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Abstract

We present a type system that provides execution time estimates. Run time estimates are useful
for a wide range of applications from automatic parallelization to hot-spot optimizations. We
use the framework of effect systems first introduced for the FX language. It allows to integrate
behavioral information (times) in type descriptions. Our kernel language is powerful enough to
model any impure functional language a la SML. We prove that our type system is consistent
with a standard evaluation scheme.

Résumé

Nous présentons un systéme de typage orienté vers I’estimation des temps d’exécution. Ces esti-
mations sont utiles pour un large éventail d’applications allant de la parallélisation automatique
& loptimisation des points chauds. Nous utilisons les principes du systéme d’effets introduit
pour le langage FX. Ils permettent d’integrer dans les types, des informations décrivant diverses
proprietés de I’exécution des programmes. Notre langage est suffisament puissant pour modeliser
n’importe quel langage fonctionnel impur comme SML. Nous prouvons aussi que notre systéme
de typage est cohérent avec un schema d’évaluation classique.
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1 Introduction

Time estimates are useful for a wide range of applications. For example, in automatic paral-
lelization, the notion of maximal parallelism is usually not sufficient to provide a good speed up
as it may generate high overheads for small tasks. Time information is then useful to decide
if a program part is large enough to deserve remote execution. In performance debugging of
time consuming or real-time applications, you need to locate code hot-spots in programs to per-
form efficient optimizations. In vectorization, good candidates for vector mapping are functions
with a good time invariant property. All theses problems can be solved using execution time
information.

It is clear, now, that automatic methods for complexity analysis of programs are strongly
needed. Unfortunately, due to the halting problem, statically determining precise execution time
is undecidable. To jump over this theoretical barrier, all the previous systems [W75, R79, FV87,
L88, S88, HC88] restrict the expressiveness of the programming language. This approach is
unacceptable if we want to integrate our method as a module in a compiler.

In [DIGI1, D92], we have introduced the notion of type and time systems. Time and type
systems are an extension of the type and effect systems proposed by Lucassen and Gifford in
[LG88]. A type describes the value an expression evaluates to while an effect abstracts how the
expression compute this value. In [LG88], effects are abstractions of possible side-effects that
may happen during execution. These static systems are based on rules that allow behavioral
properties of programs to be estimated by the compiler. In short, a time system has two main
features: First, a time description abstracting the execution time will be associated to each ex-
pression. Second, a latent time will be inserted in function types. This latent time communicates
the expected behavior of a function its the definition point to its points of application.

The time systems we have proposed are designed for realistic languages. By realistic lan-
guages, we mean that their expressiveness are comparable to a commonly used language such as
SML [HMT89]. We have by-passed the undecidability by computing only a time approximation.
A time is then an integer upper bound for the execution time or a special constant, long, to
denote potentially unbounded computation. Although simple, previous work suggests that even
such crude time information can be useful for parallel computing [G83] or optimizing compilers
[C90]. We will be more affirmative and claim that, in fact, a precise time description is largely
redundant when its information content is used by a compiler. For example, in load-balancing
systems, information like oo short and long enough is sufficient and easier to understand (for a
compiler) than any time description written using the O(f(n)) notation.

In our previous systems, we have encoded recursion with a unique special time constant,
long. There are two problems with this approach. For example, consider the following piece of
program:

E = ((lambda (f)
(rec (g x) E’[1]))
(rec (g y) ... (g ...) ...))




where rec is an operator that allows to define potentially recursive functions. In (rec (g x)
E’[1]), the expression E’ [f] is the function body where x is the formal parameter and g is the
internal name of the recursive function. The expression E is an application. The parameter part
of E, is a recursive function definition. It is really recursive as the internal name g’ is applied
to some value in the function body. Then, the defined function has a long latent time. Assume
that the time of the global expression E is 1ong. Can we conclude that the formal parameter £ is
really used in E’ [£]7 We cannot because the expression E’ [£] is itself embedded in a recursive
definition. We can not know if the recursion, the time long, comes from the internal recursive
definition or from the parameter of the application E. For the second problem, assume that both
recursive definitions lead to real recursive functions. They will both have a long latent time.
Then, we can not know that the global time (the time of the expression E) is in fact the sum of
two recursions.

The type system we describe in this report is an extension of one presented in [D92]. It
allows all basic recursions to be associated with their own time variables. This property solves
the two previous problems. If the expression E is really composed from two basic recursions,
then its time will be the sum of two time variables. The time information reconstructed by our
time system will be something like:

E has type M

(1ambda (f) (rec (g x) E'[f])) has latent time M,

(rec (g’ y) ... (&' ...) ...) has latent time M3
with M OM3C M

where M;, My and M3 are time variables subject to the constraint My @ M3 C M; but not further de-
fined. This can be interpreted: E is recursive with time M;, (1ambda (f) (rec (g x) E’[1]))
is also recursive with latent time Mz, (rec (g’ y) ... (g’ ...) ...) is again recursive
with latent time Mg and M; is sirictly greater than My and Ms.

After an overview of the related work (Section 2), we define (Section 3) the abstract syntax
and the dynamic semantics of our language. The evaluation scheme fixed, we describe in details
(Section 4) the type and time inference system. We then state and prove the consistency between
the time system and the evaluation scheme (Section 5). We show (Section 6) that our type system
is more powerful than the previous one. Before concluding, we also show that it enjoys a minimal
time property (Section 7).

2 Related Work

Our work is related to two research areas: complexity analysis and type systems.

Complexity Analysis

We are only interested here in the automatic complexity analysis of programs. Due to unfortunate
and old theoretical restrictions (halting problem [T36]), few automatic systems [W75, L88, S88]
[R89, FV87] have been actually proposed. They all manage this inherent difficulty by restrict-
ing the expressiveness of the analyzed language or by providing partial information as results.
Even in the latter case, no system has been proposed that analyses full-fledged languages with
functional and imperative aspects, as this paper presents.

The field of automatic complexity analysis was pioneered by Wegbreit with the METRIC
project [W75]. His two-phase system is able to analyze simple first-order Lisp programs; the
dynamic phase builds from the program a set of mutually recursive equations that model the
behavior of the program expressions, which are heuristically solved by the second static phase.




In the Ace system [L88], Le Métayer uses the same framework to analyze first-order FP [B78]
programs. The results are worst-case growth factors such as “linear” or “polynomial”. The major
drawback of this approach is that, beside its restricted input language, it does not suggest how
to maintain the correctness of the pattern base used in the static phase. In [S88], Sands proposes
a higher-order extension to the previous dynamic phase, also proving its correctness. Wadler
[W88] shows that strictness information is useful to compute execution time in lazy languages.
Sands integrates this method and proposes in [S90] an automatic system for lazy higher-order
languages. Rosendahl [R86, R89] describes an abstract interpretation [AH87) scheme for a pure
functional language. Unfortunately, none of these approaches include both first-class functions
and imperative constructs.

To obtain mean-case results, the distribution of variables values over their domains is required.
Flajolet and Vitter [FV87] assume an uniform input distribution and analyze programs that
are distribution-transformation free; this class of programs mainly contains tree manipulation
algorithms. A major problem here is that the output distribution may not be uniform, thus
making the function composition operator inadmissible. To overcome the distribution problem,
Ramshaw [R79] proposes an inference system that specifies the distribution of variables values
at all program control points; mean-case complexity analysis is then possible. Hickey and Cohen
[HC88] extend Ramshaw’s approach to complex data structures by using Kosen’s semantics of
stochastic programs [K81]. They also propose an extension to purely functional languages like
FP. '

Type Systems

The two main components of our time system are the effect system framework and the notion of
sub-timing. The effect system allows us to introduce behavioral information in type descriptions
(execution time estimates in our type system). The sub-timing relation provides more flexibility
by coercing expression to greatest execution time estimates.

Effect Systems: The effect system framework was proposed by Lucassen [G86, L87, LG88].
It uses the kinded polymorphic type discipline of [M79] to include into the type of expressions
some information about the memory side effects they may perform. To relax the burden on the
programmer of having to explicitly provide these effect information, Jouvelot and Gifford [JG91)
propose a partial effect reconstruction system. In [TJ91], effect reconstruction is described for a
simpler ML-like language but extended to region reconstruction, a region being an approximation
of the memory locations in which data structures are allocated. Some of the ideas proposed there
will be adopted in the sequel, in particular in the subtiming rule.

In a previous paper [DJG91], we presented the first use of a time system for complexity
checking. As in this present paper, the complexity information expresses the possible recursive
behavior of expressions. However, instead of simply checking the programmer-provided time
information, our new system reconstructs them automatically, provides tighter bounds for test
expressions and determines both worst and best case time estimates. The determination of both
worst and best case time information allows more program properties to be detected at compile
time; for instance, if the best case time of an expression is long, then it can be flagged as
non-terminating. Finally, our time system has been fully implemented within the uFX-A/DLX
compiler [GSTRG92].

Sub-Timing: The sub-timing relation is closely related to the notion of sub-effecting intro-
duced by [TJ91]. Just as sub-typing allows us to coerce an expression to a greater type, sub-
effecting can be used to coerce an execution estimate to a greater behavioral description. Hence,
the type and effect system specifies an inclusion relation on effects (e.g. times in our system).
This inclusion relation is only defined on effects and is not extended to type descriptions.




Our time descriptions are mainly sums of constants (non-zero integers) and order variables.
An order variable abstracts a statically unbounded recursion. The sub-timing relation has to
be defined with respect to a set of inclusion constraints on order variables. This leads to a type
system where all rules are parametrized by a constraint set. In [FM88, FM89, FM90], Fuh and
Mishra have proposed a general framework for designing type systems allowing such coercions
on types. Our time system can be seen as a practical and structural case of this framework.
Hence, it enjoys a minimal time property.

3 Language Definition

Our language is a minimal kernel for functional languages (allowing first class functions) with
side-effects. Its abstract syntax is represented by the Expr domain. Then, for the functional
part, an expression can be an identifier (s), a A-abstraction, a recursive function (rec) or an
application. For the non-pure part, we can bind a value to a new location in the store (new), we
can retrieve a value from the store (get) and update a existing location with a new value (set).
The Id domain stands for identifiers.

e € Expr

en=1
(lambda (i) e¢) Abstraction
(rec (fi)e) Recursion

(ee) Application
(newe) ReferenceCreation
(gete) Dereference
(setece) Update

,feld Identifiers

We now give the evaluation scheme used for our language. This choice is not arbitrary since
the way we evaluate an expression can change its execution time. We chosed to use a standard
call-by-value evaluation scheme and our time system will be then designed in this way. We define
the standard domains for locations (1), basic values (b), values (v), closure, environment (E) and
store (st). We add the domain described by n to measure the execution time of an expression.
Each basic evaluation operation will be considered as taking one tick to execute.

! € Loc Reference
b € BVal = Bool + Num + {unit} Basic Values
v € Val = Loc + BVal + Clos Values
(i,e, E,E) € Clos =1d x Expr x Env x Env Closures
E € Env=1Id — Val Environments
st € Store = Loc — Val Memories
n € Num Positive Integers

As in [TJ91], the Rec operator is used in the application rule to unfold the recursive envi-
ronment (the second one in the closures).

Rec : Env — Env

Rec([]) (]
Rec([f—(i,e,E’,[])]) [f—(i, &, E', [f—(i, ¢, E', (1

The Semantics rules are given using judgments of the form:




st, Ee— v, n,st’ C Store x Env x Expr x Val x Num x Store

where st,Et e— v,n,st’ means With the store st and the environment E, the ezpression e evalu-
ates to the value v in n ticks, providing a new store st’.
st, Eli—v]Fi— v 1, st [D.Env]
st, E+ (lambda (i) e) — (i, ¢, E,[]), 1, st [D.Lambda)
st, EF (rec (fi) e) — (i, ¢, E, [f—(i, ¢, E, [])]}, 1, st [D.Rec]

st,Et eg— (i, e, E', E"), no, sto
sfo, EF € — v, N, sty
sty, E' :: Rec(E")[i—n ] F e— v, n,st’
[D.Apply]

st,Et (ege1) = v,14+ n+ ng+ ny,st’

st, E-e— v, n, sty
[l—v'] € sto

[D.New]
st, Et (newe) =l n+1,sip[l — v

st, El-e— | n, sty
[l=1] C st

[D.Get]
st, El (gete) —v,n+ 1, s

st,EF eg— 1, ng, sty
sto, EF ey — v, ny, sty

[D.Set]

st, E (set ege;) —unit, ng + ny + 1, sty [l — 1]

There is only one rule for each kind of expression. The evaluator is then deterministic
and syntax-directed. An identifier (axiom D.Env) evaluates to the value it is bound to in the
environment E. The store is not modified and the time needed for the evaluation is one tick. A
A-abstraction (axiom D.Lambda) evaluates to a non recursive closure (the second environment is
empty) in one tick. On the other hand, a recursive function definition (axiom D.Rec) evaluates to
arecursive closure. The second environment contains a binding from fto the non recursive version
of the function. At each application (rule D.Apply), this second environment is unfolded one step
to provide recursion. The (non-commutative) operator :: denotes for environment concatenation.
Remaining rules deal with side-effects. Those rules define a perfectly safe evaluation scheme as
we always allocate values to unbound locations and only access or update bound locations.

Note that our language contains no test expression. In fact, it is sufficiently powerful to
express one by an abstraction embedding.

4 Type and Time Inference System

We now give the specification of the time system. Our language being implicitly typed, the whole
types and times descriptions have to be reconstructed. But in fact, we are only interested in
time information. We have then reduced type descriptions to the minimum necessary to perform
time reconstruction.




The specification consists of some domain definitions, a set of equations describing time
equivalences, a set of rules specifying the notion of time inclusion, and the inference rules showing
how to associate times to expressions.

é € Descr
§u=t|m

m € Time
mi=n|M|mém

n € Num
nu=1]2]3]..

M € Order
M:::Ml | M2 | M3 I

t € Type
1:=B | reft| ot

T € TEnv =1d — Type

A € CSet = P(Order x Order)

A description (8) is a type or a time. A time (m) can be (n) a integer binding the execution
time, an order (M) abstracting a recursion or the sum (@) of two (or more) times. An integer is
always different from 0. The set Order is a set of variables. A type () can be a basic type (B),

a reference type ref ¢ or an arrow type 24/ for functions of domain ¢, codomain ¢’ and latent
time m. A type environment (T) is a map from identifiers to types. A constraint set (A) is a
set of order couples. Constraints sets will be used to generate the time inclusion relation.

my @ (my @ mg)~(m Smy)®mz  Associativity

my @ my ~ my®my Commutativity
ny @ ng ~ ny + np Additivity
Mon~M Absorbency
MoeM~M Idempotency

We can see the time set with the sum operator (Time, @) as an algebra on times. The
equivalence between descriptions is denoted ~. The & operator is associative and commutative.
The sum of two (or more) bounded times can be reduced by adding the integers in the standard
way. Orders represent unbounded computation and are considered as always greater than any
bounded time. The last equation says that twice the same recursion is, in terms of execution
time, equivalent to one recursion. Remember that we want only to detect each basic recursion
and we are not interested in knowing how many times they really happen.

As we have already mentioned, constraint sets generate a partial order on time descriptions.
This time inclusion is defined by the relation:

AFmCm’ C CSet x Time x Time

which means that the time m is less than the time m’ with respect to the constraint set A. Note
that there is not only one inclusion relation on times but a whole set generated by all possible
constraint sets. We will see below how constraint sets are defined. For instance, consider a
constraint set as a kind of oracle.




n<n’

AFnaCn’ fum

AFnC M [1.Mix]

{(MCM}cA

AF Mo [I.Order]

AFmCm [I.Reflex]

AFmeCmy
AF myCm

- [I.Trans]
AF mgCmy

AFmgCm
mo~mp' my~m'

[I.Equiv]
AFmy'Cm’

At mgCmy
AF maCmg

[I.Sum]
AF my@®myC my @ mg

When time descriptions are bounded times (rule I.Num), the standard order < on integers
holds. A bounded time is always less than an order (rule I.Mix). Order inclusion can be
extracted from constraint sets (rule I.Order). The two following rules (I.Reflex and I.Trans)
define the standard laws of partial orders. The time inclusion commutes with time equivalence
(rule I.Equiv) and time sum (rule I.Sum). Note that the only condition needed on A for the
inclusion relation to be a partial order is that A contains no cycles. Otherwise, A is free and,
for example, can be empty.

The usefulness of an inclusion relation like this can be illustrated by the following:

AFrmeuCpu

where u is an unknown time variable. Assume, we want to solve this time inclusion, i.e. to find
the least solution for u. Whatever the time m is, we know that u can not be a integer. Lets
say that p is an order M. The time inclusion is then valid if we can prove it using the inclusion
rules. If the time m is an integer, then this inclusion is always verified. If m is the sum of some
orders, then we have to deduce (with the inclusion rules) that M is greater than all thoses orders.
This will be possible if for each M’ in the sum m we can prove that AF- M’ M. All thoses
order inclusions can be obtained by only two rules: I.Order or I.Trans. From the rule I.Order,
we know that the constraint {M’'C @} is in A. From the rule I.Trans, we know that it exists
an order variable between M’ and M, i.e. an order M such that AFM/'CM"” and AFM"C
M. As theses two new inclusions are obtained by the sames rules, we can conclude that A has
to contain a minimal set of constraints powerful enough to prove all the requested inclusions.
This property is the keystone of our type system since all recursive function definitions lead
to time inclusions of this form. hence, for a recursive definition to be type (and time) correct,
the constraint set A has to contain at least the constraints needed to deduce all time inclusions




generated by the recursive definitions. As each recursive function is associated with its own
order variable, we will be able, by examining the constraint set A, to say how the various basic
recursions of the whole program are related.

B~B [E.Basic]

h~1t'
h~1'
m~ m'
[E.Subr]
1
LN RN
i~ 1t
[E.Ref]

refi~ reft’

S

The equivalence relation on type descriptions is straightforward. Arrow types are equivalents
(rule E.Subr) if the domains, the codomains and the latent times are respectively equivalents.
Reference types are equivalent (rule E.Ref) if referenced types are equivalent.

The time system follows. There is one rule by expression constructor and then the time
system is deterministic. Rules specify how to associate time (and type) to expressions and use
judgments like:

A, Tke:t$m C CSet x TEnv x Expr x Type x Time

which mean: With the constraint set A and the type environment T, the ezpression e has type 1
and time m.

An identifier i (rule S.Env) has type t and time 1 if it is bound to ¢ in T. We assume that
the time to access a variable is constant. This is usually the case in efficient implementations
where the symbol table is, for example, a hash table. In the rule S.Lambda, the time m of the
function body becomes the latent type of the function. The same principle is used in the rule
S.Rec but the time of the function body mq can be a sum containing itself (as it is also the latent
time of the internal recursive function ). Then, my will have to satisfy a recursive equation as
discussed before and will lead to a new order variable. The latent time of a function is extracted
when applied (rule S.Apply) to a parameter. The rules for the side-effect constructors (S.New,
S.Get and S.Set) are all straightforward and just add one execution step to times. Finally, rule
S.Takes allows the time associated with an expression to be longer value. This rule is especially
useful in recursive typing to equate the latent time of the internal recursive function and the
time of the function body. It allows also to get more flexibility in application by coercing the
time of the parameter to a higher one.

A, T[i : t] Fi:t$1 [S.Env]

A Tli:th]Fe:to8m

[S.Lambda]
A, TF (lambda (i) e) : {15 $ 1

A, T[f: tlmtg,i:tl]i-e:to$mo

[S.Rec]
A,TF (rec(fi) e): 4, 254,81




ATHF egztl—ﬂrto$mo
A,Tl“ 61111$m1

[S.Apply]
A,TF (eper):to8mydm &dmd1

A Tre:t8$m

[S.New]
A,TF (newe):reft$md1

A Tre:reft$m
[S.Get]

A,TF (gete):t$md 1

A, They:rett $my
A,TFelzt1$mo

[S.Set]
ATF (seteyey) BSmodm; @1

ATFe:t8m
AFmCm’

A,TF e:t$m’ (8 ke

As we said before, a constraint set must not contain cycles in order to give rise to a partial
order on times. This is expressed by the following definition:

Definition 1 A constraint set A is consistent if the following implication holds for all order
variables M and M':
AFMCM = {M'CM}ZA

We can now define what is a correct typing:

Definition 2 (Type Correctness) An erpression e is type correct if there is a consistent con-
straint set A, a type environment T, a type t and a time m such that A, TFe:t$m. We say
that the judgment A, T+ e:t8 m holds or is valid.

It may seem strange that we do not further define the constraint set A. In fact, we will see
that, if an expression is type correct, then there are many possible choices for A. Fortunately,
the type system enjoys a minimal time property and hence there is a minimal correct typing
such that all other correct typings are just instances of the minimal one.

Together with this minimal time property, we have also to prove that the static and the
dynamic semantics are consistent. '

5 Consistency

To show the consistency between the static and dynamic semantics, we must prove two facts.
First fact, for all expressions, the value to which it evaluates is consistent with its type. Second
fact, for all expressions, the time the expression needs to evaluates is consistent with the expres-
sion time. As we will see, the two facts cannot be proved only by restating the main theorem
of [D92]. This theorem (SDC) only deals with type/value and execution time/bounded time
consistency and says nothing about the detection of each basic recursion.

10




5.1 Restating the SDC Theorem

The complete proof is similar to the one presented in detail in [D92]. We only give the principal
definitions and lemmas.

Our language possesses side-effect primitives. Proving the consistency between a value and
a type can depend upon some values in the store. To express the type tagging of the values in
the store, we start with two definitions:

Definition 3 (Abstract Store) An abstract store is finite map from locations to types.
ST € AbStore = Loc — Type

Definition 4 (Typed Store) A typed store is a tuple made from a store st, an abstract store
ST and a constraint set A such that dom(st) = dom(ST). We write st: ST, A.

The next definition deals with the extension of the store with new bindings. It is the straight-
forward extension of the inclusion on functions to couples of functions.

Definition 5 (Inclusion) A typed store st:ST,A is included in another one st’':ST',A’,
noted st: ST, AC st':ST',A',iff stC st', STC ST and ACA’.

The following property specifies what means for a value to be consistent with a type. Note,
that it depends upon a typed store and a constraint set.

Property 6 (E:)
st:ST,AEv:t <= ifv=>then t~B
if v= (i, e, E[])
then 3y, %0, m, T s.t. t ~ ) —tg A
st:ST,AEE:TAA,T[i: {h]lFe:t,8m
if v=(i,¢, E, [f—(i, ¢, E, [])])
then 34,10, m, T s.t. t ~ t1—tp A
st:ST,AEE:TAA, T[f: tlﬂ»to,i:tl]l-e:tosm
fo=l
then 3v/,t' s.t. t~reft’' A
[l=v']:[l:t'], AC st:ST,ANst:ST, Av':t’

st:ST,AFE:T <= dom(E)=dom(T)AVi€ dom(E),st: ST, A |= E(i) : T(i)

It remains to say what means for an execution time to be consistent with a time. Note that
the following property says nothing about the detection of basic recursions and treats every
recursion as being more expensive than any finite computation.

Property 7 (<)

En<m <= if m€ Order then true
if m & Order then n < m

The last definition expresses the effects of a computation on the store. A store will succeed

to another if it can be obtained by any sequence of allocations and type preserving updates on
the beginning store.

11




Definition 8 (Succession) A typed store st’:ST', A, succeeds to another st: ST, A, noted st
ST, AC st':ST', A/, iff
{ ST c ST’

Vy,t,st: ST, AEv:t = st':ST',AfFv:t

We can now restate the static and dynamic consistency theorem (SDC). It says that if an
ezpression e has type t and time m, if it evaluates to a value v in n ticks and if the beginning
environments are consistents, then the computed value is consistent with the associated type, the
number of ticks is consistent with the associated time and the store after the evaluation succeed
to the beginning one.

Theorem 9 (SDC) Let st and st’ be stores, ST an abstract store, A a consiraint set, e an
ezpression, T a type environment, t a type, m a time, E an environment, v a value and n an
integer, then the following implication holds:

A Thke:t$m st:ST,AC st':ST', A’
st,EFe—v,n,st’ 3 =>3ST' and A's.t. { st':ST', A'Ev:t
st:ST,AEE:T Enm

Proof (SDC) It is similar to the proof presented in [D92]. We just have to propagate the
constraint set A everywhere. The monotonicity of the F operator is easy to prove. Then
the maximum fixpoint induction can be used to prove the two main lemmas (expansion and
modification). The proof of the theorem itself works in exactly the same way, i.e. by induction
on the execution time (n) and by case analysis on the expressions. O

5.2 Basic Recursions

The consistency between execution times and bounded times is established by the previous
theorem. We now focus on recursions and show that the execution time of an expression is
mainly the sum of its basic recursions. It may seem necessary to use the notion of evaluation
explicitly, as in the previous theorem, to say that the remaining execution time, when all basic
recursions are deleted, is bounded by some constant. In fact, we just have to show that this
remaining time is a bound time and then, by the previous theorem, we know that its execution
time is bounded.

We show that, when all sub-expressions providing basic recursions to a global expression
are substituted by expressions of bounded time, the global expression has a bounded time. We
start by defining the set of potential recursive sub-expressions of an expression, i.e. the set of
sub-expressions that may create recursion.

Definition 10 (Recursive Sub-Expressions) let rse(E) be the set of potentially recursive
sub-ezpression of the expression E. By potentially recursive, we mean that they are of the form

(rec(fi)e).

Note that rse(E) is a set of recursive definitions and that these sub-expressions are always of
time 1 in the time system. In fact, these expressions are function definitions that have unbounded
latent times.

The question is now: When an expression is recursive, where does this recursion come from?
The following lemma states that there is always a recursive sub-expression providing it.

Lemma 11 Let A be a constraint set, T an environment, E an ezpression, t a type, m a time
and M an order. Then, the following tmplication holds:

Mim’

A, THE:t$me®M=>31,%,m’ and e€ rse(E) s.t. A, Tke:t 81
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Proof By disjunction and induction on the expressions. At first, we see that E can not be
a identifier (i), and abstraction ((1ambda ({) ¢)) nor a recursive abstraction ((rec (fi) €)). The
other cases have each to be checked.

-

We know by the S.Apply rule that A, t+ E: 4 $ mg ® m; & m; ® 1. This implies the equivalence
Mom~mg®m &@m;®1. If Misin m; then the implication holds. Otherwise, the order M is
in the time my (respectively m;), then the implication holds by induction on the expression eo
(respectively e;).

Case
We know by the rule S.New that A, T+ E:ref {,$ mo® 1. Then, we have M@& m ~ my® 1 and
by absorbency M@ m ~ mg. The implication holds by induction on eg.

e [E=goven |

Similar to the previous one.

Casel E= (setege;) I
Similar to the application without the case of the latent time. O

No all recursive sub-expressions participate to the global time. For example, in the following
program:
E = ((lambda (f) 1)
(rec (gy) ... (g ...) ...))

The application parameter is a recursive sub-expression but, as it is never applied, its latent
time will never appear the time of the expression E.

Definition 12 (Significant Sub-Expressions) The set of significant sub-ezpressions in the
ezpression E with the constraint set A and the environment T is:

ssep(T,E)={e| A, TFE:t$meo M, A, TH e:th@-»mltosi and e € rse(E)}

Remember that our language allows side-effects and first-order functions. A sub-expression
could be recursive and not significant in a more complicated way. For example, a powerful
data constructor (e.g. the defstruct of Common Lisp) could returns lots functions for data
manipulations some of which might be recursive sub-expressions.

The following lemma states that if an expression has a bounded time, then it contains no
significant sub-expressions.

Lemma 13 IfA,THE:t8$n then ssep (T,E) = 0.
Proof Straightforward. 0O

We know define how to delete significant sub-expressions. We start by substituting one of
them by a non-significant one. All sub-expression are considered tagged with their unique path
in the structural tree. All equivalence relations (e.g. through a-renaming) are ignored and all
sub-expressions are considered to be distinct.

Definition 14 (Reduced Expression) We define the reduction of the ezpression E by a sub-
ezpression e in the constraint set A and the environement T as:

red§, (T,E) = (T[i : ti—to], E[e\)

where A, TF e: 1, —51,81 and i ¢ FV(E).
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When an expression F is reduced by a sub-expression e, e is no longer a significant sub-
expression.

Lemma 15 Let E be an ezpression, e a sub-expression, A a constraint set and T an environ-
ment, then the following implication holds:

e € ssep (T,E) => e ¢ ssep (red} (T,E))
Proof In fact, e is no longer in E as it has been substituted. O

We now delete all significant sub-expressions. The reduced expression is minimal when all
its significant sub-expressions have been substituted by non-significant ones.

Definition 16 (Minimal Reduced Expression) Let ssep (T,E), the set of sub-ezpressions
of E, be equal to {eg, ..., en}. We define the mazimal reduced expression of E in A and T as:

mredp (T,E) = redg)(... redeA"(T,E') )
Lemma 17 For any ezpression E, environment T and constraint set A, ssep (mred p (T,E)) = 0
A minimal reduced expression has a bounded time.

Theorem 18 Let E be an expression, A a constraint set and T an environment. Assume that
(T',E') = mred 5 (T,E) then there is a type 1’ and a time n such that A, T'+E’':t'$n’.

Proof Assume that (T',E’) = mred A (T,E). Assume also there exist a type ¢’ and a time m
such that m % n. As m is not a bounded time, it is a sum of orders. So, there is a time m’ and
an order M such that m ~ m’@® M. By the lemma 11, there are t;, %, m’ and e € rse((mredp

!
, such that A, e:ly —> 1y $1. But, in this case, the expression e is in sse A (mre
T hthat A, T'F e:t; "My, 8 1. But, in thi h ion ¢ is in sse  (mred A
(T,E)) and we know that ssep (mred A (T,E)) = 0. By contradiction, we get m ~ n. O

Two questions remain. First, are all significant sub-expressions really significant in practice?
In other words, is the set ssep (T,e) minimal with respect to the evaluation scheme? The answer
is: no. Consider the following example:

E = ((lambda ()
(if true
1
f...)))
(rec (g y) (... (g ...) ...)))

The application parameter is in the set sse (T,e), but is never applied in practice. Fortunately,
this kind problem is not linked to our time system but appears in all type systems. We can not
expect to solve it in any way.

Second, is this time system more powerful then the previous one presented in [D92]? The
answer, as we will see in the next section, is: yes.

6 Comparison

In the [D92] time system, all the recursive sub-expressions have a long latent time (i.e. not
bounded). It is then unable to detect what sub-expression are significant.

Definition 19 In this section, we use T, e:1$m when refering to the time system of [D92].
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We show that it can be obtained as a particular instance of the time system presented in this
report by setting A to be the empty set and Order to be the singleton {long}.

Theorem 20 Let T be an environment, e an ezpression, t a type and m a time. If the set Order
is equal to the sigleton {long} then the following equivalence holds:

g, Tre:t8$m< Thr,e:t8m

Proof It is straightforward to show equivalence between each couple of static rules using the
restriction defined by Order = {long} and A = @. We must also prove that the inclusion with
respect to A (i.e. AFmC m') reduces to the previous time inclusion (without constraint set).
This point is obvious. O

To compare the expressiveness of two time systems, we need to define what are the set of
significant sub-expressions (sse, (T,E)), the one-step reduction of an expression (red(T,E)) and
the minimal reduction (mred, (T,E)) with respect to the typing TF, e: t$m.

Definition 21 We define sse, (T,E), red(T,E) and mred, (T,E) as the reductions of the pre-
vious defined ones:

sse,(T,E) = {e| Tk, E:18long, Th,e:t,—54$1 and e € rse(E)}
red$(T,E) = (T[i: 11—1—*‘0]:5[6\'])
where Th, e:tlmto $1and ig FV(E)
mred,(T,E) = redS9(... reds”(T,E) ...)

The new time system is at least as powerful as the old one.
Lemma 22 Let A be a consiraint set, T a type environment and E an ezpression then the
following inclusions hold:

sseA(T’E) c ssew(T’E) c rse(E)

Proof First, the inclusion in rse(E) is straightforward, coming from the definition of sse, (T,
E). For the other inclusion, assume e € sse (T,E) then, by definition, we know that A, T+ E: t$

i
m® M and A, Tke: th_@_’m % $1. Now, by reducing (i.e. stating A = @ and Order = {long})
we obtain T+, E:t$1long and Tkwe:tlﬂifﬁi. O

But, the old one is less powerful than the new one.

Property 23 Let A be a constraint set, T a type environment and E an ezpression then:
sse, (T,E) & ssep (T,E)

Proof We just have to provide a counter-example. Assume that x is defined.

E = ((lambda (f g) g x)
e .
(rec (£ y) (£ y)))

e = (rec (£ i) (£ 1))

It’s easy to check that e is in sse, (T,E) but not in ssep (T,E). ]
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7 Minimal Time

This section should be called Minimal Time and Constraint Set as we show that, when an
expression is type correct, it has a minimal time and also a minimal constraint set (given the
minimal time).

Informally, we define an ordering on type judgments using an instantiation relation. Hence,
We can state a theorem (Th. 35) about a minimal time. It appears that, if this minimal type
judgment is not unique, all the minimal type judgments are equivalent (through the relation
). This set of minimal judgments can be ordered with an inclusion relation on constraint sets.
With this newly defined order, we can state a theorem about a minimal constraint set (Th.
32). Fortunately, although the minimal type judgment (w.r.t. the constraint set) is not uniquely
determined, all such judgments are a-equivalent (i.e. equivalent through a-renaming).

In practice, we first, define the order constraint set and, second, define the order on time.
We start with the function Ord used to extract the set of order variables from various objects.

Definition 24 (Ord) We write Ord(X) for the set of order variables present in the object X :
Ord(A) {M|ImCm'}eAAN(m~MVm'~ M)}
Ord(m) = {M|m~Mo&m'}

Ord(1) (M|t~ A(MeOrd(m)V MeOrd() V M e Ord(t))}
Ord(T) {M | 3i € dom(T) A M € Ord(T(i))}

I

i

Valid judgments stay valid when a substitution on order variables is applied.

Lemma 25 If the judgment A, Tt e:1$m holds, then for all substitution S that map order
variables from Ord(A, Tt e:t$ m) to times, we know that S(A),S(T)F e:S(1)$S(m) holds.

Proof By structural induction on the expression e. O

We also need to define the set of order variables and the set of significant order variables of
a judgment. Intuitively, an order variable is significant if it is required by a static rule during

typing.
Definition 26

Ord(A, Tke:t8m) = Ord(A)U Ord(T) U Ord(f) UOrd(m)
Sig(A, TFe:t8m) = Ord(T|rv(e)) U Ord(?) U Ord(m)

Some judgments are equivalent up to an a-renaming.

Definition 27 (=) A type judgment A, Tt e:t$ m is a-equivalent (equal up to an a-renaming)
to another A',T'Fe:t'$m', written A, Tke:t$m = A/, T'Fe:t'$m’', if there ezists a
renaming (a one-lto-one map), v, from Ord(A, T+ e:t8m) to Ord(A’, T'Fe:t'$m’). Then,
we have:

HA)=A' ()~

7(T)=T' ym~ m'

The inclusion relation on judgments is the extension of the inclusion on constraint sets. The
inclusion on constraint sets is the standard set inclusion. In fact, to get a more general relation,
we also allow the inclusion on type environments.
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Definition 28 (C) A type judgment A, TF e:t$m is included in another A’,T'Fe:t'$m’,
written A, The:t18m C A/, T'Fe:t'$m’, if there is a type judgment A", T"Fe:t"$m"

such that:
A" T"ke:t"8m"” = A/, T'Fe:t’'$m'
AgAM t~i”
TCT" m~m'"

When two judgment are included in each other, they are a-equivalent.

Lemma 29 Let A, Tke:t8m and A’,T'Fe:t'$m’ be two valid type judgments. Then, the
following implication holds:

A, THetSmC A, T'Fe:t'$m' . A L et et

A" T'Fe:t'Sm'C A, TFe:1$m }=>A,Tl-e.t$m=A ,T'Fe:t'8m
Proof From the hypothesis, we know there are two valid type judgments A" , T"Fe:t"$
m” and A", T"'Fe:t"$m" such that:

A" T"Fe:t"$m" = A'T'ke:t'8$m’
A" T"Fe:t"8m" = A, Tre:t$m
AcA” AICAIII
TQ—T" T! Q—T'"

t~t” tl~t’”

m~m" ml~m"l

Hence, there are two one-to-one maps v and v’ such that:

7(A”)=Al 7I(A)=A”I
7(Tll) = T/ 7’(T) - TI/I
7(t") ~ t, 7,(t) ~ tlll

7(,.nll) ~ ml 7l(m) ~ ml”

From m ~ m" we know that y(m) ~ 9(m") ~ m’. In the same way, we know that ¥(1) ~ y(1") ~
t’. From A C A” and A’ C A", we know that v(A) C 7(A"”) = A’ and that A’ C v'(A).
Hence we have the embedding of A’ in the two images of A, i.e. y(A) C A’ C v'(A). As v and
7' are one-to-one maps, the cardinalities of the three constraint sets are equal and Y(A) = A".
By a similar argument, we can prove that 4(T) = T’'. The existence of map v proves the
equivalence between A, THe:t$mand A/, T'Fe:t'$m’. (]

We now define the equivalence relation between judgments. The difference with the a-
equivalence is that we require only the constraint sets (respectively the type environments) to
be equal on significant order variables of the type judgment (respectively on free variables of the
expression).

Definition 30 (~) A type judgment A, TF e:t$ m is equivalent to another A',T'Fe:t'$m’,
written A, The:t8m ~ A', T'te:t'$m’, if there erists a map v, of order variables from
Ord(A, THe:t8m) to Ord(A’, T'F e:t'$m’) that is a renaming (one-to-one map) on Sig(A,
TFe:t$m). We have:

ﬂA's:‘,(A,T!— e:1$ m)) =4’ (8 ~ ¢/
Y(T|rv(e)) = T’ ym~m’

Included judgments are equivalents.
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Lemma 31 Let A,TFe:t$m and A’',T'Fe:t'$m’ be two valid type judgments. Then, the
following implication holds:

A Tre:tSmC A, T'Fe:t’'$Sm' = A, Tre:tSm~A', T'Fe:t'$m’

Proof From the hypothesis, we know there are a renaming v of order variables from Ord(A’,
T'Fe:t'$m’) to Ord(A”,T"Fe:t”"$m") and a valid type judgment A", T"Fe:t"$m"
such that:

A", T"Fe:t"$m"= A", T'Fe:t'$m’

7(A)=A"2A

7(T')=T"2T

Y(t) ~ 1"~ 1

y(m')~m” ~m

The map 7 is a renaming on Ord(A, TF e: t$ m) and hence it is renaming on Sig(A, TF e: t$ m).
The inclusion of T in T ” is only induced by bindings present in T " and not T. As these bindings
are not in FV(e), we can conclude ¥(T’|Fv(e)) = T|rv(e). By a similar argument about the con-
Is:tl.ra.ints present in A’, we can prove that 7(Alls:'g(A’,T’|- e:t'$m’) = A|Sig(A,TI- e:1$m)

We can now state the minimal constraint set theorem. It says that in a set of equivalent
judgments, there is a unique judgment (up to an o-renaming) that is included in all the other
judgments.

Theorem 32 (Minimal Constraint Set) Let A be a constraint set, T a type environment, e
an ezpression, t a type and m a time. If A, Tt e:t8$m is a valid judgment, then there ezists a
valid judgment Aa, Tat e:1a $ma such that:

(I) Aa,TalFe:taSma C A, The:t8m
(2) All other type judgments equivalent to A, TFe:t$m include Aa, Tate:ta$ma.

Proof See the section on minimal constraint sets in [FM89]. O

Now, we have to show that, among all the valid judgments for an expression, there exists
a unique (up to the equivalence relation) judgment more general than all the others. First, we
need a definition for the notion of instantiation.

Definition 33 (Instance) A type judgment A/, T'Fe:t'$m’ is an instance of another A, T
Fe:t8m, written A, The:t18m < A', T'Fe:t'$m’ if there erists a substitution v from orders
to orders such that:

7(A)C A’
Y(Tlrvie)) = T'|Fve
1)~ 1
A'ty(m)Cm’

When two judgments are both instantiations of each other, they are equivalent (under the ~
relation).

Lemma 34 Let A, Tre:t$m and A’,T'Fe:t'$m’ be two valid type judgments. Then the
following implication holds:

A Tre:tSm<A' T'Fe:t'$m’

. ~ A T gt '
A", T'Fe:t'Sm' <A, Tke:t$m }=>A,Tl‘e.t$m_A ,T'Fe:t'8m
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Proof From the hypothesis, there are two substitutions 4 and v’/ such that:

7A)c A’ 7'(A")cA
Y(Tlrvie)) = T'lrviey 7'(T'Irvie)) = Tlrv(e
()~ 7'(t") ~1
A'ty(m)Cm’ AFy'(m")Cm

First, we know that for all i in FV(e), v(T(s)) ~ T'(s), v'(T'(s)) ~ T(s) and v'(v(T(s))) ~
T(s). Now, from A’Fy(m)C m’, we know that v'(A’)Fv'(y(m)) Cv'(m’) and then v'(m’) is
embedded between v '(7y(m)) and m,i.e. Al v /(y(m))C v'(m’) C m. But m is a time expression
built from latent times of free variables of e. These latent times are invariant under v’ o v, so
7'(7(m)) ~ m and v'(m’) ~ m. Note that v’ o v is a one-to-one map on Sig(A,T+e:1$
m), and hence v and v’ are also one-to-one maps on Sig(A, TF e:t$m) and Sig(A',T'Fe:t'$
m') respectively. The equality of ¥(A) and A’ on Sig(A, T+ e: ¢$ m) is induced by the inclusion.
O

Finally, we can state the minimal time theorem.

Theorem 35 (Minimal Time) Let A be a constraint set, T a type environment, e an expres-
sion, t a type and m a time. If A, Ttk e: t$ m is a valid ]udgment then there is a valid judgment
A,, T.Fe:t, $m, such that:

(1) A,,TutFe:t,8m, < A, The:t$m
(2) All other valid judgments are instances of A, T.Fe: 1, $m,

Proof See [FM88, FM90]. O

8 Conclusion

We have presented a time system, i.e. a type system especially designed to provide expected
- run-time estimates. We have shown that it is more powerful than the previous proposed time
systems. It also enjoys a minimal time property. This time system is the first attemp to merge
as a whole the framework of the effect system from Lucassen and Gifford [LG88] with the sub-
typing techniques of Fuh and Mishra [FM88]. This allows us to detect and isolate each basic
recursion in a program written using a realistic language (with higher-order functions and side-
effects). Note that the time system presented here provides maximal time estimates but the
same principle may be used to give minimal times.
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