Abstract: Several preconditioned conjugate gradient (PCG)-based domain decomposition tech-
niques for self-adjoint elliptic partial differential equations in two dimensions are compared against
each other and against conventional PCG iterative techniques in serial and parallel contexts. We
consider preconditioners that make use of fast Poisson solvers on the subdomain interiors. Sev-
eral preconditioners for the interfacial equations are tested on a set of model problems involving
two or four subdomains, which are prototypes of the stripwise and boxwise decompositions of a
two-dimensional region. Selected methods have been implemented on the Intel Hypercube by as-
signing one processor to each subdomain, making use of up to 64 processors. The choice of a “best”
method for a given problem depends in general upon: {a) the domain geometry, (b) the variability
of the operator, and (c) machine characteristics such as the number of processors available and
their interconnection scheme, the memory available per processor, and communication and compu-
tation rates. We emphasize the importance of the third category, which has not been as extensively
explored as the first two in the domain decomposition literature to date.
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1. Introduction

A number of methods based on domain decomposition have been proposed in recent years for
the numerical solution of elliptic partial differential equations. Such methods are based upon the
observation that the domain of problem definition may be regarded as the union of two or more
subdomains, on each of which the restriction of the original problem may take on a particularly
convenient form. Decomposition by domain also provides a natural route to parallelism. For
some problems, these methods can be interesting even as serial algorithms, when the advantages
that arise from isolating the subproblems can be made to outweigh the extra work involved in
enforcing the proper conditions at the interfaces of the subdomains. A fortiers, they are interesting
as parallel methods since reasonably large independent subtasks can readily be identified. We
compare the performance of several domain decomposition methods and a class of undecomposed
domain methods on a common set of two-dimensional, linear, scalar problems, and examine the
parallelizability of each. Our aims are to point out the unity under certain conditions of methods
which have been presented independently, and also to identify some problem characteristics which
tend to favor certain methods over others in the context of parallelism.

Apart from the advantage of reformulating a large discrete problem as a collection of smaller
problems which can be solved independently, there are at least two other motivations for considering
domain decomposition methods, which may be present individually or in combination with the
first in any given problem. All are of the “divide-and-conquer” type. Domains of irregular shape
can be decomposed into subdomains of regular shape on which tensor-product-based discretization
schemes can be employed, leading to discrete operators of regular structure. Also, regions of relative
nonuniformity of the differential operator, whether due to coefficient variability or even substantially
different physics, can be isolated into different subdomains, again resulting in exploitable locally
regular structure. An example of each of these motivations is given.

The decomposition topologies considered involve both simple interfaces (with and without
overlap regions) and cross-points. We compare Schur complement matrix methods (e.g., 1, 13,
17]), full partitioned matrix methods based on block Gaussian elimination not making explicit
‘use of the reduced Schur complement system (e.g., [4]), and other methods of variational type
(e.g., [16]). These classes of methods are similar at the discrete level, employing preconditioned
conjugate gradient (PCG) iterations as the outer loop, and an exact equivalence between the
iterates of the first two can be established under certain conditions. In all of these methods
the largest implicit problems are Dirichlet or Neumann solves over the subdomains; therefore
an easy handle on parallelism can provided from an a prior: dissection of the grid. However,
global communication is required in forming the inner products of the PCG iterations (and also in
one class of preconditioning methods), so the optimum parallel implementation is not completely
straightforward. The optimum number of subdomains is generally both architecture- and problem-
dependent, since the communication cost per iteration and the overall number of iterations tend to
increase with the number of subdomains. We consider the standard communication topologies of
a ring, a two-dimensional mesh, and an n-cube. Onto these we consider the natural decomposition
mappings: a decomposition into strips onto the ring, a decomposition into boxes onto the mesh,
and decompositions of both types onto the n-cube. Serial complexity comparisons and parallel
efficiency comparisons of the methods are presented.

A variety of preconditioners have been proposed, for some of which there exist theoretical
results showing the convergence rate of the iterations to be asymptotically independent of the
spatial resolution, or only weakly dependent thereon. Some of these optimal preconditioners are
exact for uniform operators, and in practice work best when the operator coefficients do not vary
too much along the interfaces. For problems in which there is variation along the interfaces, the
condition number of the system, though asymptotically independent of resolution, is larger and
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it is interesting to consider alternative low-bandwidth approximations to the Schur complement
matrix, at least for sufficiently low resolution. We designate this type of preconditioning Modified
Schur Complement (MSC), and include some examples in our comparisons.

The outline of this paper is as follows. In §2 we review some recent contributions to the
domain decomposition literature, summarizing methods and key theoretical results, and introducing
MSC preconditioning. Section 3 contains an experimental comparison of various methods on the
same small-scale model problems, all implemented serially. Parallel implementation issues for
domain decomposition methods are discussed in §4, followed by some preliminary experimental
results generated on the Intel Hypercube. A theoretical model for the efficiency of various paralle]
implementations of domain decomposition algorithms on some model large-scale architectures is
presented in §5, and we draw some conclusions in §6.

2. A review of recent PCG-based domain decomposition methods

The substructuring of elliptic partial differential equations by domain has served as a practical
computational technique for over twenty years (e.g., [23]), and its theoretical origins (as a method of
proving the“solvability of the Diricllet problem on irregular regions) extend back to the last century
[28]. A briefly annotated bibliography of various direct and iterative approaches is contained in the
introduction of [1]. Here we summarize only recent domain decomposition algorithms which make
use of preconditioned conjugate gradient iteration in the outer loop, which appear to have originated
with [9]. There are other types of domain decomposition-related methods such as Schwarz-Jacob;
[26] and Schwarz-multigrid [21] which are not considered in this paper.

2.1. Problem definition

The methods will be illustrated on a model second-order, positive definite, self-adjoint elliptic
Dirichlet problem on a bounded domain in R? with a J:iecewise smooth boundary:

v= fin £,
Lu = C{ on T = 9Q, (2.1a)
In the weak formulation, in which we seek u € H}(f2) such that for all v € H ()
Aqa(w,v) = (f, ), (2.10)
where ) i 5u 5 |
Aq(u,v) = p§=:1/0ap(I(x 5;—;—6—:;; dx
and

(f,0) = /Ofv ix.

Given a triangulation of Q, we define the discrete snbspace of H} consisting of piecewise linear
functions vanishing on T, H}, . Note that the dimension of H}, is the number of vertices in the
interior of €2, defined as n . For all of the algorithms to be described but one, it is sufficient to
consider the usual cardinal basis for H},, consisting of C° piecewise linear functions of the smallest
possible support, denoted {4;}jen, N = {1,2,...,n}. The discrete approximation to u in H}, is
then represented by a vector of nodal coefficients, uy, .

The Galerkin formulation of (2.1b) leads to the matrix equation

Aup = fp, (2.2)
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Figure 1: Sample domains illustrating the triangulation and
substructuring described in §2.1. {a) A general domain show-
ing partitioning into two subdomains with a common inter-
face (or separator set) lying along segments of the triangula-
tion. Support of typical nodal basis functions ¢;;,; € N; and
Ya5,7 € No are shaded. (b) A model geometry for the use of
fast Poisson solvers on the subdomains: a union of uniformly
triangulated rectangles.

where
2
81, Oy ..
(Al = ]
- p,qzm/f-zapq dzp Oz, & 4ge N
and

)i = fn i dx, i€ N.

The simplest decomposition on which all of the methods can be compared is that involving
two simply connected subdomains. Though somewhat academic from the point of view of parallel
processing, we consider this case first because it generalizes straightforwardly to multiple-strip
decompositions and allows presentation of the basic ideas without cumbersome notation. For all
of the algorithms to be described but one, the intersections of the subdomains are restricted to be
interfaces of lower dimension. Refering to Figure la, we define v13 = 8 N9, .

The triangulation must be such that the segments of 415 coincide with sides of the triangular
elements. Let fi denote the restriction of f to ©; . With a slight abuse of the usual notation, we
define the discrete subspaces of functions over each subdomain which vanish on the outer boundary,
but may be nonvanishing on the interface boundary, H},, (k = 1,2), and their subsets, Hi,, of
functions which vanish also on 712 . The Hg,, have cardinal bases {t;};en,, Where Ny is an index .
set for the nodes interior to (O, of dimension n; . Denote by {y;};en,, Where Np is an index set
of dimension ng for the nodes on the interface, the bases for the functions in H 1. which vanish at
the interior nodes of 2, but have nonvanishing trace on ~;3 .
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Equation (2.2) can be symmetrically permuted into the form

[ Aol () (), 22)

where the first block row corresponds to the unknowns defined at the nodes of the separator set
712, and where Aj; is itself a 2 X 2 block diagonal matrix, one block corresponding to the nodal
values in each subdomain. In (2.3) and hereafter the subscript h is dropped where there is no
ambiguity between the continuous and discrete formulations. The matrix A is symmetric and
positive definite, as are its diagonal blocks, by the hypotheses preceding (2.1). Consequently, the
interior unknowns may be formally eliminated in forming the Schur complement system (sometimes
denoted the capacitance system)

Cup =g, o (2.4)

where C = Aoo - A01A;11A10 and g = fo - A01Ai’11f1 .
As the Schur complement of Ao in A4, C is also symmetric and positive definite. Construction
of the right-hand side of (2.4) requires one solve on each subdomain with homogeneous Dirichlet
conditions on the interface. Having solved (2.4) for ug, the interior unknowns can be recovered
from the lower block row of (2.3), again at the cost of one solve on each subdomain with ug as
inhomogeneous Dirichlet data.
In the two-subdomain case it is helpful for illustrative purposes to rewrite (2.3) in the expanded
form (1) 40
A Ag Ag 1?(1))
Afy af) o by ] TV,
AQD o AP \y i)

0
W (2.5)

0

where u(ll) and ugz) are the unknowns in subdomains 1 and 2, respectively, and to decompose the
interface diagonal block as

Aoo = A + A2,

where

2
k), _ 0 Oy .
[Ago Jis p§1/ﬂk apq'—’axp —"axq dx, 7,7 € No.

The dimensions of A{!) and A{» are n1 and ng, respectively, with n = ng + n; + ns.
11 11

The case of Poisson’s equation on a union of rectangles, uniformly triangulated as in Figure 1b,
will be frequently considered in the sequel. For this so-called Courant triangulation, fast Poisson
solvers [29] may be used to invert the A{%).

Since it explicitly involves the inverses of the Agl;), the matrix operator C can be expensive
to construct, generally requiring no solves on each subdomain. Historically, domain decomposition
was first approached in this way [23], and it remains a useful procedure when the formation of the
factors of C' can be amortized over a large number of right-hand sides, for instance when the same
discrete linear system arises at successive steps in a time-dependent problem (e-g., [22]).

For cases in which the construction of C' cannot be so amortized, for instance when a new
system like (2.2) arises at each step in a nonlinear problem, more efficient methods have been
developed by means of preconditioned conjugate gradient iteration, which at each step require a
matrix-vector multiply involving C, without its explicit construction. Each PCG iteration still
requires one solve on each subdomain, so the effectiveness of the PCG-based techniques depends on
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keeping the number of steps small through a preconditioning which is considerably less expensive
to construct and apply than C™! itself.

Of course, PCG iterations can also be used to solve the full systems in the form of (2.2)
and (2.3), the type of preconditioning which is natural and efficient being different in each case. In
subsequent sections we make some comparisons the effectiveness and generality of techniques which
take each of these three formulations as their starting points. We refer to methods which depart
directly from (2.2) as global matrix methods (GMM), from (2.3) as partitioned matrix methods
(PMM), and from (2.4) as Schur complement matrix methods (SCM). For subsequent reference to
individual steps, we present below the form of the PCG algorithm used in applications for solving
the symmetric n x n linear system Az = b with (symmetric) preconditioner B:

Algorithm PCG

Choose initial iterate:

20, arbitrary (PCG.1)
Compute initial residual:
0 b - A2° (PCG.2)
Compute preconditioned residual:
$0 — B71s0 (PCG.3)
Initialize direction:
0 s° ' . (PCG 4)
Compute B-inner-product:
AP = (10,59 (PCG.5)
For k = 0 Step 1 Until Convergence, Do
Compute matrix-vector prodtfct:
gk — Apt (PCG.6)
Compute A-inner-product: ‘
F — (0¥, ¢5) (PCG.7T)
Compute step length:
of — Ak [k (PCG.8)
Update solution:
2 — 2F 4+ ofp* (PCG.9)
Compute new residual:
' rEFl kL ok gk (PCG.10)

Compute new preconditioned residual:

sk+1 — B -l,rk+l

(PCG.11)

Compute B-inner-product:
7k+1 — (Tk+1,8k+1) . (PCG.IZ)
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Compute orthogonalization coefficient:
BE — AFFY /E (PCG.13)

Update direction:
P sk 4 Rk (PCG.14)
End For

In addition to the storage and workspace requirements for the application of 4 and B-1, the
algorithm requires storage for four vectors of length n. As is well known (e.g., [9]), the A-norm of
the error at the kth iteration of PCG is bounded according to

nﬂ—xuﬂ<2<v%—1>ﬂ

R PR

where « is the condition number of 8714 |, and the algorithm produces exact convergence in a
number of iterations which is at most the number of distinct eigenvalues of 8=14. The operators
A and B are said to be spectrally equivalent if there exist positive constants o and 71 independent
of the discretization such that for all z, vo(z,Bz) < (z, Az) < ~1(z,Bz)

2.2. Schur Complement Methods (SCM)

The Schur complement methods are realized by taking 4 in Algorithm PCG to be C and
selecting appropriate B. The iterations occur on vectors of length ng. Note that by construction
the product Cp* consists of the residuals at the nodes along 712 of the original discrete operator
applied to the vector which satisfies the discrete equations with homogeneous boundary conditions
on I' in each of the subdomains and equals pF on ~12 . Four related choices of B are reviewed in
this subsection.

Dryja (18, 14] showed that C of (2.4) is spectrally equivalent to the matrix K1/2 where K
is the tridiagonal matrix of order ng with diagonal elements 2 and off-diagonal elements —1, the
discrete Laplacian operator over a uniform grid in one dimension. For notational convenience, we
define the average nodal spacing along the interface, h = (no + 1)1, Inserting a factor of 2 for

consistent scaling across the methods to follow, Dryja’s preconditioner has the eigendecom osition
g p

Mp = 2K = wApwT,

where
(Wlij = V2hsinijnh,
and
Ap= dzag(’\:yD)’
where D
A =205,
with

. 9 JTh
o; = 4sin? 2—.
J n 2
The condition number of K!/2, which is equal to A,,/A;, grows in proportion to the number of

interfacial unknowns no as this number becomes large. Through their spectral equivalence, the same
is true of C, which implies that the convergence of the unpreconditioned Schur complement system
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iteration will deteriorate as the mesh is refined. The action of M5! on a vector can be computed
with a pair of sine transforms in O(nglogng) operations, hence the cost of the preconditioning is
inexpensive in comparison with the cost of forming a matrix multiplication with a general C, which
involves two-dimensional subdomain solves.

By means of FFT’s in one-dimension, Dryja also gave an O(nglogng) method for performing
the subdomain solves for the case L = —A and §2 a union of two rectangular subregions, by
exploiting the regular sparsity pattern of the right-hand sides arising during the PCG iterations.
In this case the overall operation count for solving (2.2) is dominated by the pre- and post-processing
involved in forming g of (2.4) and backsolving, instead of by solving the Schur complement system.
For more general operators and domain geometries, the cost of one PCG iteration is comparable
to the pre- and post-processing.

Golub and Mayers [17] arrived heuristically at a preconditioner for C by starting from the
observation that the elements [C];; may often be well approximated as constant along a diagonal.
In other words, the influence of the data at interfacial node j on the residual at interfacial node 4
depends (approximately) only on the discrete distance along the interface, |¢ — 5| . This led Golub
and Mayers to solve a discrete infinite domain Laplace problem with an infinite interface dividing
two half-planes, the data on the interface and at infinity prescribed to be zero everywhere except
at the origin, where it was taken as one. The ijth element of their preconditioner of Toeplitz
form was then defined as the residual of the discrete Laplacian at the point on the interface at a
distance |¢ — 7| from the origin. This preconditioner was tested and found superior to Dryja’s on
the problem considered in [17]. Though computationally complicated to construct, they noticed
that a second, FFT-implementable preconditioner could be derived by replacing a term in their
generating function expression for the interface residual by Dryja’s preconditioner. Their result,

Mg = WAgWT,

where
Ag = diag(/\f),
where
G o}
J
A7 =2\/o; + i
or

Mo = 2(K + -}IK?)I/Q,

has been also employed as an effective refinement of Mp in other investigations [1, 11}.

Bjorstad and Widlund [1] showed that C, c(1) = A(()B) - Agll) (Agll))”lAﬁ)), and C(?) = A(()%) -
Agﬁ)(A(ﬁ))-lAQ, are all spectrally equivalent. (Note that C = C(1) + C(3)) Assuming that Q is
decomposed in such a way that it is computationally convenient to solve Neumann problems on one
of the subdomains, say {13, with zero Dirichlet data on 8€2; N T and natural boundary conditions
on 712 , they proposed c) asa preconditioner for C, acting on a suggestion of Dryja’s. Applying
(CU)=1 to a vector pg of dimension ng requires solving the £2; Neumann problem

(qz?)>= (zg))

whence g = (C(l))‘lpo . In the case of Poisson’s equation on the union of two rectangular uniformly
gridded regions, as pictured in Figure 1b, an explicit FFT-implementable expression for C(1) was

4 4
A 10 Al 1
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Figure 2: The applicability of the Chan preconditioner. (a)
A model geometry for which Mg = C. (b) A model geometry
for which M¢ is not exact but furnishes a useful aspect ratio-
sensitive preconditioner.

derived in [1]. We shall define Mp as twice C(1) in what follows for purposes of comparison. Let
m; be the number of internal grid points in the vertica! direction in Q; . Then

\ Mp = WAgWT,
where
Ap = diag()F),
where
1 + ':n-l+1 0_2
AP =2 ——%—ﬁ o+ -,
1 - p]. 3 4
where
p; = Ti-[Tit,
and

2
o o
rji=1+71:h\ldj+—41—-.

This is a diagonal rescaling of Mg which takes account of the aspect ratio, m;/ng, of one of
the subdomains. In the case where Q is a rectangle and Q; and Qs are symmetrically disposed
about the interface, C(!) = C{3) My = C, and the Bjorstad-Widlund method converges in one
step.

Chan has carried this circle of ideas further for the case where 0 is a rectangle and L is the
Laplacian by finding the Fourier decomposition of C itself [6]. Referring to Figure 2a, let m, be
the number of internal grid points in the vertical direction in Q.

Then in the previous notation,

Mo = WAcWT,
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where
Ac = diag()\_,c-'),
where
26 = 1+p?1+1+1+p?2+1 a-+j‘i2.
J ]~ p;n;+1 1— p;nz+1 J 4

By taking account of the aspect ratio of both of the subdomains, Chan’s method converges
in one step even in the unsymmetric case, and thus may be regarded as a direct fast Poisson
solver. Of course, fast Poisson solvers not making use of domain decomposition can already be
applied when Q is a rectangle, and the serial computational complexity of Chan’s approach can be
made nearly equal to that of these algorithms by solving the Schur complement system in Fourier
transform space [24]. However, Chan’s preconditioner may also be used to advantage in a more
general geometry like that of Figure 2b, for which a fast Poisson solver is not available, although
exact only for the inscribed ng X (m; + ms) rectangle.

In aid of visualizing these preconditioners, surface plots of their elements as a function of their
indices are given in Figure 3 below for the case ng = 15, m; = my = 7.

Corresponding estimates of the condition numbers k(M ~1C), where C derives from the Lapla-
cian on the unit square, with 16 subintervals on a side are listed along with convergence data in
the second row of Table 1 in §3.

The Chan and Bjorstad-Widlund methods are both exact for the Laplacian in a symmetrically
decomposed rectangular domain. For a given h, the Golub-Mayers method coincides with these
two methods in the infinite aspect ratio limit of the domain geometry:

my=—co

o2
lim ,\J¢'=2 aj+—J—=AG.
Mo =00 4

The Dryja preconditioner is not exact for any domain geometry limit. Allfour of the preconditioners
discussed above are optimal for the two-subdomain case in the sense that the condition number of
the Schur complement system approaches a constant independent of h as the mesh is refined with
fixed geometry.

A disadvantage of working with the Schur complement system, independent of preconditioner,
is that the subdomain solves are presumed to be carried out exactly. In the general nonseparable
case of interest, fast Poisson solvers.are not available, and one is faced with the necessity of direct
sparse solvers in the computation of Cp*, or of nested iterations. In the latter case, the convergence
criterion for the inner iterations could conceivably be tuned to the rate of progress of the outer
iteration to save computational work, but a more fully coupled framework of simultaneous iteration
is possible, which we review in the next subsection.

2.3. Partitioned Matrix Methods (PMM)
The partitioned matrix methods are realized by taking A to be A4 of (2.3) and selecting appro-

priate B. The iterations occur on vectors of length n, rather than ng. We begin with the following
theorem, due to Eisenstat [15].

Theorem 2.1. Let the n X n partitioned matrix A and the ng X ng Schur complement matrix C be
defined as in (2.3) and (2.4), respectively, with corresponding right-hand sides fandg.

(i) Algorithm PCG applied to Cv = g with initial iterate v® and preconditioner M is equivalent to
.algorithm PCG applied to Au = f with Initial iterate

= (= o)
T\ AT (A - At
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e S e

Figure 3: Surface plots of the elements of the Schur comple-
ment matrix C for Poisson’s equation on a square uniformly
discretized with 16 subintervals on a side, and various pre-
conditioners. (a) C itself, (b) Mp, (c) Mg, (d) Mo (= Mp)
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and preconditioner
B= [M-i- Aot AT} Ao Am}

2.6
Ajp Al (2.6)

in the sense that, for all k > 0,
= (a o)
AT (i = Aov®) )
(%) There is no advantage to choosing an initial iterate more general than u® as above, in the sense
that ||u* ~u|4 < ||w* —ul|4 , where w* is the kth iterate generated by PCG from the initial iterate

w°=u0+<§0>.

Proof. (i) Since A;;, M, and B are symmetric positive definite matrices, we may write M = QTQ
and B = PTP, where

P=Lithae alf]
=1 -1/2 1/2 -

A11/ 4o Al{
The Schur complement system PCG iteration is equivalent to conjugate gradient (CG) iteration on
Ct = § with initial iterate 9(®) = 0, where ¢ = Q=TCQ™}, 9 = Q(v—v9)) and § = QT (g— CvO);
and similarly the partitioned system PCG iteration is equivalent to CG iteration on At = f with
initial iterate 4(®) = 0, where A= P~T4P~! 4= Pu - u(o)) and f = P~T(f - Au(o)). But note
that

- -1 -
A= {QT A{oAul/2 [Aoo Am][ Q 0 } 1=

0 Ai{z A An Al-ll/zAlo Ai{Q
[Q—T ‘Q-Tf‘:{gAﬁl} {Aoo Am] [ Q! 0 } _
0 Al / A Anl | -ATEAQTY AP
[Q‘T(AOO" Ao ATj Ao) O } { Q™! 0 } _ [Q”TCQ’1 0} _ {é 0}
AT 440 AP = AT AQ™Y AT .0 I o Il

Similarly.,

: -1/2
f = QT A{oAu/
Tlo A

QT - TAfA ] (g-C\ _ (¢
0 AL o )T \o/

Thus the partitioned matrix PCG iteration is equivalent to CG iteration on

(- (6)

with initial iterate £(®) = 0, (%) = 0 and the equivalence is established.

-1
(fo — Aot AT (f1 = A1ov°) — Aoov°> _
0 =
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(4¢) To prove optimality, we first define

P
N 0 . (D
w _(AiFfO) , andu—-<0> .
2

- ulfy = ¥ - oI,

= minf[(I - AP:(A))(2° ~ 9)|]

Then

[l

]
8
=
e
=
1
Q
D
Cy
=
Qe
+
—
|
D
=
N
—
—_—

[ ]
vy
-2
fexs)

e —

= lla* - 9|2
= lv* - ],

where Py is the set of polynomials of order k, and the second and penultimate steps rely on the
optimality property of CG iteration (see [8], chapter 3, for instance).

By this theorem, any Schur complement system preconditioner M can be applied to the in-
terfacial equations of the partitioned matrix by its incorporation into the matrix B as shown in
(2.6). Moreover, the theorem suggests a form for the preconditioner for a more general algorithm
in which is it not required that the subdomain solves corresponding to A7} be carried out exactly.
For instance, if A derives from a nonseparable operator L, fast Poisson solvers may be used to
precondition the subdomain solves. More costly exact subdomain solves are thereby avoided. To

allow for this type of generality, we take B to be E, where

B= {f:?oo ém}

1l

(2.7)

[M+x‘1914‘1;114‘110 %01
Byo By

Ao An |’

and where the x‘i,‘j are determined on a problem-specific basis. A convenient form for the J‘I{j may
be derived from a permutation conformal to that of (2.3) of the discrete Galerkin equations for

J‘IQ(U’ 'l)) = (fa U)v (2'8)

where

2
Aq(u,v) = Z Ag, (u,v),
k=1
where for each subdomain

A (uv)“i/akauavdx
0 = T
[ 2%t o 0 PQaIp 3Iq 3
and where the constants &];q are chosen for each subdomain k in such a way that the resulting
matrix A is spectrally equivalent to A. This iteration is, of course, no longer equivalent to any
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reduced system iteration in the manner described above, and the scaling of M relative to the A;;
becomes an issue, where it was not previously.

An efficient implementation of partitioned matrix preconditioners of the form (2.7) has been
presented by Bramble, Pasciak & Schatz [4], wherein it is described how the operation B~!r can
be carried out at the cost of twe subdomain solves per subdomain per iteration, plus the cost
of applying M~1. In the language of function-space decompositions, the solution u is written as
the sum of a harmonic component, u¥, and a perpendicular component, u”, such that in each
subdomain k, u¥|x € H},, satisfies

Agk(uP, v) = Aq, (u,v)
for all v € Hy,,; and u¥ |, € H}, satisfies u¥ = u on v12 and

g, (w7 ,0) =0

5(x)=(%)

Apdf = f

for all v € H},,.
In matrix terms, to solve

for u, one first solves

for uf, then

Mug = fo — Agyuf

for ug, then

Anuf = ~A4,0u0
for ufl and sets u; = uf + of.
It is tempting to consider as a more economical alternative for B the matrix

Ao A}’

whose inversion allows skipping the first of the three steps above (and thus leads to an algorithm
with no more subdomalin solves per iteration than SCM), but this is not a symmetric preconditioner.
The penalty for preserving a nest-free iterative structure in the case where the subdomain solves
with Aj; are too expensive to be done directly is thus an extra solve per subdomain with A4;; in
the preconditioning step, and also the extra work in the multiplication and dot product steps due
to the vector length of n instead of ng.

In [5] the same authors consider a generalization of the B_}orsta,d Widlund precondltlonmg in
which the M of (2. 7) is given by

EW = AW _ 10 M)-1 40,

5(2)=(%)

In matrix terms, to solve
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for u, one first solves the Dirichlet problem in Q»:

~(2 2

Agl)“ = fl( )
then the Neumann problem on Q;:
“(1) 301
Ao A
Ao An
then the Dirichlet problem in 25:

AP = 49— A

Since one of the subdomains solves is eliminated, the serial complexity of this method is less than
that of the function-space decomposition technique just described, but the remaining subdomain
solves are inherently sequential, and generalization to the many-subdomain case can only be carried
out for decompositions (such as stripwise) in which the boundaries of the subdomains on which the
natural boundary conditions are posed do not intersect.

2.4. Modified Schur Complement (MSC) preconditioners

Because the Schur complement matrix C is close to being tridiagonal, as illustrated for the
Laplacian operator in Figure 3, it is natural to consider the use of tridiagonal or other low-bandwidth
preconditioners for it. Such an approximation of one matrix by another constrained to satisfy
various sparsity requirements has often proved useful in connection with iterative methods. We
can generate a class of interfacial preconditioners of the form

Mgy = Aoo ~ Ex, (2.9a)

where Ej is a symmetric matrix with semi-bandwidth k& which satisfies

Epv; = (Aot AT Aro)v; (2.9b)

for some k& + 1 vectors v;, 1 = 0,...,k. We have used A;; rather than A1z in (2.9b) because this
technique is motivated by variable coefficient problems for which exact subdomain solvers are too
expensive to consider.

Note that the construction of E; requires k + 1 solves on each subdomain, which is in general
(k+1)/2 times the cost of one preconditioning step with B of the form (2.7). For k = 0, we consider
the vector vo = (1,1,...)7; for k = 1, the vectors v = (1,0,1,0,...)7 and v; = (0,1,0, 1, .. )7T; and

_so forth. Equation (2.9b) gives (k +1)ng scalar equations for the (k+ 1)(no ~ k/2) distinct elements
of E, but the overdetermination is consistent due to the symmetry of the product of matrices on
the right-hand side. For the set of v; recommended above, the diagonal elements of E can be read

off from (2.9b) and the remaining elements can be obtained in O (kng) operations. Note that Mg,

1
k
can also be applied at the cost of only O(kno) operations once its factorization is stored. "
Surface plots of Mg, Mg(1), Mg() for the same model problem described in conjunction
with Figure 3 are shown in Figure 4, and their associated estimated condition numbers also appear
in Table 1. .
For small k, which is the only practical limit, this class of preconditioners turns out to be
markedly inferior to the optimal class described earlier for constant coefficient operators on uniform
grids. However, it can be competitive when the interfaces are not placed along level curves of the
coefficients. Figure 5 shows surface plots of the first three members of the M, s(k) class and the Schur
complement matrix itself for a problem with the same model geometry, but with the nonseparable
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Figure 4: Surface plots of the elements of the Schur comple-
ment matrix C for Poisson’s equation on a square uniformly
discretized with 16 subintervals on a side, and the first three
MSC preconditioners. (a) C itself, (b) Mg, (c) Ms(1), (d)
Ms(2)- ‘
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operator equation V-(aVu) = f, where a = 1+btan™}(z— z)+ctan~!(d(y - 1)), and with all of the
tilde-quantities in (2.9) obtained from the subdomain averaging of the z- and y-direction diffusion
coefficients in the opposite direction to achieve separability within subdomains. Estimated condition
numbers for this problem, using PMM with interfacial preconditioners from both the optimal and
MSC classes appear in Table 7 of §3.2. Observe the sensitivity of the MSC preconditioners to the
variation of a along the interface, which is lacking in the optimal preconditioners. The plots are
for b = 0.65, ¢ = 0.35, d = 10.0. _

The MSC preconditioners have the advantage of being self-scaling, relative to the Ay, and
can enjoy a decisive advantage over a poorly scaled optimal interface preconditioner in the PMM
context. However, it is not difficult to choose a good scaling for the optimal preconditioners (see
[4]).

2.5. Methods of Variational Type

Glowinski and several coauthors have contributed extensively to the literature of domain de-
composition techniques in the course of their work on the numerical modeling of steady, compress-
ible inviscid flow and of unsteady, incompressible viscous flow (see [16] and the references therein).
Both of these subrealms of the Navier-Stokes equations may be operator-split and discretized in
such a way that the subtasks of greatest computational complexity are scalar problems of Poisson
type with a large number of degrees of freedom and wide variability in the coefficients in irregular
geometry. We briefly describe here three algorithms of conjugate gradient type presented in [10,
16] which enter into the comparisons in §3. Like the Schur complement methods, all of these meth-
ods iterate on degrees of freedom at the boundaries of the subdomains only, with each iteration
requiring one or two exact interior solves per subdomain. Two of the methods use a partitioning of
the domain into subdomains with non-intersecting interiors, as in Figures 1 and 2. The remaining
method is related to the Schwartz alternating procedure in that the subdomains overlap in regions
of nonzero measure.

The algorithms are summarized below in matrix operator form, without derivation, for the
model Poisson problem (2.1b). It suffices to identify the vectors in Algorithm PCG in terms of the
physical variables and to specify the operators 4 and 8-1.

The first two algorithms are based on the equivalence of

~Ay= fin ,
y=0onT,

and the problem

= are min (1 2 . /
y= argzegéxgm{Q/Q | Vz |* dx sz dx}.
Upon partitioning the domain and carrying out the minimization on each of the subdomains sepa-
rately, either the normal derivative or the trace of the solution along the interface can be regarded
as the principal unknown, and its value iteratively updated until continuity of the other is satisfied.
Through intermediate saddle-point formulations dual conjugate gradient algorithms are derived.

In the first algorithm (§4.1 of [10] or §2.2.2 of [16]), the unknown vector represents the discrete
normal derivative of the solution along the interface adjusted for sign, z = (= 1)¥"10uy/9ns, 4 is
the matrix (C(1))=1 4 (C(®)~1 and B is the matrix defined by (for k=1 or k = 2)

Blis =" | rit ds, 1,5 € No.

712

In the uniform mesh case, 8 = I - %K. This method we denote by Saddle-1.
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~n

’

Figure 5: Surface plots of the elements of the Schur com-
plement matrix C for a nonseparable operator on a square
uniformly discretized with 16 subintervals on a side, and the
first three MSC preconditioners. (a) C itself, (b) Mgy, (c)
Mgy, (d) Ms(a).
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Figure 6: Sample domain illustrating the overlap decomposi-
tion (subdomains staggered for clarity).

In the second algorithm (§4.2 of [10]), denoted Saddle-2, the unknown vector represents the
solution itself at the interface nodes, A is precisely the Schur complement C, and B is the matrix
defined by

2 ,
[Blij = Z/ﬂ Viprs - Vipry dx, 1,7 € No.
k=1 &

In the uniform mesh case 8 = 2(I+ %K). These preconditioners commute with their respective
A-matrices, the spectra of which can be constructed from the eigendecompositions given in §§2.2.
It is readily verified that in both cases k(B~14) grows asymptotically in proportion to 1/A.

The other method (§2.3.5 and §2.3.7 of [16]) uses a decomposition with overlapping subdo-
mains, as illustrated for a two subdomain case in Figure 6. The overlap region is denoted by ;5
and distinct internal subdomain boundaries 71 and v are defined as shown. We denote this method
by CG-Schwarz (or CGS).

The unknown vector represents the trace of the solution along 71 U 7., and is partitioned
accordingly, u = (u1, u2)T . For the case of the Laplacian, the algorithm is based on the equivalence
of

~Ay= fin ),

y=0onT,
and the problem

. . 1
U= (up,ug) = arg ver‘r/x:):r(lvz{-é-/n[]V(yQ - y) P+ |y - w)?| dx},

where the yx € H();) are the solutions of

—Ayr = fr in Q,
yr=0on 8, N T,

Yk = Vr ON 7,



Page 20
and where V} is the space consisting of the traces on ~; of functions in H'(k) which vanish on
o012 NT, for k=1,2.

We introduce Hi,,, the discrete subspace of H!(;2) consisting of piecewise linear functions
vanishing on 8€2;2NT', but not necessarily on ~; or 72, and we denote a basis for it by {x;},7 € M.
Let Nop and Noz be index sets for the nodes along ~v; and ~2, respectively.

The action of £ on a vector z = (21, 22)7 is implicitly defined as follows. First, the pair of
subdomain Dirichlet problems with boundary data z; on the v,

Apyr = —Chray,

is solved for the yi, where
[Aelij = /ﬂ Vipey - Vi dx, 1,5 € Ny
k

and .
[Cliy = / Vipgj - Vipgi dx, © € Ni, j € Nog.
Qk .
Then the difference of the yx over the region of common definition,
6Yk = Yklowz = Yilauz,

is computed, where [ is the complement of k in {1,2}. Then another pair of subdomain Dirichlet
problems with forcing due to the difference.in the yx over the overlap region,

Az = Frbyg,

is solved for the zx, where

[Filiy = /ﬂ (VX5 - Vi + Xj¥ki] dx, 1 € Ni, 5 € Nya.
12

Finally,
_ [ Dibyy = Erzy
Az = <D25y2 - Egzy )°
where ‘
[Dgliy =/Q (Vx5 - Vi + x7¥ki} A, © € Nok,j € Nio
12
and

[Ek]if = A V"/)lcj Vi dx, 1 € Nok, 7 € Ny.
k

We may consider different preconditioners, which are of the form 8 = diag(8;, B;). In §2.3.5
of [16], an essentially unpreconditioned form of the algorithm is proposed in which Bi has the
interfacial line integral form of 8 in the Saddle-1 method. In the experiments in §3 we in fact
report on By = I. In §2.3.7 the preconditioner

[Bilij = / Vipi; - Vi dx, 1,5 € Nogk
£y
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is used. Though not mentioned in [16], we also consider By = X!/? in the numerical experiments,
Note that, like the PMM, the overlap decomposition-based method requires two Dirichlet problems
to be solved in each subdomain per iteration.

2.6. Generalization to Multiple Nonintersecting Interfaces

The two-subdomain case may possess genuine interest for many problems of physical origin,
but it is of limited interest when implementation of domain decomposition algorithms on ensemble
architectures with a large number of processors is considered. The multiple subdomain case has
been studied by Dryja and Proskurowski in [11] and [12}, in which serial implementations making
use of up to 32 subdomains have been tested, and by Chan and Resasco in [7]. The multiple strip
case can be accommodated by our notation of (2.3) and (2.4) by letting uo represent all of the
separator set unknowns, ordered by interface, and letting u; represent all of the interior unknowns,
ordered by subdomain. If Q is uniformly triangulated, and if there are p subdomains of equal size
with ng interior gridpoints along each interface and m gridpoints across, then Agp is a block matrix
with p — 1 diagonal blocks of size ng, and A;; is a block matrix with p diagonal blocks of size nom.
Under our assumptions on L, the Schur complement (which is block tridiagonal with blocks of size
no) is symmetric and positive definite, and the following is proved in [11]:

Theorem 2.2. Let the Schur complement C be defined as following (2.4) and above, and let Mp be
defined as the (p~ 1) x (p— 1) block diagonal matrix with ng X ng diagonal blocks Mp. Then, for
all z,

w'yo(a:,l\j.fpx) < (z,Cx) < w"l'yl(x,l\;.fpx) s (2.10)
where vo and ) are positive constants independent of h, and w is the minimum of the strip widths.

This makes Mp an optimal preconditioner for C for a given decomposition, and similar block-
diagonal extensions can be made for the other single-interface preconditioners. The analogous
block preconditioner Mg is also tested in [11]. The reference [12] considers a multiple subdomain
generalization of the alternating Neumann-Dirichlet method, first presented for the two-strip case
in [2]. Finally, (7] presents an exact eigendecomposition of the multiple-strip Schur complement
matrix which generalizes Chan’s method (6] to a multiple-strip domain-decomposed fast Poisson
solver.

Note from (2.10) that the block preconditioning of C by Mp suffers as the strips become thin,
that is as the number of subdomains is increased for fixed domain geometry. In (7] this is traced
to ignoring the off-diagonal blocks of C. By means of the exact eigendecomposition, these blocks
may be shown to be insignificant in the limit of large aspect ratio subdomains (“thick” strips),
but more and more significant in the limit of small aspect ratio subdomains. Since w o pl,
the bound on the condition number from (2.10), ~;/(vow?), increases like p®. The inability of
stripwise decompositions to accommodate large numbers of subdomains without a deterioration of
convergence is a major weakness when it comes to large-scale parallel implementations. A more
implicit means of handling the interfaces is required.

2.7. Generalization to Intersecting Interfaces

An extension to decompositions in which interfaces intersect in vertices or crosspoints, resulting
in the formation of boxes instead of strips, is given by Bramble et al in [4]; this development is
in fact the focus of their paper. (The single interface version of the PMM presented in §§2.3 is a
special case.) Constraints of space and focus prohibit the full development of their technique here,
but a brief account of its implications for the discrete version of the problem is furnished below.

The key step is the further decomposition in function space of the discrete harmonic component
of u, u¥. Recall from §§2.3 that u = uf + uf | where in each subdomain k, uP|; vanishes on o0
and satisfies
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Ank (uP,v) = fink (u,v)

for all v € H},,; and uf |} satisfies uf = u on 8Q; and

f‘ink (uH,v) =0

for all v € H&kh. We now set u¥ = uf + ¥, where in each subdomain k, uvlk and uEIk each
satisfy

ﬁnk(uv,v) = fink(uE,v) =0

for all v € H},,, and u" is linear along the edges of (1 and and agrees with u at the vertices, and
u¥ vanishes at the vertices. A finite element basis for u is then constructed which consists of the
usual C° piecewise linear basis functions of smallest possible support defined at the nodes interior
to each 2 and at the nodes along each edge (except at the intersections of the edges), and a special
set of basis functions defined at the crosspoints with support extending out along the edges which
connect the crosspoints. These special basis functions each vanish at all crosspoints but one and at
all interior nodes, and are linear along the edges. The Galerkin equations involving the crosspoint
degrees of freedom thus possess a nonlocal connectedness. If the nodal values of u are permuted as
before so that ug represents the separator nodes (edges and crosspoints), and u; the interior nodes,
then the computation of uf and uf’ proceed as before, as independent Dirichlet solves over each
subdomain. However, the calculation of ug from

Muo = fo — Agyul

proceeds in another series of independent solves as follows. M is a block diagonal matrix with
a diagonal block corresponding to the nodes along each edge. These blocks are each essentially
matrices of the form Mp, leaving scaling considerations aside. The final block corresponds to
a diagonally dominant difference equation for the internal crosspoint nodes and has a sparsity
structure identical to a graph of the decomposition: each edge connecting one vertex i to another
vertex j contributes a nonzero to the ith row in column j. For a decomposition of the unit square
into uniform square subdomains, this matrix is simply the discrete Laplacian, to within a scaling
factor. The right-hand side involves inner products between the interfacial nodal coefficient vectors.
The reader is referred to [4] for the complete details. We conclude by paraphrasing Theorem 1
and Remark 2.6 therein as follows, in' which it is assumed that the underlying triangulation and
decomposition into subdomains are quasi-uniform of sizes h and d, respectively.

Theorem 2.3. Let the matrix A be defined as in (2.3) and above, and let B be defined as in (2.7),
where M is the separator set preconditioner of [4]. Then, for all z,
~o(x, Bx) < (w, Az) < i (z, Bx) . (2.11)

where o and 71 are positive constants such that for some positive constant cy,

If, instead, the vertex difference equation block of M is replaced by a weighted identity operator
then for some positive constant ca,

71 -2 d2
— < ed™°(1+ In(-= .
o S0 ( ()9
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The implications of this theorem for the many subdomain decomposition are illustrated by
the following special case. Consider a square domain uniformly discretized with n subintervals
on a side and uniformly decomposed into p square subdomains of n/./7 subintervals on a side.
Then d o< \/p and d/h = n/\/P . Therefore, by Theorem 2.3, when the crosspoints are treated
implicitly the condition number is bounded by ¢; (1 + In(n/,/p)?); and when they are decoupled the
condition number is bounded by a cop(1+ In(n/,/p)?). In the former case the condition number is
bounded by a constant if subdomains are introduced as required with increasing resolution to keep
the number of subintervals on a subdomain side fixed. In the latter case, the condition number
grows in proportion to the number of subdomains.

A simpler alternative for handling the crosspoints in the decoupled case is to employ the usual
cardinal finite element basis for all of the interior degrees of freedom, including the crosspoints,
along with a weighted identity operator for the corresponding block of M. This method requires
no special computations to form the right-hand side of the crosspoint system. The examples of §3
labeled “PMM without vertex coupling” employ this simpler alternative.

3. Experimental Comparisons of Domain Decomposition Techniques

The methods described in section 2 were tested on a variety of model problems chosen to
reveal their relative strengths and weaknesses. Four of the problems we consider are posed on the
unit square, symmetrically divided into two strips or four boxes by straight segments bisecting
opposite sides. The operators include the cases of uniform, discontinuous, and smoothly varying
nonseparable coefficients. The other problems are posed in a small aspect ratio rectangle, and in a
T-shaped region.

These tests were carried out on a VAX/785 in single precision (24-bit mantissa) using the
experimental interpretive language CLAM (Conversational Linear Algebra Machine). By providing
a convenient symbolic interface to the LINPACK and EISPACK libraries, CLAM allowed relatively
quick “breadboarding” of the various algorithms. The tests are not as comprehensive as some of
those available in the literature for individual problems and methods (e.9.,]1, 4, 11, 12]) because of
size, speed, and precision limitations, nor do they embrace as wide a scope of domain geometries or
operators. The chief value of these results is tutorial, in that they permit algorithmic comparison
on a common set of problems from common initial iterates with common convergence criteria and
measures, all of which may vary or be left unstated from paper to paper.

3.1. Conventions in conducting tests and reporting results

To complete the specification of Algorithm PCG of §§2.1, which is the basis for all of the
experiments, the initial iterate is always taken to be zero everywhere, and convergence is based on
the relative size of the unnormalized Euclidean norm of the true residual. Since these practices
are not uniform in the testing of such algorithms, we comment briefly upon them. In practical
applications of PCG, the most conveniently monitored convergence criterion is the norm of the
preconditioned residual, (r, B'lr)%, since the square of this quantity is already required to advance
the algorithm. However, when comparisons across a variety of preconditioners 8 are carried out,
the convergence criterion should not be affected by the type of preconditioner. Therefore the norm
of the unpreconditioned residual was calculated at every iteration of the serial tests, as well. We
declare convergence when (r*, rk)% < e(ro,ro)%, as opposed to the absolute criterion used in some
of the early domain decomposition literature, in order to remove dependence on the resolution of
the problem. In our test problems the shape of the right-hand side f is generally such that its
domain average decreases by an appreciable factor as the mesh is refined over several powers of two
and points further from the symmetrically located maximum of f are brought in. This is reflected
in a reduced initial residual, since the initial iterate is zero, and fewer iterations are required to
reach an absolute residual tolerance. If anything, we should insist that an iterative method work
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harder as the resolution increases in order to realize the potential of the lower truncation error of
the discretization, otherwise the additional resolution is wasted from the continuous viewpoint. As
a minimum requirement, we insist that the residual be decreased by a constant factor. In all of the
tables to follow, € = 1074,

The principal results that we report for each experiment are the number of iterations to con-
vergence, I, the estimated condition number of the preconditioned system, k, and the average
reduction per iteration of the residual, p. These are complementary indications of the rate of con-
vergence of the method. As the only one of these three quantities which depends solely upon the
operator, the true condition number is an attractive measure. However, a large condition number
may lead to an overly pessimistic appraisal of a method if the eigenvalues are unevenly distributed.
The iteration count is the most useful “bottom line” convergence measure for use in conjunction
with cost-per-iteration complexity estimates to determine overall algorithmic complexity. How-
ever, this is convergence criterion-dependent. The average rate of reduction per iteration, defined
by ((rI,rI)/(ro,ro))l/(2I), where I is the number of iterations to convergence, is a more reliable
estimator of the convergence rate than the condition number, without being as strongly dependent
upon the particular convergence criterion as I, and it does not exhibit the threshold effect that I
does. However, p still retains a dependence on the initial iterate. Since none of these three measures
is ideal, we report all of them.

"~ The condition number estimate in our tables is obtained as a by-product of the PCG iterations
by the method of Lanczos [20] at a small computational overhead. For each k in the loop (PCG.6)-
(PCG.14), the diagonal and subdiagonal elements of a symmetric tridiagonal matrix are formed

according to
1 g VB*

de= =+ =7 » Skt =~
ok | k-1 Tk oF

3

respectively. The extreme eigenvalues of this matrix often accurately approximate those of B=14
even if terminated with k considerably less than n.

Finally, we note that although the finite element formulation has been chosen throughout this
paper in order to provide a uniform theoretical background for the different methods, the results in
Tables 5, 6, and 7 were actually generated using the standard second-order finite difference method
to construct the discrete A and A. (These alternative formulations do not generally coincide at the
discrete level when the operator is not piecewise constant.)

3.2. Stripwise decomposition tests
The first test problem is Poisson’s equation

Vig=f,

in the unit square divided symmetrically into two strips, where f is chosen so that u = 16zy(1 -
z)(1 - y). This problem is essentially the same as the first example in [11, 12]. It may be solved
conveniently by a SCM. Surface plot comparisons of the preconditioners in Table 1 with C were
given in Figure 3.

For this domain geometry, and for all but one to follow, the Schur complement matrix pre-
conditioners M¢c and Mp are identical, so there is no need for separate tabulation. The optimality
properties of M, Mg, and Mp are in evidence, with the number of iterations independent of prob-
lem size. As the mesh is refined, p actually shows a slight improvement for Mg and Mp. For any
meshes but the coarsest, the MSC preconditioners are inferior, and exhibit steadily deteriorating
p. The last column, for which B = I, shows the proportionality of the condition number to th
number of degrees of freedom in the unpreconditioned system. - ‘
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h—1

Mc

Mg

Mp

Mgy

Mg (9

1
1.000
1.1(-6)

2
1.094
1.1(-3)

3
1.257
3.2(-2)

3
1.154
1.0(-3)

2
1.045
5.9(-3)

6.317
1.1{-2)

16

1
1.000
3.7(-6)

2
1.091
9.0(-4)

3
1.303
3.2(-2)

1.760
1.5(-1)

5
1.486
8.8(-2)

4
1.297
4.2(-2)

13.063
1.1(-1)

32

1
1.000
1.4(-5)

2
1.091
8.0(-4)

3
1.320
2.7(-2)

7
2.472
2.4(-1)

6
2.066
2.0(-1)

6
1.756
1.4(-1)

12
26.06
4.4(-1)

64

B 3 Mo 5 No x Mo s~

1
1.000
8.4(-5)

2
1.090
8.0(-4)

3
1.337
2.2(-2)

)
3.523
3.3(-1)

8
2.941
3.0(-1)

7
2.483
2.5(-1)

17
52.43
5.7(-1)

Table 1: V2u = f on the unit square, divided symmetrically
into two strips. Results for SCM as a function of problem
size and interface preconditioner.

Mc

Mg

Mp

Ms(oy

]\45(1)

1
1.000
1.1(-6)

3
1.094
3.8(-3)

4
1.288
7.4(-2)

4
1.318
3.2(-3)

3
1.140

2.7(-2) | 4.0

16

1
1.000
4.3(-6)

3
1.091
2.8(-3)

4
1.346
8.7(-2)

5
1.760

1.3(-1)

4
1.484
9.4(-2)

32

1
1.000
9.0(-6)

2
1.091
9.0(-4)

4 -
1.363
9.1(-2)

3
2.468
2.0(-1)

6
2.065
1.6(-1)

64

1

2

4

7

7

1.000
5.0(-5)

1.001
7.9(-3)

1.370
9.3(-2)

3.276
2.5(-1)

2.933
2.3(-1)

Table 2: V- (aVu) = 0 on the unit square, divided symmet-
rically into two strips, where a = 1.0 in one subdomain and
0.1 in the other. Results for SCM as a function of problem
size and interface preconditioner.

5 Mo x o o N ox M~

The second problem involves a physical interface which coincides with the subdomain boundary.
The equation is:

V- {aVu)=0

where the diffusion coeficient a is 1.0 in one of the subdomains and 0.1 in the other, and where
u obeys the Dirichlet condition » = zy on the boundary of the unit square. Again, a SCM is .
appropriate for this problem.

The optimal methods continue to perform well in spite of the jump discontinuity, although
~ p no longer shows improvement with increasing problem size. The MSC methods fare slightly
better than in the featureless case, but still cannot compete with the optimal methods on so ideal
a problem.
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h—l

Mc

Mpg

Mg

Mp

Mso)

Mgy

32

1
1.000
7.6(-6)

3
1.270
1.6(-2)

3
2.095
2.2(-2)

3
2.000
3.3(-2)

5
1.634
1.1(-1)

4
1.449
9.4(-2)

64

n X MNo o x ™

1

3

3

3

6

6

1.000
4.3(-5)

1.271
1.6(-2)

2.089
2.2(-2)

2.047
2.6(-2)

2.243
1.9(-1)

1.963
1.7(-1)

Table 3: V2u = f on a low aspect ratio rectangle, divided
asymmetrically into two strips. Results for SCM as a function
of problem size and interface preconditioner.

Mc

Mg

Mp

_Ms(o)

Ms1)

3
1.079
9.5(-3)

2
1.074
9.9(-3)

4
1.426
9.3(-2)

4
1.414
7.4(-1)

4
1.210
5.2(-2)

16

3
1.111
1.7(-2)

= SNo ox ™

3
1.109
1.9(-2)

5
1.468
1.1(-1)

5
1.718
1.2(-1)

5
1.599
1.0(-1)

32

3
1.140

3
1.138

5
1.489

6
2.493

6
2.260

© x5 Mo

3.3(-2) | 3.3(-2) | L1(-1) | 22(1) | 1.9¢1)

Table 4: V2« = f on an asymmetric T-shaped region, divided
into two strips. Results for SCM as a function of problem size
and interface preconditioner.

The third problem is again Poisson’s equation, a compressed version of the first problem posed
in the rectangle (0,1) x (0,2), with an interface at y = L and f chosen so that u = 10242(1 -

3
z)y(5 - v)-

The subdomain aspect ratios in this problem are more typical of those in multistrip decompo-
sitions of domains of roughly unit aspect ratio. This is the only problem to exhibit a distinction
between Mc, which is again exact, and Mpg.

As our only example of a geometry which is unsuitable for an undecomposed fast Poisson solver,
we consider the asymmetric T-shaped domain problem from [1]. The domain is the unit square with
two rectangles removed, as shown to scale in Figure 1b. The equation is Poisson’s equation with
inhomogeneous Dirichlet boundary data and right-hand side chosen so that u = 22 + y? — ze® cos y.
Though the overall geometry is nonseparable, the subdomalins can each be handled by a fast Poisson
solver, so a SCM is appropriate. .

The optimal methods have no trouble handling geometrical irregularity such as this. The MSC
methods are more competitive than before due to the spoiling of symmetry which prevents the use
of any exact preconditioning, but they continue to be inferior for sufficiently fine resolution.

The fifth problem involves generalization in another direction: a nonseparable operator. We
consider ELLPACK problem #1 [25]:

V. (aVu)+ Ku=f,

where a;; = e, agy = e, a2 =a91 = 0, K = —(1 + z + y)~!, and where f is chosen so that
u= -i—ez” sin(mz) sin(ry). Contour plots of aj3, ass and K appear in Figure 7.
For this problem, we use a PMM and present results for two different forms of the parti-

tioned matrix preconditioner B in two separate tables. The condition number estimates pertain
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Figure 7: Contour plots of the coefficients of the fifth.and
sixth test problems, with nonseparable operators. (a) ay;,

(b) aze, (c) —K, (4) a.
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Rt Me Mg Mp MS(O) MS(l) MS(2) GMM
8 I 7 7 7 7 7 7 7
K 2.419 2.422 2.528 2.412 2.411 2.412 2,419
p | 22(1) | 22(1) | 24¢1) | 23(1) | 22(1) | 22(1) | 22(1)
16 I 8 8 8 8 8 8 8
K 3.246 3.235% 3.234 3.148 3.240 3.244 3.246
P 3.0(-1) 3.1(-1) 3.1(-1) 3.2(-1) 3.1(-1) 3.1(-1) 3.0(-1)
.32 I 9 9 10 10 10 10 9
K 3.917 3.892 4.041 4.565 3.992 4.034 3.917
p 3.6(-1) 3.6(-1) 3.6(-1) 4.0(-1) 3.8(-1) 3.7(-1) 3.6(-1)

Table 5: V . (¢Vu) + ku = f on the unit square, divided
symmetrically into two strips, where a;; = €*¥, agq = ™%,
a2 = ag = 0, and K = (1 + z + y)~!, with subdomain
preconditioning by the Laplacian. Results for PMM as a
function of problem size and interface preconditioner and for
GMM as a function of problem size.

to m(é'lA), where B is constructed according to (2.7), by using the different M-blocks shown at
the head of the table columns. Results for the preconditioning arising from taking A of {2.7) to
be the Laplacian operator are shown in Table 5. This is a rather coarse-grained preconditioner,
which does not take advantage of the sensitivity of the domain decomposition technique to local
operator properties. We also consider a more conventional use of the PCG technique, the GMM of
preconditioning a nonseparable problem by one which can be implemented by a fast Poisson solver
over the entire domain. The results, displayed in the last column, are identical to those of Me,
which is, of course, the decomposed equivalent of the Laplacian.

The problem is a difficult one for all of the methods, as evidenced by the fact that for the
coarsest mesh case, the number iterations for all methods is fully equal to the number of unknowns
on the interface. (Of course, we are now iterating on vectors with length O(h™?), but recall that
for the first four problems considered, the PMM and SCM implementations have identical iteratjon
counts much lower than the number of interfacial unknowns.) For problems of this difficulty, the
MSC preconditioners do not fare appreciably worse than the optimal ones, and achieve comparable
condition numbers even at the moderate resolutions investigated.

Table 6 shows the improvement possible by generating the preconditioner blocks f‘ik by subdo-
main averaging the original operator A4, giving a PMM finer granularity than a GMM. Let (a11)y(z)
and (K),(z) denote subdomain averages of the respective coefficients with respect to y and (a22)z(y)
and (K):(y) the same with respect to z.In each subdomain k, A has the separable form

~ oY oY; 1 Oy; o 1
[Ak]fj = Ak((all>y‘g§5?’ + E(I{>y¢1'¢x' + {a22)s 6yJ _67;1 + ‘2‘(K>z¢j¢i) dx.

With the local averaging, the best of the optimal PMMs begin to break away from the GMM
even though only two subdomains are employed. A more graphic illustration of the improvements
offered by the PMM in the many subdomain case is given in example 3 of [4].

Our final stripwise decomposition example is '

V- (aVu) = f

on the unit square, where a = 1+ btan™'(z — 3) + ctan™!(d(y - 1)). A contour plot of a with
b = 0.65, ¢ = 0.35, and d = 10.0 appears in Figure 7, and surface plots of the actual Schur
complement matrix and various MSC approximations thereto were given in Figure 5.
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A=t Me Mg Mp MS(O) MS(I) MS(Z) GMM
8 I 5 5 6 5 5 4 5
K 1.465 1.465 1.975 1.456 1.373 1.310 1.524
p | LI(1) | 1.2(-1) | 1.8(-1) | 1.2(-1) | 9.9(-2) | 86(-2) | 1.2(-1)
16 I ) 5 6 6 6 5 5
K 1.517 1.515 2.088 1.898 1.708 1.543 1.661
p_| 13(-1) | 1.3(-1) | 1.9¢-1) | 2.0(-1) | 1.5(-1) | 1.3(-1) | 15(-1)
32 I 5 5 6 8 7 7 6
K 1.515 1.513 2.143 2.637 2.325 2.060 1.812
p 1.4(-1) 1.4(-1) 1.9(-1) 2.9(-1) 2.6(-1) 2.0(-1) 1.8(-1)
Table 6: V. (aVu) + ku = f on the unit square, divided
symmetrically into two strips, where a;; = €%, agy = e~%,
a12 = az; = 0,and K = (14+2+y)~!, with subdomain precon-
ditioning by a locally averaged separable variable-coefficient
operator. Results for PMM as a function of problem size
and interface preconditioner and for GMM as a function of
problem size.
ht Mc Mg Mp Msgq Mgy Mg (o GMM
8 I 6 6 7 6 5 5 7
K 1.871 1.891 2.408 2.003 1.786 1.813 2.794
g 1.7(-1) 1.7(-1) 2.2(-1) 1.7(-1) 1.5(-2) 1.5(-2) 2.5(-1)
16 I 6 6 7 7 6 6 8
K 1.943 1.965 2.586 2.691 2.311 2.090 3.472
p_| 20(1) | 2.0¢1) | 25(-1) | 26(-1) | 21(-1) | L8(-1) | 2.9(1)
32 I 7 7 7 9 8 7 9
K 2.096 2.121 2.618 3.795 3.247 2.777 3.852
p_| 2.2(-1) | 2.2(-1) | 26(1) | 36(-1) | 3.1(-1) | 2.7¢-1) | 3.3(-1)

Table 7: V. (aVu) = f on the unit square, divided sym-
metrically into two strips, where a = 1+ btan™!(z — 3) +
ctan~!(d(y — 3)), with subdomain preconditioning by a lo-
cally averaged separable variable-coefficient operator. Re-
sults for PMM as a function of problem size and interface
preconditioner and for GMM as a function of problem size.

A separable subdomain-averaged PMM preconditioner was constructed in the manner de-
scribed above. In this example, the results of which appear in Table 7, all of the PMMs are better
than or comparable to the GMM.

3.3. Boxwise decomposition tests

We carried out serial tests of the two decomposition strategies involving crosspoints on the
first problem of the previous subsection, namely Poisson’s equation on the unit square. Table 8
contains the results for the uncoupled crosspoint version of the algorithm, and Table 9 contains the
results for the coupled crosspoint version. Since there is only one crosspoint in this example, the
two algorithms differ only in the assembling of the right-hand side of the crosspoint equation, as
described in §§2.7. ‘

Even though there is only a single crosspoint, the difference between employing local and
nonlocal basis functions for the crosspoint degree of freedom is evident in comparing the tables.
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h=? Mc Mg Mp Mg(o) Mgy | Mgy
16 I 5 5 6 9 7 8
K 8.601 8.593 8.8901 12.82 12.46 12.07
p_| 69(-2) | 6.9(-2) | 2.0(1) | 2.7¢-1) | 2.4(-1) | 2.2(-1)
32 I 6 9] 7 10 10 10
K 12.36 12.36 12.13 24.39 22.70 21.90
p | L1(-1) | 1L1(-4) | 2.2(-1) | 44(-1) | 3.3(-1) | 4.4(-1)
64 I 6 6 7 15 13 13
K 15.11 15.10 15.85 45.35 40.40 36.99
p | 20(-1) | 2001 | 2.4(-1) | 53(-1) | 4.8(-1) | 4.8(-1)
Table 8: V2u = f on the unit square, divided into four equal
boxes. Results for PMM without vertex coupling, as a func-
tion of problem size and interface preconditioner.
h™! Mg Mg Mp Ms o) Mg Ms(a)
16 I 5 5 9] 8 7 7
K 6.379 6.384 5.772 10.41 9.960 9.520
p 6.7(-2) 6.8(-2) 1.9(-1) 2.8(-1) 1.9(-1) 2.4(-1)
32 I 5 5 6 11 9 11
K 7.130 7.232 8.201 19.83 18.31 16.69
p_| 12(-1) | 1.2(-1) | 2.1(¢1) | 3.9(-1) | 3.2(-1) | 3.8(-1)
64 I 6 7 7 15 13 12
K 13.35 13.35 12.71 36.50 32.39 20.47
p_| 21(1) | 15(1) | 22(1) | 5.0(-1) | 4.6(-1) | 4.6(-1)

Table 9: V2u = f on the unit square, divided into four equal
boxes. Results for PMM with vertex coupling after Bramble
et al, as a function of problem size and interface precondi-
tioner.

The condition numbers are uniformly smaller in the nonlocal case, though the overall number
of iterations is not greatly affected. The growth of condition number for Dryja’s interface pre-
conditioner with crosspoint coupling (the third column of Table 9) follows the theoretical bound -
c1(1+ In(n/,/p)?) with a c; of approximately 1.

A word is in order concerning the construction of the MSC preconditioners in the case of
multiple interfaces. We require that M be block-diagonal as with the other preconditioners, to
preserve the independence of the interfacial solves. In order to avoid solving four Dirichlet problems
on each subdomain for each degree k of approximation in MSC(k), we economize by varying the
components of the vectors v; of (2.9b) on all interfaces simultaneously, rather than treating the
interfaces one-by-one. The algorithm described in §§2.4 is then applied block-by-block to generate
the coefficients of the interfacial blocks of Ms(k). The vectors v; always have zeros corresponding
to the crosspoint location and the crosspoint block is unaffected by the choice of interfacial blocks.
As in the case of Poisson’s equation on two strips, the MSC methods cannot compete with the
optimal methods.

3.4. Variational methods tests

The methods of §§2.5 were applied to the problem of Table 1. A two-strip decomposition was -
used for the saddle-point methods. The decomposition pictured in Figure 6, with an overlap region
which spanned one subinterval on either side of the horizontal bisector of the square, was employed
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R=T Saddle-1 | Saddle2 | CGS/I | CGS/I+ LK | CGS/KI/?
8 T 3 3 1 3 3
K 2.750 2.325 8.411 3.096 1.673
p 2.5(-2) 4.4(-2) 2.0(-4) 2.9(-3) 2.5(-3)
16 | 1 4 5 6 4 3
K 5.473 4.407 24.56 8.399 2.419
p 8.4(-2) 1.1(-1) 1.9(-1) 4.6(-2) 1.1(-2)
32 | 1 7 7 11 6 3
K 10.63 8.652 81.65 27.39 4.011
p | 21(1) 2.3(-1) | 3.7(-1) 2.1(-1) 4.6(-2)

Table 10: V2u = f on the unit square, divided symmetri-
cally into two strips, with and without overlap. Results as a
function of problem size and method/preconditioning combi-
nation.

for the CG-Schwarz methods. (Thus, the width of the overlap region was allowed to shrink with
increasing resolution.) The results are given in Table 10.

We note that the K1/2 preconditioning is effective on the CG-Schwarz method, the spectrum
of the discrete operator A4 of which has not been analyzed to date. However, it is apparent by

comparison with Table 1 that on such simple problems these methods are inferior to SCM with
optimal preconditioning.

4. Paralle! experiments with domain decomposition algorithms

In order to test the convergence of the methods on a larger number of subdomains and to test
the degree of parallelization that is possible in practice, two PMM methods, with and without vertex
coupling and with Mp as the interfacial preconditioner, were programmed for the Intel Hypercube.
For simplicity and economy of coefficient storage, we considered only Poisson’s equation on the
unit square. For programming convenience, efficient use of the processors and economy of data
transfer between nodes, we wrote a single program to run on each of the nodes, rather than writing
special purpose programs to do the major identifiable operations in Algorithm PCG, such as interior
solves or edge solves. The same program was used to run both strips and boxes, with different
compile-time constants to reshape the arrays. The number of processors was left dynamic.

4.1. Domain-to-processor mapping and dataflow analysis
The square domain is uniformly discretized with n subintervals on a side and divided into p
subdomains in one of two ways. In the case of domains consisting of strips, each domain is an n x n/p
rectangle. In the case of boxes, each domain is an n/\/P Xn/\/psquare. Forsimplicity and efficiency
we require n and p to be powers of 2. By restricting ourselves to this limiting case of decomposition
regularity, we are able to pass over the complex issue of load balancing. The work per processor is
balanced @ priori and does not change during the course of the solution process in response to any
adaptive mechanism. It should be noted that regular decompositions of this type are the exception
in applications. The tradeoffs between load balancing efficiency and communication efficiency in
multiprocessor implementations of adaptive algorithms for partial differential equations have begun
to receive attention elsewhere ([3, 18]). We note however, that some geometrical adaptivity can
" be accommodated within the context of logically uniform decompositions by means of generalized
tensor-product gridding (see, e.g., the examples in [4]).
Four types of nodes are to be distinguished in the decomposition, for purposes of keeping track
of the data flow: interior nodes, separator set nodes, nodes which are adjacent to a separator, and
nodes which are adjacent to an exterior boundary. For the strip decomposition, we associate the
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gridpoints along each interface with one of the two subdomains it separates so that each processor
(except for one) is assigned one of the interfaces of length n. For definiteness in what follows, let
the strips run north-south, and let the east face of each subdomain contain the separator nodes,
the west face containing nodes which are adjacent to a separator, with the obvious exceptions of
the west-most and east-most subdomains. For the box decomposition, we associate the gridpoints
along each interface with one of the two subdomains it separates and each vertex with one of the
four subdomains it separates so that each processor (except for those along two of the domain
boundaries) is assigned two interfaces of length n,/P and one crosspoint. For definiteness, let the
east face and south faces of each subdomain contain the separator nodes, let the southeast corner
contain the crosspoint, and let the west and north faces contain nodes which are adjacent to a
separator, again with the obvious boundary exceptions. We map p strips onto the hypercube by
labeling the strips from one end of the domain to the other in binary reflected Gray code order
[19]. We map p boxes onto the hypercube by forming the tensor-product of two such rings, along
the row and column directions of the subdomain “grid”. In this way all of the local exchanges in
the physical domain are also local exchanges between processors, any two of which are connected
if and only if their binary representations differ in exactly one bit. '

We now analyze the data flow in each of the major steps in Algorithm PCG. We concentrate
on the boxwise decomposition, since strips may be regarded as a special case thereof.

The operation (PCG.7) of applying the distributed £ matrix consists of: (1) sending the vector
of data along each processor boundary not adjacent to a physical boundary to the neighboring
processor; (2) computing the interior components of the product from the 5-point star formula; (3)
receiving the vector of data coming across each boundary and computing the boundary components
of the product. Note that it is not necessary to distinguish between separator nodes and those
adjacent to a separator in this step.

The operation (PCG.11) of solving with B consists of: (1) solving for u® in the subdomain
interior (the subdomain interior includes the processor boundary nodes that are adjacent to a
separator); (2) sending the vector of data along each north and west processor boundary not
adjacent to a physical boundary to the neighboring processor; (3) receiving the vector of data
coming across each south and east processor boundary and forming the right-hand side of the
edge separator system and the local summands of the right-hand side of the crosspoint system; (4)
sending the appropriate scalar summands to the processors to the north and west, if any; (5) solving
the south and east edge systems for u£ on the separator set; (6) receiving the summands coming
from the processors to the south and east, if any, and forming the right-hand side of the crosspoint
system; (7) scattering the local component of the right-hand side of the crosspoint system to all
other processors, and receiving their components in turn; (8) solving an identical global crosspoint
system in each processor; (9) extending the crosspoint data linearly along the separator set edges
to form «¥; (10) summing 4" and uf along the separator set to form u” on the separator set;
(11) sending the vector of u# data along each south and east boundary not adjacent to a physical
boundary to the neighboring processor; (12) receiving the vector of data coming across each north
and east processor boundary and forming the right-hand side of the interior u¥ system;. (13) solving
for u¥ in the subdomain ‘interior and summing u# and uF. Steps (4), (6)-(7), and (9)-(10) are
unnecessary in the decoupled form of the algorithm, and step (8) is replaced by a scalar divide local
to each processor containing a crosspoint in this case.

The operation of performing a dot product in (PCG.7) and (PCG.12) consists of two traversals
of a binary spanning tree, arbitrarily rooted in processor “0”. First, the local portion of the dot
product is computed. These partial sums are then passed from leaf to root, and summed along the
way. The root processor performs the final sum and sends the data back from root to leaf.
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At p= 2 4 8 16
8 I 1
K 1.000
p 2.5(-6)
Il | 8.1(-6)
T 1.408
s .
16 I 1 3
K 1.000 1.260
p 5.0(-6) | 2.9(-2)
Wefll | 17(-5) | 8.3(-5)
T 7.680 4.288
s - 1.79
32 I 1 2 5
K 1.000 1.092 3.292
p 1.7(-5) | 8.8(-3) 9.9(-2)
Hrfl] | 3.5(-5) | 3.0(-4) 3.2(-5)
T 39.25 16.83 10.66
s - 2.88 1.58
64 T 2 4 )
K 1.091 3.201 12.98
p 4.8(-3) 8.5(-2) 2.8(-1)
Il 7.7(-5) 1.1(-4) 4.8(-5)
T 86.82 47.71 29.20
s - 1.82 1.64
128 I ) 18
K 12.98 51.88
p 2.8(-1) 5.9(-1)
el 2.7(-5) 3.3(-5)
T 157.1 115.7
s - 1.86

Table 11: V%u = f in the unit square, divided into equal
strips. Results for PMM with Mp on the interfaces, as a
function of problem size and number of processors.

Our present implementation of the global scatter required in distributing the right-hand side
of the crosspoint system, in step (7) of (PCG.11), consists of a different scatter rooted in each node
which is identical to the second half of the dot product routine described above.

4.2. Numerical results

We present data obtained on an Intel iPSC-7 for the strip form and the two box forms of
the algorithm described above. For simplicity of coefficient generation and economy of storage
(as memory proved to be constraining), we considered only Laplace’s equation on a square. The
problem is the same as that in Tables 1, 8, and 9.

Our conventions for the tests on the iPSC differ from those in §3 in that the preconditioned
residual is used to monitor convergence, rather than the actual residual. This is the practical choice
since we are not comparing different preconditioners against each other in this section, but rather
carrying out larger scale tests on selected algorithms. Since monitoring the true residual would
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require an extra global dot product per iteration, the reported execution times would exhibit an
unnatural penalty associated with increased subdivision of the domain. However, for completeness,
we do report the unpreconditioned residual at termination.

The notation employed in the tables follows that of section 3 except that p is now defined as
(1, B71r1)/(+0, B 1PN/ 2) | T is the total execution time (computation plus communication),
including the parallelized computation of the discrete forcing term and other initialization overhead.
s, where applicable, measures the ratio of two execution times: T for the next smaller number of
processors on the same size problem divided by the current T'. It is thus a local measure of speedup,
and a natural one for domain decomposition algorithms, but it is not the speedup as it is defined
in a pure sense (see §5).

We comment briefly on the sparsity of the tables. Our program requires a minimum of & subin-
tervals on a side for each subdomain. Therefore, the number of processors that can be employed
on a given problem is bounded above by the resolution of the mesh. Unfortunately, the number of
processors is also bounded below by the limited local memory of each node. The largest number of
degrees of freedom that could be accommodated per subdomain was between 2!! and 2'2; therefore,
our largest problems, involving 2! or 2'% nodes, could not be run on small numbers of processors.
These two restrictions imposed a banded structure on the region of h — p parameter space in which
it was feasible to run experiments.

The results of a series of runs using strips are given in Table 11. The p = 2 column of this table
is comparable to the Mp column of Table 1; however, the more lenient convergence criterion leads
to one less iteration in the more highly refined cases, and the Lanczos estimate of the condition
number is obviously sensitive to I for I assmall as 2 or 8 in this problem. Note the effect of
Theorem 2.2: as the number of processors is increased while the refinement is held constant, K
goes up asymptotically in proportion to the square of the number of processors (subdomains). The
_number of iterations required does not behave as badly as the condition number. From the limited
data, it appears to go up roughly in proportion to the number of processors, with fixed refinement.
The increasing number of iterations asymptotically defeats the power of the additional processors
as far as s is concerned, however.

The results of a series of runs using boxes without crosspoint coupling are given in Table 12.
The p = 4 column of this table is may be compared to the Mp column of Table 8; again the
preconditioned residual convergence criterion is more lenient, but the condition number estimates
agree almost exactly. In this table d/h is constant along a diagonal, therefore by Theorem 2.3 we
would expect to see a proportionality between k and p along a diagonal, which is approximately
the case. The number of iterations required goes up sublinearly with the number of processors
(subdomains), with fixed refinement.

The results of a series of runs using boxes with crosspoint coupling are given in Table 13.
The p =4 column of this table may be compared to the Mp column of Table 9, subject to the
caveats above, and the p = 16 column shows close agreement with Table 6.2 of [4]. According
to Theorem 2.3, the condition number should be bounded by a constant along a diagonal, which
appears to be the case. The number of iterations virtually levels off and the condition number
actually decreases as more processors are added with fixed refinement.

5. Domain decomposition on parallel computers

This section emphasizes the application of domain decomposition to parallel computation.
Thus, we consider an abstract problem with no special features such as complicated domain geom-
etry or operator variability to dictate the decomposition and ask what strategy leads to the most
efficient parallel implementation. Several interesting questions remain, of which the most important
are: how much of a speedup over a single processor can be obtained in practice, and how is the
performance of the parallel algorithm affected by decomposition topology, architecture topology,



ht p= 4 16 64
8 I 1 '
K 1.000
p 2.5(-6)
i1l | s.1(6)
T 1.408
s -
16 I 1 6
K 1.000 8.891
P 5.0(-6) | 1.6(-1)
Hrl |l 1.7(-5) | 4.6(-5)
T 7.680 4.736
s - 1.62
32 I 1 6 11
K 1.000 12.13 25.27
p 1.7(-5) | 1.8(-1) 3.6(-1)
[177]] 3.5(-5) 1.1(-4) 2.3(-5)
T 39.25 21.20 9.184
s - 1.85 2.81
64 I 6 12 17
K 15.85 32.18 94.39
p 1.8(-1) | 4.0(-1) | 5.7(-1)
I71]] 8.4(-5) 2.7(-5) 5.9(-4)
T 104.3 38.70 15.74
s . 2.70 2.46
128 I 13 19
K 40.53 119.7
p 4.7(-1) | 6.1(-1)
]| 7.0(-5) 6.8(-5)
T 196.6 60.91
] - 8.28
256 I 22
K 145.6
p 6.5(-1)
lidl 4.4(-5)
T 320.4
)

Table 12: V24 = f in the unit square, divided into equal
Results for PMM with AMp on the interfaces and

without vertex coupling, as a function of problem size and
number of processors.

boxes.
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machine parameters, and algorithmic options. To begin to answer these questions, we construct
theoretical computational complexity models of various approaches and compare them. One of our
purposes is to determine what a parallel computer suitable for domain decomposition algorithms
should look like. This includes not only the architecture, but the relative speeds of communication

and floating point.
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Rt p=1 4 16 64
8 I 1
K 1.000
)/ 2.5(-6)
Il | 8.1(-6)
T 1.424
s -
16 I 1 6
K 1.000 5.739
p 5.0(-6) | 1.3(-1)
1 1 1.7(-5) | 2.3(-5)
T 7.680 4.816
s - 1.60
32 I 1 5 7
K 1.000 7.879 7.005
p 1.7(-5) | 1.5(-1) | 2.6(-1)
7] | 3.5(-5) | 3.0(-4) 2.7(-4)
T 39.26 18.27 8.016
s - 2.15 2.28
64 I 6 7 6
K 10.72 10.24 7.163
p 1.5(-1) | 2.5(-1) | 2.1(-1)
11| 4.8(-5) 5.2(-4) 5.5(-4)
T 104.5 25.84 19.09
s - - 4.04 1.85
128 I 7 7
K 14.10 10.53
p 2.5(-1) 2.4(-1)
[177]] 5.3(-4) 3.3(-4)
T 114.5 39.12
s - 2.98
256 I 8
K 14.50
/) 2.7(-1)
77| 2.2(-4)
T 141.9
S -

Table 13: V24 = f in the unit square, divided into equal
boxes. Results for PMM with Mp on the interfaces and with
vertex coupling after Bramble et al, as a function of problem
size and number of processors.

In any iterative method two distinct factors contribute to the cost: the cost of a single iteration
and the number of iterations required. In this section, we will look only at the cost per iteration
for a given algorithm, since this is the only factor that depends on the parallelizability of the
algorithms. Of course, the iteration count is crucial in deciding which algorithm is most suitable

for a given problem, and this area been explored theoretically and experimentally in the preceding
sections.
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(b) (c)
(a)

Figure 8: The three parallel architectures under considera-
tion. (a) is a ring; the processors are indicated by circles.
(b) is a mesh; the processors are at the intersections of the
lines. (c) is a 4-D hypercube; again the processors are at the
intersections.

We continue to consider two basic types of decomposition topologies: strips and boxes. We
consider one-to-one subdomain-to-processor maps and estimate the costs for a single iteration.
For comparison, we consider the same algorithm implemented on a single processor with the same
number of subdomains. This allows us to see only how effectively domain decomposition algorithms
can be parallelized. Whether domain decomposition is the best possible parallel algorithm for
elliptic systems is beyond the scope of this paper.

As described in §§4.1, we consider a square domain uniformly discretized with n subintervals
on a side and we assume a total of p processors which evenly divide the domain into either strips
or boxes. We further assume that the 4 matrix comes from a 5-point stencil, that the 8 matrix
solves can be done with a fast Poisson solver, and that the edge solves can be done with FFT’s.

5.1. Parallel processor model and subdomain-to-processor mapping

In any parallel computer, interprocessor communication must be considered. We will assume
that the time to transmit a message of length n to a “neighbor” takes time oo+ fn. A “neighbor” is
a processor which is directly connected. We will further assume that only sending messages takes
time; receiving is free. o is the latency and B is the transfer time. A floating point operation takes
time f. .

We consider three different parallel architectures: a ring (cf. Figure 8(a)), a two dimensional
mesh with wrap-around (cf. Figure 8(b), wrap-around not shown), and a hypercube (cf. Figure 8(c)),
which embeds the first two. The mappings of the strips onto the ring or the hypercube and the
boxes onto the mesh or the hypercube are the natural ones discussed in §84.1. Because of the local
connectivity of the discrete elliptic operator, the only real difference between these architectures
for a given decomposition type is their performance on the global dot products in the Conjugate
Gradient algorithm in steps (PCG.7) and (PCG.12). The purpose of our estimates is to suggest
optimal relative sizes of o, 8, and f for efficient use of the processors.

5.2. Complexity estimates ,

Using the model described above, we estimate the complexity of a computation using a decom-
position into either strips or boxes on the three architectures under consideration. The times are
shown in Table 14 on a per subdomain per iteration basis. All of the times shown in the “Comm.
Cost” column represent transmissions of edge data from one processor to a neighbor. Note that
since we assume that nearest neighbor communications are done one at a time, there is no difference
between the hypercube, the mesh, and the ring for sends to a neighbor (at most, there is a constant
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Decomposition Operation type Comm. Cost Comp. Cost Quantity

Single Processor Dot Product 0 n? 2

(p domains) A-multiply 0 5n? 1
Strips B-solve

interior 0 Crn®p~log(np™t) 2

edge 0 Cgnlogn 1

Single Processor Dot Product 0 n? 2

(p domains) A-multiply 0 5n? 1
Boxes B-solve

1

interior 0 Crn?p~tlog(np™3) 2

edge 0 Cgnp~3 log(np"%) 2

corner 0 1 1

Parallel Processor Dot Product see Table 15 p+ np~! 2

Strips A-multiply 2(a* + B*n) 5n2p? 1
B-solve:

interior 0 Crn?p~!log(np™!) 1

edge a* + F*n Cgnlogn 1

interior o* + B*n Crn2?p~tlog(np™t) 1

Parallel Processor Dot Product see Table 15 p+ n?p7! 2

Boxes A-multiply 4(a* + ﬂ*np"%) 5n2p~! 1
B-solve:

interior 0 Crn?p? log(np'%) 1

edge (o + B*np'%) Cgnp™3 log(np"%) 2

corner 0 1 » 1

interior 2(a* + ﬂ*np"%) Crn?p™? log(np"é) 1

Table 14: Times (in units of f) for communication and com-
putation for the partitioned matrix method on two decompo-
sition topologies and various forms of parallel architectures

(e

alf, B* = B/f). The only differences between pro-

cessors are in the times for dot-products, which are shown
in Table 157 Also included are times for a single processor
implementation of the domain decomposition algorithm.

Architecture Dot product time
Ring pla+ p)

2-D Mesh 2,/p(e+ B)
Hypercube 2log pla + B)

Table 15: Communications times for doing dot products.
These assume that a single node collects the data, performs
the dot product, and distributes the result.

factor of four difference here between the architectures if simultaneous sends are allowed). It is in
the global dot product that the three architectures differ most; these times are shown in Table 15.
All of these times are for simple dot-product algorithms, and we make no claim that they are opti-
mal. However, doing much better is hard; for example, see [27] for a sophisticated method for doing
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Architecture Strips boxes

Hypercube r= %é;pl—?_—&g roe= 2n/ogf;-_1§gp
2n —
Mesh NA = _%
es T ) >

Ring r= NA

Table 16: Value of /f = r where local and global commu-
nication costs are the same.

the global dot product which is only a little faster than the “obvious” algorithm we have used here.
The times shown in the “Comp. Cost” column represent the leading order operation counts (in
scalar multiply-adds) of the various “Operation types” only, and are accurate for asymptotically
large n. When p is simultaneously large, lower-order terms in n should arguably be retained, but
we have not made the attempt here. Thus the apparent reduction in serial complexity in going
from a global-domain fast Poisson solves (cost Crn?logn) to a set of p subdomain fast Poisson
solve (cost p - Crn(np~!)log(np~?)) should not be regarded as an advantage that can be exploited
by taking p large. The O(n?) terms of the fast Poisson solver become important in this limit.

While it is tempting to discard all of the communication terms because they are asymptotically
in n unimportant, it turns out that because n and p may be roughly the same size and that o and/or
B may be much larger than f, this can be very misleading. In the rest of this section, we will look
at where in the parameter space of n, p, o, 8 and [ local or global communication is as expensive as
computation. We will do this by first determining where local or global communication dominates
the communication cost, then looking at where either local or global communication dominates
computation. Finally, we will estimate the performance of several possible computer architectures
by picking representative values of @, £, and f.

The local communication consists only of edge exchanges, and takes time 4(a + Bn) for strips
and time 8(o + pn/./B) for boxes. The global communication consists only of dot products, and
is of the form Cp(a + B), where Cp = 2p for a ring, Cp = 4,/p for a mesh, and Cp = 4 log p for a
hypercube.

We can determine the ratio r = «/8 where these two costs are equal as a function of n and
p. The formulas are shown in Table 16. Contour plots of the four cases presented in Table 16 are
shown in Figure 9. These plots clearly show that a hypercube can afford a higher ratio of a/# than
either a ring or a mesh, but that (particularly for boxes) the advantage is not very great for typical
ranges of p and n,

Also of interest is where the ratios «/f and B/f are such that the communication time is
~equal to the computation time. We can look at this by considering just the dominant terms in the
communication and the computation.

The dominant computation term for strips is 2Crn?p~1 log(np~?!) and the dominant commu-
nication term is either the local term 4(a + 8n) or the global term Cp{a+ B). The dominant
computation term for boxes is 2Cn?p~! log(np‘%), and the dominant communication term is ei-
ther the local term 8(a+,8np"%) or the global term Cp(a+ (). Table 17 summarizes these results
and Figure 10 gives contour plots of these values. To generate these and subsequent results, we
have for convenience set C; = Cg = 5, which are representative of cyclic reduction for separable
symmetric discrete elliptic systems and a pair of sine transforms, respectively.

Because of the complexities of these formulas, we have constructed graphs of the speedup,
fraction spent in communication, and efficiency for several hardware implementations (values of o,
B, and f) for each of these architectures. We define the speedup as the ratio of the time to do a single
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Figure 9: Contour plots of r = ratio of o/f where global
communication takes the same time as local communication.
If for a given (p,n), /f is larger than the value on the plot,
then global communication is more important; otherwise, lo-
cal communication is dominant. Alternatively, for a given
7, local communication dominates above the contour, and
global communication below.
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Architecture Strips Boxes
local global local global
1
iw—% [N_Q_L_E_L_SQIO Ly —422 L 2plogp
HyperCUbe B Snlog(np~ o 5n<log(np—? B Snlog(np~ %) @ 5n2p=1 log(np"’})
Ring see Hypercube ‘g R 5 log-np—l NA NA
2
Mesh NA NA see Hypercube L __g_I_Z =
© yP @ 5n2log(np~ %)

Table 17: Ratios of machine parameters where communica-
tion takes as much time as computation.

Strips on Ring (globall Boxes on Mesh [globoll Sirips on Ring/Hypercube (local)
1000 T / / T §‘ = 1000 + i & ! = 1000 + / T '
‘.§ & - ) "'6? g 1 r 5 7
< e‘e / V4 / Q@ 3 Py w@
/ VAR A s A /7 S
£/ as s & & 5 / & A
< e& & & / / o /°' e & /° o
= // 4 / Q‘Q‘L 1 = S / &’ @\’- € / 2 & \/ l
S0 § & / o ,L/ 500 f & /°' T soo b 4 N/ /°' /°' A
Fo & / oF o / o P o & 8 ¢ o /Q-'I‘
// S 01//3. X / o @\/ o // S AN =
o of © & § & / o — - / o / 0.5
S \// © s§@ \//“'0& S8 /"'L o5
SPOESEE o oo IS :
// Oy 090.«, r//c ° O.QQ‘L “gns/° O o ot “'5/
100 200 100 208 100 260
P P . P
Sirips on Hypercube (glebol) Boxes on Hype‘rcube (globoll Boxes on Mesh/Hypercube (loccl)
1000 T / ' - 1000 + ' “ 1000 ! ! -
§ o
Qg / e'@g\ ] 7 @1/
& / q&’ 1 / / / o
5§ ° S o § s
o yd / 0559 /° S &
& ©
K / 6¢' o ] / & ) / / ]
= § / ° ~ oo K © ¢ o
sop - & sé? & & ; S soo |- °§§> ‘59“/ o / s L8 & 0.5
& K & -
// o @\//e' 05/ / ° /0 e / 0-036/
-] & / o7 /“.eg\’//’ N / o 0.0% & -
;§@ \//e~ 0-‘”‘;\/}0'“ ] §é«$ e o oo o /0- 2 —1
o Q,Qi.@i 06//}3,01 [N QS"WQ\//O-“’Z ] “.@s g,m/°'
°’°‘i'%'m ’ b / 0.9 3.100" . ms__,‘o.aos & a0 002 0.0 —]
i " 1 —T 1
it 200 100 200 100 200

P P
Figure 10: Contour plots of r = the ratio of either f/a (if ’

global communication is dominant) or f/8 (if local commu-
nication is dominant). If f/o is greater than the value in
the contour plot then communication takes more time than
computation when global communication is dominant. Al-
ternatively, for a given r, computation dominates above the
contour, and communication below. Similarly for local com-
munication.

serial iteration to the time to do a single parallel iteration for the same decomposition. The fraction
spent in communication is the ratio of the communication time over the total time {computation
plus communication). The efficiency is the speedup divided by the number of processors; it measures
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how well a parallel computer is being used and gives an indication of how much value there is in
increasing the number of processors.

In order to provide some comparisons, we will consider all four combinations of parallel archi-
tecture and domain decomposition with the same parameters. This is somewhat unfair to the ring
and to the mesh, since their simpler communication structure would allow more engineering effort
to be spent on faster communication or computation. The values we have chosen are meant to be
fairly representative of what exists or could exist in the near future.

These estimates of which part of the algorithm dominate performance suggest a few sample
choices of the parameters «, 8, and f. The most favorable is a machine which is not communication
dominated. Such a processor might realistically be constructed to have:

a = 100y seconds
B = 5u seconds
f = 10u seconds

This makes each node a 100 Kflop processor, with 200 Kiloword/second transfer speed, and an
1/O startup time of 10 floating point operations. This machine has a relatively well balanced
communication and computation unit, and probably represents a good compromise. Of course, in
all cases it is the dimensionless ratios of communication time to computation time, or &/ f and 3/ f
which matter. The speed of identical ensemble architectures with the same ratios will scale linearly
with the basic floating point speed. For the balanced processor, these values are a/f = 10 and
B/f = 0.5. Figures 11-12 show various results based on the complexity estimates of Table 1 for
this machine, as functions of n and p, where n ranges from 27 to 2!° and pfrom 1 to 2%. The data is
set to zero over the regions in which p > n Note that, for these parameters, there is little difference
between a ring or a mesh and a hypercube (cf. results in Tables 16 and 17). We emphasize that
these results are all theoretical. Note that even with this balanced machine, communication is not
unimportant if decomposition into strips is used, because of the long vectors of interface data which
must be moved between processors. For boxes, whose area-to-perimeter ratio is better for large
p, the communication cost rapidly vanishes for large problems (which can effectively put to use
large numbers of processors). An effect which we do not take into account here is the potential for
vectorization within a subdomain. Because of the longer vector lengths, stripwise decompositions
have a tendency to be favorable from the computational standpoint if tasks local to a processor
vectorize well. »

The first two figures show the speedup in surface plot and contour plot form, the next the
fraction of the time taken in communication, and the last shows the efficiency. A few remarks are
in order about these graphs. Recall that all are on a per iteration basis.

A meaningful speedup is difficult to define. One measure would be to compute the ratio of
the time for the best single processor algorithm to the time for a parallel domain decomposition
algorithm. Unfortunately, there is no consensus for the best single processor algorithm. Instead, we
consider the ratio of the time for a single processor implementation of the domain decomposition
algorithm, with the same number of domains as the parallel implementation. This speedup measures
the opposing effects of less work per processor versus more communication.

The plot of the fraction of the time in communication shows quite graphically the overhead
due to the distribution of the algorithm across many processors.

The plot of the efficiency provides a complementary visualization of this distribution overhead,
which is best amortized over large subdomains from the point of view of the per iteration cost factor.
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Another choice for the parameters would represent a faster processor, purchased at the expense
of communication startups. Such a processor might have parameters:

o = 2500u seconds
B = 2.5u seconds
f = 5u seconds

Thus, a/f = 500, #/f = 0.5, and o/B = 1000. Note that in such a machine, global communication
will dominate local communication (cf. Figure 9) and it will often be communication dominated
(cf. Figure 10), particularly for strips. The results for this processor are shown in Figures 13-16.

For simplicity, all of the plotted results for decompositions of box type are based on the
communication-free form of the crosspoint solves which are needed as part of applying B~1. As
discussed theoretically in §2 and confirmed experimentally in §§4.2, this preconditioning allows the
overall iteration count to grow as p increases. Therefore, we consider the more implicit algorithm
due to Bramble et a! [4]. This method requires that a linear system of size p with bandwidth VP
involving values at all the corner points be solved at each iteration. The computational cost of
assembling and solving this extra system of equations is O(n/./B) + O(p?). This is negligible for
practical ranges of p and » in comparison to the computational work required for the interior solves.
However, the communication required to set up the right-hand side demands a close look. Each
processor must first exchange a scalar with each of the two neighbors whose interfaces emanate
from its crosspoint to form its component of the right-hand side. Then all of the data associated
with each crosspoint must be scattered to every processor, each of which solves an identical system.
Because of the small size of the system, this is faster than distributing the matrix across all the
processors, unless communication is extremely inexpensive. In Table 18 we show the additional
costs involved in handling the corner points based on the simplest multiple scatter algorithm from
{27]. The costs assigned are not necessarily optimal, but they are representative.

As can be seen from comparison with Tables 15 and 14, these local and global costs are
comparable to or less than the costs for the local and global communication already present in the
algorithm, provided that «/f is not less than O(,/F) for the mesh and not less than O(p/ logp)
for the cube. The region of parameters we have investigated in this section lies up against these
respective boundaries, but does not violate them severely. Therefore, solving the crosspoint system
may roughly double the communication time when p is at the upper end of our range. This will be
significant if communication is already expensive but it will not bring down the plateaus of high
efficiency in Figures 12, 14 and 16. Thus, solving the corner point problem will not be a significant
additional cost on machines already operating in favorable regions of parameter space.

6. Conclusions

Our conclusions fall into two categories: those pertaining to domain decomposition algorithms
themselves, and those pertaining to domain decomposition as an example of a general parallel
computation. '

6.1. Domain Decomposition Algorithms ,

Two basic forms of the algorithm (SCM and PMM), different decomposition topologies, and
many preconditioners for the separator set equations, each with advantages and disadvantages,
make the study of domain decomposition surprisingly rich, since it is rooted in rather classical and
straightforward ideas.

Because of its lower computational complexity, we prefer the SCM when it is applicable, namely
when the subdomain solves can be handled exactly. In this case the full PMM iterates reduce to
the SCM iterates and the latter can be obtained more cheaply. The PMM is a more flexible
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Comm. Type Crosspoint Time
Assembly, either arch. 2(a+ B)
Scatter, 2-D Mesh 20p* + ﬁ(P% + p)
Scatter, Hypercube 2a:logp + Bp

Table 18: Communication times for the implicit handling of
the crosspoint system.

algorithm for general symmetric scalar problems, but many generalizations are needed, especially
to nonsymmetric systems of equations, where some generalized form of preconditioned conjugate
gradients, such as the generalized minimum residual method, will come into play, and where the
optimal preconditioners for the symmetric positive definite version of the algorithm will have less
value.

The optimal preconditioners are to be prefered to the MSC preconditioners over the full range
of examples contained herein, but the latter offer more possibilities for generalization and show at
least some promise in dealing with coefficient irregularity.

In terms of convergence properties, boxwise decompositions have been demonstrated preferable
to stripwise decompositions for large numbers of processors, and the crosspoint-coupled version of
the algorithm is preferable from the point of view of iteration count.

Our parallelization analysis has revealed the important practical result that for reasonably
achievable ‘machine parameters and reasonably large problems, boxwise decompositions can be
made more efficient than stripwise decompositions per iteration, in addition to offering better
convergence properties; and that when domain decomposition is efficiently parallelizable at all, the
crossoint-coupled version of the algorithm is not much less efficient than the decoupled version.
This argues for further research emphasis in the direction of more implicit preconditioners.

6.2. Domain Decomposition as an example of parallel computation

The purpose of studying parallel computation is to not merely to invent and analyze new
algorithms, but also to make suggestions about what types of parallel computers will be effective
for scientific computing. Domain decomposition provides one set of non-trivial algorithms which
test many features of parallel computers. An analysis of domain decomposition as a model of
a general parallel computation reveals some interesting information about distributed memory
parallel computer design. First, the time to start an I/O operation must not be too much larger
than the time to actually send a single word. For the range of problems considered theoretically,
the startup time o should not be more than an order of magnitude larger than the transfer time £.
As shown in Figure 9, if the startup time is much larger than this, then global communication will
dominate the communication and a different communication structure for the parallel computer

may be more cost effective.

‘ The “best” ratio of communication speed to computation speed is very dependent on the
problem size and the decomposition granularity. The arithmetic complexity of elliptic PDEs is
such that for moderate to coarse granularity communication will not dominate computation as
long as communication speeds are comparable to the floating point speed. However, either a large
startup time or a slow transfer rate will significantly degrade performance (cf. Figures 13-16).
Figure 10 shows that both o and 8 may be an order of magnitude ot so slower than f without
making communication a dominant part of the cost. This result, with the results on a/8, argues
for parallel processors with fast nodes and communication which may be a little slower than the
~computation. Therefore, engineering effort should not be spent making communication as fast as
computation unless the cost of doing so is low.
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In terms of architectures, our results argue in favor of hypercubes for domain decomposition.
However, the advantage of the hypercube over the mesh for the boxwise decomposition can be
slight in the region of parameter space where high efficiency is found, so if significant engineering
improvements can be obtained at the expense of the richer interconnect of the hypercube, such a
compromise is worth considering.

Our frustrating experiences in trying to make a relatively small program and its data area Sit
on a hypercube for problems of practical dimensions leads to a final comment concerning large-
scale parallelism in scientific computing. In an MIMD computer, large amounts of memory are
devoted to storing multiple images of the user’s program. For example, in our tests, the program
itself occupied about 200 Kbytes, not counting data areas. Since our test problem was idealized
in many respects, it is easy to see that a genuine production program would need substantially
more memory. In fact, 4 Megabytes per node might not be adequate. A 256 processor system with
this much memory per node would have a total of 1 Gigabyte of memory, much of which would be
used to store copies of the user’s program and the operating system. This suggests that large scale
parallel computers either follow 2 SIMD model or provide some way to share, perhaps in clusters,
memory for the user’s program and operating system.
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