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Abstract

We introduce a game approach for specifying reactive systems. In particu-
lar, we define a simple two-player game between System and Environment, and
consider the outcomes of such a game as a specification of a reactive system.
We introduce six classes of game languages. We then show that the class of
languages generated by I/O automata equals one of our game classes. An im-
mediate corollary to the proof is that the fairness condition of I/O automata,
which is defined as an extrinsic property by Lynch and Tuttle, can be incorpo-
rated as an intrinsic part of the automata. We also show closure properties of
the six game classes. For example, we show that the class of languages defined
by I/O automata is closed under union and hiding but not under intersection or
complementation. The closure results are obtained by reasoning directly about
games, thus demonstrating the advantage of the game-based approach.

1 Introduction

Designing correct reactive systems has been a central research topic for several years.
While there is some agreement as to the importance of being able to specify re-
active systems, there is not much agreement on the best way to go about it. In-
deed, many different models for specification of reactive systems have been studied,
for example, I/O automata ([LT87, LT89)), statecharts ([Har87]), knowledge-based
protocols ([HF88]), and functional approach [Bro89, Hoa85, Mil89, BK89, Hen88],
and many have been applied successfully to problems of distributed computing (e.g.,
[Lam83, FLS87, Har87, HZ87]). A natural question is how these models compare
to one another. An obvious way to compare various formalisms is in terms of their
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expressive power. Unfortunately, to date, little research has been done in comparing
the expressive power of models for reactive systems.

Unlike “normal” sequential systems, whose specification is easily expressed as
a relation between the input domain and the output domain, reactive systems are
specified by their interaction with the environment. For example, consider a simple
first-in-first-out buffer system buf over a domain D. The set of actions of buf is
{read(d) : d € D} U {write(d) : d € D}, where read(d) denotes that the value d is
read by the buffer, and write(d) denotes that the value d is written by the buffer. A
specification of buf can be given by the set of first-in-first-out sequences over D.

Generally, a reactive system (buf) is associated with two types of actions, the
input actions (e.g., read(d)), which are imposed on the system by the environment,
and output actions (e.g., write(d)) which are imposed on the environment by the
system. We adopt the trace semantics and consider the specification of a reactive
system to consist of the set of sequences over the input and output actions that are
allowed to occur when the system interacts with its environment.

We introduce another formalism for specifying reactive systems which we believe
is quite natural and of interest in its own right. Our formalism involves viewing a
reactive system as a game between the system and the environment. One advantage
of this formalism is its simplicity. Another advantage is that it gives us tools to
characterize the expressive power of I/O automata([LT87, LT89]) and allows us to give
simple proofs of various closure and non-closure properties for systems characterized
by I/O automata

The games we consider are two-player games between System and Environment.
Starting with an empty sequence, the players take alternate moves and add elements
to the sequence; the Environment adds elements from X7}, and the System adds ele-
ments from £, U {A}. A pair of strategies, one for System and one for Environment,
defines an infinite sequence of alternating elements from £3 and ¥ U {A}. By con-
catenating the elements of this sequence we obtain its behavior, a sequence over the
actions in ¥, UX,. Since System models the reactive system whose strategy is as-
sumed to be known, and since Environment models the environment whose strategy
is unknown, we are interested in the set of behaviors obtained when System plays its
strategy against any Environment strategy. Hence, a strategy for System defines a
set of sequences over the actions in ¥. We say that a set of sequences L over ¥ is
deterministic game realizable, denoted by game(L), if and only if L is definable by
some system strategy. We denote the class of sets L which are deterministic game
realizable by game.

We extend our notion of games to nondeterministic strategies for System and
to unions of deterministic strategies for System in the obvious way. The resulting
sets of sequences over ¥ are termed nondeterministic game realizable and union game
realizable respectively, and the resulting classes of sets of sequences are denoted Ngame
and Ugame respectively. We also consider restricting strategies for System to ones
which depend only on the observable behavior of the play. This leads us to three




additional classes of games, game,, Ngame,, and Ugame,, which are the behavior
counterparts of the classes described above. These behavior games were also studied
by Broy et al. [BDDWY1].

The I/0 automaton model (cf. [LT87, LT89]), which offers an elegant and appeal-
ing approach to reasoning about asynchronous concurrent computation, was used
for specification, verification, and upper and lower bound proofs in many papers
([LT89, FLMW, Blo87, WLL88, LMF88, Her88, WZ91]). I/O automata are state
machines that have three types of actions: input actions, which are generated by the
environment and imposed on the I/O automaton, output actions, which are generated
by the I/O automaton and imposed on the environment, and internal actions. Each
action is a (possibly nondeterministic) state transformer. Each I/O automaton has an
associated (weak) fairness condition. An ezecution of an I/O automaton is a possibly
infinite sequence of alternating states and actions. The behavior of an execution is
its restriction on the observable (input and output) actions. The specification of an
I/O automaton is the set of fair behaviors it generates. Given a set of sequences L
over the input and output actions, we say that L can be generated by an automaton,
denoted by loa(L), if there exists an I/O automaton, whose set of fair behaviors is
- exactly L. We denote by loa the class of sets that can be generated by some I/O
automaton.

We first show that loa, the class of languages (sets of sequences over ¥) generated
by I/O automata, where the input actions are ¥, and the output actions are X,
equals Ugame. Since our notion of game has no explicit fairness condition, an imme-
diate corollary to the proof is that the fairness condition of I/O automata, which is
defined as an extrinsic property in [LT87], can be incorporated as an intrinsic part of
the automaton.

We then compare the expressive power of the six game classes. We show that no
inclusions hold among them, apart from the obvious inclusions. This demonstrates
the direct correlation between the power given to the System, and the expressive
power of the resulting reactive system.

Next, we consider closure properties for the classes we define. For example, we
show that loa is closed under union and hiding but not under intersection or comple-
mentation. The proofs for closure under union and hiding are obtained by reasoning
directly about games, thus demonstrating the advantage of the game-based approach.

Finally, we compare the present work with that of Broy et al. [BDDW91], which
considered only behavior games.

2 Games, I/O Automata, and Languages
We describe reactive systems by sequences of actions. Actions can be internal actions
of the system, which have no effect on the environment, or external actions, which

describe interactions with the environment. In describing these interactions, it is
helpful to classify the actions involving the system as “input” and “output” actions.
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Input actions originate in the environment and are imposed on the system, while
output actions are generated by the system and imposed by it on the environment.

In this section, we define two models of reactive systems. The first is our game
model, and the second is the I/O automaton model ([LT87, LT89]). Both these models
are described as interactions between a system and an environment. Let ¥, and ¥
be disjoint alphabets, and let £ = £, UX,. £, denotes the set of the environment’s
input actions, and ¥, denotes the set of the system’s output actions.

2.1 Games

Informally, our games are two-player games between System and Environment, where,
starting with an empty “play”, the players take turns making moves by appending
strings to the “play”. System can append a single element of ¥, and Environment
can append any finite (possibly empty) string of elementsin £,. The players alternate
turns, with Environment making the first move.

Formally, a move is an element of £3 UX,. A move is a move for Environment
if it is in ¥}, and a move for System if it is in L, U {2}, where )\ denotes the empty
string. Note that A can be a move for either player.

A partial play is either the empty sequence, (), or a sequence of moves which
alternates between moves for System and moves for Environment. We do not con-
catenate together the elements of the sequence. Intuitively, the reason for avoiding
concatenation of moves is that information could be lost, since each player is allowed
to take A-moves. Since A can be a move for either player, a partial play should also
specify the player of the first move. We will usually ignore this, as the identity of the
first player will be clear from context.

For any finite partial play & = (ag, a1, .. .,a;), and any partial play 8 = (bo, by, .. .)
we define the concatenation of a and 3, denoted by a - 8 by

a-f= (ag, ..., ai,bo,...) a; and by are moves for different players
1 (ao,-.-,aiy A, bp,...) otherwise

Let Goqq be the set of odd length partial plays which start with a move for En-
vironment, let Geven be the set of even length partial plays which start with a move
for Environment, let G5 = Geven U Goda, let G, be the set of all infinite partial plays
which start with a move for Environment, and let G = G; UG,. The elements of G,,
are called plays.

Players usually make moves according to their “strategies”, which are functions
from partial plays to moves. A deterministic System strategy is a function S mapping
elements of Goga to £, U {A}. A deterministic Environment strategy is a function E
mapping elements of Geven to £}. For a System strategy S and Environment strategy
E, we define play(S, E) to be the play (ao, by, a1, .. .), where ag = E((}), bo = S((a0)),
a; = E({(ao, b)), etc.




Let S denote the set of deterministic System strategies and £ denote the set
of deterministic Environment strategies. For a deterministic System strategy S, let
play(S, €) denote the set Ugeeplay(S, E), i.e., play(S,£) is the set of plays of System
playing S and Environment playing any deterministic strategy. For a set §' C S of
deterministic System strategies, let play(S' €) denote the set Uses play(S, £).

A nondeterministic System strategy is a function $ mapping elements of Goaa to
92592} For a nondeterministic System strategy 5, we define D(8) to be the set of
all deterministic System strategies S such that for all @ € Goad, S(@) € S(a). For
an Environment strategy E, we define play(8, E) to be play(D(S), E). That is, each
S € D(8) corresponds to “fixing” choices that S might make. We say that a play a
is consistent with a nondeterministic System strategy S if a € play(S, €).

For a partial play a define the behavior of a, written beh(a), as the sequence over
¥ which is obtained by concatenating together all the elements of a. Behavior games
are the games resulting when both System and Environment have to base their moves
according to the behavior of partial plays rather than the plays themselves. These
games are considered in [BDDW91].

For behavior games, the notions of moves, plays, and partial plays are defined
as before. A deterministic System behavior strategy is a function S mapping X* to
Y, U{A}. A deterministic Environment behavior strategy is a function E mapping
E"‘ to X3 . For a System behavior strategy S and Environment behavior strategy E,
we define play(S, E) to be the play (ao, bo, a1,...), where ag = E(()), bo = S(ao),
a; = E(aoby), etc. We also define a nondeterministic System behavior strategy and
plays of such behavior strategies in the obvious way.

Let S, denote the set of deterministic System behavior strategies and &, denote
the set of deterministic Environment behavior strategies. For a deterministic System
behavior strategy S, let play(S,&,) denote the set Ugee, play(S, E), i.e., play(S, &)
is the set of plays of System playing S and Environment playing any deterministic
behavior strategy. For a set 8’ C S}, of deterministic System behavior strategies, let
play(S’, &) denote the set Uges play(S, &).

2.2 I/0 Automata

The I/O automaton model was first defined in [LT87]. See [LT87, LT89] for a complete
description of the model. Here, we provide a brief summary of those parts of the model
used in this paper.

I/0 automata are state machines whose state to state transitions are caused by
actions. Actions can be internal actions, which have no effect on the environment,
or ¥ actions, which describe interactions with the environment. Formally, an I/0
automaton A (which we often call simply an automaton) is described by:

1. Three mutually disjoint sets of actions: in(A) = £, out(A) = I, and int(A).
We denote acts(A) = U int(A), and loc(A) = int(A) U L, i.e., acts(A) is the

set of A’s actions, and loc(A) is the set of A’s locally controlled actions.
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2. A set states(A) of A’s states and a set initial(A) C states(A) of A’s initial
states.

3. A transition relation, trans(A) C states(A) x acts(A) x states(A), that is input
enabled, i.e., for every input action 7 and state s, there exists some state s’ such
that (s, ,s') € trans(A). (In general, an action 7 is enabled from a state s if
for some ', (s,,s') € trans(A). We denote by enabled(s) the set of actions
that are enabled from state s.)

4. A fairness condition, fair(A), described as a partition on A’s local actions with
countably many equivalence classes. If fair(A) = {loc(A)} then we say that A
has the trivial fairness partition.

A partial ezecution n of an automaton A is a (possibly infinite) sequence of the
form:
SoM181 T2 ...

where for every i > 0, s; € states(A), 7y, € acts(A), and (s;, i1, Si41) is a transition
of A. If n is finite then it terminates in a state. We refer to s as the initial state of
7.

A partial execution is called an ezecution if its initial state is an initial state of
A. A finite execution is fair if no local action is enabled from its last state. An
infinite execution 7 is fair if for every set of local actions IT € fair(A), either actions
from II are taken infinitely many times in 5 (i.e., for infinitely many i, =; € II), or
actions from II are not enabled infinitely many times in 7 (i.e., for infinitely many 1,
enabled(s;) N I1 = ).

Let B be some set and let B’ be some subset of B. For every sequence « over
B, we denote by a|B’ the restriction of a on B, that is, the sequence obtained from
a when all non-B’ elements are deleted. ‘Similarly, for a set of sequences A over B,
A|B' is defined in the obvious way.

The behavior of a partial execution n of A (and more generally, of any sequence of
actions and states of A), beh(n), is defined to be the sequence a|E. A fair behavior of
an automaton A is any sequence of the form beh(n), where 7 is a fair execution of A.
Note that our definition of behavior differs from the one in [LT87] where a behavior
is defined as the restriction of execution to the actions and not only to the observable
actions.

2.3 Languages

We now define the language (over T) described by games and by I/O automata.
Denote £*° = E*UX¥. For a language L C £, let pref (L) denote the set of prefixes
for sequences in L, i.e.,

pref(L) ={o' € Z*:Ir € = o'r € L}.




2.3.1 Languages Defined by Games

Recall that for a partial play a, beh(a) is the sequence over £ which is obtained by
" concatenating together all the elements of a. For a set of plays, A, we define beh(A)
to be Uyea beh(a). Define the linearization of a, written lin(a), as the sequence
of actions contained within a where A\-moves of Environment are replaced by a new
symbol, Ag. Note that lin(a) is a sequence over LU {), Ag}.

Let L C . We say that L is game realizable, or simply game(L), if L is the set
of behaviors of play between some System strategy S and every Environment strategy
E,ie.,

game(L) iff  beh(play(S,£)) =L forsome S € S.

We say that L is union-game realizable, or simply Ugame(L), if there exists a set
of System strategies S’ C S such that L = beh(play(S',€E)).

We denote by Ugame (resp. game) the set of languages L over ¥ such that
Ugame(L) (resp. game(L)).

For a language L C ¥, we say that L is nondeterministically game realiz-
able, written Ngame(L), if there is a nondeterministic System strategy S such that
L = beh(play(S,£)). Since we always take the union over all possible environment
strategies, we need not explicitly consider nondeterministic Environment strategies.

Let L C ¥*°. We say that L is behavior game realizable, or simply gamey (L), if
L is the set of behaviors of plays in a behavior game between some System behavior
strategy S and every Environment behavior strategy E, i.e.,

Ugame, (L) if  beh(play(S,&)) = L for some S € Sp.

We say that L is union behavior game realizable, or simply Ugame, (L), if there
exists a set of System behavior strategies S’ C S}, such that L = beh(play(S’, &)).

We say that L is nondeterministically behavior game realizable if there is a non-
deterministic System behavior strategy S such that L = beh(play(S, &)).

The six game classes are summarized in Table 1.

| Behavior Game General Game
single deterministic strategy game, game
single nondeterministic strategy Ngame, Ngame
union of deterministic strategies Ugame, Ugame

Table 1: Game classes

2.3.2 Languages Defined by I/O Automata

Let A be an automaton. The language generated by A, or simply L(A), is the set of
A’s fair behaviors. A language L C £* is automaton realizable, or simply loa(L), if
L = L(A) for some automaton A. We denote by loa the set {L C £* : loa(L)}.
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A special class of automaton realizable languages is the class of languages real-
izable by automata with the trivial fairness partition. If L is realizable by such an
automaton, we denote it by loat(L). Similarly, we denote by loat the class of all
languages L such that loat(L).

2.3.3 Examples of Game Languages

We now give examples of non-trivial game languages.

Example 1:
Assume ¥, = {0,1}, and let & be the homomorphism on ¥ defined by:

_J A aek,
h(a)—{a a€X,

(So, for any o € £, k(o) = o|X,.) For any language L, h~}(L) is all strings
obtained by arbitrarily inserting elements of £ into sequences from L.
Consider the nondeterministic strategy S of System such that for every a € Geven,

o if beh(a) is empty then S(a) = {},0,1}.
o if beh(a) has some 1’s, then S(a) = {1}.

¢ in all other cases, let n, be the number of A\-moves for Environment in a before
the first non-A move (of either Environment or System). If the number of 0-
moves in « is less than n,, then S(a) = {0}, else S(a) = {1}.

Clearly, L, = beh(play($,€)) = h~1({0"1“ : n > 0}U{\}). Hence L, is in Ngame.

Example 2:

Let ¥, and h be as in Example 1. Let L, = A~}({0"1“ : n > 0}). Note that
while every prefix of 0¥ can be extended to be in Lj, 0 is not in L,. In Section 4
we show that L, ¢ Ngame. However, L, is in Ugame,: For every n, let S, be the
strategy whose first n moves are 0 and whose subsequent moves are all 1’'s. Then

L; = beh(U,(play(Sn, &))) thus L, € Ugame,.
2.3.4 Closure Properties of Languages

Let £ be some class of languages over an alphabet ¥ = ¥, U X_.. We define the
following closure properties of L:

union: L is closed under finite union (resp. countable union, arbitrary union) if the
union of any finite (resp. countable, arbitrary) collection of sets in £ is in L.

intersection: £ is closed under intersection if the intersection of any finite collection
of sets in £ is in L.




complementation: L is closed under complementation if the complement of every
set in L (i.e., £®° — L) is also in L. '

hiding: L is closed under hiding if for every L in £ and a € £, L\ a = L|(X — {a})

is in L. :

renaming: £ is closed under renaming if for every X;,X; C X, every bijection
g:X1 — ¥, and every set L C E° in L, g(L) is in £ set (g(L) is obtained by
applying g to every sequence in L, and applying g to a sequence means applying
it to each element of the sequences).

parallel composition: L is closed under parallel composition if for every ¥;,X; C X
and every L; C £{° and L, C ¥ in L,

L1 ” L2 = {0' € 2“:0]21 € L1 and 0’|22 € L2}

is also in L.

3 Games and I/O Automata

We now establish that a language L is generated by an automaton if and only if it
is generated by an automaton with the trivial fairness partition if and only if it is
union-game realizable.

In the following proofs, we use often refer to the “play” defined by a partial
execution of an automaton, which is a play whose behavior equals the behavior of
the partial execution. There are several ways to define such a play and the one given
here (and used in the subsequent proofs) is not unique: let 7 be a partial execution
of some automaton, and assume 8 = beh(n) = aja;.... Then play(n) is B where a
A is inserted in between every two consecutive £ or £ actions, and appending an
infinite tail of A’s when S is finite.

The following theorem establishes that Ugame C loat.

Theorem 3.1 For ever language L C X%, if Ugame(L) then loat(L).

Proof Assume that Ugame(L). Fix S’ C S such that L = beh(play(S’,£)). Let A be
an automaton with the trivial fairness partition such that int(A) = {1}, states(A) =
S’ x Gy, initial(A) = 8" x {()}, and trans(A) consists of

e ((S,0),a,(S,0-(a))), if either a € £ or S(0) = a,
¢ ((5,0),a,(S5,0-(A,a))), if a = S(a - (A)).




We next show that L = L(A). In one direction, let n be a fair execution of A. By
the construction of A, n must be infinite. Assume that n’s initial state is (S, ()). The
second components of the states occurring in 5 are the prefixes of some infinite play
(ao, bo, . ..). To show that beh(n) € L we construct a strategy E of Environment such
that beh(play(S, E)) = beh(n). E is defined inductively as follows:

o E(()) = ao.
e For every i > 1, E({(ao, bo, - - -,ai-1,bi-1)) = a;.

e For every sequence 0 € Geven such that o is not a prefix of play(n), E(o) is
defined arbitrarily.

Obviously, beh(n) = beh(play(S, E)) € L. Consequently, L(A) C L.

In the other direction, let a be a play in L. Since Ugame(L), there exists some
S € 8" and E € € such that a = play(S, E). Assume that lin(a) = (p1, p2,...). Our
goal is to construct a fair execution 7, = som18173. .. of A such that beh(a) = beh(n,).

For every ¢ > 0, s; is of the form (S, o;) where o; € G;. We define the o;’s, ¢ > 0,
and the 7;’s, ¢ > 1, inductively. Obviously, oo = (). Ideally, we would like 7; to be p;
and o; to be 0;_; - (7;) for every i > 1. However, some p;’s could be equal to Ag, i.e.,
A-moves for E which should not be included as events of 7,, but should be included
(as A’s) in the o;’s. Consequently, when defining the 7;’s, we “skip” those p;’s which
equal to Ag and append A to the appropriate o;.

Formally, we define, for every ¢ > 1, an integer ¢; which points to the element in
lin(a) which should be first considered when constructing ;. Let ¢; = 1. For every
1 > 1, we define 7;, o, and ;4 inductively by:

o If p,, = Mg then m; = pg41, 0: = 051 - (N, 7)) and gy = € + 2.
o If Pe; 7& Ag then 7; = Pty Oi = i1+ (77,') and [t'+1 =/{+1.

Since in a Environment takes infinitely many steps it follows from the construction
that 7, is a fair execution of A and play(n.) = «a. n
The following theorem establishes that loa C Ugame.

Theorem 3.2 For every language L C £*, if loa(L) then Ugame(L).

Proof Let A be an I/O automaton which generates L and assume that fair(A) =
{II;,...}. Let dove = dove(0), dove(1),... be an infinite sequence over the II;’s such
that every II; in fair(A) appears in dove infinitely many times. Let L be a symbol
not in acts(A).

Fix a function

f: states(A) x 2°*(A) 5 (acts(A) U {L}) x states(A)

such that for every state s € states(A) and every set acts’ C loc(A) the following all
hold:
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1. if acts’ N enabled(s) # O then f(s,acts’) = (a,s’) such that a € acts’ and
(s,a,s') € trans(A).

2. if acts’' N enabled(s) = @ but enabled(s) N loc(A) # @ then f(s, acts’) = (a,s’)
such that a € loc(A) and (s, a,s’) € trans(A).

3. if enabled(s) N loc(A) = @ then f(s, acts’) = (L, s).

The existence of f is guaranteed by the Axiom of Choice.

Fix a function g from states(A) x L}, to alternating sequences of states and actions
of A which start with actions, such that if g(s,0) = 5’ then sp’ is a finite partial
execution of A and 7n’|acts(A) = 0. Again, the existence of g is guaranteed by the
Axiom of Choice.

We show that for every fair execution 5 of A whose initial state is sq, there exists
a deterministic strategy S, for System such that (1) beh(play(S,,€)) C L and (2)
there exists some E,, € £ such that play(n) = play(S,, E,).

Intuitively, S, follows n when possible. If Environment makes a move which makes
it impossible to follow 7 then S, uses dove to ensure that the play corresponds to
some fair execution of A.

Formally, for every v € Go4a we define S,(y) by induction on the length of 7.
We also define erec(wy), which is an partial execution of A, starting in sg, such that
play(ezec(y)) = v - (S;(7)). We consider three cases:

v = play(n):
Let S,(7) be X and ezec(y) be the shortest prefix of 5 such that play(ezec(y)) =
5.

7 € pref(play(n)) and v # play(n): '
Assume vy = (ao, by, ..., a;) and play(n) = (ao,bo,...,ai,b;,...). Let S,(7) be
b; and erec(y) be the shortest prefix of 7 such that play(e:tec(’y)) = - (b).

v & pref(play(n)):

Assume that v = (ag, by,...,a;) and that erec(y’) is defined for every proper
(odd length) prefix 4" of 4. Let 4’ = (ao, bo, - . ., ai-1) (if ¥ = {ao) then v’ = (),
and erec(y’) = so). Let s be the last state in ezec(y’), let s’ be the last state
in g(s,a;), and let (b,s") = f(s', dove(7)). If b € out(A) then define S,(y) = b,
else define S,(y) = A. If b # L then define ezec(y) = exec(y')g(s, a;)bs”, else
define ezec(y) = ezec(y')g(s, a;).

u
Corollary 3.3 For every language L C £,

loa(L) <= Ugame(L) <= loat(L).
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Proof The claim follows immediately from Theorem 3.2, Theorem 3.1, and the
observation that every automaton with the trivial fairness partition is an automaton.

4 Inclusion Relations Among Game Classes

It is easy to see that each general game class contains the corresponding behavior
game class since a behavior strategy is a strategy. It is also easy to see that for
either general or behavior games, a single deterministic strategy can be considered a
nondeterministic strategy, and that a nondeterministic strategy can be considered a
union of deterministic strategies. We therefore have the following inclusions of the
classes:
game, C Ngame, C Ugame,
N N N (1)
game C Ngame C Ugame

We will show that all the C relations in the above are strict, and no other inclusion
relations hold other than those implied by transitivity.

We begin with a lemma which is useful in constructing languages which are not
in Ngame.

Lemma 4.1 Suppose I is finite, L € Ngame, and LNY; = 0. Then LNEY is a
closed subset of ¥%.

Proof Since L is in Ngame, there exists a nondeterministic System strategy S such
that L = beh(play(S,€£)). Let Ex € £ be such that Ex(o) = A for every 0 € Geven-
Let B € £ be such pref(B) C pref(L N E¥). We have to show that § € L.

Since every o € pref(L N XY) is in prcf(beh(play(S’, E)))), every prefix of 3 is in
pref(beh(play(S, Ey))). Let & be the set of partial plays of S and Ej whose behavior
is a prefix of 3, i.e.,

& = {a € G, : beh(a) € pref(B) and a - o € play(§, E)) for some o € G,,.}

Since for every prefix 8’ of 3 there is some element a € & such that beh(a) = ', &
is infinite. The elements of & define a tree, T'(&) whose root is () and for every a; and
az in &, @; is a child of @, in T(&) if and only if a; = a; - (a) for some a € £, U {A}.
Since X, is finite, T(&) has a finite (|Z4| + 1) branching. Since & is infinite, there
are infinitely many nodes in T'(&). It now follows from Konig’s Infinity Lemma that
T(&) has some infinite path, which yields an infinite play a. From the construction
it follows that every prefix of beh(a) is a prefix of A. Since a is an infinite play whose
behavior is in L, and LN L} = @, beh(e) is infinite. Consequently, beh(a) =5. W

Lemma 4.2 There is a language which is in Ugamey but not in Ngame.
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Proof Consider the language L; of Example 2 from section 2.3.3; L, = A~({0"1¥ :
n > 0}), where h is the homomorphism which projects onto ¥.. As argued in
- section 2.3.3, Ly is in Ugame,. That L, is not in Ngame follows from the previous
lemma.
]
Recall the language L, of Example 1, section 2.3.3; L; = A~!({0"1¥ : n > 0} U
{A}). As argued in section 2.3.3, L, is in Ngame. Notice that L; N &% = {A}, while
L, N X% = 0. Thus, the hypothesis in Lemma 4.1 that L N X} be empty is necessary.
The following observation, which is an immediate consequence of the definition
of deterministic System strategies, is used to construct languages which are not in
game.

Observation 4.3 For every language L € game, and for every a;,a; € £,
.ay,a, € pref(L) ff ay=a,.
Lemma 4.4 There is a language which is in Ngame but not in game.

Proof Suppose that {0,1} C £, and let Ly = beh(play($,£)), where S is the
nondeterministic System strategy defined by:

S(e) ={0,1,A}  for every a € Goaa.

Obviously, L3 € Ngame. That L3 is not in game follows from the observation
above.

|
Lemma 4.5 There is a language which is in Ngame, but not in game,,.

Proof Observe that for every language L in gamey, and for every aj,a,b € X, if
both Ba; and Ba; are in pref(L) for some 3 € *, then a; = a,.

Assume that 0,1 € I, and let Ly = beh(play(3,&)), where S is the nondeter-
ministic System behavior strategy such that S((A)) = {0,1}. Obviously, both 0 and 1
are in pref(beh(play(S,&))), hence L violates the observation above. Consequently,
L, ¢ game,,.

]

The following lemma about languages in Ugame, will be used to show that the
language Ls, defined below, is not in Ugame,,.

Lemma 4.6 Let L C X% be such that L € Ugame, and assume thati € L. If
t“ € L then ™ € L for infinitely many n’s.
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Proof Assume that :“ € L. Then there exists a System behavior strategy S and an
Environment strategy E such that play(S, E) = (i™,\,1™2,,...). For every n > 1
let E, be the environment strategy which plays i™ on its k** move for k < n, and
plays X thereafter. Then beh(play(S, E,)) = i(Xhz1mx). Since > rmi = 0o and each
m; is finite, the claim follows. |

Lemma 4.7 There is a language which is in game but not in Ugame,.

Proof Assume 0 € X, and let Ls = beh(play(S,£)) where S is the deterministic
System strategy which plays 0 after every A move of Environment, and A after every
non-)\ move of Environment. Obviously, no play of S and E € £ has two consecutive
A moves, hence there are no finite sequences in Ls, and, in particular, " ¢ Ls for
every n. However, let E be the Environmentstrategy which always plays ¢. It is easy
to see that beh(play(S, E)) = 1“. The previous lemma shows that Ls cannot be in
Ugame,,.

Theorem 4.8 The inclusion relations of Equation (1) are all strict. Apart from
inclusions which follow from (1) by transitivity, no other inclusion relations hold
among the siz game classes.

Proof That game, is strictly contained in Ngame, follows from Lemma 4.5. If
Ngame, were equal to Ugame, then it would follow that Ngame was contained in
Ugame,, which would contradict Lemma 4.2. Therefore Ngame, is strictly contained
in Ugame,,.

Lemma 4.4 shows that game is strictly contained in Ngame. If Ngame were
equal to Ugame then Ngame would be contained in Ugame,, which would contra-
dict Lemma 4.2. Therefore Ngame is strictly contained in Ugame.

If any behavior game class (i.e., a class from the top row of Equation (1)) were
equal to the corresponding general game class (i.e., the game class directly below it in
Equation (1)) then it would follow that game was contained in Ugame,,, which would
contradict Lemma 4.7.

This shows that all the inclusions of Equation (1) are strict. The second assertion
of the lemma follows from Lemma 4.7, which shows that game cannot be contained in
Ugame,, and Lemma 4.2, which shows that Ugame, cannot be contained in Ngame.

|

We summarize the theorem in (2) below where N and C indicate proper subclass
relations.

game, C Ngame, C Ugame,

n N N (2)
game C Ngame C Ugame
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5 Closure Properties

intersection/
complementation /
union hiding | parallel composition | renaming
game,/game no no no yes
Ngame, /Ngame | finite no no yes
Ugame, arbitrary | no no yes
Ugame arbitrary | yes no yes

Table 2: Closure Properties of Game Classes

In this section we discuss the closure properties of the six game classes, game, game,
Ngame, Ngame, Ugame, and Ugame,. Our results are summarized in Table 2.
We first consider renaming.

Theorem 5.1 All siz game classes are closed under renaming.

Proof We prove the claim only for the case of game; the other cases are similar.
Let L = beh(play(S,£)) for some S € S, and assume L C E°. Let ¥; C X5, and
let g be a bijection from ¥; to ;. It suffices to show that g(L) is in game. Define a
strategy S’ € S as follows:

S'(n) = g(S(g(n)))  for every n € Geven-
It is easy to see that g(L) = beh(play(5’,£)). |

Next we consider closure under union. Here, the “amount” of closure depends
on whether System is allowed to play a deterministic strategy, a nondeterministic
strategy, or a union of strategies, but does not depend on whether the strategies are
required to be behavior strategies.

Lemma 5.2 Ugame and Ugame, are closed under arbitrary unions.
Proof Immediate from the definition of as a union of games. |
Theorem 5.3 loa is closed under arbitrary unions.

Proof This follows from Theorem 3.3 and the lemma above. |

The main obstacle in proving the above result by reasoning directly about I/0
automata is the possible need to deal with automata having different fairness parti-
tions. After seeing the present work, Alan Fekete pointed out to us that the proof that
loa = loat could be rewritten without reference to games, yielding a purely automata
based proof. This implies a purely automata based proof of Theorem 5.3.
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Theorem 5.4 Ngame, Ngame,, are closed under finite unions but are not closed under
countable unions.

Proof We prove the claim only for the case of Ngame. The case of Ngame,, is similar
and left to the reader.

Let .§'1, .S?g be two nondeterministic System strategies. Consider the System strat-
egy S defined as follows. For every a € Gogd,

.§'1(a) U 5'2(0:) a is consistent with both $; and S,

S’(a) _ 5’1(0) a is consistent with S; but not with S,
] Si(a) a is consistent with S; but not with S;
{2} «a is not consistent with either S; or S,.

It is easy to see that every behavior that is realizable by S, or §, is also realizable
by S. To prove that every behavior realizable by $ is also realizable by S, or S,
observe that each move performed by § can only make the play inconsistent with at
most one strategy. If a play is inconsistent with, say i, then the following moves
performed by § are the same as those performed by S,. Therefore every play generated
by § is consistent with either S; or S,. Consequently, Ngame is closed under finite
unions.

To see that Ngame is not closed under countable unions, consider the language L,
of Example 2 (Section 2), which, as we showed in Section 4, is not in Ngame. Yet, it is
easy to see that L, is a countable union of languages in game, thus L; is a countable
union of languages in Ngame. Consequently, Ngame is not closed under countable
unions. |

Theorem 5.5 game and game, are not closed under finite union.

Proof Assume ¥, = {0,1}. For every a € {0,1}, let S, be the behavior strategy
for System that always plays a, and let L, be beh(play(S.,&)) = (X1a)”. From
Observation 4.3 it follows that Lo U L is not in game. |

We now show that no game class is closed under intersection, complementation,
or parallel composition. That loa is not closed under intersection or complementation
was previously shown in [WZR90).

Theorem 5.6 No game class is closed under intersection, complementation, or par-
allel composition.

Proof To show that none of the game classes is closed under intersection, note that
for Lo and L, as in the proof of Theorem 5.5, Lo N L; = @ and @ is not in any game
class.

By De Morgan’s laws, Ugame, Ngame, Ugame,, and Ngame,, are not closed under
complementation. It is easy to see that game, game, are not closed under comple-
mentation.
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As for parallel composition, note that if L;,L, € ¥, then L, | L; = L, N L,.
Therefore, since no game class is closed under intersection, none is closed under
parallel composition.

|

In the remainder of the section, we consider closure under hiding. While it is easy
to show that each of the game classes (and therefore loa) is closed under hiding of
output actions, no game class except Ugame (and hence loa) is closed under hiding
of input actions. Hence, no game class except Ugame is closed under hiding. This is
shown in:

Theorem 5.7 None of Ugame,,, Ngame, game, Ngame, and game, is closed under
hiding of input actions.

Proof Assume X, = {a,b} and I, = {0,1}. Consider the deterministic behavior
strategy S of System such that for every a € Geyen,

S(a) = 0 number of 0’s in a < number of B’s in the first element of a
" | 1 otherwise

Let L = beh(play(S,£)). It is easy to see that L\ a is L; of Example 2 (Section
2). Hence, L \ a is not in Ngame. Consequently, none of Ngame, game, Ngame,, and
game,, is closed under hiding.

To show that Ugame, is not closed under hiding, consider the behavior system
strategy S defined by:

_J A last play of Environment is ab
Sla) = { 0 otherwise

for every a € Geven.

It is easy to see that a € L\ b. However, a" ¢ L\ a for every n > 0. It therefore
follows that L \ a is not in Ugame,. |

Now we consider Ugame. Lemma 5.8 establishes that game (and therefore Ugame)
is closed under hiding of output actions. Lemma 5.10 establishes that hiding an input
action from a game language results in a Ugame language. Consequently, Ugame (and
therefore loa) is also closed under hiding of input actions. The proofs of both lemmas
are based on reasoning about strategies. We are not aware of any proof that loa is
closed under hiding of input actions which reasons directly about automata.

Lemma 5.8 Let L be in game and a be in £,. Then L\ a is in game.

Proof Let S € S be such that L = beh(play(S, £)). We construct a system strategy |
S’ € S that replaces any a-move of S by a A-move such that bek(play(S’,€)) = L\ a.

For every partial play 5 over £ — {a}, we say that 5 is eztendible if there exists a
prefix n’ of play(S, E), such that 7’ is obtained from 5 by replacing some A-moves of
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system by a. If such an 7 exists, then we say that 5’ is an eztension of n. Note that
if n is extendible then it has a unique extension.
For every n € Goa4, define

S'(a) = { b 7 is extendible and b = S(n") # a where n' is the extension of g
1 A otherwise

We leave it to the reader to check that L\ a = beh(play(S’,€). |
Corollary 5.9 Let L be in Ugame and a be in Ys. Then L\ a is in Ugame.

Proof The proof follows immediately since any language in Ugame is a union of
game sets and since, from Lemma 5.8, game sets are closed under hiding of output
actions. |

As shown in Theorem 5.7, game is not closed under hiding of input actions. Hence,
the proof that Ugame is closed under hiding of input actions is along different lines
than the previous proof. We first show that the language obtained by hiding of an
input action from a game language is in Ugame.

Lemma 5.10 Let L be in game and a be in Y.. Then L\ a is in Ugame.

Proof Let S € S be such that L = beh(play(S, €)). For every E € &, let o(E)
denote the sequence beh(play(S, E)), so that L is the union of o(E) over all E € €.
For every Environment strategy E € £, we construct a system strategy S(E) € S
such that beh(play(S(E), ) includes o(E) \ a and is a subset of L \ a. Hence, if we
let &’ be the union (over all E € £) of S(E), then beh(play(S',€) is exactly L\ a. It
remains to show how to construct S(E) for a given Environment strategy E.

Similarly to the proof of Lemma 5.8, for every partial play n over ¥ — {a}, we say
that n is eztendible if there exists a prefix 5’ of game(S, E), such that 7’ is obtained
from 7 by replacing some A-moves of Environment with elements of a*. If such an n
exists, then we say that ' is an eztension of n. Note that if n is extendible then it
has a unique extension.

We next define a function g from partial plays over & — {a} to partial plays over
L. For every extendible 5, g(n) is to be the extension of n. For an 5 which is not
extendible, let 7’ be the longest extendible prefix of § and assume that n=n"-79"
and let g(n) be g(n') - n". For every n € Goqa, define S(E)(n) = S(g(n)).

We leave it to the reader to check that beh(play(S(E),€) includes o(E) \ a and
that it is a subset of L \ a. |

Corollary 5.11 Let L be in Ugame and a be in Y. Then L\ a is in Ugame.

Proof The proof is similar to that of Corollary 5.9. ) n
From Corollary 5.9 and Corollary 5.11 we obtain:

Theorem 5.12 Ugame is closed under hiding.
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6 Comparison with [BDDW91]

" Broy, Dederichs, Dendorfer, and Rainer [BDDW91] considered various formalisms for
describing reactive systems. In this subsection we compare our results to those of
[BDDW91]. The classes defined there are input enabled and input free. Formally, A
language L C £ is input enabled and input free if for every a € pref(L):

1. for every i € £, a1 € pref(L), and

2. there exists some § € X such that af € L.

(1) means that every prefix of a string in L can be followed by any element in ¥,
to yield a prefix of a string in L, and (2) means that every prefix of a string in L can
be extended by a string over ¥ to yield a string in L.

The class of input enabled and input free languages is termed |EF in [WZR90],
and Local-SL in [BDDW91].

Broy et al. define a class of languages which are generated by automata with a
strong fairness condition. More specifically, the authors define I/O automata similar
to those we define in Section 2, with the following differences:

1. the fairness partition is finite.

2. an infinite execution 7 is fair if actions from each fairness class that is enabled
infinitely many times are taken infinitely many times. Note that we only require
that, in fair executions, only actions from fairness classes that are eventually
permanently enabled are infinitely many times taken.

The class of languages that are generated by automata with strong fairness is
denoted Automatic in [BDDW91]. The class of languages that are generated by
the standard automata is denoted Automatic-WF. Broy et al. also consider certain
games, which are exactly our behavior games. They use Strategic, Strategic-ND, and
Fully-realizable to denote our game,, Ngame,, and Ugame, respectively. They claim
that

game, C Ngame, C Ugame, C Local-SL

(where C stands for proper inclusion), and conjecture that
Ugame, = loa.

However, from Corollary 3.3 and Equation (2) it immediately follows that Ugame,
is a proper subclass of loa, refuting the conjecture. Abadi had previously observed
that the conjecture was false.

As to Local-SL, we show in [WZR90] that loa is a strict subclass of it, which
coincides with the results of [BDDW91].
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7 Conclusion and Future Work

We presented games between a powerful Environment and a System, where the players
use strategies to obtain infinite sequences of symbols over a given alphabet. The games
define finite- and infinite-string languages over ¥ in a natural way. We considered
different restrictions on the class of strategies allowed, therefore obtaining several
classes of languages.

Our main result is the equivalence between the class of languages generated by
I/O automata and one of our game classes. We also include comparisons between the
different game classes, and a study of their closure properties. Finally, we compare
our results to those in [BDDW91].

We believe that the game approach is a powerful tool for analyzing the expres-
sive power of reactive systems. In fact, this work began when the authors tried to
investigate the closure properties of loa languages, and failed to do so using the I/O
automaton model. The same results were extremely easy to obtain by reasoning
about Ugame. It would be interesting to apply the game approach to other reactive
models.

Closed sets have generated much interest lately, partly because they describe
safety properties of systems ([MP89]). Generally speaking, a language L over ¥ is
closed if for every o € ¥, o € L if and only if every prefix of o is in pref(L). We
currently do not know the exact relation between our six game classes and their closed
counterparts. We do know, however, that the closed loa languages are in Ngame but
not necessarily in game, and that they do not include all the game, languages.

Another interesting topic is the notion of strong fairness and whether it can be
incorporated as (a version of) a game. While it’s obvious how to incorporate strong
fairness in the I/O automaton model, there seems no natural way of doing that in
the game model. If, indeed, there is no way, then it might imply that strong fairness
is a state-dependent notion. Games have a much different notion of states, and it’s
possible that no game-like model can capture the notion of state needed to define
strong fairness.
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