Yale University
Department of Computer Science

Factoring Report

Adam Poswolsky Advisor: Carsten Schiirmann
Yale University Yale University

YALEU/DCS/TR-1256
September 29, 2003 — revised: November 19, 2003

Submitted in partial fulfillment of the requirements for CS-690

Abstract

Factoring is the process of removing deep backtracking from a logical program. This
work focuses on a factoring algorithm designed to take a logic program in Twelf and
attempt to completely factor (remove all backtracking) it into the functional language
Delphin. We discuss the design and implementation and formally prove that a factored
program has the same semantics as the original program.

1 Introduction

Logic programs are known to incur a lot of backtracking during program execution. Often,
however, backtracking is unnecessary and should be avoided for the sake of efficient execution
and for the benefit of static analysis. For a subset of logic programs, which we call well-moded
logic programs (whose arguments are assigned a fixed input/output role), backtracking can
indeed be removed. If this removal is manual then it is both more prone to error and usually
less elegant than if it is done automatically. We have designed and implemented an automatic
technique called “factoring” that we describe in this paper.

Factoring proves to be an invaluable tool. Factoring removes all backtracking and is
semantics preserving — that is, the computational behavior of a logic program and its factored
cousin are indistinguishable. With respect to static analysis, factoring assists in coverage
checking, which decides if a set of patterns covers all cases and relies therefore on the ability
to locate sets of applicable cases at any point in the abstract execution of a logic program.
Thus, the main applications of factoring include compilation of well-moded logic programs
into low level languages via a cascade of intermediate languages and coverage checking. Also,
thanks to factoring, logic programs can be directly analyzed for output coverage (i.e., all cases
of pattern-matching against return arguments of subgoals are covered) without awkwardly
rewriting the logic program.

In this paper we discuss the design and implementation of a factoring algorithm in the
setting of Delphin [11]. Delphin is a pure functional programming language incorporating
a two-level design that distinguishes cleanly between the tasks of representing data and
programming with data. One level is the logical framework LF, serving as Delphin’s data
representation language. The other level is a type theory designed to support programming
using pattern matching and recursion. Delphin has the look and feel of a regular functional
language (such as SML), but also allows us to program with higher-order, dependently-
typed data structures such as proofs and typing derivations in a natural and intuitive way.
Delphin programs can be created in two different ways: programs can be parsed (as a
normal functional language) or they can be automatically generated to solve a logic program
represented in Twelf (the LF level of Delphin). Our factoring algorithm applies to programs
created via the latter method.

Intuitively, it should be clear that not every logic program can be converted into an
observational equivalent one that is deterministic. In fact, this problem is undecidable as
shown by Sawamur and Takeshima [7]. However, it is decidable for a smaller subclass. The
Mercury Project [4], for example, provides two different ways of running logic programs; it
provides both a fast deterministic and a somewhat slower nondeterministic algorithm. The
Mercury programmer can signal the logic programming engine by a pragma, which algorithm

to use. Mercury subsequently checks, if the given logic program is really deterministic before
it grants the request.

In comparison to the Mercury project, our goals and contributions are different. While
Mercury implements a checker for determinacy, our criterion can handle and execute a much
larger class of programs, namely those that can be easily converted into deterministic pro-
grams using program transformation (i.e. factoring).

Factoring a well-moded logic program proceeds in two steps. In a first straightforward
step, a program is transformed into a functional language N, whose operational semantics
reflects that of the logic programming language directly. Programs in N, for example,
can fail and subsequently cause backtracking. However, this step does eliminate the need for
logic variables. The correspondence between backtracking and what appears to be redundant
cases in N, will be illustrated.

We do not focus on the first straightforward step except to present the semantics for
N,,. In the second step, N, programs are transformed into Delphin (7,) whose operational
semantics is deterministic. The main result of this paper is that factoring provides a decidable
syntactic criterion for deterministic logic programs.

This paper is organized as follows. In Section 2 we discuss a basic example which will be
used to motivate our work. In Section 3 we discuss logical frameworks in general, and how
it is used in Delphin. The Delphin language itself is described in Section 4. In Section 5 we
discuss both N, (Section 5.2) and Delphin (7;) (Section 5.3). Then, in section 6, we will
discuss factoring. We will then show in Section 7 interesting Meta theoretical properties. We
will discuss some implementation issues in Section 8 and conclude the paper in Section 9.

2 Qualifying example

Throughout this paper we will focus on one qualifying example and show how it extends to all
logical programs which have the input/output behavior necessary to facilitate its conversion
into a functional paradigm. From this point we will refer to such programs as deterministic.
By deterministic, we mean that by the nature of the logic program, there exists a way to
represent it without using backtracking.

We will focus on a subset of ML which we call Mini-ML. To conserve space we only
discuss the fragment containing natural numbers, functions, and recursion, but the example
scales to other constructs as well.

Types T U= T =Ty

Expressions e 1= z|e Qe |fnz:7e|z]|se
| (case eofz = e |sx = eg)
| rec z.e

Note that we will use Delphin to evaluate Mini-ML expressions. The evaluation rules for
this Mini-ML are in Figure 1.

Expressions and inference rules have very natural encodings in the LF logical framework.
LF extends the simply-typed A-calculus with dependent types. We write I Fy, M : A for the
LF typing judgment, where I' is the LF context, M is an object and A is the object’s type.

e —v

ev_z — ' evs
Z 7z se<»sv
er < fn z.€] €y < Uy [va/z]e] — v
ev_app
61@262 —V

[rec z.e/x]e — v
ev_fn ev_rec
Mmzrze—Mmze rec r.e <= v

ez e =

ev_case_z
(caseecofz= e |sx = ey) >0

e—=sv efv /] > v

€v_Case_s

(caseeofz= e |sz= e) = v

Figure 1: Evaluation rules for Mini-ML

In the LF logical framework we represent judgments as types and derivations as objects.
For example, the encoding of a derivation of D of typing judgment e < v is captured by the
definition of the type family “of”:

™Mure—=v'="1T "D fevalTe' v’ (1)

where we write - for the representation function, and ¥ for the LF signature that captures
the representation of each Mini-ML type, each language construct and each individual rule.
We will focus on programs, such as Mini-ML, which can easily be represented in LF, and
explain how to convert it to Delphin (which requires factoring) whenever possible.
Further encoding examples of Mini-ML will be presented in subsequent sections.

3 Logical Frameworks

As already mentioned in the previous section, we will focus on logic programs that have been
written in a Logical Framework and attempt to convert them to Delphin.

A logical framework must guarantee that the underlying concepts being represented in
the framework are represented adequately. For example, the correctness of a Delphin program
that infers types and typing derivations of expressions of some calculus rests in the first place
on an adequate encoding of expressions and typing derivations.

Of the many available logical frameworks, we have chosen to focus on converting logic
programs represented in LF [3]. This is most convenient since LF already serves as Delphin’s
data representation language [11]. LF is expressive enough to represent many concepts in
computer science, logic, and formal methods elegantly, and the conciseness, adequacy, and
efficiency of LF representations make them superior to standard datatypes.

The type-theoretic aspect of this paper revolves around LF and a brief introduction is
warranted here. In addition to the standard syntactic categories for objects, types, and
kinds, we will also use substitutions in a critical way throughout this paper so we briefly
introduce them here. (see also, for example, [1]).

Kinds K == type|llz:A. K

Atomic Types B == a|BM

Types A = B|Illz:A;. Ay

Objects M = z|c|M My| z:A. M
Signatures Y u= |¥a:K|Xc: A
Contexts r == -|ILz:A
Substitutions o = -|o,M/x

A term may come form any of the syntactic levels. As usual, we identify a-equivalent
terms. We take n-conversion as the notion of definitional equality [3, 1]. Substitutions are
capture-avoiding and written as U[o] or V[o] with the special form U[M/z] and V[M/z].

Signatures, contexts, and substitutions may not declare a variable or constant more than
once, and renaming of bound variables may be applied tacitly to ensure that condition.
Besides equality, the main judgment is typing I' = U : V', suppressing the fixed signature X..
We always assume our signatures, contexts and types to be valid.

Example 1 (Propositional Hilbert Calculus) An LF signature that encodes the Hilbert
calculus in LF is given in Figure 2. Terms are captured by type i, formulas by o, and proofs
in the Hilbert calculus by the type family hil : o — type. As usual we omit the leading

[1-binders of variables whose types are inferable, denoted above by uppercase variable names.
O

imp : o0 — 0 — 0.

forall : (i — o) — o.

k : hil (imp A (imp B A)).

S : hil (imp (imp A (imp B C)) (imp (imp A B) (imp A C))).

mp : hil (imp A B) — hil A — hil B.

Figure 2: The Propositional Hilbert Calculus

Type-checking and definitional equality on well-typed terms for LF are decidable. Every
term is equal to a unique S-normal 7n-long form which we call canonical form. In this paper
we assume that all terms are in canonical form, because it simplifies the presentation signif-
icantly. In the implementation this is achieved incrementally, first by an initial conversion
of input terms to n-long form and later by successive weak-head normalization as terms are
traversed.

Since it is perhaps not so well-known, we will give only the typing rules for substitutions,
which are used pervasively in this paper.

IMto:T - M: Alo]
e ' (o,M/z) : (T, z:A)

For a context I' = (x1:41, ..., zy:Ay), we define idr = (z1/z1,...,2,/xy,) so that T Fidp : T.

Composition of substitutions is defined by () o 0 = () and (M/z,0) o 0 = (M|[o]/z,0 o
o). We will only apply a substitution I - o : ' to a term ' H U : V or a substitution
['F 6 :T" resulting in I'" - Ulo] : V]o| and " - 0 o o : I'”, respectively.

3.1 Representation of Mini-ML Deductive System

Figure 3 illustrates how we encode Mini-ML in LF. As usual we omit the leading II-binders
of variables whose types are inferable. Note that the “function” eval is represented as a type
family.

exp : type.

z I exp.

S . exp —> exp.

app : exp —> exp —> exp.
fn : (exp -> exp) —-> exp.

fix : (exp -> exp) -> exp.
eval : exp —> exp —> type.
Jmode eval +E -V.

Figure 3: Mini-ML setup

3.2 Encoding Mini-ML function as relations

From a functional programming perspective the LF type families “eval” and “exp” can be
regarded as datatype declarations. Each constant can be seen as a constructor of the type
family that is named in the head of the constant’s type. For better readability, the constants
in the Mini-ML encoding above are grouped in a way that clarifies this view. We can see
the Mini-ML “eval” function represented in LF in Figure 4.

4 Delphin

Delphin is a functional programming language which is designed to allow programming with
datatypes that consist of a fixed set of constructors along with dynamic extensions of these
datatypes valid in some world. The core language that is presented in this paper has been im-
plemented and can be accessed through [11]. Delphin’s syntax is inspired by that of Standard
ML of New Jersey. Delphin permits function definition by pattern matching and recursion.

5

ev_z: eval z z.
ev_s: eval (s E) (s V)
<- eval E V.
ev_fn: eval (fn E) (fn E).
ev_rec: eval (rec E) V
<- eval (E (rec E)) V.
ev_app: eval (app E1 E2) V.
<- eval E1 (fn E1’)
<- eval E2 V2
<- eval (E1’ V2) V.
ev_case z : eval (case E1 E2 E3) V’
<- eval El1 z
<- eval E2 (V).
ev_case_s : eval (case E1 E2 E3) V’
<- eval E1 (s V1°)
<- eval (E3 V1’) V’.

Figure 4: Mini-ML operational semantics

Its datatypes are essentially LF types, and the objects manipulated by Delphin programs
are LF objects. Delphin’s implementation also includes a type checker and an interpreter.
Delphin’s type system is deceptively simple, since it only provides type constructors for func-
tion and product spaces. Although these constructors provide dependent types, there is no
mechanism that would allow programmers to define their own Delphin types. The current
design does not allow programs to be polymorphic, but we plan to investigate the issue of
polymorphism in future work.

4.1 Datatypes

Delphin’s datatype declarations are LF signatures, which include declarations of constructors
for type families and worlds. The Twelf system [6] is an implementation of the logical
framework LF which is designed to facilitate developing, implementing, experimenting with,
and verifying properties about deductive systems, such as the Mini-ML type system in
the example given above. In fact, Twelf is an extraordinarily useful and effective tool for
engineering, developing, and debugging representations of data, and we have accordingly
chosen to use and parse Twelf signatures as Delphin datatypes.

Programmers are free to extend datatypes dynamically during evaluation as long as these
extensions conform to the rules stipulated by the world in which a function is defined. We
say that a function cannot leave the world in which it lives during evaluation. The idea of
worlds is not new; it was introduced in [8], studied as a means of defining recursive functions
in [9], and applied to reasoning by induction in [10]. Worlds have also been implemented in
the Twelf system [6], and are instrumental for the problem of coverage checking.

4.2 Language Features and Converter

Delphin programs consist of variable declarations, value definitions, and function definitions.
Local function definitions are also possible.

There is a built-in converter that will convert a logic program written in Twelf to some
corresponding N, code by taking each judgment and making a new case out of it. For
example, the converter will translate the code in Figure 4 to what we see in Figure 5.

This is the expected result of converting the type family eval : exp — exp — type into
eval : Ve:exp Jv:exp.T

eval :: all {e:exp} exists {v:exp} true
fun eval z = <z, <>>
| eval (s E) =
let
val <V, <>> = eval E
in
(s V)
end

| eval (fn T E) =<fn T E, <>>
| eval (app E; Ep) =
let
val <fn T E|, <>> = eval E,
val <Vy, <>> = eval E,
in
eval (E| V)
end
| eval (fix E) =
eval (E (fix E))

| eval (case E; E, ([x:exp] E3 x)) = let
val <z, <>> = eval E;
val <V, <>> = eval E,
in
<V, <>>
end
| eval (case E; E; ([x:exp] Eg x)) = let
val <s Vy, <>> = eval E;
val <V, <>> = eval (E3 V;)
in
<V, <>
end

Figure 5: A Mini-ML evaluator in A, (result of converter from LF)

The first instruction declares the variable eval to be of type Ve :exp.dv :exp.T. In
the text we write types in mathematical notation; in Delphin source code types are given
in corresponding ASCII notation. V stands for the Delphin-level dependent function space,
and 1 stands for the Delphin-level dependent product space; these should not be confused
with the LF-level II. T corresponds to the unit type of ML.

The next instruction defines the program eval by pattern matching; it closely resembles
an ML function declaration. <z, <>> in the first case of eval illustrates the syntax for pairs.
<> is () in ML, and has type T. When programming an evaluator for Mini-ML programs
there is no need to define a notation for substitution or environments. These concepts are
provided by LF implicitly; the programmer can take advantage of them by simply applying
E3 to V; in the second case of case, E| to Vs in the app case, and E to (fix E) in the fix
case. Therefore, juxtaposition can have one of two meanings. Depending on where it occurs,
it is either an LF-level application or a Delphin-level application.

Note that the converter results in code that makes sense in N, It is not yet fit for
execution in a functional paradigm, since there is this question over which case is to be used.
This refers to the match-redundant problem we see with case. Note that the process of
factoring is used to merge redundant cases together, whenever possible. If an N,, program
can be factored, the result is guaranteed not to have redundant cases, and it can then be
executed using a deterministic operational semantics (7,) that we would intuitively expect.

5 Semantics

5.1 Notation

We introduce the following notational conventions.

5.1.1 Variable Names

We use the following convention for naming meta-variables.

= Delphin Programs

LF Terms and Block Variables

Result of Factoring (See Section 6)

A subset of Delphin Programs which constitute values (See [11])

Stands for a variable of any of the above (All meta-variables above also match with this)
Stands for objects on the SC continuation stack (Section 5.2)

= Described in Section 5.1.3

I

I

—FEr<HE
|

Factoring only has an effect on Delphin programs (P). As we will see, LF and Block
variables are left untouched by this process.

Note that the introduction of A is just used to simplify the subsequent inference rules.
In many cases there would be multiple versions to deal with application and with pairs, but
this formalization allows us to eliminate those extra rules.

5.1.2 Case Statements

Delphin case statements are defined as a list €2 such that

Qu=- | Q Uy~ P)

5.1.3 Introduction to L

There are many instances of programs which do not evaluate to any result. The result of
evaluating such a program will be to return L. Note that in this report, we do not consider
1 a value (it is separate and will have a separate semantics)

Note that there is a difference between a program which does not terminate and a program
which returns 1. A non-terminating program also does not evaluate to a a value, but should
not be confused with thinking it returns L. The only way a program will return L is if it is
trying to match with a case statement and cannot find any that match. This is analogous
to a non-exhaustive match failure in ML.

5.2 N, Operational Semantics

Recall that to convert a logic program to Delphin’s operational semantics, we proceed in two
steps. We first do a conversion from Twelf into N, and then we show how to get from N,
to Delphin (7). In this section we discuss N, which is allowed to have redundant cases.
We define an operational semantics, using continuations, which we claim (without proof)
has the same power as Twelf’s logic programming engine. More specifically, the result of
running an N, program is exactly the same as running it (pre-converted) in Twelf’s logic
engine.

We will introduce two continuation stacks. We introduce a SC (success continuation)
and a F'C (failure continuation) which are defined in Figure 6. Notice that both continuation
stacks contain closures. The reason for this is that we are putting aside information on what
needs to be executed and we need to include the environment in which it was to be executed.

SC = | SC,(Tyn; M)
M = Xletx=VinP | JAzpairl(V;P) | Az.pair2(V;;Vs)
| Az.applPA | Az.app2PV
FC = - | FC,(T;n;SC;case)

Figure 6: Continuation Stacks used in N, Operational Semantics

In order to capture the deep backtracking effect that Twelf’s logical engine exhibits
we introduce both continuations to mirror how Twelf would execute the program. The
success continuation stack (SC) is used to store what should be done next if the current
operation results in a value. The failure continuation stack (FC) holds what to do when
the computation fails to return in a value. As we see, the only place where there is some
nondeterminism is in the case statements. Therefore, the FC only holds case statements so
we know what to continue trying in case it fails.

We now focus on describing the rules relating to the stack (Figure 7). The operators are
of the form o
FC;8CHV =S V!

and e
FC=YV
sc
The first set of rules, —, refers to a situation when we have finished a partial step which

resulted in V' and now we look into SC to continue the desired computation. Note that we
must include FC since if it fails in this step, it still needs to go into the FC stack.

FC . . . i

The second set of rules, <, refers to a situation when we have hit a point when the
evaluation has failed so we need to go back and continue with what is on the FC stack since
that contains the parts in the execution where we had possibly more than one choice of what
to do.

ev_SC_empty
FC; -V &Y
L;n; FC;SCHM[V' 2] >V T;n; FC;SCHM[V' /2] = L
ev_SC_nonempty ev_SC_nonempty L
FC; (SC,(T;m: Ae. M) F V' &S v FC: (SC, (T;m: A2.M)) F V' 5 1
FC;SCHp~ Q= V D;FC;SChHp~Q— L
ev_FC_nonempty ev_FC_nonempty L
(FC, (T;n; SC;case Q)) Sy (FC, (T;n; SC;case Q)) &0
ev_FC_empty
K

Figure 7: Continuation Stacks Rules resulting in Value (on left) and in L (on right)

With the notion of the stacks set up, we now introduce the actual rules for NV,,. Since we
introduce this concept of evaluating to L we have two sets of rules (Figure 8 and Figure 9)

Most of the rules are defined as we would expect, and the interested reader is directed to
[11] for a further in-depth explanation. We will describe here some of the basic differences
in these semantics which make them unique.

10

FC;SCF L &S v

ev_LF
Ty FC;SCHL—V
, , SC sc
i FC;SCHp(x) =V FC;SCHV'SV FC;SCH{) =V
ev_var ev_unit
T;n; FC;SCHx =V T;n; FC;SCH () =V
FC;SCI—{U;A:L':A.P}?—C;V I;(n,ux € F.P/x); FC;SCFP —V
ev_A ev_rec
s FC; SCHAz: APV T;n; FC;SCHux € F.P—>V
T;n; FC; (SC, (T;m; Azlet x =zin P))F P > V T;(n,V'/x); FC;SC+ P, -V
ev_let ev_let.SC
Ly FC;SChHletx =P in P, =V [;n; FC;SCRlet x =V in bV
T;n; FC; (SC, (T;m; Az.appl z As)) F P > V
ev_app
s FC;SCH P Ay >V
T;n; FC; (SC, (T;n'; A2.app2 P) 2)) F Ay = V T;(n,Vo/x); FC;SC + P -V
ev_app-SC1 ev_app-SC2
T;n; FC;SC - appl {n';Ax € A.P[} Ay >V T;n; FC;SC - app2 P/ Vo > V
T;0; FC; (SC, (T;m; Az.pairl(z; P2))) - A = V .
ev_pair
L;n; FC;SCF (A P) - V
T;n; FC; (SC, (T;m; Az.pair2(Vi;2))) F Po = V FC;SCH{(Vi;Va) >V
ev_pair.SC1 ev_pair SC2
T;n; FC; SC + pairl(Vy; Po) =< V T;n; FC; SC + pair2(Vy; Vo) = V

;FC;SCHp~Q =V
T;n;, FC;SCFcase Q -V

ev_case

hon' =nq F;n’;(FC,(F;n;SC;caseQ));SC’I—P‘—>Ve o pon' #n T;FC;SCHn~Q =V
v_y ev_no
[, FC,SCFy~ (Q,(¥p4h s P) s V [, FC;SCFn~ (Wb P)) sV
rc Sy .
ev_nil

I;FC;SCknp~- -V

Figure 8: N, Operational Semantics resulting in a value

The first important rule to mention is ev_LF. As mentioned earlier, L. matches both LF
and Block objects. We just define them to evaluate to themselves. Therefore, we see when
it gets to such a variable, it simply goes into the SC stack to see what to compute next. We
also see that this extra rule allows us to simply ev_app and ev_pair to avoid multiple versions
of the same inference rule.

The ev_let rule determines how to evaluate let statements in Delphin. When we have a
program of the form “let x = P; in P%»” we want to first evaluate P; and then take the result
and continue to evaluate P, with x mapped to the result of the evaluation of P;. If you were
to trace out the execution of ev_let you will find that it evaluates P; and then continues to
evaluate P, in ev_let_SC. Notice that if it were to fail in the evaluation of P; it can go into
the F'C' and never evaluate P, which is the behavior we desire.

Note that the only rule which explicitly goes into the F'C' is ev_nil. This rule is important

11

because it handles the case when we have a case statement and all cases have been exhausted
(either by failing to match or other failures along the way).

The analysis of ev_app and ev_pair are similar to that of ev_let and will therefore be
omitted.

When we evaluate a case statement we check if there exists an 1’ such that ¢ on’ =n If
this is the case, it means that the environment 7 matches the case described in (V> — P)
and we can try to execute that code that is relevant to this case (ev_yes). Note that the
current environment and SC are stored with the rest of the cases in the FC, so that if this
execution fails along the way it will try another case. Similarly, in the ev_no case we know
that the top case does not apply, so we just repeat with the rest of the cases.

FC;SCHL S L

ev.LFL
L FC;SCHL — L
s , SC sc
Ly FC;SCEnx) =V FC;SCHV' < L FC;8CH () — L
ev_varL ev_unitL
Oy FC;SC Fx— L Ly FC;SCH () = L
FC;SC+ {n;Az : A. P} 51 Ty(n,pux € F.P/x); FC; SCHP — L
ev_ AL ev_recL
Dy FC;SCHAz : A.P— L I FC;SCHux € F.P— L
T;n; FC; (SC, (Tym; Azdet x =zin P)) F Py — L T;(n,V'/x); FC;SC + Py — L
ev_letL evlet SCL
Ty FC; SCHletx =P in P, — L Ty FC;SC Flet x =V'in Py < L
T;n; FC; (SC, (Tym; Az.appl z A2)) F P — L ;n; FC;(SC, (T;n'; Az.app2 P 2)) F Ay — L
ev_appl ev_app SC1L
T FC;SCF P Ay — L [y FC; SC & appl {n/;Ax € A. P} Ay — L
T;(n,Va/x); FC;SCF P — L
(1, Ve/x) ! ev_app SC2.L
[yn FC;SC & app2 P} Vo — L
Tyn; FC; (SC, (T;m; Az.pairl(z; P2))) F A — L Lyn; FC; (SC, (T;n; Az.pair2(Vy;2))) F Py — L
ev_pairL ev_pair SC1L
Tyn FC;SC F (A Py) — L Tyn; FC; SC + pairl(Vy; Py) — L
FC;SCF (Vi;Ve) — L
ev_pair SC2 L

Dyn; FC; SC + pair2(Vy; Vo) — L

;FC;SCHnp~Q— L

ev_casel
Ly FC; SC Fcase Q — L
won' =n Tin';(FC,(T;n;SC;case Q));SCFP < L pon'#£n T;FC;SCHnp~Q— L
ev_yes| ev_nol
D FC;SCEnp~(Q,(¥>tp > P))— L LFC;SCHn~(Q,(Tbyp > P))— L
e 1 _
ev_nil L

I;FC;SChEnp~-— L

Figure 9: N, Operational Semantics resulting in L

The rules for evaluation to L are a straightforward adjustment from the rules that evalu-
ate to a value. After careful analysis of the rules, the reader should notice that any program
that evaluates to L must be the result of a non-erhaustive match failure and its derivation
will include a top reference to ev_.FC_empty (Figure 7).

12

5.3 Delphin’s Operational Semantics (7,)

The N, operational semantics, although valid, do not make much sense in a functional
language. Notice in Figure 5 that when one looks at the code we have a match redundant
situation which is not allowed in any other functional programming language, and also
shall not be allowed in Delphin. The implementation presented for A, allow for this deep
backtracking which is what factoring strives to remove.

One possible solution is to require the logic programmer to enforce that no two judgments
have the same head. Therefore, the logic programmer would have to rewrite the logic program
in Figure 4. One possible conversion is to remove the ev_case z and ev_case_s with the code
shown in Figure 10.

eval : exp -> exp -> type. ‘name eval D.
Y%mode eval +E -V.
eval’ : exp —> exp —> (exp —> exp) —> exp —> type.
Y%mode eval’ +E1 +E2 +E3 -V.
ev_case : eval (case E1 E2 E3) V’
<- eval E1 V
<- eval’ V E2 E3 V’.
eval’_z : eval’ z E2 E3 V’
<- eval E2 V’.
eval’_s : eval’ (s V) E2 E3 V’
<- eval (E3 V) V’.

Figure 10: Part of a new clean version of Mini-ML

Notice that although this is perfectly valid, it is quite cumbersome on the programmer
and forcing the programmer to add additional judgments and type families simply to avoid
this issue should be avoided whenever possible. This is the motivation for factoring. We
want to show that if a program is factored, then we can run it with a simpler operational
semantics which follow a functional paradigm. Since the N, operational semantics mirrors
Twelf’s logic programming engine, we know that that we will get the same result as if we
executed the logic program in Twelf.

Note that the result of factoring removes all need of backtracking. This already suggests
that the class of logic programs that can be factored is limited to those that are “determin-
istic” ([12] [4]). This is discussed more in Section 6.2.

We now present Delphin’s operational semantics. Again the reader is directed to [11]
for a more detailed analysis. The rules presented here have the same semantics but differ
slightly in the presentation. A brief overview of the rules (see Figure 11 and Figure 12)
follow.

13

Linknx) =V

——ev_delphin_LF —— ev_delphin_var
IipkE L < Ln) IinkFx—V
]] TinFA Vi Tipk PV, . .
—— ev_delphin_unit ev_delphin_pair
Link () =) Link (A Pp) < (Vi;V2)
Dsnux € F.P/xFP <V
ev_delphin_A ev_delphin_rec
CinkAz: AP {n;Az: A. P} inkpuxe F. PV
ik PL=»Vy T Vi/xE P,V _ TFp~QV _
ev_delphin_let ev_delphin_case
Iinkletx=Pin P>V I'inkcase Qe»V

Cipk- P {n;Axe F.P]} Tink Ay Vs, T;n,Va/xkP —V

ev_delphin_app

pon'=n TPV . Yon' £n Thkn~QV .
ev_delphin_yes ev_delphin_no
Tk~ (Q,(¥>ep— P)) >V Pk~ (Q,(Tpyp— P)) >V

Figure 11: Delphin (7,) Operational Semantics resulting in a value

An important rule again is ev_delphin_LF which handles what we do when we reach a LF
or Block variable. Notice that any such variable evaluates to itself.

Notice that the A variable is used in ev_delphin_app and ev_delphin_pair to avoid the
multiple definition of the rule we see in [11].

The most significant part of this simpler operational semantics, are the rules to handle
Delphin case statements. We see if we find a matching case, it uses ev_delphin_yes, which just
executes that one case. Therefore, if there are redundant cases, those other cases will never
be considered. However, we will show that if a program is factored, it will never have these
redundant cases, and the final result would match.

14

Tink P> L
Tintletx=P in P, = 1|

ev_delphin_let 1,

Tink (A Po) = L

ev_delphin_pair_L

Iipux € F.P/xF P« |

ev_delphin_rec L
inkFpux € F.P=s» L

TipkPL—»V, TypVi/xkFPy— L
Tintletx=P in P, = 1|

ev_delphin_let L

I‘,nl—Alf—»Vl F77)|_P2“—))J_
Tink (A1 Po) = L

ev_delphin_pair_ Lo

TEp~Qe L

ev_delphin_case L
T;pkcase Q= L

Oink-P— {n;Axe F.P[} TinkAy= L1

Oipk P L

ev_delphin_appl; ev_delphin_app_lo

Tink P> {f;Ax€ F.Pl} Tink Ay Vs
F;T]l_Pl AQ‘—)J_

Tyn',Vo/x =P = L

ev_delphin_app_l3s

pon'=n Tin'FPerl
Tk~ (Q,(T>tp > P)) = L

pon'#£n Thp~Qer L
T~ (Q,(T>tp = P)) = L

ev_delphin_yes | ev_delphin_no L

ev_delphin_nil

TkFp~-=» 1

Figure 12: Delphin (7;,) Operational Semantics resulting in a L

The rules for = that result in L are a straight-forward definition based on Figure 11.
Notice that rules with multiple premises, such as ev_delphin_let need to have multiple rules in
the L case (ev_delphin_letl; and ev_delphin_let_l,) to capture that either one of the premises
could fail. Note that in the N, operational semantics, this issue did not come up since we
followed a continuation based approach and the inference rules had single premises.

6 Factoring

6.1 Introduction

The central insight and main contribution of this work is factoring, which converts logical
programs that run in N, into programs that run on Delphin’s real operational semantics.
Factoring attempts to merge redundant cases together. Note that the merging of two cases
not only facilitates the use of a functional paradigm, but also eliminates what would otherwise
be duplicate work. If there are two cases which share some of the same premises, when one
fails, it would be nice to have saved the result of the premises that we would have to repeat.
However, if it is merged together, we know longer have to worry about this repeated work.
Our qualifying example, Mini-ML, also illustrates this behavior. As depicted in Figure 5, we
see that both “case” statements do eval F;.

Therefore, factoring can be defined as a first attempt to remove deep backtracking and
convert programs into a functional program. The benefits of running factored programs are
immense:

15

1. Deterministic at each step (see the operational semantics)

2. Replace Higher-Order Unification (substitutions) with Matching. Since Matching is
faster than Higher-Order Unification, this yields faster evaluations.

3. It can be compiled. This is the smallest hurdle, but best illustrates the overall moti-
vation for this work. Besides the enhances in representational power by using Delphin
(with respect to the execution of logic programs), representing it in this purely func-
tional paradigm allows us to go one step further — we can compile it into machine code.
Once a program compiles into Delphin, we know it is type correct, and then we can
simply build our own compiler, or output the equivalent SML code.

There are some issues over which would be the better approach. Although we can
output it as SML code, since we are doing higher-order pattern matching, some ad-
justments would also have to be made. However, since it is not very difficult to convert
this to machine code, we can achieve an unprecedented increase in the speed of evalu-
ating logic programs.

For inspiration, before we give the rules, we will show the results of factoring our Mini-
ML example. Recall that the conversion from LF to Delphin resulted in the evaluator in
Figure 5. The factored version of this program is depicted in Figure 13.

eval :: all {e:exp} exists {v:exp} true

fun eval ...

| eval (case E1 E2 ([x:exp] E3 x))
case (eval E1)
of <z, <>> ——> let
val <V’, <>>
in
V7, <>>
end
| <s V17, <>> -=> let
val <V’, <>> = eval (E3 V1’)

eval E2

in
V2, <>>
end

Figure 13: A Mini-ML evaluator (converted to Delphin from LF and Factored)

6.2 Requirements

As already alluded to, not all logic programs can be factored. First, the Input/Output
behavior of the program must be well-defined (well-moded). Recall in our Mini-ML example

16

we had “%mode eval +E -V”. This states that we know all calls to the eval program will
specify the first variable as input and the second variable as output. If we are dealing with
a logic program which switches what it expects as Input/Output then it cannot be encoded
in a functional paradigm.

The class of logic programs which can be automatically factored require that the preceding
list of subgoals are the same (even in the same order) for each case that is collapsed into one
case.

Although it is possible to widen the definition of factorable programs to allow subgoal
reordering, we have chosen not to adopt such a definition. In particular, due to dependencies,
it is not easy to reorder subgoals even if those reorders are semantic preserving. We therefore
argue that our factoring algorithm is the most sensible to be used in practice, and this is the
one we have implemented.

It is important to also repeat that it has been proven that it is not possible to detect all
logical programs that can be factored [7].

Note: We must also stipulate that there does not exist one case which matches a proper
subset of another case (there can be no partial overlap). This is formalized in the Appendix
(Definition 2). Most logic program that we are concerned about fall naturally into this class,
and it is often possible to convert other logical programs that do not meet this requirement
into a semantically equivalent one that does. For example, we will define a constructor S to
stand for the standard successor function, and the constant z to stand for zero. Assume we
have three cases which differ in that they match against:

(1) ssx —do P,
(2) sz—do P,
(3) sy = do P

If we have as input ”s z”, it can match both (2) and (3). (In this case if we pick (2), then we
run P;. Note that the details are omitted for presentation purposes.) Similarly if we have
as input ”s s z” it can match both (1) and (3). To remedy this situation all we have to do
is create four cases out of the three that are:

A)ssx—do P

B) sz—do P

(4)
(B)
(C) sz — do Py[z/y]
(D) 85 x — do B[(sz)/y]

Now it is clear these cases have the same semantic meaning, and now fit the requirement
to be factored.

17

6.3 Factoring Algorithm

We now describe the factoring algorithm. This is broken up into four different judgments,
which are all given and explained below. We will not give a definition of factored programs,
but instead employ the idempotence property of factoring to declare a program F' to be
factored if and only if factoring F' results in F' (Section 7).

6.3.1 Main Judgment (Jjggt)

We write P ' F to express that F' is the result of factoring P. The rules in Figure 14
traverse P until a case statement is found, which is subsequently passed to fod e,

fact_LF
L%
X fact_var — fact_unit
x ' x 0 %)
Jact fact
P~ P~
5 fact_A X fact_rec
Ao :D.P)\ D.F ux€F,. PR yxe k. F
Al fact FAl P2 fact FP . p fas fact F oAy fact FA
fact_pair fact_app
(Ar; Po) %" (Fy,; Fp,) PAS PR,
P1 fact F1 P2 fact F2 0 faif;gzse Q,
) fact_let 5 fact_case
letx = P, in P, fag let x = F} in F} case O 7% case O

Figure 14: Rules for fogt

18

6.3.2 Factor Case Judgment Jact cpoe

We write Q 7% Q0 if a list of cases Q factors into Q. A list of cases is factored left to
right, by folding in case by case to the already factored list. The three rules defining the
traversal are shown in Figure 15.

QTGS e (Teyes P) ="
case_empty case_nonempty

Josgee Q, (Wb s P) 1L

QB Ve @sy— Pt PR

case_new

Q, (U P) 1 EE Q0 (Upyp s F)

fact—case
s

Figure 15: Rules for

6.3.3 Folding Cases (& Judgment)

We write Q @& (Vtrianglerighty — P) = Q' to fold a case into €2, which is assumed to be
factored already. The rules are given in Figure 16 and compare the case (¥ > — P) to
every single case in). Since () is already factored, there is at most one case with pattern
¥ in . Two patterns should be considered equal modulo reordering of variables declared
in their co-domains, which is established by a renaming substitution ¢. Thus, the ¢ used in
the premise of fold yes and fold no satisfies Uy ¢ : Uy, While traversing €2, the merging
operation is guarded by the condition that v; and 5 are equal modulo renaming. If it
cannot find any such ; and 15, then we cannot attempt to fold it in with any of the cases
present in) and we write Q @ (¥ > — P) 1, whose rules are also in Figure 16.

Note that ¢ refers to only renaming substitutions.

fact fact fact

Pr=1pot P~ F P~ F, FixBlt]=PF PBMFBfId
old_yes
Q,(\I/lb'll)ll—)Pl)@(\I/QDQ/)Q'—)PQ):Q,<\IJ1D7/)1I—)F’;)

fact

’l/)17é1/120t QEB(\I/QDQ/JQI—}PQ):Q/ P, ~ F
Q)(qub/lpl}_)Pl)@(qJQD'(/JQHPQ) :Q/,(\Illb’(/)li—)Fl)

fold_no

foldt_empty
‘@(\PQDwQ HPQ) T

Y1 # ot Q& (Vo thy = P) T
Q,(q/1>/¢1HPl)®(W2D¢2HP2)T

foldt_nonempty

Figure 16: Rules for &

19

6.3.4 Merge two Delphin Programs together (x Judgment)

We write P, x P, = P; to express that Pj is result of merging P, with P,. The rules
are shown in Figure 17. A necessary precondition for merging two programs is that both
programs compute exactly the same values up to the point when another case statement is
encountered. Because of the way logic programs are translated into N, only a few cases
actually do something interesting, all others act as the identity. The rule merge_let, for
example, enforces that all subgoals are the same. The rules merge_fold and merge new
deserve special mention as they both try to fold the case (¥ > +— P) into Q. The former
succeeds, the later appends it to €, after factoring its body.

—————— merge_unit merge_LF
0x0=20 LxL=1L
merge_A merge_rec
(M : D.P)x(Az: D.P)= Az : D.P (ixe F.P)x(ux € F.P)=ux € F.P
PlB *PQB = P3B i
merge_app merge_pair
(PA)x(PA)=PA (Avy; Prg) * (Avy; Pag) = (A Pay)
Qe Wry = P) =9 Q@ (UsypsP)t PEF
merge_fold merge_new
case 0 x case [(¥ > 1) — P)] = case ' case Q x case [(U 1) +— P)] = case (Q, (> — F))
PLB * PQB = P3B
merge_let
(leex:D=P,inP)*x(lesx:D=P,inP,)=letx:D; =P, in P

Figure 17: Rules for %

To give some justification as to why we chose the rules as they are, lets see why we can’t
change merge_pair to try to merge both (A;,; Pi,) (as right operand) and (Ay,; P,) (as left
operand) where (A;, # As,) and (P, # P,,). Clearly, if such a merge did take place, the
result must be some pair of the form (As,; P;,). Let us assume we had the case that A;,
evaluates to V; and P, evaluates to L and Ay, evaluates to V, and P,, evaluates to V.
Clearly the desired result would be (V5; V3), but based on our semantics we would get the
result (V1;V3) which does not make sense since neither of the two programs being merged
would result in that value.

Similar arguments can be made for the definition of merge_app and merge_let.

The most important rule is merge_fold, which uses the & judgment to add (V> — P)
to the list of cases in (2. Note that we are assuming that the operand on the right is a list
containing eractly one case. The definition could easily be extended to allow for a list of
cases. However, this is designed to factor Twelf logical programs, which satisfy this invariant.

20

7 Meta Theoretical Properties

Here we would like to prove that Delphin’s (7,) operational semantics is semantically the
same as N,’s operational semantics with respect to factored programs. In other words, we
would like to show that if we can factor a program, then the result of using the unfactored
version in N, is the same as the result of using the factored version on Delphin.

Note that in this section we just highlight the proof. A detailed proof can be found in
the Appendix (Section 10).

First we remark, that the following meta theoretical investigation cannot be carried out
without the proper definition of observational equivalence modulo factoring between values
and environments, which is denoted as = (See Appendix, Definition 1).

= is defined as

e V = W is defined recursively as:

—IfV={nAz:D.P} and W = {n; Az : D.F'} then

x* =1
fact
* and P ~

— IfV = (Vi; V) and W = (Wy; Wy) then Vi = W, and V, = W,
— Otherwise, V =W

e 1) = 1 is defined recursively as:

— (n,ux € F*. P/x) = (1, ux € F*. F/x) if the following is true:

* 77:*>771

*plffff

— (n,V/x) = (9, W/x) if and only if V = W
LA
It follows immediately from this definition that for A-free terms, = implies = (syntactical
equality), a property that is essential in the proof of the main theorem.
The proof requires many Lemmas which are detailed in the Appendix. Here we just
outline it.

(10.1) We first formalize basic definitions such as = discussed above.

(10.2) We then prove some interesting properties of factored programs which are used in the
proofs of the other Lemmas. Namely we prove that once we factor a program, if we
factor it again we get exactly the same result (Idempotence Property).

(10.3) We then prove a very important property about renaming substitutions ¢. Namely,
[;n - F < Vifand only if T'; (¢t o) F F[t] = V (and it is true for L as well).

21

— Note that the concept of applying a renaming substitution to a list of cases is
defined in Definition 4. Namely, we apply the renaming substitution, ¢, to each

case such that
(U= P)t]= (¥>(ttoy) — P)

(10.4) We then prove important stack properties for X Namely, FC; SC - W v if and
only if either -; SC' + WSV or (;S8C + WS 1 and FC’F—C;V)

(10.5) We now prove properties relating to x and @ judgment. Namely, we prove that:

— If we are merging F; and F, (If F} x F5> = P3), then

1. P, Ry

2. If';nE Fy = V then
(a) TsnE F3 >V
(b) Either I';nk- Fy <> VorIink Fy = L
3. fI'snkE Fy = 1 then
(a) Typt Fy < Vifand only if T;n - F3 < V
(b) IsnE Fy = Lifand only if T;nt F3 = L

Q@ (Psivt— P) = and P ™' F then

« If the case (V> — P) applies and F' evaluates to a value, then Q' evaluates
to the same value. Also, €2 evaluates to the same value or to L.

x If the case (V> — P) applies and F evaluates to L, then ' behaves the
same way as {2
x If the case (U1 — P) does not apply, then Q' behaves the same way as {2

(10.6) Here we have the main Lemma (Embedding) of the paper. We show that

T FC;SCHP <V and P F and n = 1, then:

x Either I';m = F — W' and
1. There exists a W such that W = W’
2. FC;8C+W S v

* orbothF;nll—F‘f—»J_andFCgV.

(10.7) We finally bring it all together to get our main result (Theorem Main) which states if
fact

~ FandT;--FP<—Vand V is A-free, then I';- = F < V.

8 Implementation

The aforementioned factoring algorithm has been implemented in Twelf. Although Delphin
is a stand-alone functional programming language, its underlying logical framework is Twelf,

22

and one may use Delphin to solve queries in Twelf, of restricted forms (Section 6.2, using
Delphin.

To do this, we introduce a new command in Twelf, known as %fquery. This stands for
functional query, and follows a syntax similar to %query. It proceeds following the steps
outlined in this paper. First, a type family is converted into an N, function with possibly
redundant cases. We then factor the resulting function (an error is raised if it cannot be
factored). Once factoring is successful, the function is executed using Delphin’s operational
semantics, and the result displayed to the screen. The difference between %fquery and
%query is that it converts problems of backtracking to problems of unification which can be
solved much easier.

Currently we have implemented factoring using unification to match the cases. When a
query is executed through Delphin under this model it performs just as well as the execution
of %query. However, since we can replace unification with matching, there is great room for
improvement. Also, since we will eventually be compiling these patterns, the performance
will most likely set a new precedent for future logic programming systems. Furthermore,
this representation of Twelf logic programs can then further be compiled into a lower-level
language (possibly directly to byte code or to Flint), which we leave to future work.

The use of factoring extends far past the small Mini-ML example given in Section 2. For
example, TALT ([2]) is a typed assembly language built on top of Twelf. There are many
type families (whose name is appended with “!”) which is the result of another type family
being manually factored (similar to the method we alluded to in Section 5.3). This was
needed since it was necessary to assert that the resulting function was “total”. Now with
factoring built in, all of these extra type families can go away since the coverage checker will
be able to tell it is total since it runs after factoring.

9 Conclusion

We have shown the need for factoring by a simple example of Mini-ML. Further we have
argued that when we factor a program we can use a simpler operational semantics (Section
5.3) and have proven that it would return the same result as Twelf’s logic engine.

We have also implemented the features mentioned in this paper, and the performance
results are promising. In future research we intend to further enhance the performance of
evaluating logic programs as well as extend the definition of factoring to work on user-entered
Delphin programs (that do not originate in Twelf).

References

[1] T. Coquand. An algorithm for testing conversion in type theory. In G. Huet and
G. Plotkin, editors, Logical Frameworks, pages 255-279. Cambridge University Press,
1991.

[2] K. Crary. Toward a foundational typed assembly language, 2002.

23

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143-184, Jan. 1993.

F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the mercury com-
piler, 1996.

F. Pfenning. Elf: A language for logic definition and verified meta-programming. In
Fourth Annual Symposium on Logic in Computer Science, pages 313-322, Pacific Grove,
California, June 1989. IEEE Computer Society Press.

F. Pfenning and C. Schiirmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202-206, Trento, Italy, July
1999. Springer-Verlag LNAT 1632.

H. Sawamura and T. Takeshima. Recursive unsolvability of determinacy, solvable cases
of determinacy and their applications to prolog optimization., 1985.

C. Schiirmann. Awutomating the Meta-Theory of Deductive Systems. PhD thesis,
Carnegie Mellon University, 2000. CMU-CS-00-146.

C. Schiirmann. Recursion for higher-order encodings. In L. Fribourg, editor, Proceedings
of the Conference on Computer Science Logic (CSL 2001), pages 585-599, Paris, France,
August 2001. Springer Verlag LNCS 2142.

C. Schiirmann. A type-theoretic approach to induction with higher-order encodings.
In Proceedings of the Conference on Logic for Programming, Artificial Intelligence and
Reasoning(LPAR 2001), pages 266-281, Havana, Cuba, 2001. Springer Verlag LNAI
2250.

C. Schiirmann. The Delphin website: http://www.cs.yale.edu/~carsten/delphin,
2002.

F. H. Zoltan Somogyu and T. Conway. Mercury: an efficient purely declarative logic
programming language, 1995.

24

10 Appendix — Proofs for Section 7

10.1 Basic Definitions and Properties

Definition 1 (New Value Equality) = is defined as

o V = W is defined recursively as:
— IfV={n;Az: D.P} and W = {n/; Az : D.F'} then
* 1 =1
« and PSR
— If V ={(V;; V) and W = (Wy; Wa) then Vi = W, and Vo = W,
— Otherwise, V =W

o 1) = 1y is defined recursively as:

— (9, px € F*. P/x) = (n1, px € F*. F/x) if the following is true:
* 0=
* P fact F

— (0, V/x) = (n,W/x) if and only if V =W

*

— . :> .
One property of this relation which is used, is that If Vi has no A terms, then

If Vi =V, then Vi =V,

Definition 2 (Property of Cases)
For all pairs of cases (V1> — Pp) and (Vo> 1hy — Py), one of the following holds

1. (U1 > = P)=(Vy>py — Py): There erists a renaming substitution t such that
1 = P9 ot. Note that this also implies that U, -t : Uy

2. (U1 = Pp) A(Vop by — Py): There does not exist a renaming substitution t such
that 1y = 1y 0t. Note that this is where the non-overlapping property comes into play.
We now also require that there are no instances of n such that we can find an ' and
n" such that v, on' =n and Yy on" =n

Definition 3 (Renaming Substitution Properties) Note that in this paper we discuss
renaming substitutions t very frequently. The one important fact of a renaming substitution
is that since it is just a renaming substitution we know that the inverse t=' always ezists,
and this is necessary for many of the proofs to follow.

25

Definition 4 (Case applied to a renaming substitution) We add one more property
of substitutions which apply to when a specific case has a substitution applied to it.
If t is a renaming substitution, then
(U= P)[t]= (> (t o) — P)
Similarly, we define what it means to apply a renaming substitution to a list of cases)
o [t] =-
o (I, (U P))[t] =T[t], (¥ 1 — P)[t]

Note that the following proofs use this definition and everything is sound. However, we
also present an informal rationale as why this definition makes sense:

Assume Uy = t @ Wy, So we have that (¥ >1 — P) makes sense in Wy but we want
it to make sense in U, instead. Therefore, Wy - t=% : U,. Assume U + 1) : Wy, Therefore,

Uk (tltow): Uy

Lemma 1 (Case Definition on = 1)

If
e (Unyp—>P)e
o andn =1
e andpon =nq
Then

e There ezists an 0" such that Y on" =mn
o andn = 1"
PROOF. By Definition of = and properties of case (V> — P) ([11])

Lemma 2 (Case Definition on = 2)
If

e (Unyp—> P)e

o andn =

e and there does not exist an n' such that pon' =n
Then

e There does not exist an n' such that pon' =n

PROOF. By Definition of = and properties of case (¥ > — P) ([11])

26

10.2 Properties of Factoring

Lemma 3 This is to show that when we factor an already factored program, we get the same
result. (The main result is Part 1)

1. If P F then FI' F
2. If Qg C Y and there exists and € such that facts cpee Q' then Qg fact, cpee Qg
3. If Q Joclssgse qp (in other words, if Q' is factored), then there does not exist a renaming
substitution t such that 11 = oot and (V1> — Pp) € Q and (Vo> 1hy > Pp) € QU
4. If Q@ (Vo — P) =Q and there does not exist a renaming substitution t such that
L] ’lﬂl = ¢2 ot and
e (U1p1py— P)€Q and
o (Uypihy— P) €
Then there does not exist a renaming substitution t such that
e Yy =1Yyot and
° (\Ijll>1/)1 '—)Pl) e Q and
o (Uypihy— Py) €Y
(Note that this is saying that if we have an 0 such that no two cases match, then in
QY we also have the property that no two cases match)
5. If we are given a ¥* and Q& (V> — P) = Q' and for all (V1,01 > Py) € Q there
does not exist a renaming substitution t such that ¥* = 1, ot and there does not exist
a renaming substitution t' such that ¥* =Y ot' then
For all (U1, > Py) € S, there does not exist a renaming substitution t such that
Yr =10t
6. If Q fact cpse Y, then for all (¥ +— F) € Q, there exists some P such that P Nyl
(This states that all cases in Q' have been factored)
7. IfQ@ (V¢ — P)=Q and for all (V1> — Fy) € Q, there exists some Py such
that P, fact Fi, then for all (V> — Fy) € U, there exists a Py such that P, fact F
8. If P 1" F and for all (W a>1ps — Py) € Q there does not exist a renaming substitution
t such that ¢ =14 ot, then
Qo Yy — P)1t
9. If P ' Fand Qe (I > — P) 1, then for all (Vo> s — Pa) € Q there does not
exist a renaming substitution t such that 1 =4 0t
PRrROOF.

27

Part 1 — Proof over fogt

e fact_LF

1. L L (By Assumption)

fact

2. L~ L (Trivial from Above)

fact_var

1 x ' x (By Assumption)

2. x 7 x (Trivial from Above)
fact_Unit

1.) I) (By Assumption)

fact

2. () ~ () (Trivial from Above)

fact_A

1. xe:D.P* \a:DF (By Assumption)

fact

2. P~ F (By Definition of fact_A)

9. FISF (By Induction Hypothesis)

fact

4. Ax: D.F ~ Az : D.F (Byfact_A)

fact_rec

1. uyx € F,.P fegt ux € F,. F (By Assumption)
9. PR F (By Definition of fact_rec)
9. FIEF (By Induction Hypothesis)

4. px € F,. F fegt ux € F,. F (By fact_rec)

fact_pair

fact

1. (Ay; Py) ~ (Fa,; Fp,) (By Assumption)

. Ay fagt F4, (By Definition of fact_pair)

. P, % Fp, (By Definition of fact_pair)

2
3
4. Fy, fegr F4, (By Induction Hypothesis)
5
6

. Fp, fog Fp, (By Induction Hypothesis)

. (Fay; Fpy) Ieg (Fa,; Fp,) (By fact_pair)

28

e fact_app

1.

2,
3.
4.
5.
6.

PAYS F F (By Assumption)

plsp (By Definition of fact_app)

ALY F4 (By Definition of fact_app)

Pl p (By Induction Hypothesis)

Fy fegt Fa (By Induction Hypothesis)

F Fy It p F, (By fact_app)

e fact_let

1.

2.
3.
/.
5.
6.

let x= P, in P, %' let x = F, in F (By Assumption)

act

P fe Fy (By Definition of fact_let)
fact

P, ~ F, (By Definition of fact_let)

F fact Fy (By Induction Hypothesis)

5 fact F, (By Induction Hypothesis)

let x = F|in F, 1% et x = F) in F;, (By fact_let)

e fact_case

1.
2.
3.

4.

case Q 7' case O (By Assumption)
Q el o (By Definition of fact_case)
qu fessgee oy (By this Lemma Part 2)

case Q' 7' case O (By fact_case)

29

Part 2 — Proof over structure of Qg
We now do induction on the structure of Qs (so we assume it is a subset of something

already factored). In other words, we need to show that if Qg fac s O then Qg = Q.

1.
2.

Jagigee (By case_empty)

= (Trivial)

e O (¥p>ey— P)

1.

Q, (V> — P) is a subset of something that has already been factored. (By
Assumption)

There egists some P' such that P' %5 P (from this Lemma Part 6)

P p (from this Lemma Part 1)

ct—case

Q7zwe (By Induction Hypothesis on first line)

There does not exist a renaming substitution t such that 1, = 90t and (V1> —
P)eQ Uy — P)and (Vo> 1hy — Py) € Q, (V> — P)(from this Lemma
Part 8)

For all (V414 — Pa) € Q, there does not exist a renaming substitution t such
that ¥ =14 ot (By Above)

Q@ (Y>yp— P)1 (By Part 8 of this Lemma)

fact—case

Q(Upp— P) "~ Q (U9 — P) (By case_new)

30

Part 3 — Proof over fact e

® case_empty

fact—case
B o)

1.

2. Since - has no cases in it, it is trivially true

- (By Assumption)

® case_nonempty

1. Q, (Yt — P) Jag e g (By Assumption)

2. Q7S5 O (By Definition of case_nonempty)

3. There does not exist a renaming substitution t such that 1, = 9ot and (V1> —
P) € Q' and (Vo> po — Py) € Q' (By Induction Hypothesis)

4. V® (Vo — P)=Q" (By Definition of case_nonempty)
5. There does not exist a renaming substitution t such that v, = 9ot and (V1> —
P) € Q" and (Va>1py — Py) € Q" (By this Lemma Part 4)

® Case_new

fact—case

1. (I P) "~ Q (> — F) (By Assumption)
9. QleLse oy (By Definition of case_new)

3. There does not exist a renaming substitution t such that 11 = 9ot and (V1> —
P) e Q' and (Vo> pe — Py) € Q' (By Induction Hypothesis)

4. Q@ (Y1 — P)1 (By Definition of case_new)

5. P F (By Definition of case_new)

6. For all (¥ 4>1ps — Py) €), there does not exist a renaming substitution t such
that 1 =14 ot (By this Lemma Part 9)

7. There does not exist a renaming substitution t such that 1) = Pyot and (V1>); —
P)eQ,(Upyp— F) and (Vo> hy — Py) € U (¥ >y — F) (By Above)

31

Part 4 — Proof over &
e fold_no

1. Q (Vg tpg = Pa)® (Yp>iyp — Pg) =, (Va1 — Fu) (By Assumption)
2. By Assumption, there does not exist a renaming substitution t such that

— Yy =10t and

— (U1phy = Pp) € Q (V> oy — Py) and

— (V2> ihp = Py) € Q, (Wa>thy — Pa)

3. By Above, there does not exist a renaming substitution t such that

—¢1:¢20tand
—(\IllblePl)EQand
—(\Ilzbwgl—)Pg)EQ

4. For all (¥ > — Py) € Q, there does not erist a renaming substitution t such
that 4 =1, ot (From Above)

5. There does not exist a renaming substitution t such that 14 = 1ot (By Definition
of fold_no)

6. QB (Vp>yp— Pg)=Q (By Definition of fold_-no)

7. By the Induction Hypothesis, there does not exist a renaming substitution t such
that

—¢1:¢20tand
—(Wlblepl)EQl and
_(W2>¢2HP2)EQI

8. For all (V1> — Py) € Q there does not exist a renaming substitution t such
that 14 = ¢y ot (By Part 5 of this Lemma)

9. Therefore, we combine the last two lines to get what we need: There does not exist
a renaming substitution t such that

—@b1:7/}20t0,nd
— (U1phyy = P) €U, (Uad g — Fy) and
— (\PQD¢2HP2)€QI,(\PADwAHFA)

e fold_yes
1. Q (Vg thg = Pa)® (Y typ — Pg) =Q, (Vs> s — F) (By Assumption)

2. By Assumption, there does not exist a renaming substitution t such that

— wlz’l/}QOt and
— (U1t = P) € Q,(¥aprps — Py) and
— (Uapthy > Pp) € Q, (Vadtha = Pa)

3. By Above, there does not exist a renaming substitution t such that

32

—/d)lzd)gotand
—(‘111[>1,Z)1|—>P1)€Q,(‘11AI>¢AF—)F) and
_(W2>¢2HP2)EQ,(WA[>¢A’—>F)

33

Part 5 — Proof over &
e fold_no

1. Q (Vs> ths = Pa)® (Yp>ipg — Pg) =, (Vo> g — Fa) (By Assumption)

2. We are given a * such that for all (V1> — Py) € Q, (V4> 1Ps — Py) there
does not exist a renaming substitution t such that ¥* =1, ot (By Assumption)

3. For all (V1> — Pp) € Q there does not exist a renaming substitution t such
that ¥* =1 ot (By Above)

4. There does not exist a renaming substitution t such that * = a0t (From Above)

5. There does not exist a renaming substitution t such that v* = 1pgot (By Assump-
tion)

6. QB (Yp>p— Pg)=Q (By Definition of fold_no)

7. For all (V1> — Pp) € (Y, there does not exist a renaming substitution t such
that ¥* =11 ot (Induction Hypothesis)

8. For all (U1>¢; — P) € U, (Varhy — Fa), there does not exist a renaming
substitution t such that 1¥* =1y ot (From Above)
e fold_yes

1. Q (Vg tps = Pa)® (Y typ — Pg) =Q, (Va> s — F) (By Assumption)

2. We are given a ¢* such that for all (U1 >y — Py) € Q, (Vs> 1)a — Pa) there
does not exist a renaming substitution t such that ¢* =1, ot (By Assumption)

3. For all (¥1> 9 — Pp) € Q, (Vg 1yg — F) there does not exist a renaming
substitution t such that ¥* =1 ot (By Above)

34

Part 6 — Proof over fact cgse

® case_empty

fact—case
B o)

1.

2. Since it is empty, the result is trivial

- (By Assumption)

® case_nonempty

1. Q, (Yt — P) Jag e g (By Assumption)
9. el o (By Definition of case_nonempty)

3. For all (V1> ¢y — Fy) € Q, there erists some Py such that P Tact F, (By
Induction Hypothesis)

4. V@ (V> — P)=Q" (By Definition of case_nonempty)

5. For all (V1> — Fy) € Q") there exists some Py such that P Lact Fy (By this
Lemma Part 7)

e case_new
1. Q, (¥ > — P) fagt s QO (Y > — F) (By Assumption)
9. Qlesase oy (By Definition of case_new)

3. For all (V1> ¢y — Fy) € Q, there exists some Py such that P fast Fi (By
Induction Hypothesis)

4. P N (By Definition of case_new)

5. Forall (V1> — Fy) € O, (Vb — F), there exists some Py such that P fagt Fy

(By Above)

35

Part 7 — Proof over &
e fold_no

1. Q (Vs> ths = Pa)® (Yp>ipg — Pg) =, (Vo> g — Fa) (By Assumption)
2. For all (V1> — Fy) € Q, (V4> 1y — Py), there exists some Py such that
P fact F, (By Assumption)

3. For all (V1> — Fy) € Q), there erists some Py such that P fact Fy (By Above)

4. Q@ (Ypr>1yp— Pg)=Q (By Definition of fold_no)
fact

5. For all (U111 — Fy) € Y, there exists a Py such that P, ~ Fy (By Induction
Hypothesis)

6. Py fagt F4 (By Definition of fold_no)

7. Combining the last two lines, we get that for all (¥1>); — F1) € Q' (Uadhys —

F4), there exists a Py such that Py fact F

e fold_yes

1. Q (Vg s> Pa)® (Y tyg — Pg) =Q, (Va> s — F) (By Assumption)

2. For all (U1 > — Fy) € Q, (V4> s — Py), there exists some Py such that

P Tact Fy (By Assumption)

3. For all (¥1>1 — Fy) € Q, there exists some Py such that P fact Fy (By Above)
4. There exists some Py such that Py It p (By Definition of fold_yes)

5. For all (V1> — Fy) € Q, (Va>1pys — F), there exists a Py such that P, fagt F
(By Induction Hypothesis)

36

Part 8 — Proof over structure of 2
. .
1. -® (Y1 — P) 1 (By foldT_empty)

[] Q,(‘I’lp’lplF—)Pl)

1. PR (By Assumption)

2. For all (U 4> 14 — Py) € Q, (V> — Py), there does not exist a renaming
substitution t such that 1 =14 ot (By Assumption)

3. For all (¥ap1p4 — Pa) € Q, there does not exist a renaming substitution t such
that ¥ =14 ot (By Above)

Q& (Y1 — P)1 (By Induction Hypothesis)
There is no renaming substitution t such that ¢ =1 ot (By Above)

Since t is a renaming substitution, there is also no t such that ¥ =Y ot
Q,(Uy>Y — P) & (Y — P) 1 (By foldt_nonempty)

NS G

37

Part 9 — Proof over &

o foldT_empty

1.
2.
3.

PF (By Assumption)

-® (U>9 — P)1 (By Assumption)

Trivially (since - denotes empty Q)), for all (Vs> 14 — P4) € -, there does not
exist a renaming substitution t such that v =40t

e fold?T_nonempty

©

e v~

Pl p (By Assumption)

QU1 >— P) @ (¥ — P) 1T (By Assumption)
Q& (Y1 — P)1 (By Definition of foldT_nonempty)

There is no renaming substitution t such that ¢y = ot (By Definition of
fold?_nonempty)

Since t is a renaming substitution, there is also no t such that ¢ =10t

6. For all (To>14 — Pa) € Q, there does not exist a renaming substitution t such

that ¥ = 14 ot (By Induction Hypothesis)

We just combine the last two steps to see that for all (Vs> — Pa) € Q, (¥ >
1 +— Pp), there does not erist a renaming substitution t such that 1 = 4 o't.

38

Lemma 4 IfQ & (V> — P) =) then there exists an F such that P I p
PrROOF. By Induction over the @ judgment

e fold_no

1. QUi —» P)d (U P)=Q, (V1> — Fy) (By Assumption)
2. Q& (Y1 — P)=Q (By Definition of fold_no)

9. PIS'F (By The Induction Hypothesis)

e fold_yes

1. QU1 —» P)® (U= P)=Q, (¥ > — F3) (By Assumption)

2. PR F (By Definition of fold_yes)

39

10.3 Renaming Substitution Property
Lemma 5 Ift is a renaming substitution and €2 Jagipee Q, then
PEn~Qe»V ifand only if TH (t ton)~Q[t] >V

PROOF. Proceed by induction on <. Recall that Q[t] is defined in Definition 4 and that
the inverse of t, denoted as t™, always erists (since it is a renaming substitution,).

e ev_delphin_no

1. t is a renaming substitution (By Assumption)

(Q, (T b1 P)) 1955 (Q, (U b b — P)) (By Assumption)
There ezists some P’ such that P' %' P (By Lemma 3.6)

P P (By Lemma 3.1)

Q1 q (By Lemma 3.2)
We must show both:
(a) IfT+n' ~(Q (¥t — P)) >V
then Tk (7o) ~ (Q, (¥4 s P))[t] = V
i. TEn' ~(Q, (> +— P)) <V (By Assumption)
ii. For alln", Yon" #n'. (By Definition of ev_delphin_no)
iii. TFn' ~ Q< V (By Definition of ev_delphin_no)
. Tt on) ~Q[t] = V (By Induction Hypothesis)
v. (I P)[t]= (¥ (t7' o)) — P) by Definition 4
vi. There does not exist an 0™ such that (t"t o)) on™ = (t7Lon') If such an
0" did exist, then v on™ =1n' contradicting our above assumption
vit. T (t7'on) ~ (Q[t], (I>1) — P)[t]) = V (By Application of ev_delphin_no)
viti. TF (t o) ~ (Q, (¥ — P))[t] = V (By Substitution Properties)
(b)) fFTF(t7ton) ~(Q,(¥>9p— P))[t] >V
thenTFn' ~ (Q,(¥>1p— P)) >V
i. T (o)~ (Q,(¥>y — P))[t] = V (By Assumption)
. TF (tton) ~ (Qi], (> (toy) — P)) < V by Definition 4 and
Substitution Properties
ii. For alln”, (t7' o) on” # (t' on'). (By Definition of ev_delphin_no)
w. Tk (7o) ~ Q[t] = V (By Definition of ev_delphin_no)
v. Tk n' ~ Q< V (By Induction Hypothesis)

vi. There does not exist an 0" such that Yon" =n'. If such an 0" did ezist,
then (t7' o)) on™ = (t7' on') contradicting our above assumption
vit. T'En' ~(Q, (¥ > — P)) =V by Application of ev_delphin_no

S & o

40

e ev_delphin_yes

1. t is a renaming substitution (By Assumption)

(D, (U P)) TS (Q, (U ¢ s P)) (By Assumption)

. There exists some P' such that P' 7' P (By Lemma 3.6)

2
3
4. PSP (By Lemma 3.1)
5
6

C QMg q (By Lemma 3.2)
. We must show both:
(a) IFT 1 ~ (Q, (b1 s P)) =3 V
then T (t7ton) ~ (Q,(I>y = P))[t] =V
i. TEn ~(Q, (> — P)) >V (By Assumption)
ii. Yon" =n'. (By Definition of ev_delphin_yes)
. (t o) on" = (t"ton') (By Substitution Properties)
. Tyn" B P <V (By Definition of ev_delphin_yes)
v. (U9 P)[t]= (¥ (t7L o) — P) by Definition
vi. So we need to evaluate I' = (t7' on') ~ (Qt], (¥ > (7' 0 ¢)) = P)). By

Inversion (using ev_delphin_yes), and Line 6(a)iii and Line 6(a)iv, we see
that this also = V
() IfT = (tton) ~(Q,(I>yp— P))[t] >V
thenTEn ~ (Q,(¥Y>tp— P)) >V
i. T (o) ~(Q,(¥>y — P))[t] = V (By Assumption)
. T (tton) ~ (Qt], ¥ (t o) — P)) = V (By Definition 4 and
Substitution Properties)
. (t1oy)on" = (t"ton'). (By Definition of ev_delphin_yes)
w. Yon" =n" (By Substitution Properties)
v. Tyn" B P <V (By Definition of ev_delphin_yes)
vi. So we need to evaluate I'+=n' ~ (2, (V> — P)). By Inversion (using
ev_delphin_yes), and Line 6(b)iv and Line 6(b)v, we see that this also < V

41

Lemma 6 Ift is a renaming substitution and F fogt F', then

O;n' - F <V ifand only if T;(t ' on) F F[t] = V

PROOF. Proceed by induction on <. Recall that the inverse of t, denoted as t=', always
exists (since it is a renaming substitution). Note that some qualifying cases are shown, and
all other cases trivially follow the same model.

e ev_delphin_var

1. t is a renaming substitution (By Assumption)
2. We must show both:
(a) IfT;n' x>V thenT;(t 7 on) Fx[t] = V
i. Ty’ x <V (By Assumption)
ii. Tyn' B n'(x) =V (By Definition of ev_delphin_var)
ii. By property of substitution n'(x) = ((tot™') on')(x) = (t7' o n')(x[t])
. T;(tton) Fx[t] = V by application of ev_delphin_var
(b) IfT; (t Loy) Ex[t] = V thenT;n' x>V
i. T;(t7 Y on) Fx[t] = V (By Assumption)
i Uiyt on)F (7o) (x[t]) =V (By Definition of ev_delphin_var)
iii. By property of substitution (7' on')(x[t]) = ((tot™) on')(x) = 7'(x)
w. T;n'Fx <V by application of ev_delphin_var

e ev_delphin_pair

~

t is a renaming substitution (By Assumption)

(A1; Py) ~ 51 (A1;) (By Assumption)

fact

A A, (By Inversion)

2.
3.
4. Py fact P, (By Inversion)
)

. We must show both:
(a) IfTsn' = (Ai; P) = (Vi; Va) then Ts (t71 o) F ((Ay; Po))[t] = (Vi3 Va)

i. Ty’ (Aq; Py = (Vi; Vo) (By Assumption)

i. Tyn' = Ay < Vi (By Definition of ev_delphin_pair)

i, Ty (7 on') b A[t] = Vi (By Induction Hypothesis)

. Tyn' = Py = V, (By Definition of ev_delphin_pair)
v. T (t_1 n') b P[t] < V3 (By Induction Hypothesis)

vi. T (t7 o 77) F (A4 [t]; Po[t]) = (Vi; Vo) By Application of ev_delphin_pair

vit. T;(t7 o) F ((A1; Po))[t] = (Vi; Vo) By Property of Substitutions

42

(b) IfT; (t7 o) F ((Ar; Po))[t] = (Vi; Va) then T’ = (Ay; Po) = (Vi; Va)

i. Tyt o) b ((Ay; Po))[t] = (Vi; Vo) (By Assumption)

. T (7 o) (Aq[t]; Paft]) = (Vi; Vo) (By Property of Substitutions)

i, Ty (7 on') b A[t] = Vi (By Definition of ev_delphin_pair)

iv. Tyn' = Ay = Vi (By Induction Hypothesis)
v. T;(t7 o) b Pyft] = Vi (By Definition of ev_delphin_pair)

vi. Tyn' b Py < Vy (By Induction Hypothesis)

vit. T;n' F (Aq; Po) < (Vi; Vo) By Application of ev_delphin_pair

e ev_delphin_case

1. case Q7' case Q (By Assumption)
LRy g (By Inversion)

2
3. t is a renaming substitution (By Assumption)

4. ThEn~ Qe Vifand only if T (t7'on') ~ Qt] = V (By Lemma 5)
5

. Therefore, T;n' + case Q = V if and only if T; (t *on') F case Q[t] = V (By
ev_delphin_case)

43

Lemma 7 Ift is a renaming substitution and) fact opse Q, then

LEn ~Qe» L ifand only if T F (7 on) ~ Qt] = L

PROOF. Proceed by induction on <. Recall that Q[t] is defined in Definition 4 and that
the inverse of t, denoted as t™', always exists (since it is a renaming substitution,).

e ev_delphin_nil

1. t is a renaming substitution (By Assumption)

2.TFn ~-<— 1 (By Assumption)

3. -[t] = - (By Substitution Properties)

4. TH(tton)~-<» L (Byev.delphin_nil)

5. Therefore, TEn' ~ -« L ifand only if T+ (t7ton) ~ -[t] = L

e ev_delphin_no L

1. t is a renaming substitution (By Assumption)
(Q, (¥>9— P)) fagigee (Q, (¥>9 — P)) (By Assumption)
There ezists some P’ such that P' ™' P (By Lemma 3.6)

P P (By Lemma 3.1)

Q58 (By Lemma 3.2)

We must show both:
(a) IfT 10 ~ (Q (>t — P)) = L
thenTF (tton) ~ (Q,(¥>y— P))[t] = L
i. TFEn ~(Q, (Y1 — P))— L (By Assumption)
ii. For alln", Y on" #n'. (By Definition of ev_delphin_no_L)
iii. T'Fn' ~ Q< 1 (By Definition of ev_delphin_no_l)
w. T'F (7' on') ~ Q[t] = L (By Induction Hypothesis)
v. (I P)[t]= (¥ (t7' o) — P) by Definition 4
vi. There does not exist an 0™ such that (t7* o) on™ = (t~Lon') If such an
n" did exist, then ¢ on™ =n' contradicting our above assumption

vii. T'F (t7ton) ~ (Qt], (> — P)[t]) = L (By Application of ev_delphin_no_L)

vitt. T (7t on) ~ (Q, (¥ — P))[t] = L (By Substitution Properties)
() If T (t7ton) ~ (Q,(I>9— P))[t] — L
then TFEn ~ (Q,(¥>tp— P))— L
i. TE(tton) ~(Q,(¥>9 — P))[t] = L (By Assumption)
. TF (tton) ~ (Q], (> (t' ovp) = P)) < L by Definition 4 and
Substitution Properties
. For alln", (t7' o) on” # (t7' on'). (By Definition of ev_delphin_no L)

S G e

44

w. T (t7 o) ~ Q[t] = L (By Definition of ev_delphin_no L)
v. T'Fn' ~ Q< L (By Induction Hypothesis)
vi. There does not exist an 0" such that Yon™ =n'. If such an n'" did ezist,
then (t o) on™ = (t"ton') contradicting our above assumption
vit. TEn' ~(Q, (¥ > — P)) < L by Application of ev_delphin_no_L

e ev_delphin_yes |

1. t is a renaming substitution (By Assumption)

(Q, (¥>9— P)) fagssgee (Q, (¥ > — P)) (By Assumption)
There ezists some P’ such that P' %' P (By Lemma 3.6)
RN (By Lemma 3.1)

ORAES ! (By Lemma 3.2)
We must show both:
(a) IfT 0 ~(Q(¥>tp— P)) = L
thenTF (tton) ~ (Q,(¥>y— P))[t] = L
i. TEn ~(Q,(¥>9— P))— L (By Assumption)
it. pon"=n'. (By Definition of ev_delphin_yesl)
ii. (7o) on” = (t"ton') (By Substitution Properties)
. Tyn" B P < | (By Definition of ev_delphin_yes |)
v. (V> P)[t]= (¥ (7' o)) — P) by Definition 4
vi. So we need to evaluate T = (t71on') ~ (Qt], (¥ (7o) — P)). By
Inversion (using ev_delphin_yesL), and Line 6(a)iii and Line 6(a)iv, we
see that this also = L
() IfT = (t7ton) ~ (Q,(I>9 — P)[t] = L
then TEn ~ (Q,(U>tp— P))— L
. TE({tton)~(Q (Y>y — P))[t] — L (By Assumption)
i. TF (o) ~ (Qt],(T (t7! oy) = P)) = L (By Definition 4 and
Substitution Properties)
. (7o) on” = (t"ton'). (By Definition of ev_delphin_yes 1)
. Yon" =1 (By Substitution Properties)
;n" = P <V (By Definition of ev_delphin_yes_)
vi. So we need to evaluate I' = n' ~ (2, (V> — P)). By Inversion (using

ev_delphin_yesL), and Line 6(b)iv and Line 6(b)v, we see that this also
— L

S v e

<

45

Lemma 8 Ift is a renaming substitution and F fogt F', then

Oin'EF e 1L ifand only if T; (t o) F F[t] = L

PROOF. Proceed by induction on —. Recall that the inverse of t, denoted as t™, always
exists (since it is a renaming substitution). Note that some qualifying cases are shown, and
all other cases trivially follow the same model.

e ev_delphin_pairl,

1. t is a renaming substitution (By Assumption)
fact

. (Ay; Py) ~ (Ay; Py) (By Assumption)

A B A, (By Inversion)

2
3
4. Py % p, (By Inversion)
5

. We must show both:
(a) If T;0' = (A Py = L then T (t o) b ((Ay; Bo))[t] = L
i. Ty’ (A Py = L (By Assumption)
i. Ty’ = Ay = Vi (By Definition of ev_delphin_pair_L5)
. T; (7 on') b Ayft] = Vi (By Lemma 6)
. Tyn' = Py = L (By Definition of ev_delphin_pair_L,)
. T;(t ' on') F Byft] = L (By Induction Hypothesis)
vi. T; (t7 o) = (A[t]; Po[t]) = L (By Application of ev_delphin_pair L)
vit. T; (t7 o) = ((Ay; P))[t] = L (By Property of Substitutions)
(b) IfT; (17 o) = ((As; Po))[t] = L then Iy = (Ay; Py) = L
i. (7 on) F ((Ar; P))[t] = L (By Assumption)
. Ty (7 o ') (A4[t]; P3[t]) = L (By Property of Substitutions)
iii. T; (t7Lon') b AL[t] = Vi (By Definition of ev_delphin_pair_Ly)
w. sn'+ Ay = Vi (By Lemma 6)
. Ty (7o) Bt] = L (By Definition of ev_delphin_pair_Ls)
vi. Tyn' B Py = L (By Induction Hypothesis)
vit. T;n' F (A1, P) < L (By Application of ev_delphin_pairLs)

<

<

e ev_delphin_case L

1. case Q %' case (By Assumption)

fact—case

2. Q7 s Q (By Inversion)
3. t is a renaming substitution (By Assumption)
4. ThEn~Qe Lifand only if T+ (t7ton') ~ Q[t] = L (By Lemma 7)

46

5. Therefore, T;n' = case Q = L if and only if T; (7' on') F case Q[t] — L (By
ev_delphin_case l)

47

10.4 Continuation Stack Properties

Here we prove important properties for <S—C> Namely, FC; SC W g V' if and only if either
SSCFW SV or (SCFW S L and FC S V)

Lemma 9

1. IfFC;SC+W 25V then either
o SCFWEV
o or(-;SCI—W?E;J_ andFC'F—C)V)

2. Let S represent either Delphin programs P or stack objects M
IfUsn; FC; SC H S — V then either

e ;s SCES—=V

o or (T;7;:8CFS < L and FCSV)
3. If FC; SCFEn~Q <V then either

o [S5SCHFn~Q =V

o or (T;:SCFn~Q < L and FCSV)

PROOF.

48

Part 1 — Proof over X
e ev SC_empty

1. FC;-FV Kv (By Assumption)
2. - FV Ky (By ev_SC_empty)

e ev_SC_nonempty

1. FC;(SC, (T;m; Az M) =W Sv (By Assumption)
2. T;n; FC; SC+ M[W/z] < V (By Definition of ev.SC_nonempty)
3. By Part 2 of this Lemma, either
— ;s SCEMW/z2l -V
x - (SC, (T;m; Az.M)) =W Ky (By Application of ev_SC_nonempty)
—orym;; SCHM[W/z] — L and FCSv
x - (SC, (Tym; Az.M)) =W X1 (By Application of ev_.SC_nonempty_L)
« FCSv (copied from Above)

49

Part 2 — Proof over —
o evl|F
1. T;m; FC; SCF L — V (By Assumption)
2. FC;SC \ Lin] Kv (By Definition of ev_LF)
3. By Part 1 of this Lemma, we know that either
— SCHL SV
x I';m; s SCHL—V (Byev.lF)
— or ;SCF Lin| K1 and FC SV
x I';m; s SCHL— L (ByevlFl)
« FOSV (copied from Above)
e ev.var
1. T;n; FC; SC Fx — V (By Assumption)
2. n(x) =V’ (By Definition of ev_var)
3. FC;SC+V! Ky (By Definition of ev_var)
4. By Part 1 of this Lemma, we know that either
—SCcrV Sy
x I;n; s SCHV'— V (Byev.var)
sc FC
—orSCHV'— 1L and FC =V
x I'sm; -3 SCHL— L (Byevvarl)
« FOS vV (copied from Above)
e ev_unit
1. T;m FC; SCF () = V (By Assumption)
2. FC;SCF () Ky (By Definition of ev_unit)
3. By Part 1 of this Lemma, we know that either
—4SCHOS Y
x I'ym; 3 SCH () = V (By ev_unit)
Sc FC
—or;SCH{) = L and FC =V
x I;m; - SCH () — L (Byevunitl)
« FCSV (copied from Above)

e ev_let

1. T;m; FC;SCFlet x = Py in P, — V' (By Assumption)

20

2. T;n;, FC; (SC, (T;n; M\z.let x=z in Py)) = P — V' (By Definition of ev_let)
3. By the Induction Hypothesis, either:
— Iim; 5 (SC, (Tym; Azllet £=2zin Py)) - P =V
x I;m;SCHletx= P in P, — V (Byev_let)

— or sm; - (SC, (Tym; Az.let £=zin Py)) - Py — 1 and FC Ky
x I;m;SCHletx= P in P,— | (Byevletl)

« FOSV (copied from Above)
e ev_ et SC
1. T;m; FC; SC F let € =W in P, — V (By Assumption)
2. T;(n,W/x); FC; SC + Py — V (By Definition of ev_let_SC)
3. By The Induction Hypothesis, either:

— I (n,Wx);,SCH P, =V
x I;m; - SCHlet € =W in P, — V' (By ev_let SC)

— orT;(n,Wx);;SCF Py — | and FC 55 v
x I;m; - SCHlet € =Win Py — | (Byevlet SCL)

« FOSV (copied from Above)
e ev A
1. Ty FC;SCF Az - A. P — V (By Assumption)
2. FC;SCF {n;Ax: A. P} Ky (By Definition of ev_A)
3. By Part 1 of this Lemma, we know that either
— 5 SCF{mAz: A.P}SV
x I;n; s SCHAzr: A.P—V (ByevA)
— orSCH{mAz: A.PYS L and FOES v
x Iym; s SCHAz: A.P— | (Byev.Al)
« FOSV (copied from Above)
® ev_rec
1. T;m FC;SCF px € F. P — V (By Assumption)
2. I;(n,ux € F. P/x); FC; SC = P — V (By Definition of ev_rec)

3. By the Induction Hypothesis, either:

- I'y(n,ux € F.P/x);;SCFP <V
x I;n;SCHux € F.P—V (Byev_rec)

— or;(n,ux € F.P/x);;SCHP — | and FC SV

o1

x I;n;SCHux € F.P—V (Byevrecl)
« FC SV (copied from Above)
e ev_app
1. T;m FC; SCF Py Ay — V' (By Assumption)
2. T;n; FC; (SC, (T;n; Az.appl z As)) = Py — V' (By Definition of ev_app)
3. By the Induction Hypothesis, either:

— Ism;5 (SC, (s m; Az.appl 2z Ag)) = Pr =V
x I'ym;; SC+ Py Ay =V (By ev_app)

— or [ym; - (SC, (Tsm; Az.appl z Ag)) F Py — L and FC Ky
x I;m; - SCH Py Ay — V' (By ev_appl)

« FC SV (copied from Above)
e ev_app.SC1
1. T;m; FC; SCF appl {n'; Ax € A. P{} Ay — V (By Assumption)
2. I;n; FC; (SC, (I';1'; Az.app2 P| 2)) = Ay — V' (By Definition of ev_app-SC1)
3. By the Induction Hypothesis, either:

— I5n;+5 (SC, (U505 Az.app2 P{ 2)) = Ay =V
* I;m; SCF appl {n;Ax € A. P[} Ay — V (By ev_app_SC1)

— or [sm; - (SC, (T;n'; Az.app2 P| 2)) - Ay — L and FC Ky
x I;m; - SCF appl {n';Ax € A.P]} Ay — | (Byev_.app.SCll)

« FOSV (copied from Above)
e ev_app.SC2
1. T;m; FC; SC + app2 P Vo, — V (By Assumption)
2. T;(n,Va/x); FC; SC + P{ — V (By Definition of ev_app_SC2)
3. By the Induction Hypothesis, either:

- T (n,Va/x);;SCH P =V
* I'ym; - SCF app2 PV, =V (By ev_app_SC2)

— or Iy (n, Vo/x);; SCF Pl — L and FCES v
* I'sm; - SC - app2 P Vo, — L (By ev_app.SC2.1)

« FC SV (copied from Above)
e ev_pair
1. T;n; FC; SC + (Ay; P) — V' (By Assumption)
2. sy FC; (SC, (T m; Az.pairi(z; P»))) = Ay — V' (By Definition of ev_pair)

52

3. By the Induction Hypothesis, either:
— Iym; 5 (SC, (Tym; Az.pairl{z; P))) F Ay — V
x I';m; - SCF (Ay; Py) — V' (By ev_pair)
— or [ym; - (SC, (T m; Az.pairl(z; Ps))) - Ay — L and FC Ky
x I';m; - SC = (Aq; Py) — L (By ev_pairl)
« FOSV (copied from Above)
e ev_pair SC1
1. T;n; FC; SC F pair1{Vy; Py) — V (By Assumption)
2. T;m; FC; (SC, (Tsm; Az.pair2(Vy; z))) = P, — V' (By Definition of ev_pair_SC1)
3. By the Induction Hypothesis, either:
— Tyn;+ (SC, (T m; Az.pair2(Vi; 2))) F Py — V
x I';m; - SC F pairl(Vi; Py) — V (By ev_pair SC1)
— or Tsm; - (SC, (T m; Az.pair2(Vy; 2))) F Po — L and FC Ky
x I';m; - SC F pair1(Vi; Py) — 1 (By ev_pair SC1.1)
« FCS vV (copied from Above)
e ev_pair SC2
1. T;n; FC; SC F pair2(Vy; V,) — V' (By Assumption)
2. FC;SC + (V1;V,) <=V (By Definition of ev_pair SC2)
3. By Part 1 of this Lemma, we know that either
- 550 (VisVa) SV
x I;m; - SC F pair2(Vy; Vy) — V' (By ev_pair SC2)
— or ; SCF (Vi; Vs) 1 and Fe S v
x Iym; - SC F pair2(Vy; V) — L (By ev_pair SC2.1)
« FCS v (copied from Above)

® ¢€v_Ccase

1. T;n; FC; SC F case Q — V (By Assumption)
2. T;FC; SCFn~Q <V (By Definition of ev_case)
3. By Part 8 of this Lemma, we know that either
-0 8CkHFn~Q =V
x I';m; - SC' = case Q — V (By ev_case)
—or[SCHFn~Q— L and FC 55 v
x I;m; - SC - case QQ — | (By ev_casel)

« FOSV (copied from Above)

93

Part 3 — Proof over —

® ev_yes

1. T;FC;SC i~ (Q, (>t — P)) =V (By Assumption)
2. ¢ on' =n (By Definition of ev_yes)
3. Iyn's (FC, (I';n; SC; case Q)); SC = P — V' (By Definition of ev_yes)
4. By Part 2 of this Lemma, we know that either
-y SCHP =V
x I;n's (-, (T;m; SC; case 2)); SCH P — V (By Lemma 10.2)
x I SCEn~(Q, (> — P))— V (Byev.yes)
— oryns;SCFH P < L and (FC,(I';n; SC; case 2)) Ky
x (FC,(T;n;SC; case Q)) Sv (copied from Above)
x ['FC; SCHn~Q <=V (By Inversion using ev_FC_nonempty)
x By the Induction Hypothesis, we know that either
- SChEp~e Q= V
(a) (-,(T;n; SC; case Q)) Sv (By ev_FC_nonempty)
(b) Tsn's (-, (T m; SC; case Q2)); SCH P — V (By Lemma 11.2)
(c) T;:8CEn~(Q,(¥>t— P))—V (Byev.yes)
-or [8CHEn~Q— L and FC S5V
(a) (-, (I';n; SC; case Q)) &1 (By ev_FC_nonempty L)
(b) T;7'; (-, (Tsm; SC; case 2)); SC+ P — L (By Lemma 12.2)
(c) T;8CERn~(Q(¥>tp+— P))— L (Byevyesl)
(d) FC Sv (copied from Above)

® €v_no

1. T;FC;SCEHn~(Q,(¥>1— P))—V (By Assumption)
2. There does not exist an n' such that 1 o' = n (By Definition of ev_no)
3. I FC; SCFn~Q <V (By Definition of ev_no)
4. By the Induction Hypothesis, we know that either
- SCHEnp~Q =V
x I SCHEnp~ (Q,(>ty — P))— V (Byevno)
—orSCHn~Q— L andFCF—(;V
x [SCHEnp~(Q,(¥>tp— P))— L (Byevnol)
« FCS vV (copied from Above)

e ev_nil

54

1. T;FC;SCtFn~-—=V (By Assumption)
2.5 1 (By ev_FC_empty)
3. I;458CkFn~-— L (Byevnill)

4. FC Ky (By Definition of ev_nil)

95

Lemma 10

1. FFC;SC W S5V then for all FC*, (FC*,FC); SC+W 25V

2. Let S represent either Delphin programs P or stack objects M
IfT;m FC;SCH S <= V then T;n; (FC*, FC); SCHS — V

3. IfT5FC;SCHn~Q—V then T, (FC*, FC); SCHn~Q—=V
4. IfFC SV then (FC*,FC) SV

PROOF.

26

Part 1 — Proof over X
e ev SC_empty

1. FC;-FV Kv (By Assumption)

2. (FC* FC);-FV Sv (By ev_SC_empty)
e ev_SC_nonempty

1. FC;(SC, (T;m; Az M) =W Sv (By Assumption)
2. T;n; FC; SC+ M[W/z] < V (By Definition of ev.SC_nonempty)
3. T;n; (FC*,FC);SCF M[W/z] < V (By Part 2 of this Lemma)

4. (FC*, FC); (SC,(T;n; Az.M)) W Ky (By Application of ev.SC_nonempty)

o7

Part 2 — Proof over —

e ev |F

1. T;m; FC; SCF L — V (By Assumption)

2. FC;SC \ Lin] Kv (By Definition of ev_LF)

3. (FC*,FC);SC I Lin| Xy (By Part 1 of this Lemma,)

4. Tsm; (FC*, FC); SC+ L — V (By Application of ev_LF)
e ev_var

1. T;m; FC; SC Fx — V' (By Assumption)

2. n(x) = V' (By Definition of ev_var)

3. FC;SCFV' Xy (By Definition of ev_var)

4. (FC*, FC);SC+HV' Ky (By Part 1 of this Lemma,)

5. T;m; (FC*, FC); SC+x— V (By Application of ev_var)
e ev_unit

1. T;m FC; SCF () = V (By Assumption)

2. FC;SC () Ky (By Definition of ev_unit)

3. (FC*,FC);SC F) Ky (By Part 1 of this Lemma,)

4. Tsm; (FC*, FC); SC+ () — V (By Application of ev_unit)
e ev_let

1. T;n; FC;SCFlet x = Py in P, — V' (By Assumption)

2. T;n;, FC; (SC, (T';n; M\z.let x=z in Py)) = P — V' (By Definition of ev_let)

3. Iyn; (FC*, FC); (SC, (T;m; Azlet £=z in Py)) - P, — V (By the Induction Hy-
pothesis)

4. Tsm; (FC*, FC); SC +let x = Py in P, — V' (By Application of ev_let)
e ev_let_.SC

1. T;m; FC; SC F let € =W in P, — V (By Assumption)

2. T;(n,W/x); FC; SC v+ P, = V (By Definition of ev_let_SC)

3. T;(n,W/x); (FC*, FC); SC + P, — V (By Induction Hypothesis)

4. Tsm; (FC* FC); SC+ let € =W in P, — V (By Application of ev_let SC)

e ev_ A

o8

1. T;n; FC;SCF Az - A.P — V (By Assumption)
2. FC;SCF {n; Az : A. P} Kv (By Definition of ev_A)

3. (FC*,FC); SCF {n; Az : A. P} Sv (By Part 1 of this Lemma,)
4. Tsm; (FC*,FC); SCtH Az : A.P — V (By Application of ev_A)

ev_rec

1. T;m FC;SCF px € F. P — V (By Assumption)

2. T;(n,ux € F.P/x); FC; SC + P — V (By Definition of ev_rec)

3. T;(n,ux € F.P/x); (FC*,FC);SC+ P — V (By Induction Hypothesis)
4. Tsm; (FC*, FC); SCF ux € F. P — V (By Application of ev_rec)

ev_app

1. Tyn; FC; SCF Py Ay — V' (By Assumption)

2. T;n; FC;(SC, (T';n; Az.appl z As)) = PL — V' (By Definition of ev_app)

3. Iyn; (FC*, FC); (SC, (T;m; Az.appl z Ag)) b P, — V' (By Induction Hypothesis)
4. Tsm; (FC*, FC); SC + P, Ay < V' (By Application of ev_app)

ev_app_SC1l

1. Tsm; FC; SC F appl {n'; Ax € A. P[} Ay — V' (By Assumption)
2. Tsm; FC; (SC, (Tsn'; Az.app2 P| z)) = Ay — V' (By Definition of ev_app_SC1)
3. Tsm; (FC*, FC); (SC, (T;1'; Az.app2 P| z)) & Ay — V' (By Induction Hypothe-
sis)
4. Tsm; (FC*, FC); SC + appl {n'; Ax € A. P|} Ay — V (By Application of ev_app_SC1)
ev_app_SC2

1. T;m; FC; SC + app2 P Vo, — V (By Assumption)

2. T;(n,Vo/x); FC; SC v P{ — V (By Definition of ev_app_-SC2)

3. T;(n,Vo/x); (FC*, FC); SC + P| — V (By Induction Hypothesis)

4. Tsm; (FC*, FC); SC + app2 P Vo — V' (By Application of ev_app_SC2)

ev_pair
1. T;m; FC; SC F (A Py — V' (By Assumption)
2. I;n; FC; (SC, (T';n; Az.pairl{z; P))) - Ay — V (By Definition of ev_pair)

3. Iym; (FC*, FO); (SC, (T;m; Az.pairl(z; Pp))) = Ay — V (By Induction Hypothe-
5is)
4. Tsm; (FC*, FC); SC + (Ay; Py) — V' (By Application of ev_pair)

99

e ev_pair SC1

1. T;n; FC; SC F pairl(Vy; P,) — V (By Assumption)
2. T;n; FC; (SC, (T';n; Az.pair2(Vy; 2))) b Py — V' (By Definition of ev_pair SC1)

3. Iyn; (FC*, FC); (SC, (T;m; Az.pair2(Vy; 2))) b Py — V' (By Induction Hypothe-
5is)

4. Tsm; (FC*, FC); SC + pairl{Vi; P,) — V (By Application of ev_pair SC1)
e ev_pair SC2

1. T;n; FC; SC F pair2(Vy;Vy) — V' (By Assumption)

2. FC;SC + (V1;Va) <= V' (By Definition of ev_pair.SC2)

3. (FC*,FC);SC + (Vi;Va) =V (By Part 1 of this Lemma)

4. Tsm; (FC*, FC); SC + pair2(Vi; Vo) — V' (By Application of ev_pair SC2)
e ev_case

1. T;m; FC; SC F case Q — V' (By Assumption)

2. T;FC; SCFn~Q <V (By Definition of ev_case)

3. T;(FC*,FC);SCkFn~Q <V (By Part 8 of this Lemma)

4. Tsm; (FC*, FC); SC + case Q — V' (By Application of ev_case)

60

Part 3 — Proof over —
® ev_yes

[FC; SCEnp~ (2, (¥ — P))— V (By Assumption)

Yon' =n (By Definition of ev_yes)

Lsn's (FC, (T n; SC; case Q)); SC + P — V' (By Definition of ev_yes)

L;n's (FC*, FC), (T';n; SC; case Q)); SC = P <— V (By Part 2 of this Lemma)
L (FC* FC); SCEp~ (Q, (Y > — P)) = V (By Application of ev_yes)

SRS

® €v_no

[FC; SCEn~ (2, (Yt — P))— V (By Assumption)

There does not exist an 1’ such that ¢ on' = n (By Definition of ev_no)
[FC; SCFn~Q <V (By Definition of ev_no)

[(FC*, FC); SC Fn~ Q< V (By the Induction Hypothesis)

[(FC* FC); SCEnp~ (2, (Y >y — P)) =V (By Application of ev_no)

SRS

e evnil
1. T FC;SCt+n~-—=YV (By Assumption)
2. FC5Sv (By Definition of ev_nil)

3. (FC*,FC) Ky (By Part 4 of this Lemma,)
4. T;(FC*, FC); SCFn~ -V (By Application of ev_nil)

61

Part / — Proof over &
e ev_FC_nonempty

1. (FC,(I';n; SC; case 1)) Sv (By Assumption)
2. T;FC; SCFn~Q <V (By Definition of ev_.FC_nonempty)
3. I;(FC*, FC);SCkFn~Q <V (By Part 3 of this Lemma)

4. FC* (FC,(T';n; SC; case Q)) Ky (By Application of ev_FC_nonempty)

62

Lemma 11

1. FFC* SV and FC;SC W S L then (FC*, FC); SCHW SV

2. Let S represent either Delphin programs P or stack objects M
If FC* Ky and T;n; FC; SCH S — L then Tyn; (FC*, FC);SCE S =V

3. IfFC*F<—>CV and I'; FC; SCHEnp~Q — L then T (FC*, FC); SCEnp~Q =V
4. IFFC* SV and FC 55 L then (FC*,FC) SV

PROOF.

63

Part 1 — Proof over X
e ev SC_nonempty_ L

1. For Sy (By Assumption)

2. FC;(SC, (T;mAz.M)) =W K1 (By Assumption)

3. I;n; FC; SC = M[W/z] — L (By Definition of ev_.SC_nonempty_L)
4. Tsm; (FC*, FC); SC+ M[W/z| — V (By Part 2 of this Lemma)
)

. (FC* FC); (SC, (Tym; Az.M)) W Ky (By Application of ev_SC_nonempty)

64

Part 2 — Proof over —
e ev lF L

L FCr Sy (By Assumption)
.y FC; SCF L — 1 (By Assumption)

1

2

3. FC;SC+ L 25 L (By Definition of ev_LF_L)

4. (FC*,FC); SC + Lin] Ky (By Part 1 of this Lemma)
5 Tsm (FC*, FC); SC+ L — V (By Application of ev_LF)

e ev.varl

Fo* Sy (By Assumption)

[;n; FC; SC Fx — L (By Assumption)

n(x) = V' (By Definition of ev_varL)

FC;S5CFV! X0 (By Definition of ev_varl)
(FC*,FC); SC V' Ky (By Part 1 of this Lemma)
Lyn; (FC*, FC);SC Fx <=V (By Application of ev_var)

S G e~

e ev_unitL

1. Fe-Sv (By Assumption)

2. T;n, FC;SC+ () — L (By Assumption)

3. FC;SC () K0 (By Definition of ev_unitl)
4

. (FC*,FC); SC) Sv (By Part 1 of this Lemma)
5. Tym; (FC*, FC); SC + () — V (By Application of ev_unit)

e ev_let L

rFer Sy (By Assumption)
[yn, FC; SCFlet x = Py in Py, — L (By Assumption)
T;n; FC; (SC, (Tyn; Az.let =z in P,)) = P, — L1 (By Definition of ev_let 1)

T;n; (FC*, FC); (SC, (T;n; Az.let x=z in P)) + P, — V (By the Induction Hy-
pothesis)

5. T;m; (FC*, FC); SC Flet x = Py in P, < V (By Application of ev_let)

e v o~

e ev let SCL

1. Fer Sy (By Assumption)

65

2. T;n; FC; SC & let € =W in P, — L (By Assumption)

3. T5(n,W/x); FC; SC + Py — L (By Definition of ev_let SCL)

4. U5 (n,W/x); (FC*,FC); SC = P, — V (By Induction Hypothesis)

5. Tin; (FC*, FC);SCF let € =W in P, — V' (By Application of ev_let SC)

e ev AL
FC .
1. FC* =V (By Assumption)
2. T;n; FC;SC+ Az : A. P — L (By Assumption)
3. FC;SCF {n: Az : A. P} S 1 (By Definition of ev_AL)
4. (FC*,FC); SC+ {n; Az : A. P} Sv (By Part 1 of this Lemma,)
5. Tsn;(FC*,FC); SCF Az : A. P — V (By Application of ev_A)
e ev_recl
FC .
FC* <=V (By Assumption)
[;n, FC; SCF ux € F. P — L (By Assumption)
I; (n,ux € F.P/x); FC; SC + P — 1 (By Definition of ev_recl)

T;(n,ux € F.P/x); (FC*,FC);SC+ P — V (By Induction Hypothesis)
L;n; (FC*, FC); SCF ux € F. P — V (By Application of ev_rec)

SIS

e ev_appl

1. Fox Sy (By Assumption)

2. I;n FC; SC+ Py Ay — L (By Assumption)

3. T;n;, FC; (SC, (T';n; Az.appl z As)) = Py — | (By Definition of ev_appl)

4. Tsm; (FC*, FC); (SC, (I';m; Az.appl z As)) = P, — V (By Induction Hypothesis)
5. T;n; (FC*, FC); SC+ Py Ay — V' (By Application of ev_app)

e ev.app SC1L

Fo- Sy (By Assumption)

[;n; FC; SCF appl {n/;Ax € A. P{} Ay — | (By Assumption)

;n; FC; (SO, (Tyn'; Az.app2 P| 2)) F Ay — L (By Definition of ev_app-SC1.1)
Tsn; (FC*, FC); (SC, (T;7'; A\z.app2 P z)) b Ay — V (By Induction Hypothe-
sis)

5. T;n; (FC*, FC); SC + appl {n'; Ax € A. P|} Ay — V (By Application of ev_app_SC1)

e v o~

e ev_app SC2 L

66

Fo-Sv (By Assumption)

Ly FC; SC + app2 P Vo, — L (By Assumption)

T;(n,Va/x); FC; SC + P| — L (By Definition of ev_app_SC2.1)

T; (n,Va/x); (FC*, FC); SC + P{ < V (By Induction Hypothesis)

Lyn; (FC*, FC); SC + app2 P] Vo, — V (By Application of ev_app-SC2)

SRR

e ev_ pairl

rer Sy (By Assumption)
[yn; FC, SC = (Ay; P) — L (By Assumption)
[;n; FC; (SO, (T;m; Az.pairlz; P))) = Ay — L (By Definition of ev_pair L)

Lyn; (FC*, FC); (SC, (T;n; Az.pairl{z; P))) = Ay — V (By Induction Hypothe-
sis)

5. T;m; (FC*, FC); SC + (Ay; P) — V' (By Application of ev_pair)
e ev_pair SC1_L

e v o~

For Sy (By Assumption)

[;n; FC; SC F pairl{Vi; Py) — 1 (By Assumption)

sn; FC; (SC, (T n; Az.pair2(Vy; z2))) B Py, — L (By Definition of ev_pair SC1.1)
L;n; (FC*, FC); (SC, (T;n; Az.pair2(Vy; z))) & Py — V' (By Induction Hypothe-
sis)

5. Tym; (FC*, FC); SC + pairl(Vi; P,) — V (By Application of ev_pair SC1)

e v o~

e ev_pair SC21

Fer Sy (By Assumption)

. ym; FC, SC F pair2(Vy; Vo) — L (By Assumption)

. FC;SC + (V1;Va) — L (By Definition of ev_pair SC21)

. (FC*,FC); SC + (V1;Va) <= V (By Part 1 of this Lemma)

. Dsm; (FC*, FC); SC + pair2(Vi; Vo) — V' (By Application of ev_pair SC2)

[T S TR COR

e ev_casel

For Sy (By Assumption)

[yn; FC; SC = case Q — L (By Assumption)

[FC; SCHn~Q < L (By Definition of ev_casel)

L (FC* FC);SCFn~Q<—V (By Part 8 of this Lemma)
Lyn; (FC*, FC); SC F case Q — V (By Application of ev_case)

SRR S

67

Part 3 — Proof over —

e ev.yes|

Fo- Sy (By Assumption)

[FC; SCEnp~ (2, (>t — P))— L (By Assumption)

Yon' =n (By Definition of ev_yesl)

Lsn's (FC, (T;n; SC; case 2)); SC = P — L (By Definition of ev_yes.l)

L;n's (FC*, FC), (T';n; SC; case Q)); SC+ P <— V (By Part 2 of this Lemma)
[(FC* FC); SCEp~ (Q, (Y > — P)) = V (By Application of ev_yes)

S v o o~

e ev.nol

Fo* Sy (By Assumption)

[CFC;SCEnp~ (2, (>t — P))— L (By Assumption)

There does not exist an n' such that 1) o' = n (By Definition of ev_nol)
[TFC; SCFn~Q < L (By Definition of ev.no.l)

[y (FC*, FC); SC Fn~ Q< V (By the Induction Hypothesis)

L (FC* FC); SCEnp~ (2, (Y >y — P)) = V (By Application of ev_no)

S T

e ev_nilL

L Fer Sy (By Assumption)
. FC,SCFn~-— 1 (By Assumption)

. (FC*,FC) Ky (By Part 4 of this Lemma,)

1
2
FC o .
3. FC — L (By Definition of ev_nil)
4
5. T;(FC*,FC); SCFn~ -V (By Application of ev_nil)

68

FC
Part / — Proof over —
e ev_empty

1. For Sy (By Assumption)
2. .51 (By Assumption)

3. (FC*,-)=FC*

4. (FC*,") Ky (By Above)

e ev_ FC_nonempty L

1. Fe* Sy (By Assumption)

2. (FC,(T;n; SC; case Q)) &0 (By Assumption)
3. I FC; SCFn~Q < L (By Definition of ev_-FC_nonempty_L)
4. T;(FC*, FC); SCFn~Q <V (By Part 8 of this Lemma)

5. FC*,(FC,(T;n; SC; case Q)) Ky (By Application of ev_FC_nonempty)

69

Lemma 12

1. FFC*S 1 and FC;SC W 5 1 then (FC*,FC); SC W 25 1

2. Let S represent either Delphin programs P or stack objects M
If FC* &1 and [yn, FC; SCH S — L then Tyn; (FC*,FC);SCE S — L

3. IfFC*F<—>CJ_ and I'; FC;SCEnp~Q — L then T (FC*, FC); SCHnpe~Q — L
4. IFFC* <5 1 and FC <S5 L then (FC*, FC) &S L

PROOF.

70

Part 1 — Proof over X
e ev SC_nonempty_ L

1. For S5 1 (By Assumption)

2. FC;(SC, (T;m Az M) FW K1 (By Assumption)

3. I;n; FC; SC = M[W/z] — L (By Definition of ev_.SC_nonempty_L)
4. Tsm; (FC*, FC); SC+ M[W/z| — L (By Part 2 of this Lemma)
)

. (FC* FC); (SC, (Tym; Az.M)) W X1 (By Application of ev_SC_nonempty_L)

71

Part 2 — Proof over —
e ev lF L

L FCrES L (By Assumption)
.y FC; SCF L — 1 (By Assumption)

1

2

3. FC;SC+ L 25 L (By Definition of ev_LF_L)

4. (FC*,FC); SC + Lin] a (By Part 1 of this Lemma,)

5 Tsm(FC*, FC); SC+ L — L (By Application of ev_LF_L)

e ev.varl

FOo+S5 1 (By Assumption)

Isn;, FC; SC Fx — L (By Assumption)

n(x) = V' (By Definition of ev_varL)

FC;S5CFV! X0 (By Definition of ev_varl)

(FC*,FC); SC V' K1 (By Part 1 of this Lemma,)
Lyn; (FC*, FC); SC +x < 1 (By Application of ev_varl)

S G e~

e ev_unitL

1. For 5 1 (By Assumption)

2. T;n, FC;SC+ () — L (By Assumption)

3. FC;SC () K0 (By Definition of ev_unitl)
4

. (FC*,FC); SC) X1 (By Part 1 of this Lemma,)
5 Ui (FC*, FC); SC () — L (By Application of ev_unitL)

e ev_let L

For &S 1 (By Assumption)
[yn, FC; SCFlet x = Py in Py — L (By Assumption)
T;n; FC; (SC, (Tyn; Az.let £=z in P,)) = P, < L1 (By Definition of ev_let 1)

Tsn; (FC*, FC); (SC, (T';n; Az.let €=z in Py)) = P, — L (By the Induction Hy-
pothesis)

5. Tsm; (FC*, FC); SCFlet x = P in P, — | (By Application of ev_letl)

e v o~

e ev.let SCL

1. Fer 55 1 (By Assumption)

72

2. T;n; FC; SC & let € =W in P, — L (By Assumption)

3. I';(n,W/x); FC; SC = P, — L (By Definition of ev_let SC_L)

4. T5(n,W/x); (FC*, FC); SC+ Py — | (By Induction Hypothesis)

5. Tiny (FC*, FC);SCF let € =W in P, — L (By Application of ev_let SCL)

e ev AL
FC .
1. FC* — 1| (By Assumption)
2. T;n; FC;SC+ Az : A. P — L (By Assumption)
3. FC;SCF {n: Az : A. P} S 1 (By Definition of ev_AL)
4. (FC*,FC); SC+ {n; Az : A. P} X1 (By Part 1 of this Lemma,)
5. Tsn; (FC*,FC); SCF Az : A.P — L (By Application of ev_ A1)
e ev_recl
FC .
FC* — 1 (By Assumption)
[yn, FC; SCF ux € F. P — L (By Assumption)
I; (n,ux € F.P/x); FC; SC + P — 1 (By Definition of ev_recl)

T;(n,ux € F.P/x); (FC*,FC);SC+ P — 1 (By Induction Hypothesis)
[;n; (FC* FC); SCt ux € F. P — | (By Application of ev_recl)

SIS

e ev_appl

1. FOo+ 5 1 (By Assumption)

2. Iyn, FC; SC+ Py Ay — L (By Assumption)

3. T;n;, FC; (SC, (T';n; Az.appl z As)) = Py — | (By Definition of ev_appl)

4. Tsm; (FC*, FC); (SC, (I';m; Az.appl z As)) = P, — 1 (By Induction Hypothesis)
5. T;m; (FC*, FC); SC+ P, Ay — 1 (By Application of ev_appl)

e ev.app SC1L

Fer &1 (By Assumption)

[yn; FC; SCF appl {n';Ax € A. P{} Ay — | (By Assumption)

;n; FC; (SO, (Tyn'; Az.app2 P| 2)) F Ay — L (By Definition of ev_app-SC1.1)
Tyn; (FC*, FC); (SC, (T;n0'; A\z.app2 P z)) b Ay — L (By Induction Hypothe-
sis)

5. T;n; (FC*, FC); SC + appl {n'; Ax € A. P{} Ay — | (By Application of ev_app SC1L1)

e v o~

e ev_app SC2L

73

Fer &1 (By Assumption)

[y FC; SC = app2 P Vo, — L (By Assumption)

T;(n,Va/x); FC; SC + P| — L (By Definition of ev_app_SC2.1)

T; (n,Va/x); (FC*, FC); SC + P| — 1 (By Induction Hypothesis)

Lyn; (FC*, FC); SC + app2 P] Vo, — L (By Application of ev_app-SC2.1)

SANRSEENCIE S

e ev_ pairl

Fe+ &5 1 (By Assumption)

Tyn; FC; SCF (Ay; Py) — | (By Assumption)

L;n; FC; (SC, (Tsm; Az.pairl(z; Ps))) = Ay — L (By Definition of ev_pairL)
Lsn; (FC*, FC); (SC, (T;m; Az.pairi{z; P))) = Ay — L (By Induction Hypothe-
sis)

5. T;m; (FC*, FC); SC + (Ay; P) — L (By Application of ev_pairl)

e v o~

e ev_pair SC1_L

FOo*5 1 (By Assumption)

[yn; FC; SC F pairl{Vi; Py) — 1 (By Assumption)

sn; FC; (SC, (T n; Az.pair2(Vy; z2))) B Py, — L (By Definition of ev_pair SC1.1)
C;n; (FC*, FC); (SC, (T;n; Az.pair2(Vy; z))) & Py — L (By Induction Hypothe-
sis)

5. Tsn; (FC*, FC); SC + pair1(Vi; Py) — L (By Application of ev_pair.SC1.1)

e v o~

e ev_pair SC2 L

CFer S L (By Assumption)

. Tym; FC; SC F pair2(Vy; Vo) — L (By Assumption)

. FC;SC + (V1;Va) — L (By Definition of ev_pair SC21)

. (FC*,FC); SC + (V1;Va) < L (By Part 1 of this Lemma)

. Dsm; (FC*, FC); SC & pair2(Vy; Va) — L (By Application of ev_pair SC2.1)

[T S TR COR

e ev_casel

PSS 1 (By Assumption)

[yn; FC; SC = case Q — L (By Assumption)

[FC; SC i~ Q< L (By Definition of ev_casel)

L (FC* FC);SCFn~Q<— L (By Part 8 of this Lemma,)
yn; (FC*, FC); SC F case Q — 1 (By Application of ev_casel)

SANREENCIEE S

74

Part 3 — Proof over —

e ev.yes|

Fer &1 (By Assumption)

[FC;SCEnp~ (2, (> — P))— L (By Assumption)

Yon' =n (By Definition of ev_yesl)

Lsn's (FC, (T;n; SC; case 2)); SC = P — L (By Definition of ev_yes.l)

L;n's (FC*, FC), (T;n; SC; case Q)); SC + P — L (By Part 2 of this Lemma)
[(FC* FC); SCEnp~ (2, (Y > — P)) — L (By Application of ev_yesl)

S v o o~

e ev.nol

FOo*<5 1 (By Assumption)

[CFC;SCEnp~ (2, (>t — P))— L (By Assumption)

There does not exist an n' such that 1) o' = n (By Definition of ev_nol)
[TFC; SCFn~Q < L (By Definition of ev.no.l)

[(FC*, FC); SC Fn~ Q< L (By the Induction Hypothesis)

L (FC* FC); SCHn~ (Q, (¥ > — P)) — L (By Application of evnol)

S T

e ev_nilL

L Fer S 1 (By Assumption)
. FC,SCFn~-— 1 (By Assumption)

. (FC*,FC) &0 (By Part 4 of this Lemma)

1
2
FC o .
3. FC — L (By Definition of ev_nil)
4
5. T;(FC*,FC); SCFn~ - L1 (By Application of ev_nil L)

75

FC
Part / — Proof over —
e ev_empty

1. For S5 1 (By Assumption)
2. .51 (By Assumption)

3. (FC*,-) = FC*

4. (FC*,-) &0 (By Above)

e ev_ FC_nonempty L

1. Fer 55 1 (By Assumption)

2. (FC,(T;n; SC; case Q)) &0 (By Assumption)

3. I FC; SCFn~Q < L (By Definition of ev_-FC_nonempty_L)
4. T;(FC*, FC); SCFn~ Q< 1 (By Part 3 of this Lemma,)
5

. FC*, (FC,(T';n; SC; case Q)) iyl (By Application of ev_[FC_nonempty_|)

76

10.5 Properties of x and @

Lemma 13 This Lemma has multiple parts.

1. If P B oand P, Y Fy and Fy x Fy = Py then

(a) There exists a F3 such that Ps NS F;

(b) If T;mt Fy <> V then
i Tink Fyes V
1. EitherUsn=Fy =V orinkE Fy = L
(c) If Tsmt Fy <> L then
i. imbEFy > Vifand only if U;nt Fy >V
1. DyntFy = 1L if and only if Usn = Fy = L
2.IfQ® (Ubtp—» P) = andpon =0 and P F and T = F <> V, then
Thn~QesV
Note: ' refers to a matching of n with the case (¥ > 1) — P)
3. QTGS Q and Q@ (Isy — P) = U and o = and P X' F and T;f F F < L
then

F'Enp~Qe Vifand only if TEn~Q <V

Note: This means that if Q is factored and you add a case which matches n but returns
1, then the resulting ', would behave the same as Q. (See also Part 4 of this Lemma)

4. IFQ 7SS Q and Q@ (s — P) = @ and o =5 and PR F and s - F < L
then

F'Fnp~Qes Lifand only if TFn~Q = L

5. 000 S Qand Q@ (WY —» P) = and oy =7 and P 7 F and
;- F <V, then

o FitherT'Fn~Q—V
e orI'Fn~Q e L

6. IFQ7 S5 Q and Q@ (T op s P) = and for all 1, b on # 1 then
F'Fnp~Qes Vifand only if TFnp~Q — V
7. Q7SS Q and Q@ (U — P) = Q and for all o, Yon' £ 1 then

F'Fnp~Qes L ifand only if TEnp~Q = L

7

Proof of Part 1
PROOF. Proof proceeds by induction over %

e merge_unit and merge_LF and merge_A and merge_rec and merge_app

1. These are all of the form: Px P = P (By Assumption)
2. Trivially all parts are satisfied:

(a) Part 1a

— P is the result of something being factored (By Assumption)
fact

— P~ P (By Lemma 3.1)
(b) Part 1b
— IfT;nE PV thenT;nt PV (Trivial)
(c) Part 1c
— IsnkE P < | (By Assumption)
—IinE P Vifand only if T;nt P~V (Trivial)
— ik P L ifand only if T;n = P < L (Trivial)

e merge_pair

1. ((AlA; PIB)) * (<A1A; PQB)) = <A1A; P3B> (By Assumptz'on)
2. P, x P,, = Py, (By Definition of merge_pair)
3. We have three parts to prove:

— Part 1a

(a) (A1,; Pi,) is the result of something being factored. (By Assumption)
fact

(b) <A1A;PlB) ~ <A1A;PlB> (By Lemma 31)

fact

(¢) Ay, ~ A, (By Inversion)

(d) P, fag Py, (By Inversion)

(e) Ps, fag Fs, (By Induction Hypothesis on Line 2)

fact

(f) (Ai,; Psp) ~ (A, Fsy) (By fact_pair)
— Part 1b

(a) T;nt ((A1y; Pay)) = (Vi; Va) (By Assumption)

(b) T'sntE Ay, = Vi (By Inversion)

(¢c) T';nt Py, =V, (By Inversion)

(d) Part 1(b)i
x T;nk F3, < Vo (By Induction Hypothesis on Line 2)
« [sn b (A, Fs,) < (Vi; Va) (By ev_delphin_pair)

(e) Part 1(b)ii

78

e merge_let

x FEither T;nt Py, = Vo or Tsn - P, = L (By Induction Hypothesis
on Line 2)
x Fither T';n = (A1, Py <= (Vi; Vo) or s+ (Ay,; Piy) = L (By
ev_delphin_pair and ev_delphin_pair_l,)
— Part 1c
(a) Tsnt ((A1,; Pyy)) < L (By Assumption)
(b) By Inversion, Either
x* inE A, <= L
- sk (Ay,; Pi,) = L (By ev_delphin_pairl,)
- Tsmk (A1 ,; Fs,) <> L (By ev_delphin_pairl)
- Therefore, Tsn E (A1 5 Pry) = Voif and only if Ty;n - (A, F3,) —

— V' (since both sides are false)

- And, T;n B (Aq,; Pig) = Lif and only if Ty;n = (Ay,; F3,) = L

(since both sides are true)

x orsmE Ay, = Vi andDsnkE Py, = L
- Part 1(c)i
- (Start)
- Tsp B P, = Vo if and only if Tsn & Fs, < Vo (By Induction

Hypothesis on Line 2)

- Ty b (A Pu,) = Voif and only if T;n = (Ay,; F3,) < V (By

ev_delphin_pair)

- (End)

- Part 1(c)ii

- (Start)

- Ismp = P, = L if and only if T;n = F3, = L (By Induction

Hypothesis on Line 2)

- TsmF (A Pig) = Lif and only if T;n B (Ay,; Fs,) = L (By

ev_delphin_pair_L,)

- (End)

1. letx:D=P,inP,)*(letx:D=P,in P,)=letx: D =P, in P;, (By

Assumption)

2. P, x P,, = Py, (By Definition of merge_let)
3. We have three parts to prove:

— Part 1a
(a) let x : D = Py, in Pi, is the result of something being factored (By
Assumption)

fact

(b) letx: D =P, in P, ~ letx: D =Py, in P, (By Lemma 3.1)

79

(c) P, feg P, , (By Inversion)

(d) Ps, fogt Fs, (By Induction Hypothesis on Line 2)

(e) letx:D =P, in P, *'let x: D =Py, in Fy, (By fact_let)

— Part 1b
(a) Tsnt (letx: D= P, in P,) < V (By Assumption)
(b) T'snt P, < Vi (By Inversion)
(c) T;(n,Vi/x) = Py, = V (By Inversion)
(d) Part 1(b)i
x I'; (n,Vi/x) = F3, < V (By Induction Hypothesis on Line 2)
« Ismpbletx: D= Py, in F3, = V (By ev_delphin_let)
(e) Part 1(b)ii
x Either 'y (n,Vi/x) = Py, <V or I'; (n,Vi/x) b P, = L (By Induc-
tion Hypothesis on Line 2)
*x Bither ''nbEletx: D =P,in Py = Volinkltx: D=
P, in P, = | (By ev_delphin_let and ev_delphin_letL,)
— Part 1c
(a) Tsnb (letx: D =P, in P,,) = L (By Assumption)
(b) By Inversion, Either
* I'inpb P, = L
- IspFletx: D =P, in P, = L (By ev_delphin_letL,)
- IspFletx: D =P, in F3, < L (By ev_delphin_letL,)
- Therefore, I''n Flet x : D = P, in P, = V if and only if
IsnEletx: D =P, in F3, < V (since both sides are false)
- And, I'snbEletx: D =P, in P, = L if and only if I';n = let x :
D =P, in F5, = | (since both sides are true)
x or Dsmb P, = Vi and T (n, Vi/x) F Py = L
- Part 1(c)i
- (Start)
- s, Vi/x) F Py, = V if and only if T; (0, Vi/x) = F3, = V (By
Induction Hypothesis on Line 2)
-inkEletx: D =P, in P, =V ifand only if I'snEletx: D =
P, in Iy, < V (By ev_delphin_let)
- (End)
- Part 1(c)ii
- (Start)
- I, Vi/x) & Py = L if and only if T; (n,Vi/x) = F3, <> L (By
Induction Hypothesis on Line 2)
-I'imkEletx:D=PFP,in P, = L ifand only if 'spletx: D =
P, in F3, = | (By ev_delphin_letL,)

80

- (End)

® Mmerge_new

1
2
3
4
5.
6
7.
8
9

10.
11,
12,
13,
1.
15,

16.
17.

. case Q x (case [(U > — P)]) = case (2, (V> — P)) (By Assumption)
. case Q is the result of something being factored. (By Assumption)

. case 0 7' case Q (By Lemma 3.1)
R (By Inversion)

case [(U 1 — P)] is the result of something being factored. (By Assumption)
fact

. case [(V 1 — P)] ~ case (V> — P)| (By Lemma 3.1)

fact—case

(Tt P)| "~ [(Y>1 — P)| (By Inversion)

. There ezists some P' such that P' ™' P (By Lemma 3.4)

PP (By Lemma 3.1 or Definition of merge_new)

[;ntcase (U — P)l<» Vifand only if TEn~[(Y>¢ — P)] >V (By
ev_delphin_case)

F'En~ (Ut — P)] <V if and only if (There exists an n' such that Y on' =n
and T;n' P V)

From the last two steps, we have that T';n t case [(¥ > — P)| <= V if and only
if (There exists an 1’ such that Ypon'=n and ;' P V)

[sntcase (U — P) < Lifand only if TFn~[(Y>¢ — P)]—> L (By
ev_delphin_case)

CEnp~[(U>y— P) < L if and only if Either there does not exist an n' such
that ¥ on' = n or (there exists such ann' and ;' P < 1)

From the last two steps, we have that I';nt case [(¥ > — P)] < L if and only

if Either there does not exist an n' such that ¥ on' =n or (there exists such an n'
and Usnf' =P 1)

Q@ (Y — P)1 (By Definition of merge_new)
We now address Parts 1a, 1b, and 1c:

(a) For Part 1a we can show that case (2, (¥>y) — P)) 1% case (Q, (I — P)).
By fact_case, this reduces to showing that (Q, (V> — P)) factopse (Q, (I
Y= P))

fact—case

- Q(U>tp = P) "~ Q (Vb1 — P) (By case_new with Line 4 and
Line 9 and Line 16)

(b) For Part 1b we assume I';n = (case [(¥ > — P)]|) = V. This is true if
and only if there exists an n' such that Y on' =n and T;n = P — V (By
Line 12). We must now show:

81

— Part 1(b)i. T;n F case (Q, (¥ > — P)) < V. This reduces (By
ev_delphin_case) to showing that ' - n ~ Q, (V> — P) < V (This
follows directly by ev_delphin_yes)

— Part 1(b)ii. Here we just to show that Fither T';n F case Q < V or
[;n - case Q < L. This reduces (By ev_delphin_case) to showing that
EitherTFn~Q eV or'Fnp~ Qe L.

x There does not exist a renaming substitution t such that 11 = Y90t and
(U1pthy = P) € Q (U — P)and (Vo> iy — Py) € Q, (¥ > —
P)(By Lemma 3.3)

x For all (Wa> s — Py) € Q, there does not exist a renaming substitu-
tion t such that ¥ =1 ot (By Above)

* By Inversion and Definition 2 (using ev_delphin_no L and ev_delphin_nil),
we know that T Fn~Q < |

(c) For Part 1c we assume I';n = (case [(¥ >t — P)]) < L. This is true if and
only if T'=n~[(¥>1y— P)] = L (Byev_delphin_casel). By Line 15, this
implies two possibilities: FEither (1) There exists an n' such that 1p on' = n
and T;n' = P <> L or (2) for alln', Yon' #n.

— Part 1(c)i. Here we need to show that T';n F case Q < V' if and only if
[;n b case (Q, (V> — P)) < V. This reduces (By ev_delphin_case) to
showing that T'Fn~ Q< V ifand only if T Fn ~ (Q, (¥ > — P)) —
< V. Recall that there are two ways that T En~ [(¥ > — P)| < L.
We do case analysis over both cases:

x There exists an n' such that Yon'=n and ;n' = P < 1.

- There does not exist a renaming substitution t such that ¥, =y o0t
and (U1 > = P) € Q, (V> — P) and (Vo> ihy = P) €
Q, (Y>9 — P)(By Lemma 3.3)

- For all (W s>1a — Py) € Q, there does not exist a renaming substi-
tution t such that 1 =4 ot (By Above)

- By Inversion and Definition 2 (using ev_delphin_no_L and ev_delphin_nil),
we know that TFnp~ Qe |

- Therefore, T =~ Q < V ifand only if T = n ~ (Q, (¥ >y —
P)) < V (Since both sides are false)

x Foralln', on #n.

- Therefore, T~ Q < V ifand only if T = n ~ (Q (¥ > —
P)) < V (By ev_delphin_no)

— Part 1(c)ii. Here we need to show that I';n = case Q < L if and only if
[;n bk case (2, (U1 — P)) <> L. This reduces (By ev_delphin_case_l) to
showing that T'Fn~ Q< L if and only if T Fn ~ (Q, (¥ > — P)) —
— L. Recall that there are two ways that I'=n ~ [(¥ > — P)] = L.
We do case analysis over both cases:

x There exists an n' such that Y on' =n and I';n' = P < L.

82

- There does not exist a renaming substitution t such that ¥ =y o0t
and (\Illbd)l — Pl) € Q,(\I/Ddl — P) and (‘1’291/12 — P2) €
Q, (¥ > — P)(By Lemma 3.3)

- For all (W a>1a — Pys) € Q, there does not exist a renaming substi-
tution t such that 1 = ¢4 ot (By Above)

- By Inversion and Definition 2 (using ev_delphin_no_L and ev_delphin_nil),
we know that TFnp~ Q< |

- Therefore, ' - ~ Q < L if and only if T = n ~ (Q, (¥ > —
P)) < L (Since both sides are true)

x Foralln', on #n.

- Therefore, T =~ Q < L if and only if T = n ~ (Q (¥ > —

P)) = L (By ev_delphin_no_L)

e merge_fold

1

2
3
4

5.
6
7.
8
9

10.
11.
12,
13,
1.

15.

16.

. case Q x (case [(U> ¢ — P)]) = case ' (By Assumption)
. case Q is the result of something being factored. (By Assumption)

. case Q%' case Q (By Lemma 3.1)
RO RA o) (By Inversion)

case [(U > — P)] is the result of something being factored. (By Assumption)

. case [(U > — P)] 158 case (> +— P)| (By Lemma 3.1)

(T — P) fagt sgoe (¥ — P)| (By Inversion)

. There egists some P' such that P' %' P (By Lemma 3.4)

fact

. P~ P (By Lemma 3.1)

I;nbcase (Y — P) >V if and only if T =n ~ [(Y > — P)] <V (By
ev_delphin_case)

F'En~[(¥>t— P)] <V if and only if (There exists an n' such that Yon' =n
and Ts;nf' =P V)

From the last two steps, we have that T';n = case [(¥ > — P)] < V if and only
if (There exists an 1’ such that Ywon'=n and ;' P < V)

[sntcase (U — P) < Lifand only if TFn~[(¥Y>¢— P)]—> L (By
ev_delphin_case)

C'Enp~[(Y>Y— P)]<» L if and only if Either there does not exist an 1’ such
that ¥ on' = n or (there exists such ann' and T;n'+= P < 1)

From the last two steps, we have that T';nt case [(¥ > — P)] <> L if and only
if Either there does not exist an n' such that 1 on' =n or (there exists such an n'
and T;n' P 1)

Q@ (Y>1p— P)=Q (By Definition of merge_fold)

83

17. We now address Parts 1a, 1b, and 1c:

(a) For Part 1a we can show that case Q' 15 case V. By fact_case, this reduces
to showing that Jaclssgse gy

fact—case

- Q, (Y= P)’ <" Q (By case_nonempty with Line 4 and Line 16)

— g o (By Lemma 3.2)

(b) For Part 1b we assume I';n = (case [(¥ > — P)]|) = V. This is true if
and only if there exists an n' such that won' =n and T;n' = P < V (By
Line 12). We must now show:

— Part 1(b)i. T;nF case Q" < V. This reduces (By ev_delphin_case) to
showing that T' = n ~ Q' < V' (This follows directly by Part 2 of this
Lemma with Line 16 and Line 9)

— Part 1(b)ii. Here we just to show that Either I';n - case Q < V or
[;n F case Q «<» L. This reduces (By ev_delphin_case) to showing that
FitherT'Fne~Q <V orT'Fn~ Q<> L. (This follows directly by
Part 5 of this Lemma with Line 16 and Line 9)

(c) For Part 1c we assume I';n + (case [(¥ >4 — P)]) = L. This is true if and
only if T +n~[(Y>1 — P)] <> L (Byev_delphin_casel). By Line 15), this
implies two possibilities: FEither (1) There exists an n' such that 1 on' = n
and T;n' =P < L or (2) for alln', Yon' #n.

— Part 1(c)i. Here we need to show that I';n b case Q < V' if and only if
[yn b case Q' < V. This reduces (By ev_delphin_case) to showing that
F'Fne~Qe Vifand only if T = n ~ Q' < V. (This follows via
Inversion by Part 8 and Part 6 of this Lemma with Line J and Line 16
and Line 9)

— Part 1(c)ii. Here we need to show that T';n b case Q < L if and only
if Tyn b case Q' = L. This reduces (By ev_delphin_casel) to showing
that TEn~Q < L ifand only if T = n ~ Q' < L. (This follows via
Inversion by Part 4 and Part 7 of this Lemma with Line 4 and Line 16
and Line 9)

84

Proof of Part 2

PROOF. Proof proceeds by induction on derivations using the & judgment
e fold_no
1. Q(Uypyy —» P)d (Ut — P)=Q, (V> — Fy) (By Assumption)

10.

11.

L > =N S

plsp (By Assumption)

Isn B F <V (By Assumption)
Yon' =n (By Assumption)

There does not exist a renaming substitution t such that 1, = 1ot (By Definition
of fold_no)

There does not exist an 1" such that 1 on"” =n. (By Definition 2)

P fact Fy (By Definition of fold_no)

Q@ (> — P)=CQ (By Definition of fold_no)
I'kn~Q <V (By Induction Hypothesis)

F'Enp~Q, (Uiphy = Fy) = Vifand only if Ty~ Q' < V (By ev_delphin_no
with Line 6)

FEnp~Q, (V> — F) >V (By Above)

e fold_yes

S S o v o~

QUipy—= P)d (Yoo — P)=Q, (V> — F3) (By Assumption)
Yon' =n (By Assumption)

Pl p (By Assumption)

fact

F -~ F (By Lemma 3.1)
[;n' = F <V (By Assumption)

There exists a renaming substitution t such that ¥y = 1 ot (By Definition of
fold_yes)

fact

7. P, ~ Fy (By Definition of fold_yes)
8. Fy x F[t] = P53 (By Definition of fold_yes)

10.
11.
12.
13.

1.

Ps fact F3 (By Definition of fold_yes)

Let " =t 'on'. Recall thatn=1on = (Yot t)on =10 (t Lon)
Therefore, 1, on" =n

[;n" - Flt) > V (By Lemma 6)

;1" b F3 <V (By Part 1 of this Lemma,)

F'En~Q (¥ > — F3) < V (By ev_delphin_yes)

85

Proof of Part 3
PROOF. Proof proceeds by induction on derivations using the & judgment

e fold_no

Q, (V1> = Pp) fact , (U1 > — Py) (By Assumption)

Q18 (By Lemma 3.2)

~

There ezists some P| such that P| I p (By Lemma 3.6)

P " P (By Lemma 3.1)

QU ity —= P (¥pyp— P)=Q, (V> — P1) (By Assumption)
' p (By Assumption)
Iin' = F < | (By Assumption)

Yon' =n (By Assumption)

© o RS G e

There does not exist a renaming substitution t such that 1; = 1ot (By Definition
of fold_no)

10. There does not exist an 1" such that 1 on" = n (By Definition 2)
11. Q@ (Y >y — P)=Q (By Definition of fold_no)
12. We must show both:
() TFn~ (Q Tty = P)) 3V = Tk~ Q, (U100 — P) =V
i. TEnp~(Q,(U>¢ — P)) >V (By Assumption)
i. T'Fn~ Q< V (By Inversion using ev_delphin_no with Line 10)
iii. TEn~Q <V (By Induction Hypothesis)
. TEn~Q, (U>9; — P) = V by ev_delphin_no (see Line 10)
() TFq~Q (Upe o P) >V o= TFpe (050 P)) = V
i. TEnp~Q (V> — P)) <V (By Assumption)
i. TFEn~Q <V (By Inversion using ev_delphin_no with Line 10)
iii. TFn~ Q< V (By Induction Hypothesis)
iv. TEn~Q, (V> — P1) <>V by ev_delphin_no (see Line 10)

e fold_yes
(U P (YUY P)=Q, (Y >y — F3) (By Assumption)

. Yon' =n (By Assumption)

1
2
3. P F (By Assumption)
4
5

. P F (By Lemma 3.1)

(Y>> Py) fadspee Q, (V> — P) (By Assumption)

86

10.
11.
12,
13,
1.
15,
16.

17.
18.

19.

L > =N S

There exists some P| such that P| g P, (By Lemma 3.6)

P % Py (By Lemma 3.1)

Qg q (By Lemma 3.2)

There exists a renaming substitution t such that ¢, = 1 ot (By Definition of
fold_yes)

P, x F[t] = Py (By Definition of fold_yes)

;9= F < 1 (By Assumption)

Letn" =t Yon'. Recall thatn=1pon = (ot Hon =1 ot ton)
Therefore, 1 on" =n

;0" Flt] = L (By Lemma 8)

P, %" By (By Definition of fold_yes)

F'En~ QT >y — F3) = V if and only if T;n" = F3 — V (By
ev_delphin_yes)

Lin'" = F3 >V if and only if T';n" = PL < V' (By Part 1 of this Lemma)

" B P Viifand only if T F n ~ (Q, (¥ > — Pp)) < V (By
ev_delphin_yes)

We combine the last three steps to get ' n~ (Q, (V1> — Pp)) <= V if and
only if TEnp~ (Q, (V1> — F3)) >V

87

Proof of Part 4
PROOF. Proof proceeds by induction on derivations using the & judgment

e fold_no

Q, (V1> = Pp) fact , (U1 > — Py) (By Assumption)

Q18 (By Lemma 3.2)

~

There ezists some P| such that P| I p (By Lemma 3.6)

P " P (By Lemma 3.1)

QU ity —= P (¥pyp— P)=Q, (V> — P1) (By Assumption)
' p (By Assumption)
Iin' = F < | (By Assumption)

Yon' =n (By Assumption)

© o RS G e

There does not exist a renaming substitution t such that 1; = 1ot (By Definition
of fold_no)

10. There does not exist an 1" such that 1 on" = n (By Definition 2)
11. Q@ (Y >y — P)=Q (By Definition of fold_no)
12. We must show both:
(o) TEn~ (Q, (¥ >ty —P)) > L = 'k~ Q' (U1phy— P)— L
i. TEn~(Q, (V> — P)) < L (By Assumption)
i. TFn~Q< L (By Inversion using ev_delphin_no L with Line 10)
iii. TEn~Q < | (By Induction Hypothesis)
. TEn~Q, (V> — P;) < L by ev_delphin_nol (see Line 10)
(b)) TEnp~Q (Ui = P) > 1L = Tk~ (Q,(T1p) — Pp)) > L
i. TEnp~Q (V> — P)) < L (By Assumption)
i. TEn~Q < L (By Inversion using ev_delphin_no L with Line 10)
iii. TFn~ Q< L (By Induction Hypothesis)
iv. TEn~Q (V> — P) <> L by ev_delphin_no L (see Line 10)

e fold_yes
(U P (YUY P)=Q, (Y >y — F3) (By Assumption)

. Yon' =n (By Assumption)

1
2
3. P F (By Assumption)
4
5

. P F (By Lemma 3.1)

(Y>> Py) fadspee Q, (V> — P) (By Assumption)

38

10.
11.
12,
13,
1.
15,
16.

17.
18.

19.

L > =N S

There exists some P| such that P| g P, (By Lemma 3.6)

P % Py (By Lemma 3.1)

Qg q (By Lemma 3.2)

There exists a renaming substitution t such that ¢, = 1 ot (By Definition of
fold_yes)

P, x F[t] = Py (By Definition of fold_yes)

[;n' - F < | (By Assumption)

Let " =t ' on'. Recall thatn=1von = (Yot on =10t ton)
Therefore, 1 on" =n

;0" Flt] = L (By Lemma 8)

P, %" By (By Definition of fold_yes)

L't n e~ (T >y = F3) <> L if and only if T;n" = F3 — L (By
ev_delphin_yes_ |)

Lin" = F3 < L if and only if T;n" = Py < L (By Part 1 of this Lemma,)

i B P Lifand only if T F n ~ (Q, (¥ > — Pp)) < 1L (By
ev_delphin_yes |)

We combine the last three steps to get T+ n~ (2, (V1> — Pp)) = L if and
only if TEnp~ (Q, (V1> — F3)) <> L

89

Proof of Part 5

PROOF. Proof proceeds by induction on derivations using the & judgment
e fold_no
1. QUi = P)@® (U= P)=Q, (V1> — Fy) (By Assumption)

S

10.
11.
12.

13.

1.

N D G e

(Q, (V1> — Py)) Jagt s (Q, (U, >4y — Py)) (By Assumption)

Q7esgeq (By Lemma 3.2)

plsp (By Assumption)

I;nFF <V (By Assumption)
Yon' =n (By Assumption)

There does not exist a renaming substitution t such that 1, = 1ot (By Definition
of fold_no)

There does not exist an 1" such that 1 on"” = n (By Definition 2)

P fact Fy (By Definition of fold_no)

Q@ (Y — P)=Q (By Definition of fold_no)

FitherTFn~Q <V orI'tn~ Q< L (By Induction Hypothesis)
T'Enpe~Q (Ui>iy — P) <V ifand only if T = n~ Q<> V (By ev_delphin_no
and Line 8)

CEn~Q (¥>ty — P) > Lifand only if ' Fn ~ Q < L (Byev_delphin_no L
and Line 8)

Therefore, Either T En ~ Q (U1>tpy = P) >V orT Fnpe~Q (V> —
Py) = L (Combine last three steps)

e fold_yes

1.

© % RS & e

QWb — P)d (Yoo — P)=Q, (V> — F3) (By Assumption)
(Q, (1> — Py)) Jagt s (Q, (U1 >y — P1)) (By Assumption)

There exists some P| such that P| ' p, (By Lemma 3.6)

PR P (By Lemma 3.1)
Q1L (By Lemma 3.2)
Yon' =n (By Assumption)
plsp (By Assumption)
F®'F (By Lemma 3.1)

;0= F <V (By Assumption)

90

10.

11.
12.

13,
1.
15,
16.
17,
18.

19.
20.
21.

There exists a renaming substitution t such that ¥y = 1 ot (By Definition of
fold_yes)

act

P feg Py (By Definition of fold_yes and copied from Above)

Py x F[t] = Ps (By Definition of fold_yes)

Ps Tact F3 (By Definition of fold_yes)

Let " =t='on'. Recall thatn=1on = (Yot t)on =10 (t"Lon)
Therefore, 1, on" =n

I;n" = Flt) > V (By Lemma 6)

;"= F3 <V (By Part 1 of this Lemma)

Fither I'sn" = P —» V or I'sn" = Py = L (By Part 1 of this Lemma with
Line 12)

T'Enpe~Q (UipY — P) < Vifand only if T;n" = Py <» V' (By ev_delphin_yes)
F'En~Q (Ypy — P) < Lifand only if T';n" = P, < L (Byev_delphin_yes |)

Therefore, Either T Enp ~ Q (U1>tpy = P) >V orT Fnp e~ Q (V> —
Py) = 1L (Combine last three steps)

91

Proof of Part 6

PROOF. Proof proceeds by induction on derivations using the & judgment

e fold_no

1. For alln', Y on' #n (by Assumption)
Q, (V> — Pp) fact case Q, (V> — P) (By Assumption)
Q7esge g (By Lemma 3.2)

There exists some P| such that P| A P, (By Lemma 3.6)

P " P (By Lemma 3.1)

QU= P)d Yy — P)=Q (V> — P) (by Assumption)
Q6 (Y — P)=Q by Definition of fold_no
We must show both:
(a) TEnp~ (Q (1) —= P)) >V = Tk~ Q' (Uidptyy = P) >V
i. TEnp~(Q,(U1>¢py = P)) >V (by Assumption)
1. By Inversion, we have two cases to handle:
ev_delphin_no
— There ezists no 0" such that ¢, on" =n (Given)
—Thkn~Q > Vifand only if TFn~Q (V1> — P) =V (By
ev_delphin_no)
- TFnp~Q—=V (Given)
— By the Induction Hypothesis, we know that T'Fn~ Q' <V
—TEn~Q (U9 = P) >V (From Above)
ev_delphin_yes
— Y on" =n (Given)
— iy PV (Given)
—TFn~Q (1> — P) = V (By ev_delphin_yes)
(b)) TEnp~Q (U1ptpy > P) >V = 'k~ (Q,(U1>1Y — P)) >V
i. TEnp~Q (U1>yy = P) >V (by Assumption)
1. By Inversion, we have two cases to handle:
ev_delphin_no
— There ezists no 0" such that ¢, on" =n (Given)
- T'Fn~Q — V (Given)
— By the Induction Hypothesis, we know that T'Fn~Q— V
—T'Fn~Q (¥ >1Y — P) >V (By ev_delphin_no)
ev_delphin_yes
— Yo" =n (Given)

Sl B R T T

92

— ;0" PV (Given)
—TFn~Q (¥ > — P) = V (By ev_delphin_yes)

e fold_yes
1. For alln', Y on' #n (by Assumption)
2. Q(Uipy = P)d (Y — P)=Q, (¥ > — F3) (by Assumption)
3. Q (V> — Pp) fagiiopse Q, (V> — P) (By Assumption)
4. Q fagiiqee g (By Lemma 3.2)
5. There exists a renaming substitution t such that ¢y = 1 ot (By Definition of

fold_yes)

For all 0", 1y on" # .
(Proof: If there was such an ", then (Yot)on" = o(ton”) = n, which contradicts
our assumption that there is no n' such that Y on' =n (Let f = (ton"))

We must show both:

(a) TEn~(Q, (U1t — P)) >V = Tk~ (Q, (V1> — F3)) >V
i. TEnp~(Q, (U >¢— P)) >V (by Assumption)
i. T'Fn~Q<V (By Inversion using ev_delphin_no)
iii. Therefore, T + n ~ (Q,(¥y > — F3)) = V (By application of
ev_delphin_no)
(b)) TEn~(Q,(T1p)y = F3) >V = T'knp~ (Q, U1py— P)) >V
i. TEn~(Q, (V> = Fy)) >V (by Assumption)
ii. TFn~ Q< V (By Inversion using ev_delphin_no)

iii. Therefore, T F n ~ (Q, (V1> ¢y — P3)) <= V (By application of
ev_delphin_no)

93

Proof of Part 7

PROOF.

Proof proceeds by induction on derivations using the & judgment

e fold_no

1.

o RS ™ e

For alln', Y on' #n (by Assumption)

fact—case

Q,(Uypapy = P) " s Q (U >y — Pp) (By Assumption)
ORAEAS e (By Lemma 3.2)

There exists some P| such that P) I p (By Lemma 3.6)

J RN (By Lemma 3.1)

QWb = P)d(Ypyp— P)=Q (V> — P) (by Assumption)
Q6 (Y — P)=Q by Definition of fold_no
We must show both:
(o) TEn~ (Q,(¥1ptpy—= P)) > L = 'k~ Q' (Uiphy— P)— L
i. TEnp~(Q,(¥1>¢py— P)) = L (by Assumption)
1. By Inversion, we have two cases to handle:
ev_delphin_no L
— There ezists no 0" such that ¢, on" =n (Given)
- T'Fn~ Q< L (Given)
— By the Induction Hypothesis, we know that T'-n~ Q' < L
—Tknp~Q, (V1> — P) = L (By Application of ev_delphin_noL)
ev_delphin_yes |
— o0 =n (Given)
- T;n"F P L (Given)
—Tknp~Q (V1> — P) = L (By Application of ev_delphin_yes 1)
() Thnm (T o> P) ey L = Ty~ (Q (000 — P)) e L
i. TEnp~Q (V> — P) < L (By Assumption)
1. By Inversion, we have two cases to handle:
ev_delphin_no L
— There ezists no n" such that ¢, on" =n (Given)
- T'kFp~Q < L (Given)
— By the Induction Hypothesis, we know that T'Fn~ Q< |
- IFnp~Q (V>0 — P) < L (By Application of ev_delphin_no_L)
ev_delphin_yes |
— Yron" =n (Given)
- T;n"F P L (Given)
—TkFnp~Q (V> — P) <> L (By Application of ev_delphin_yes |)

94

e fold_yes

1
2
3.
4
5

. For alln', v on' #n (by Assumption)
(U= P) @ (U P)=Q, (U >y — F3) (by Assumption)
Q, (V> — Pp) foct spse Q, (V> — P) (By Assumption)

PR) (By Lemma 3.2)
. There exists a renaming substitution t such that ¥, = 1 ot (By Definition of

fold_yes)

For all ", ¢y on" #n.
(Proof: If there was such an ", then (ot)on” = 1po(ton") = n, which contradicts
our assumption that there is no n' such that Y on' =n (Let ' = (ton"))

We must show both:

(a) TEn~(Q, U1ty — P)) > 1L = 'k~ (Q, (V1> — F3)) = L
i. TFnp~(Q, (Y >y — P)) = L (by Assumption)
i. T'Fn~Q< L (By Inversion using ev_delphin_nol)

iii. Therefore, T + n ~ (Q, (¥ > — F3)) < L (By application of
ev_delphin_no_l)

(b) P"’I’]N (Q,(\PlbwlP—)Fg)) — | = F"??N(Q,(\Iflblﬁlf—)Pl))q_L
i. TEn~(Q, (V> — F3)) = L (by Assumption)
ii. TEn~ Q< L (By Inversion using ev_delphin_no_l)

iii. Therefore, I' = n ~ (Q, (¥ >, — P)) < L (By application of
ev_delphin_no_L)

95

10.6 Main Lemma

Recall that in Definition 1, we define a new sense of “equality” on values. The reason for
this is that if the result contains a A expression, then the factored version may very likely
be different than the unfactored version (since we are merging cases together). However, if
the result is a value which does not have any A terms, then we should get the same result.
Therefore,

Lemma 14 (Embedding)

1. IfU;m; FC; SCHP =V and PXS' F and n = n then:

e Either I';m b F — W oand

— There exists a W such that W = W'
—Fo;scrw Sy

e orboth;m b F < L andFC’}‘?—C>V
2. IfT;FC;SCFn~Q sV and Q "S5 Q0 and n = 1, then:

o FitherT'Fn ~Q — W' and
— There exists a W such that W = W'
—Fe.:SCFW Sy

o orbothTFm~Q < L and FCSV

ProOOF. We prove this by induction on —
Proof of Part 1

e ev LF
1. T;m; FC; SCF L — V (By Assumption)
L™ L (By fact LF)

n = m (By Assumption)
[;m b L <> Ln] (By ev_delphin_LF)

Therefore, we must show that FC; SC =W EV wherew = L]
(a) Lin] = L[n] (By Definition of 1)

(b) FC;SC + Lin] Sv (By Definition of ev_LF)
(c) (Note that we have W = L[n])

® ev._var

1. T;n; FC;SC Fx — V (By Assumption)

96

x 7 x (By fact_var)

n = m (By Assumption)

n(x) = V' (By Definition of ev_var)
ni(x) = W' (By Definition 1)

I;m Fx < W' (By ev_delphin_var)

NS 0

Therefore, we must show that FC; SC =W ﬁ/; V where W = w'
(a) T;nt n(x) =W such that W = W' (By Definition 1)
(b) FC;SC+W Sv (By Definition of ev_var)
e ev_unit

1. T;m; FC; SCF () = V (By Assumption)

2. () I) (By fact_unit)

8. m=m (By Assumption)

4. Tsm B () = () (By ev_delphin_unit)

5. Therefore, we must show that FC;SC =W SV where W S ()
(a)) = () (By Definition 1)
(b) FC;SC F () g (By Definition of ev_unit)

e ev_let

~

.T;n; FC;SCFlet x = Py in P, < V (By Assumption,)

let x =P, in P, 18 et x = F, in F;, (By Assumption and fact_let)
RN (By Inversion using fact_let)

b fact F, (By Inversion using fact_let)

L, FC; (SC, (U5 m; Az let ® =z in P)) = Py = V' (By Definition of ev_let)
n=m (By Assumption)

N D & e

By the Induction Hypothesis on Line 5, we know that:
(a) Either T;my = Fy <> W! and there exists a Wy such that Wy = W! and
FC;(SC,(T;m; Az.let ©€ =z in Py)) - W, Ky
i. s (n,W1/x); FC;SC + P, — V' (By Inversion using ev_SC and ev_let_SC)
i. (n,W1/x) = (n1, W!/x) (By Definition 1)
iii. By the Induction Hypothesis on Line 7(a)i, we know that:
A. Either T; (n1, W} /x) = Fy = W} and there exists a W such that Wy =
W} and FC; SC W, 25V

97

e ev_ A

~

NS G e

— Iymy Flet x = Fy in Fy < W) (By ev_delphin _let)
— Wy = W} (Given)
- FC;SC =W, Xv (Given)
B. or both T; (m1, W] /x) F F5 < 1 and FC Sv
— Ism Fletx = F)in Fy = | (By ev_delphin_let L)
- rcSv (Given)
(b) or both T;m b Fy = L and FC SV
— Iy Fletx = Fyin Fy < 1 (By ev_delphin_let 1)
- rcSv (Given)

[;n; FC;SCH Az : A. P — V (By Assumption)
FC;SCF {n; Az : A. P} Ky (By Definition of ev_A)

Ar: AP Az A F (By Assumption and Inversion on fact_A)

J RN (By Inversion using fact_A)

n = m (By Assumption,)
IymbEAzx: A F < {n;Az: A.F} (By ev_delphin_A)
Therefore, we must show that FC;SC =W EV where W = {m;Az : A. F}

(a) {n;Az: A. P} = {n; Az : A. F} (By Definition 1) (Recall that this is what
makes the definition of = different from regular equality)

(b) FC;SC+ {n; Az : A. P} Ky (Copied from Line 2)

® ev_rec

N D G e =

[;n, FC;SCF ux € F*. P — V (By Assumption)
[; (n,ux € F*. P/x); FC; SC + P — V (By Definition of ev_rec)

ux € F*. P fegr ux € F*. F (By Assumption and Inversion on fact_rec)

P& F (By Inversion using fact_rec)

n = m (By Assumption,)
(n, ux € F*. P/x) = (n1, ux € F*. F/x) (By Definition 1)
By the Induction Hypothesis on Line 2, we know that:

(a) Either T;(m,ux € F*.F/x) = F < W' and there exists a W such that
W S W' and FC;SC+W SV
i. Tym b pux € F*. F < W' (By ev_delphin_rec)

98

i. There exists a W such that W = W' (Given)
iii. FC;SC W S5V (Given)
(b) or both T; (i, ux € F*. F/x) - F < L and FC <5V
— Iy b ux € F*. F < 1 (By ev_delphin_recl)

- oSy (Given)
® ev_pair

1. T;n; FC; SC + (Ay; P) — V' (By Assumption)

fact

2. (Ay; Py)) ~ (Fy; Fy) (By Assumption and fact_pair)
3. A4 % R (By Inversion using fact_pair)
4. Py fagt F, (By Inversion using fact_pair)
5. Tsm; FC; (SC, (T m; Az.pairl(z; P2))) - A; — V' (By Definition of ev_pair)
6. n = m (By Assumption)
7. By the Induction Hypothesis on Line 5, we know that:
(a) Either T;my = Fy < W] and there exists a Wi such that Wy = W and
FC;(SC, (T;n; Az.pairl{z; P2))) - W, Ky
i. Iyn FC;(SC, (T n; Az.pair2(Wy; 2))) & Po — V' (By Inversion using
ev_SC and ev_pair_SC1)
i. By the Induction Hypothesis on Line 7(a)i, we know that:
A. Either T';ny = Fy < W) and there exists a Wy such that Wy = W) and
FC;(SC,(T;n; Az.pair2(Wy; 2))) F W, Ky
— Iym = (Fy; Fy) < (W{; W) (By ev_delphin_pair)
— Wy, Wa) S (W! W2 (By Definition 1)
- FC;SC + (Wy; Ws) Ky (By Inversion using ev_SC and ev_pair_SC2)
B. orbothTiny - Fy < | and FC SV
— I'ym + (F1; Fy) = L (By ev_delphin_pairl,)
~FreSv (Given)
(b) or both T';m = Fy = L and FC 5V
— I'ym F (F1; Fy) = L (By ev_delphin_pair ;)
- oSV (Given)
e ev_app

1. T;m; FC; SCF Py Ay — V' (By Assumption)

2. P As fust Fy F5 (By Assumption and fact_app)

99

P Jfgﬁt Fy (By Inversion using fact_app)

fact

Ay o~ F, (By Inversion using fact_app)
L;n; FC; (SC, (T;m; Az.appl z Ag)) F Py — V' (By Definition of ev_app)
n=m (By Assumption)

S N

By the Induction Hypothesis on Line 5, we know that:
(a) Either T;ny = Fy = W! and there exists a Wy such that Wi = W! and
FC; (SC, (T;m: Az.appl 2 As)) F Wy 25 v
i. Wy ={n;Ax € A. P/} and T';n; FC; (SC, (I';n'; Az.app2 P 2)) F Ay —
V' (By Inversion using ev_SC and ev_app_-SC1)
ii. Wi ={n";Ax € A. F'} where ' = 0" and P ~5 Y F| (By Definition 1)
iii. By the Induction Hypothesis on Line 7(a)i, we know that:
— FEither T';m = Fy = W, and there exists a Wy such that W, = W3 and
FC;(SC, (T;1; Az.app2 Pl 2)) - Wa 25 V

x I (nf, Wy /x); FC; SC + P| — V (By Inversion using ev.SC and
ev_app SC2)

x (0, Wa/x) = (n",W3/x) (By Definition 1)
x By the Induction Hypothesis (with last two lines), we know that

(1) Either T'; (0", W3/x) = F| < Wj and there exists a Wy such that
Wy = W and FC; SC - W, &5V

-Tym b Fy Fy < W} (By ev_delphin_app)
- W3 = W} (Given)
~FC;SCF W3SV (Given)

(2) or both T; (n",W3/x) F F| < 1 and FC Sv

-Tym B Fy F5 < 1 (By ev_delphin_app_l3)
eSSy (Given)

—orboth;m b Fy = | andFCCIE;V
x I';m B Fy Fy < | (By ev_delphin_app_l,)

« FC SV (Given)
(b) or both T';m F Fy = L and FC 5V
— I';m B Fy Fy < 1 (By ev_delphin_pair ;)

- rcSv (Given)

® ¢€v_Case

100

~

S & e

[;n; FC; SC' = case Q — V (By Assumption)
case Q 7' case O (By Assumption and Inversion)

QT oy (By Inversion on fact_case)

[FC; SCFn~Q <V (By Definition of ev_case)
n = m (By Assumption)

By Part 2 of this Lemma, we know:

— Either T F gy ~ Q < W' and there exists a W such that W = W' and
FC;SCHW SV
x I';ymp Fcase Q < W' if and only if T+ m ~ Q' < W' (By ev_delphin_case)
« Therefore, T';my F case) = W' and there exists a W such that W = W'
and FC;SCFW S v
— orbothTFm~Q s L and FCSV
x I;m b case Q' < L ifand only if T+ ~ Q' < L (Byev_delphin_case |)

x [y Fcase Q' «—» L and FC S v

101

Proof of Part 2

e ev_nil

~

. FC,SCEn~- -V (By Assumption)
. fa%azse

2 - (By case_empty)

3. T;m ~ - <> L (By ev_delphin_nil)

4. Therefore we just need to show that FC & 1%

5 FCS v (By Definition of ev_nil)

e ev_no

[FC; SCEnp~ (2, (>t — P))— V (By Assumption)
Yon' #mn for all ' (By Definition of ev_no)

[FC; SCHn~Q <V (By Definition of ev_no)

By Assumption, we know that (2, (V> +— P)) can be factored. So, by Inversion
we have two possibilities:

e v o~

— case_nonempty
* Q, (U1 — P) Tact gse qn (By Assumption)
L Jactscase
o ULy o (By Lemma 3.2)
V(U — P)=Q" (By Inversion using case_nonempty)
x n = n (By Assumption)
x pon' #mn for alln' (By Lemma 2)
*x By the Induction Hypothesis on Line 3, we know that:
(a) Either T Fny ~ QY < W' and W = W' andFC;SC’I—Wfs—C) Vv
i. TEm ~ Q"> W' (By Lemma 13.6)
i. W= W' (Given)
iii. FC;SCFW SV (Given)
(b) or bothT g ~Q = L and FC S5V
i. Tkm~Q" < L (By Lemma 13.7)
ii. FC SV (Given)

QY (By Inversion using case_nonempty)

*

*

— case_new
x Q, (V> — P) Tocpse Q' (> — F) (By Assumption)
« Q0L (By Inversion using case_new)

« 1SS O (By Lemma 3.2)

102

x 1 =m (By Assumption)
x Yon #mn foralln' (By Lemma 2)
x By the Induction Hypothesis on Line 3, we know that:

(a) Either Ty ~ Q' < W' and W = W' and FC;SC W 5V
i. Thm ~Q (Y — F) > W' (By ev_delphin_no)
i. W= W' (Given)
iii. FC; SCHW Sv (Given)
(b) or both Tk~ Q =3 L and FC SV
i. T~ (¥>1p— F) > L (Byev.delphin_nol)
ii. FOSV (Given)

103

® ev_yes

1. Here we prove a property that will be used in this case
If
(a) QU438 oy
(b) and n = m
(c) and there exists a W such that W = W' and (FC, (I';n; SC; case)); SC F
WS v
(d) and either TEm ~Q W' orTEn ~Q «— L
Then

there exists an W such that W = W' and FC; SC + W & V

Proof

We are given that (FC,(T;n; SC; case Q)); SC = W K. By Lemma 9.1, we
know that either

—aSCrwW Sy
x FC;SCHW Ky (By Lemma 10.1)
— or (wSCHW & 1 and (FC,(T;n; SC; case 1)) & V)
x I FC; SCHn~Q <=V (By Inversion using ev_FC_nonempty)
x We are given that either:
Tk ~Q < W' In this case there exists a W such that W = W'
and FC;SC+ W Ky (By Induction Hypothesis)
corTFmn ~Q «— L. In this case, we know that both
FecSy (By Induction Hypothesis) and
FC;8C+W SV (By Lemma 11.1)
[FC; SCEn~(Q,(¥Y>1 — P)) =V (By Assumption)
Y on' =n (By Definition of ev_yes)
n = m (By Assumption)
Yon" =mn whereny = n" (By Lemma 1)

S A e

By Assumption, we know that (Q, (¥ >1) +— P)) can be factored. So, there are
two possibilities. Either we use case_nonempty or we use case_new

8. Q, (Vb — P)IEE° Qn (By Assumption)

104

10.
11.

12.
13.

1.

15.

16.
17.
18.

19.
20.
21.
22.

O felgse o (By Inversion using case_nonempty)

qQ felsgee o (By Lemma 3.2)

Qe (¥ — P)=Q" (By Inversion using case_nonempty)

J RN (By Lemma 4)

;15 (FC, (Tyn; SC; case Q)); SC = P — V' (By Definition of ev_yes)
By Part 1 of this Lemma on Line 13, we know that:
(a) Either T;n' = F < W' and W = W' and (FC, (T';n; SC; case Q)); SC +
sc
W=V
i. Thm ~ Q"> W' (By Lemma 13.2 with Line 11)
ii. (FC,(T';n;SC;case Q)); SCFW Ky (Given)
iii. Either T ~ Q' > W orT'kFn ~ Q' — L (By Lemma 13.5 with

Line 11)
iv. There exists a Wi such that W, = W' and FC;5C - W, ‘S—C) V' (By
Line 1)

(b) or both T;n" = F < L and (FC, (T;n; SC; case ()) Sv
i. Iy FC;SCEn~Q <=V (By Inversion using ev_FC_nonempty)
1. By the Induction Hypothesis on the previous line, we know that:

— Bither Dk ~ Q' < W' and W = W' and FC;SC W &5 v
x T'Fn ~ Q"> W' (By Lemma 13.3 with Line 11)
* W=SW' (Given)
« FC;SCFW SV (Given)

—orbothTkm ~Q <s | and FCSV
« I'Emy ~ Q"< 1 (By Lemma 13.4 with Line 11)

« FC SV (Given)

QU — P) fact opse (Y1 — F) (By Assumption)
QT oy (By Inversion using case_new)

iieveveaalel (By Lemma 3.2)

P F (By Definition of case_new)

e (V> — P)1 (By Definition of case_new)
L;n's (FC, (T;n; SC; case Q2)); SC = P — V' (By Definition of ev_yes)
By Part 1 of this Lemma on Line 13, we know that:

105

(a) Either T;n' = F < W' and W = W' and (FC, (T';n; SC; case Q)); SC +
w Sy
i. TEg ~Q (Y1) — F) > W' (By ev_delphin_yes)
ii. (FC,(T;n; SC; case Q)); SCHW 5V (Given)
iii. For all (¥ pp1pa +— Py) € UV, there does not ezist a renaming substitution
t such that ¥ = 14 ot (By Lemma 3.9 with Line 20)
w. T Fm ~Q < L (By Inversion using ev_delphin_no and ev_delphin_nil
and Definition 2)

v. There exists a Wi such that Wi, = W' and FC;5C F W, ‘g V' (By
Line 1)
(b) or both T;n" = F < L and (FC,(I';n; SC; case Q)) Sy

i. For all (Wa>1a— Py) € U, there does not exist a renaming substitution
t such that v =4 ot (By Lemma 3.9 with Line 20)

ii. T'Fm ~ Q < L (By Inversion using ev_delphin_no and ev_delphin_nil
and Definition 2)

ii. Ty FC; SCHnp~Q <=V (By Inversion using ev_FC_nonempty)
w. By the Induction Hypothesis with the previous two lines, we know that
FC
FC—=YV

106

10.7 Bringing it Together

We want to prove the following theorem:

Theorem 1 (Main) If P 1 F and [P <=V andV does not contain any A terms,
thenl';-F F <V

Proor. Apply Lemma 14 with FC = - and SC =- andm =n = -

o IfI'snk F < L, then - Ky However, we know that - &0 (By ev_FC_empty), so
this must not be the case.

e Therefore, we know that I';n = F < W' and there exists a W such that -;- = W Ky
and W = W',
— Since ;- W Kw (By ev_SC_empty), we know that V. =W

— Since V.= W' and V does not contain any A terms, we know that V.= W' (By
Definition 1)

— Therefore, I';- = F <=V

107

