of a circuit, the receiver to the last router of the circuit,
and the messages we wish to communicate anonymously are just the circuit control messages. The circuit
identifiers allow the adversary to link together all the messages initiated by a user and attribute them to a
single source. Therefore sender anonymity is provided to u if the adversary can’t determine which circuit
identifier u is using. Similarly, receiver anonymity is provided to r for messages from w if the adversary can’t
determine the destination of the circuit with u’s identifier. Also, unlinkability is provided to w and r if the
adversary can’t determine u’s destination.

Definition 6. User u has sender anonymity in configuration C' with respect to adversary A if there exists
some indistinguishable configuration C’ in which u uses a different circuit identifier.

Definition 7. Router r has receiver anonymity on user u’s circuit, in configuration C, and with respect to
adversary A, if there exists some indistinguishable configuration C” in which a user with u’s circuit identifier,
if one exists, has a destination other than r.

Definition 8. User u and router r are unlinkable in configuration C' if there exists some indistinguishable
configuration C’ in which the destination of u is not r.

4 Indistinguishable Configurations

Now we will show that sometimes the adversary cannot determine the path or identifier of a circuit. More
specifically, an adversary can only determine which user or router occupies a given position in a circuit when
the adversary controls it or a router adjacent to it on that circuit. Also, when the adversary controls no part
of a circuit it cannot determine its identifier. In what follows, let C' be some configuration.

4.1 Message Sequences

To start, we observe that, in spite of the arbitrary actions of the adversary, the actions of the uncompromised
users and routers are very structured. The protocol followed by the user and router automata defines a simple
sequence of message sends and receives for every circuit. A user or router will only send messages from the
part of such a sequence consisting of its actions.

The user automaton gives this subsequence for users. It consists of messages between the user and the
first router on its circuit, and is parameterized by the user and the system configuration. We will refer to
this sequence as oy (u, C'). We denote the number of occurrences of the ith router in the first ¢ routers of
u’s circuit ¢ by h(c,4). For convenience, we define the function k(u,C,i) = (u,C;(u), h(C(u),1)), which is
the key shared between w and its ith router in C. Since the user automaton ignores the circuit identifier on
received messages, we use an asterisk to indicate that any value is valid. Let oy (u, C) be:

Step From To Message

1 u Cl (u) [Cl+l(u)707 {CREATE}k(u,C,l)]

2 Ci(u) u [¥,0, CREATED)]

3 u Ci(u) [Ciy1(u), 0,{[EXTEND, Cy(u), {CREATE }j(u,0.2)] }k(u.c,1)]

4 Cl ('LL) u [*7 0, {EXTENDED}k(u7C71)]

1 + 21 u Cl (U) Cl+1(u), O7 {[EXTEND, C’i+1(u), {CREATE}k(u,C,i+1)]}k(u,C,i),.‘.,k(u,C,l)]
2+ o ('LL) U *, 0, {EXTENDED}k(u7C7i)7__.7]6(“7071)]

2<i<l|

Lemma 1. A user u is enabled to send a message in an action sequence under configuration C' iff the
following conditions are satisfied:

1. The send appears in oy (u,C).
2. The prefix of oy (u,C) ending before the send has appeared in the sequence.
8. This prefiz is the longest such prefix to appear.

O

Similarly, the router automaton defines the action sequence that a router performs during the creation of
a circuit. A different sequence exists for every router r, user u, circuit position 1 < ¢ < [, system configuration
C, and link identifiers m,n,p € N. We will denote a particular sequence og(r,C,u,i,m,n). Frequently we
will drop parameters that we don’t care about, for example, referring to og(r, C, u,) when the specific link
identifiers don’t matter, and may abuse this notation by treating it as one sequence rather than a family of
sequences. We use k(u, C, 1) as before. The sequence og(r,C,u,i,m,n) is:

Step From To Message

1 Ci—1(u) r [j1,7, {CREATE }(u.c.)]

2 r Ci—1(u) [j1,n, CREATED]

3 Ci—i(u) [j2, n, {[EXTEND, Cjy1(u), {CREATE } (. 0.i0 1) r(u,0.)]
4 r Cit1(w) [j2,m, {CREATE}(u,c.it1))

5 Oi+1 (u) T [jg, CREATED]

6 r Ci—1(u) [Js, {EXTENDED}]@(U’M)]

Using the or sequences, we can characterize which messages a router can send at any point in an action
sequence. Let a be a finite execution, and 7; be the length 4 prefix of some sequence o € or(r). We say
that 7; has occurred in « if, by the end of the sequence, r has performed the first 7 steps in o. This happens
when 7; is the longest prefix of o that appears as a subsequence of «, and, at the point at which step 1 (4)
occurs in «, n (m) must be the smallest number not yet in r’s table as an entry to or from ¢;—1 (¢;41), the
router that sent (received) the message in step 1 (4).

Lemma 2. Forr to be enabled to send a message p at the end of o, one of three cases must apply for some
o€ogr(r):

1. The message is part of the circuit building protocol. Sending y is the (2i)!" step in o, 1 <i < 3. Then
Toi—1 must occur in « and To; must occur in the execution created when u is appended to «.

2. The message is a forward up the circuit. = [m,p|. r is to be sending p to ¢;11. o has occurred in o.
The link identifiers to c;—1 and c;41 are n and m, respectively. « contains the action of the message
[n,p] being sent to r from c;—1 after o occurs. Also, the number of such receives from c;_1 is greater
than the number of sends of p to c;11 that happen after o occurs.

3. The message is a forward down the circuit. p = [n,p|. r is to be sending p to ¢;—1. o has occurred in
a. The link identifiers to ¢;_1 and c;y1 are n and m, respectively. o contains the action of the message
[m, p] being sent to r from c;11 after o occurs. Also, the number of such receives from c;y1 is greater
than the number of sends of u to c;—1 that happen after o occurs.

O

We can use these lemmas to partition the actions performed by an agent in an execution of configuration
C. We will use these partitions to construct executions of indistinguishable configurations and prove that
they satisfy the requirements of Definition 5.

For a user u we create two partitions. The first is formed by the maximal prefix of oy (u, C) such that each
receive in the partition causes the b variable of u’s state to be incremented. The condition on the receives
is required for a unique maximal prefix to deal with the case that an adversary sends sequence responses
multiple times. The second partition is formed from all of u’s other actions. By Lemma 1 this is composed
of receiving unnecessary messages due to adversarial actions, and we will call this the “junk” partition.

For a router r, we create a partition for each entry in its routing table at any point in the execution and
an extra junk partition. For a given routing table entry we create a partition out of the maximum-length
subsequence of some o(r) sequence, say, o, such that each receive modifies the same entry in the routing
table. We also include every send and receive of a forward performed using that entry. This partition is said
to be associated with o. Every other action done by the router is put in a junk partition, and, by Lemma
2, this partition is composed only of receives.

4.2 Indistinguishable Users

Now we prove that an active adversary cannot determine which user creates a given circuit unless the
first router on that circuit is controlled by the adversary or the owners of all the other circuits have been
determined. That is, an adversary cannot distinguish between a configuration C' and the configuration C’
that is identical to C' except for two circuits with uncompromised first routers that are switched between
their owners. In order to do so, we must show that, for any fair, cryptographic execution of C, there exists
some action sequence of C' satisfying the indistinguishability requirements of Definition 5. To do so, we
simply swap between the switched users the messages that pass between them and the first routers on their
circuits and switch the encryption keys of these messages.

Theorem 1. Say there are two distinct users, u,v, such that neither they mor the first routers in their
circuits are compromised (that is, in A). Let C' be identical to C except the circuits of users u and v are
switched. C is indistinguishable from C' to A.

Proof. Let a be a fair, cryptographic execution of C. To create a possible execution of C’, first construct
o' by replacing any message sent or received between u (v) and Ci(u) (C1(v)) in o with a message sent or
received between v (u) and C;(u) (C1(v)). Then let £ be the permutation that sends u to v and v to u and
other users to themselves. Create 3 by applying £ to the encryption keys of .

1. Every action by an agent in N \ A in 3 is enabled. 1t is easy to see that all receives are enabled in 3
since sends and corresponding receives are modified together.

For any user w ¢ {u, v}, all messages in oy (w, C') go to or from w, so none are added or removed from
ain o/. Also none of the messages in this sequence would be modified by £ because they are encrypted

with a key of w, and & doesn’t convert messages in o’ to be messages of oy(w,C). Therefore if a
message is enabled to be sent from w in § it was enabled in «.

For user u, when u sends a message to Cq(v) in [, it corresponds to v sending a message to C1(v)
in . v is enabled to do so in « so at that point it has sent and received exactly those messages of
oy (v, C) necessary to enable that send. In S we have changed those messages to be messages between
uw and C1(v) while modifying the encryption keys, so the necessary oy (u, C') messages have appeared
to enable the send. No additional messages in oy (u, C’) could have appeared in 3 since u and v do not
communicate on link identifier 0 in «. Therefore u is enabled to send the message. A similar argument
works for v.

For a router r ¢ AU{C1(u),C1(v)}, the only change in messages to or from r between « and § is from
the permutation £ applied to the encryption keys of the messages. Applying & preserves the occurrence
of some prefix of og(r,C’,w) at any point in the execution, for any w ¢ {u,v}. For w = u, applying
¢ turns the occurrence of some og(r, C,u) into an occurrence of og(r, C’,v), and vice versa for w = v.
It also preserves the appearance of messages to forward and the actual forwarding. Thus any action
performed by r in 3 is enabled because it corresponds to a similar enabled action in «.

Now consider a message u sent from Cy(u) in 5.

It may be that u is part of a og(Cy(u),C,w) sequence for some w ¢ {u,v} in a. Then p is enabled
in (3 since none of the messages in or(C1(u),C,w) come from w or v and none involve u or v in the
encryption keys, so all exist in § that did in « and no additional ones do. It could also be that, in «,
1 is a forward in some circuit not belonging to v or v. Then p is still enabled in 3 for a similar reason,
recognizing that although it might involve the encryption keys of u or v, the content of messages is
ignored in forwards.

Another case is that, in «, p is part of some o (Cy(u), C,u,i). Then in 8, p is part of og(Cy(u), C’, v,).
This is because every message from u to Ci(u) is changed to a message from v to Cy(u) and every
encryption key involving u changes to one involving v. It is clear that consistently replacing the user
in the encryption keys in a or sequence and (when ¢ = 1) the previous hop from u to v, as is done
to create 3, transforms a or(C1(u), C,u,%) sequence into a og(C1(u),C’,v,4) sequence. No additional
messages can enter into this sequence in § because they must be encrypted with a key of v, and
any such message will have appeared with a key of v in a and will have filled the same spot in the
or(Ci(u),C, u,i) sequence there. Thus p is enabled in 3. Also, for similar reasons, if p is a forward in
u’s circuit in «, then it is a forward for v’s circuit in f.

The final case is when, in «, g is in a og(C1(u), C,v) sequence or is a forward on v’s circuit. Since v
does not communicate directly with Cy(u) as a user in «, it must be that C(u) is some intermediate
router. Then the only changes to the or(Ci(u), C,v) messages in « are the encryption keys, which are
applied consistently to all the sequence messages and are not interfered with by messages in « already
using the target keys since they are also modified. Therefore if p corresponds to a oz (C1(u), C,v) send
in a, it is a og(C1(u),C’,u) message enabled in 3. Also, for similar reasons, if 1 was a foward in v’s
circuit in «, it is an enabled forward on u’s circuit in 3.

A similar argument works for Cy (v).

. B is fair for agents in N\ A.

For any user w ¢ {u,v}, every oy(w,C’) message received in § in its non-junk partition is the same
message in a. Therefore every send w is enabled to perform in 3 it is enabled to perform in «. Since
« is fair for w so is 3.

Now consider u. The transformation properly changes the messages from Ci(v) to v in oy(u,C) to
messages sent to u that are in the same position in the oy (u, C’) sequence. No extra messages can
appear since they must be encrypted using u’s keys, and then they would have been encoded with v’s
keys in a and been part of the oy (v, C) sequence there. Therefore every send that u is enabled to

perform in 3, v is enabled to perform in «. Since « is fair for v, then (is fair for u. A similar argument
works for v.

For router ¢ AU {C1(u),C1(v)} to be enabled to perform a send in 8 but not «, there must be a
message in some sequence og(r, C’, w, i) that r receives in 3 but doesn’t in the corresponding sequence
in . This cannot be for any w ¢ {u, v}, since the messages in this o are not modified, except possibly
the content of forwards which doesn’t affect their validity. All messages in § that are to r and are
in some og(r,C’,u) are also are sent to r in « and are part of some og(r,C’,v). Therefore if such a
message enables r to send something in 3 there exists a similar message enabling r to send something
in a. Also forwards along u’s circuit in § exist as forwards along v’s circuit in .. A similar argument
works for messages of some sequence og(r,C’,v).

For C;(u) to be enabled to perform a send in 8 but not «, there must be a message in some sequence
or(Ci(u),C’,w) or forward that C;(u) receives in § but doesn’t in a. There can not be such a
message in the og(Cy(u),C’, w) sequence for any w ¢ {u, v}, since the messages in this sequence are
not modified in the transformation and no new messages encrypted with w’s key are created. Also the
sender and recipient of forwards aren’t modified, and the content of forwards which doesn’t affect their
validity. Now suppose w = v. For any message that appears at the end of some og(Ci(u),C’,v,4) in
0 that Ci(u) doesn’t respond to there must not be an analogous message in og(C1(u),C,u,i) in «
or C(u) would be enabled at that point as well. But this message must be encrypted with v’s keys
and would be modified by the £y permutation and thus play the same role for Cy(u) in a. Again, the
content of forwards doesn’t matter and any forward on v’s circuit in 3 corresponds to a forward on u’s
circuit in a.. A similar argument works for the case w = u. Therefore every send enabled for C;(u) in
B is enabled in «, and S is fair for C;(u). A similar argument works for C(v).

. B 1is cryptographic.

We’ve already shown that uncompromised routers and users perform enabled actions in . Since the
automatons only allow sending messages encrypted with keys the agent doesn’t possess after receiving
them, the actions of these agents do not prevent (8 from being cryptographic. For a compromised
user or router, let’s say a message encrypted with a foreign key is sent before being received at least
once. If the encryption key doesn’t involve u or v, then the same message gets sent in « before being
received, contradicting the fact that « is cryptographic. If the key does involve u, then in « it involves
v, in which case if the message is received in a beforehand, it must have received it in 3 since the key
permutation takes v to u. Likewise for messages encrypted with one of v’s keys. The fact that « is
cryptographic then implies that § is cryptographic.

We can find a £ € = and w € 11 that turn « into a sequence that agrees with 3 in all the adversary
actions.

¢ is simply the user permutation used to create 3, transposing users u and v, and 7 is the identity on
all messages. Applying these to « yields a sequence that agrees with 0 everywhere except for messages
between u (v) and Cy(u) (C1(v)), which we assumed are not adversarial.

O

4.3 Indistinguishable Routers

Now we prove that an adversary cannot determine an uncompromised router on a given circuit unless it
controls the previous or next router on that circuit. More formally, assume that the (i — 1)st, ith, and
(i + 1)st routers of a user u’s circuit in some configuration C are not compromised. We will show that C is
indistinguishable from configuration C’, where C’ is identical to C except the ith router of u’s circuit has
been arbitrarily changed. The proof is similar to that of Theorem 1, although it is complicated by the fact
that the identities of routers in a circuit are included in multiple ways in the circuit creation protocol. Given
an execution of C, we identify those message that are part of the circuit creation sequence of the modified

10

circuit and then change them to add a different router in the ith position. Then we show that, in the sense of
Definition 5, from the adversary’s perspective this sequence is indistinguishable from the original and could
be an execution of C’.

Theorem 2. Say there is some user u ¢ A such that u’s circuit in C' contains three consecutive routers,
Tie1,Ti,Tit1 € A. Let C” be equal to C, except r; is replaced with v in u’s circuit, where vl ¢ AU{r;_1,7:41}.
C’ is indistinguishable from C to A. The same holds for uncompromised routers (r;,v;11) if they begin u’s
circuit and are replaced with (v}, r;y1), or (ri—1,7;) if they end u’s circuit and are replaced with (r;—1,7}).

Proof. Let a be some fair cryptographic execution of C, and let h(C(u),?) denote the number of occur-
rences of the ith router in the circuit C'(u) among the first i routers. We modify « in steps to create an
indistinguishable sequence 3:

1.

Replace all message components of the form [EXTEND, r;, {CREATE},, ;. h(c(u),s)] With
[EXTEND Tl {CREATE}u,rg,h(C’(u),i)]-

y g

Consider the partition of router 7;_1’s actions that are associated with a og(r;—1, C,u,i — 1) sequence.
Replace all messages in this partition that are to and from r; with the same messages to and from 7.
Modify the link identifiers on these messages so that they are the smallest identifiers in use between
r;—1 and 7} at that point in «. Increase link identifiers that are in use between r;_; and r, to make
room for these new connections and decrease link identifiers that are in use between r;_; and r; to fill
in the holes created by the removed connections. Perform similar modifications for routers r; and r;41.

Replace all encryption keys of the form (u,7;, h(C(u),7)) with (u,r}, h(C'(u),?)). Increment as neces-
sary the third component of the encryption keys used between u and r, to take into account that r;
appears once more in C’(u) than it does in C(u). Also decrement as necessary the third component of
the keys used between u and r; to take into account that r; appears once less in C’(u) than it does in

C(u).

Now we show that the action sequence thus created, (3, is a fair cryptographic execution of C:

1.

Every action by an agent in N \ A in (3 is enabled.

It is easy to see that all receives are enabled in [since sends and corresponding receives are modified
together.

Our strategy to show that all sends in 3 are enabled will be to consider the separate non-junk partitions
of « after the transformation. First we will show that no sends from uncompromised agents appear
in B outside of these transformed partitions. Then we show that any given non-junk partition of « is
transformed into a subsequence that is “locally” enabled under C’. A user (router) action sequence
is locally enabled if each send satisfies the conditions of Lemma 1 (2) applied just to that sequence.
Then we show that it is “globally” enabled in the sense that the sends in the transformed user (router)
partition continue to satisfy Lemma 1 or Lemma (2), respectively, when considered over the entire
sequence (3.

It is easier to proceed this way since going from a locally to globally enabled sequence just requires
that certain actions don’t exist in the larger sequence. For users, none of the sends in the transformed
non-junk partition can appear again in the larger sequence between being enabled and being sent
in the partition. This must also be true for transformed router partitions, and additionally the link
identifiers used must be unique and minimal at the point of link creation. It should be easy to see that
a locally enabled action sequence satisfying these global conditions contains only enabled sends in g,
via Lemmas 1 and 2.

The fact that there are no sends from uncompromised agents in § outside of the transformed non-junk
« partitions helps us prove that actions are globally enabled. By inspecting the three changes made
to a, it is clear that no actions are added or deleted from «, and that sends (receives) in « are sends

11

(receives) in (. Since every send in « from an agent a € N\ A is part of one of its non-junk partitions,
every send by an uncompromised agent in (§ is part of one of the transformed partitions.

We can use this to show that a given sequence is globally enabled. If the sequence is a locally enabled
transformed user partition, it is automatically globally enabled because there are no sends outside
the partition to interfere with it. Similarly, for locally enabled transformed router partitions, we
automatically satisfy the send non-inteference property in 3 as long as we satisfy the second requirement
on the link identifiers.

This second requirement for routers is slightly simpler to achieve by noting that all CREATE messages
in 8 were transformed from CREATE messages in «. Therefore we only need to show that the link
IDs used in 3 are unique and minimal among the link creations in « after transformation.

For user v # u the non-junk partition has not been modified therefore by Lemma 1 every send is locally
enabled in . Therefore every action by v is enabled.

Now consider the user w’s non-junk partition in a. We’ve modified steps 2i — 1,24,2i + 1, and 27 + 2
as necessary to change the oy (u, C) prefix to a oy (u, C’) prefix. All these are enabled by Lemma 1 so
this is locally enabled. No sends appear outside of this transformed partition in 3. Thus the partition
is globally enabled.

Now consider a router © ¢ {r;_1,r;,r.,r;+1} and a partition of r in «. The partition consists of a prefix
of some og(r,C) sequence and possibly some forwards. The only changes made to the partition are
key relabelings and some modification of the messages of forwards. The relabeling turns the og(r, C)
prefix into some og(r,C") prefix of the same length, so sends in this sequence are locally enabled.
Forwards are enabled regardless of content, so they are also locally enabled. No link identifiers of r
have changed, so they are still unique and minimal, so the whole partition is globally enabled.

Now consider r;_;. Take some non-junk partition of « that is not associated with a sequence to
u as the (i — 1)th circuit router, that is, that is associated with a ogr(r;—1,C,w,j) sequence, w #
uV j # i — 1. For the same reasons as the preceding case, it is transformed into a sequence asso-
ciated with a og(r;—1,C’,w) sequence. Thus it is locally enabled. The partition that is a prefix of
or(ri—1,C,u,i — 1) can be seen by inspection to be modified to be a locally enabled sequence asso-
ciated with og(r;—1,C’,u,i — 1). The link identifiers used in every transformed partition of r;_; are
unique and minimal in 3 because the original partitions had unique and minimal IDs in «, we haven’t
changed the IDs or neighbors of any partitions not connecting with 7} or r;, we have changed the ID
in partitions connecting with r} or r; to make IDs unique and minimal after changing a partition to
connect with r; instead of r;. Thus the whole sequence is globally enabled. Similar arguments work
for r;y1, r; and 7}.

. B is fair for agents in N\ A.

To show this we will again consider the transformed partitions of . We have shown that they form
enabled sequences, and now need to show that no messages from the transformed junk partition belong
in these sequences. For users, this means that the next step in a transformed oy partition isn’t received.
For routers, it means that the next step in a transformed og partition isn’t received, no new forwards
on a created circuit are received, and that no new valid CREATE messages are received.

Consider a user w # u. Every receive action by w in (is from a receive action by w in . The messages
of w’s receives are never modified to use one of w’s keys, so a message encrypted with w’s keys in §
uses the same keys in «. Also the content of an encrypted message is never changed to be a message
that appears in oy (w,C’). Therefore any receive that is a step of oy (w,C’) in § is the same step in
oy(w,C) in a. Therefore S is fair for w.

Consider user u. As shown, the transformed non-junk partition in « is a locally enabled sequence in f.
For u to have an unperformed enabled action in 3, the next message in the oy (u,C’) sequence must
come from the junk sequence and be unanswered. All the receives that are the same between oy (u, C)
and oy (u,C’) are left unchanged in 3, so one of these cannot be the unanswered step. The received

12

mesages that are different between oy (u, C) and oy (u, C’) are in steps (2 +25), ¢ < j < I. These only
differ in the encryption keys in such a way that the transformation applied to « takes every (2+ 25)th
step in oy (u, C) to the (24 27)th step in oy (u, C’). Thus an enabling receive in 3 is such a receive in
a. Therefore 3 is fair for u.

Now consider a router r ¢ {r;_1,r;, 7, 7i41}. For a given transformed partition, no new messages of
the associated or(r) sequence can appear in § since og(r) messages are all encrypted for r and we
have created no such messages nor modified their content in such a way as to create a new message in
the or(r) sequence. For forwards, first we recognize that the transformation maintains source and link
ID consistency for r in the sense that if we were to group r’s receives in « by their source and link ID
the transformed groups would be the same as the same groups created in 3. Therefore for an incoming
message to be transformed into a forward on a created circuit, it must previously be sent with the link
identifiers of the incoming link, but since content in forwards doesn’t matter, this would be a forward
in « as well. Finally there are no valid CREATE messages received in 3 that aren’t received in o. No
new messages are sent to r, no messages are transformed into a CREATE, no keys have been modified
to belong to r, and r’s link IDs have been consistently changed. Therefore [is fair for 7.

Now consider r;_1. For a transformed partition of r;_; say that some receive extends the associated
or(ri—1) or acts as a forward on the created circuit. This receive must be from the junk partition of
r;_1 since we have shown its that non-junk partitions form enabled sequences. This message can’t be
from a router not in {r;,r;} because all such messages existed in a with the same link ID, source, and
destination, and the content is either the same or is a forward, which would still be a forward in «. It
can’t come from r;. This router is uncompromised and therefore properly uses link identifiers. If the
message were to be part of the associated or(r;—1) sequence, it would exist in « with an ID identical
to that in use by r;_; and r; in the sequence and with the same content, so this can’t be the case. If
the message were to be a forward, again it would exist in a with a link ID in use between r;_1 and r;
in the partition, and would therefore be a forward in « as well. Similar arguments work for messages
from r}. Finally, no new partitions can be created, since CREATE messages to r;_; on unique link
IDs in g are the same in a. Therefore, 3 is fair for r;_;. Similar arguments work for r;;.

Now consider r;. Because only link identifiers to ;1 and r;41 have been changed, and those routers are
uncompromised, all messages in 3 to r; from a given router and with a given link ID are transformed
from all message in a from the same router and of a given (possibly different) link ID. Thus for a
message receive to act as the next step in the associated or(r;) or to act as a new forward, it must
have been sent in « on the link ID in « of that partition. Since messages aren’t redirected to r; and
senders aren’t changed it must have been sent in a by the same sender. Since content doesn’t change in
the or(r;) messages and doesn’t matter in forwards this message would perform the same function in
«, contradicting the fairness of aw. No new partitions can be created because new CREATE messages
aren’t made by the transformation, senders are the same, and link identifiers are renumbered in such
a way that distinct link IDs from a router in « are distinct in 8. Therefore (is fair for r;.

A similar argument works for r} over its partitions in a, but we do reassign a partition of r; to 7},
which we must also consider. Notice that the messages redirected to r; exist on unique link IDs in
{8 with r;_1 and r;;1 in B. Therefore these cannot enable actions on the other transformed parti-
tions, and vice versa. Also no junk messages of 7} can enable actions in this transformed partition
because the connecting routers, 7;_; and r;41, are uncompromised and will have sent these messages
on a link ID that is different from the ID of the transformed new partition in 5. Finally, we show
that the only valid CREATE messages received by r; in § are those in transformed partitions of «.
Every CREATE in (3 is a CREATE in a. Every valid CREATE to 7} in « becomes a valid CREATE
in 8 because it is part of a transformed partition and we have shown that these become enabled se-
quences. The only messages redirected to r} belong to r;’s reassigned partition, which forms a fair
sequence in o and maintains this after transformation. The final possibility for a new CREATE is a
CREATE message from r}’s junk partition that was sent to r; in a but was encrypted with a key of
74, which then gets changed in the transformation. The only such message is {CREATE},, ., n(c(u),i)-

13

Only r;_; could send this message in «. It would only do this if it were to receive the message
{EXTEND, r;, {CREATE},, ;.. h(C(u),i) Yu,ri_1,h(C(u),i—1), Which u never sends in o.. Again by the cryp-
tographic property of « r;_1 never sends this CREATE to 7} in «. Thus no valid CREATE messages
are received by r} in 3 that are not transformed from partitions in «, which we have shown are fair.
Therefore (3 is fair for r}.

3. B is cryptographic.
For uncompromised routers the fact that all sends are enabled in § guarantees cryptographic sends

since the protocol ensures this property. Compromised routers send and receive all the same messages,
but to which the transformation function has been applied. Therefore since « is cryptographic, [is.

4. We can find key and message permutations that turn (8 into a sequence that agrees with « in all
adversary actions.

No messages are redirected towards or away from a € A when constructing 5. We apply the message
permutation to 3 of transposing {[EXTEND, r}, {CREATE}, v n(cr(u),i)) ... k; and

{[EXTEND, 74, {CREATE},, 1, n(C(u),i)| Y hr .k 1 < J < 1, where kj isn’t shared by the adversary.
We also apply the key permutation that sends (u, 7}, h(C’'(u),%)) to (u,r;, h(C(u),4)) and undoes the
renumbering of the r; and r; keys. Then the subsequence of actions by s in § is identical to the

subsequence in a.

O

4.4 Indistinguishable Identifiers

Theorem 3. Say there is some uncompromised user u such that all routers in C(u) are uncompromised.
Then let C' be a configuration that is identical to C, except that u uses a different circuit identifier. C' is
indistinguishable from C to A.

Proof. Let a be a fair, cryptographic execution of C. To create §, simply change every occurrence of u’s
circuit identifier in C' (Cj+1(u)) to its identifier in C’. (3 is enabled, fair, and cryptographic for C’ because no
message containing Cjy1(u) gets sent to the adversary in « and the protocol itself ignores circuit identifiers
except to forward them on. It appears the same to A for the same reason. O

4.5 Distinguishable Configurations

It is easy to see that the relation D4, when restricted to the transitive closure of pairs that are indistin-
guishable by Theorems 1, 2, and 3, is symmetric and therefore forms an equivalence relation. We introduce
some notation to conveniently refer to such configurations.

Definition 9. For configurations C' and D, we say that C ~p, D if C' and D are related by a chain of
configurations that are indistinguishable by Theorems 1, 2, and 3.

We can easily tell which configurations are in the same equivalence class using the following function.
It reduces a circuit to an identifier, the compromised positions, and the positions adjacent to compromised
positions.

Definition 10. Let p: U x N! x Ny x P(N) — N x P(N x N,) be:

(1, e, A) = (cit1,{(ri) e Nx Ny|e; =rA (i1 € AV, € AVeyr € A)}) if ¢; € A for some 4
PULELT=9 (0, 0) otherwise

In the preceding let ¢(refer to u.

We overload this notation and use p(C) to refer to the multiset formed from the circuits of configuration
C adjoined with their user and reduced by p. That is, p(C) = {p(u,C(u), A)|u € U}. It is not hard to see
that p captures the indistinguishable features of a configuration according to Theorems 1, 2, and 3.

14

Proposition 1. Let C' and D be configurations. C ~p, D if and only if p(C) = p(D).

Now we show that the equivalence relation is in fact the entire indistinguishability relation and that
Theorems 1, 2, and 3 characterize which configurations are indistinguishable. The reason for this is that
an adversary can easily determine which entries in the compromised routers belong to the same circuits
and what positions they hold in those circuits. The adversary links together entries in its routers by using
the circuit identifiers that are uniquely associated with each circuit. And since circuits have a fixed length
compromised routers can determine their position in the circuit by counting the number of messages received
after the circuit entry is made.

Theorem 4. Configurations C' and D are indistinguishable only if C ~p, D.

Proof. Suppose that C' and D are not in the same equivalence class. Let the adversary run the automata
prescribed by the protocol on the agents it controls. Let a be a fair, cryptographic execution of C' and (3 be
a fair, cryptographic execution of D.

Partition the adversary actions of a into subsequences that share the same circuit identifier. There is at
most one such partition for each circuit. Circuit positions that are created in the same partition belong to
the same circuit. In each partition the adversary can determine the absolute location of a circuit position
filled by a given compromised agent a by counting the total number of messages it sees after the initial
CREATE. Clearly A can also determine the agents that precede and succeed a on the circuit and the circuit
identifier itself. Therefore A can determine the reduced circuit structure p(C) from a.

The adversary can use § in the same way to determine p(D). By Proposition 1, p(C) # p(D), so A can
always distinguish between C' and D. O

4.6 Anonymity

The configurations that provide sender anonymity, receiver anonymity, and unlinkability follow easily from
Theorems 1, 2, 3, and 4.

Corollary 1. User u has sender anonymity in configuration C with respect to adversary A if and only if at
least one of the following cases is true:

1. w and Ci(u) are uncompromised, and there exists another user v # w such that v and Ci(v) are
uncompromised.

2. u and C;(u) are uncompromised, for all .

O

Corollary 2. Router r has receiver anonymity on u’s circuit, in configuration C, and with respect to adver-
sary A if and only if at least one of the following cases is true:

1. u, r, and Ci—1(u) are uncompromised, and there exists another router q # r such that q is uncompro-
mised.

2. w and Ci(u) are uncompromised, for all i.

O

Corollary 3. User u and router r are unlinkable in configuration C with respect to adversary A if and only
if at least one of the following cases apply:

1. u, 7, and Cj_1(u) are uncompromised, and there exists another router g # r such that q is uncompro-
mised.

2. u and Ci(u) are uncompromised. There exists another user v # u such that v and C1(v) are uncom-
promised. Cy(v) £, or C;_1(v) and r are uncompromised and there exists another router ¢ # r such
that q is uncompromised.

O

15

4.7 Model Changes

We chose the described protocol to balance two goals. The first was to accurately model the Tor protocol
. The second was to make it simple so that it could be analyzed, and also so that the main ideas of the
analysis weren’t unnecessarily complicated. Our results are robust to changes of the protocol, however. We
can make the protocol simpler by removing multiple encryption and the circuit identifiers without weakening
the indistinguishability results. In the other direction, we can make it more complicated with a stream cipher
and multiple circuits per user without weakening the distinguishability results.

Multiple encryption is not necessary for the distinguishability theorems, and therefore the anonymity and
unlinkability results. Consider a single-encryption protocol in which the user only encrypts each message
with the key of the last router added to the circuit. Messages aren’t encrypted or decrypted as they pass up
and down a circuit. The adversary still is not able to determine parts of a circuit that aren’t adjacent to a
compromised agent. The proof of this under multiple encryption did not use the changing representation of
messages going along a circuit, and only relied on the last key of the multiple encryption to hide the content
of messages. Single encryption does allow the adversary to easily link entries in his routers by sending
messages along the circuit. This power is already available in our model from circuit identifiers, though.

The circuit identifiers themselves are not actually necessary either. For any entry in a compromised
router a, the adversary can simply wait until the circuit is created, and then send k, dummy messages up
the circuit, where k, is some number unique to a. The first compromised router up the circuit will receive
ko messages that necessarily came from a because the circuit-building protocol will have finished. Linking
entries this way is equivalent to using circuit identifiers because after it is done the adversary can easily
simulate the presence of circuit identifiers on all the messages it receives.

Stream ciphers are used in the Tor protocol and prevent signaling along a circuit using dummy messages.
Sending such messages will throw off the counter by some routers on the circuit and the circuit will stop
working. We can model a stream cipher by expressing the encryption of the ith message p with key k as
{P}(x,i), and allowing a different permutation to be applied for every pair (k,4). This can only increase
the size of the configuration indistinguishability relation. However, the proof for the distinguishability of
configurations only relies on the ability of the adversary to decrypt using his keys, count messages, and
recognize the circuit identifier. Therefore it still holds when the model uses a stream cipher. Also, with a
stream cipher the circuit identifier is still not necessary for our results. The adversary can again use the
process described above to link entries in compromised routers, since although it involves sending dummy
messages, they are sent after the circuit creation is finished and therefore do not interfere with it.

Allowing users to create multiple circuits doesn’t weaken the adversary’s power to link together its circuit
positions and determine their position, but the number of configurations that are consistent with this view
does in some cases increase. Let users create an arbitrary number of circuits. The adversary can still
link positions and count messages as before, so the adversary can distinguish configurations C' and D if
p(C) # p(D). However, Proposition 1 does not continue to hold, as it is no longer necessary for there to be
more than just user u with an uncompromised first router to prevent u from being identified with its circuit.
It can, however, be shown that the converse of Theorem 4 continues to hold if we replace “C' ~p, D” with

“p(C) = p(D).”

5 Conclusions

We have presented a model of onion routing and characterized when anonymity and unlinkability are pro-
vided. The model uses IO automata and provides asynchronous communication. The onion routing protocol
we describe is based on the Tor protocol and is connection-oriented. The adversary we analyze is local and
active in the sense that he is allowed to run arbitrary automata but is limited to the view of a subset of users
and routers that he controls. We show that the adversary can determine when his routers hold positions in
the same circuit and where in the circuit they are located, and only this. This gives a simple set of conditions
for sender anonymity, receiver anonymity, and unlinkability, that basically just require that the first or last
router in a circuit is uncompromised.

16

Two directions for future work on modeling onion routing are improving the model and improving the
analysis. A big missing piece in the current model is the lack of time. Timing attacks are successful in
practice, and we have attempted to include one attack of this sort in the model by using circuit identifiers,
but this is just an approximation. Also, we have simplified the Tor protocol by omitting key exchange, circuit
teardowns, the final unencrypted message forward, and stream management and congestion control. Adding
some or all of these would bring the model closer to reality. Towards improving the analysis, we have made
several assumptions about the cryptosystem without exhibiting an encryption scheme for which they hold,
and this should be done. Also probabilities in both the behavior of the users and the operation of system
should be added to the model and analyzed according to probabilistic definitions of anonymity.

References

[1] Adam Back, Ulf Moller, Anton Stiglic. Traffic analysis attacks and trade-offs in anonymity providing
systems. Information Hiding (IH 2001), pp. 245-257. Springer-Verlag, LNCS 2137, 2001.

[2] Philippe Boucher, Adam Shostack, and Ian Goldberg. “Freedom Systems 2.0 Architecture.” Zero Knowl-
edge Systems, Inc. White Paper, 2000.

[3] Jan Camenisch and Anna Lysyanskaya. “A Formal Treatment of Onion Routing.” CRYPTO 2005, pp.
169.187, 2005.

[4] David Chaum. “The dining cryptographers problem: Unconditional sender and recipient untraceability.”
Journal of Cryptology: The Journal of the International Association for Cryptologic Research, 1(1), pp.
65-75, 1988.

[5] David Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.” Communi-
cations of the ACM, 24(2), pp. 84-88, 1981.

[6] George Danezis, Roger Dingledine, and Nick Mathewson. “Mixminion: Design of a type III anonymous
remailer protocol.” IEEE Symposium on Security and Privacy, pp. 2-15, IEEE CS, 2003.

[7] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. “Towards measuring anonymity.” Privacy
Enhancing Technologies Workshop 2002, 2002.

[8] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Challenges in deploying low-latency anonymity
(DRAFT).” Available at <http://tor.eff.org/cvs/tor/doc/design-paper/challenges.pdf >, 2005.

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The Second-Generation Onion Router.”
13th USENIX Security Symposium, 2004.

[10] Michael Freedman and Robert Morris. “Tarzan: A peer-to-peer anonymizing network layer.” ACM
Conference on Computer and Communications Security, pp. 193-206, 2002.

[11] David Goldschlag, Michael Reed, and Paul Syverson. “Hiding routing information.” Proceedings of the
First International Workshop on Information Hiding, pp. 137-150, Springer-Verlag, LNCS 1174, 1996.

[12] Joseph Halpern and Kevin O’Neill. “Anonymity and Information Hiding in Multiagent Systems.” Work-
shop on Formal Methods in Security Engineering, pp. 63-72, 2005.

[13] Andrew Hintz. “Fingerprinting websites using traffic analysis.” Privacy Enhancing Technologies, pp.
171-178, Springer-Verlag, LNCS 2482, 2002.

[14] Nancy Lynch. “Distributed Algorithms.” Morgan Kaufmann, San Francisco, CA, first edition, 1996.
[15] Sjouke Mauw, Jan Verschuren, and Erik de Vink. “A Formalization of Anonymity and Onion Routing.”
European Symposium on Research in Computer Security (ESORICS), pages 109-124, 2004.

17

[16]

[17]

[18]

[19]

[20]

[21]

Steven J. Murdoch and George Danezis. “Low-Cost Traffic Analysis of Tor.” Proceedings of the 2005
IEEE Symposium on Security and Privacy, May 2005.

Michael Reed, Paul Syverson, David Goldschlag. “Anonymous connections and onion routing.” IEEE
Journal on Selected Areas in Communications, 16(4): 482-494, 1998.

Michael Reiter and Aviel Rubin. “Crowds: anonymity for Web Transactions.” ACM Transaction on
Information and System Security 1(1), pp. 66-92, 1998.

Andrei Serjantov and George Danezis. “Towards an Information Theoretic Metric for Anonymity.”
Privacy Enhancing Technologies Workshop, 2002.

Paul Syverson, Michael Reed, and David Goldschlag. “Onion Routing access configurations.” DARPA
Information Survivability Conference and Exposition (DISCEX 2000), 1, pp. 34-40, IEEE CS Press,
2000.

Paul Syverson, Gene Tsudik, Michael Reed and Carl Landwehr. “Towards an Analysis of Onion Routing
Security.” Designing Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity and
Unobservability, pp. 96-114, 2000.

18

