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Abstract

This paper describes how program transformation using a metalanguage can be an effective
. methodology for developing efficient parallel programs. As an example, a class of different par-
allel matrix multiplication programs are derived. Starting from a four-line, intuitive, though
inefficient program, more sophisticated and efficient programs are derived. All the transforma-
tion steps preserve the semantics of the initial program so that the transformation process is a
verification of the equivalence among all the derived programs. The metalanguage provides a
simple, flexible, extensible, and formal framework for expressing transformational schemes. It
also automates the cumbersome and error-prone part of the program transformation.

1 Introduction

Stepwise refinement has been widely recognized as an effective programming methodology. Programmers
are advised to first come up with simple and high-level algorithms that are easy to understand and verify.
Refinements are then applied to transform the high-level algorithms into more concrete programs. Similarly,
program transformation can be an effective methodology for developing efficient programs. Since efficiency
and readability are often conflicting goals, programmers are encouraged to begin with simple, intuitive,
and easy to verify programs. Transformations are then applied to derive more efficient ones. Because
manually transforming the programs is usually tedious and error-prone, program transformation systems
have been built to automate this process for traditional sequential languages [9, 8, 2, 10, 11, 13, 1].

As various parallel machines have become available in the past few years, how to effectively program
these machines becomes a pressing issue. Crystal [4] is a parallel language aimed at addressing this issue
with a very high-level functional language and a smart compiler. Sophisticated parallelizing compilation
technologies for Crystal have been devised for some commercially available parallel machines [5]. Though
the parallelizing compiler can produce high quality parallel code for certain classes of programs, the prob-
lem of producing efficient parallel code for all source programs is intrinsically very difficult and sometimes
intractable. There are many occasions when it is clear for programmers how to transform their source
programs for better efficiency, yet it is difficult for the compiler to recognize these special cases without
numerous ad hoc knowledge built into the compiler. Source-to-source program transformation has been
proposed as a methodology for transforming programs which have irregular or nonlocal communication
patterns into programs which have only uniform and localized communication [3]. Though the intuition
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behind the transformations is not too difficult, the technicalities required to crank out the new program are
often quite involved and cumbersome. A metalanguage has been presented to automate the transformation
in [6]. As a result, Meta-Crystal [14] is designed to provide programmers with a flexible, extensible, and for-
mal tool for implementing their transformational schemes as meta procedures for use on similar occasions.
Meta-Crystal is a language with Crystal programs, definitions, and expressions as fundamental objects and
is equipped with quoting, unquoting, constructors, selectors, predicates, and semantic-preserving operators
for constructing and manipulating pieces of Crystal text.

This paper describes how program transformation using a metalanguage such as Meta-Crystal can be
an effective methodology for developing efficient parallel programs. As an example, a class of different
parallel matrix multiplication programs are derived starting from a four-line intuitive though inefficient
program. A more sophisticated and efficient program is derived at the end. This paper is organized as
follows. We introduce a few basic notations and terminologies in the paragraph below, as they will be
used through out this paper. Section 2 briefly introduces the simple syntax of Crystal and Meta-Crystal,
how Crystal programs are interpreted on parallel machines, and how Crystal programs are manipulated
in Meta-Crystal. The core of this paper is in section 3 where we demonstrate how a class of matrix
multiplication programs can be derived using Meta-Crystal. Section 4 provides some concluding remarks.

Brief Notes on A\-Notation

Because A-notation is used in both Crystal and Meta-Crystal for function declarations and some properties
of A-calculus [7] are used in Meta-Crystal for transforming programs, we provide a brief introduction to
the A-notations in this paragraph. The A-notation gives us a way to express a function without giving an
explicit name. For example, Az.z + 1 is an anonymous function that takes an argument z (i.e., argument is
written after A) and returns a value z +1 (i-e., the function body is written after the “.” and extends to the
right as far as possible). If we want to give Az.z + 1 a name f, we write it as f = Az.z + 1. The traditional
way is to write it as f(z) = z + 1. We write (Az.z 4+ 1)(3) to mean Az.z + 1 is applied to 3. That is, we
simply concatenate the function and the argument. We call an expression like Az.z + 1 a A-abstraction
term, and expressions like (Az.z + 1)(3) or f(3) application terms. A B-redez is an application term with
the rator (i.e., the function) being a A-abstraction term, e.g., (Az.z + 1)y is a fB-redex. To f-reduce a
p-redex is to carry out the application of that redex, e.g., A-reducing (Az.z + 1)(y) will result in y + 1.
Let f be any function, doing n-abstraction on f results in an equivalent function Az.(f(z)). That is, f is
equivalent to Az.(f(z)) by n-abstraction.

2 Crystal and Meta-Crystal

We first briefly introduce the abstract syntax of both Crystal and Meta-Crystal. Then we describe, very
roughly, how Crystal programs are interpreted on parallel machines. Finally, we describe how Crystal
programs are manipulated in Meta-Crystal.

2.1 Abstract Syntax

Both Crystal and Meta-Crystal are lexically scoped functional languages based on a simple syntax. The
syntax is basically the notation for the A-abstraction and application from A-calculus [7], enriched with
conditional, recursion, and local definitions. Its style is similar to many modern functional languages
such as ML [12]. We describe the common syntax of both languages briefly below, assuming readers are
familiar with this style of languages that the descriptions below are explanatory. Let z,x1,2,... range
over identifiers, e, ey, €3, g1, g2, ... Tange over expressions:
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® A program consists of a set of mutually recursive definitions with an output expression, having a form
as below:
ri=e;, ra=e€y, ..., fe.

The notation z1=e; is a definition that binds the identifier z; to the value of ;. The result of the
program is the value of the output expression ?e. Since the evaluation is driven by need, the order
of definitions is irrelevant.

® Local definitions can be introduced to an expression with the where{...} construct:
e where{ zi1=e;, z2=e3, ...} .

Local definitions can be mutually recursive and may have their own local definitions.

o The conditional ezpressions have the following form:

g1 — €1,

g2 — €2,

The expressions gq,gs,... are guards for their associated expressions and should be evaluated to
boolean values. The value of a conditional expression is the first expression with a true guard.

o Functions are introduced by the M-abstraction and have the form A(z1,22,...).e where 271,29,...
are the formal arguments and e is the body of the function. Function applications have the form
of e;(ez,e3,...), where e; is the function and e,, ey, ... are the arguments. When there is only one
formal argument, we may omit the parenthesis around it.

o Typed expressions have the form e; : ez, where e, should be evaluated to a type. The formal of a
function abstraction can be typed as well: Az:e;.e.

® An ezpression can be a constant (of type integer, float, etc.), an identifier, a conditional expression,
a function abstraction, a function application, or a typed expression.

Parenthesis can be used for grouping. All non-prefixed notations are considered as the sugared form of
their equivalent prefixed function applications. For example, 1+2 is the sugared form of add(1,2).

2.2 Parallel Interpretation of Crystal Programs

Due to space limitation, we only provide a very rough sketch to how Crystal programs are interpreted on
parallel machines so as to help readers understand the examples presented in the next section. Readers
are referred to (3, 5, 6] for more details.

The major objects of interest in Crystal are data fields and index domains. A data field is a function
over some indez domain. An indexr domain is a space of index points. For example, “D = interval(1,n)”
is an interval index domain with n index points, indexed from 1 to n. More complicated index domains
can be constructed by cartesian product. For example, D x D (or D? for short) is an index domain
with »? index points, indexed from (1,1) to (n, n). Data fields over index domains are to be distributed
among processors and computed in parallel. Since data field definitions can be mutually recursive, data
dependencies among index points of data fields are introduced by referencing the values of some data fields
on some index points. These index domains eventually have to be distributed among processors of a target
parallel machine. The data dependencies account for communication among processors if the involved
index points are distributed to different processors. In order to minimize the communication cost, the
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compiler has to find a way to align (if the involved domains are of different size and dimension) and map
the index domains to the processors in a way that the resulted computation is efficient.

The description above may be very vague. Let us jump ahead and take the Crystal program mm3.cr in
Figure 6 as an example. There are six data fields in mm3.cr: A, B,C,a,b, and c. The first three are defined
over index domain D?, and the last three are over index domain D? x interval(0, n). Data fields assign each
index point in its domain a value, which is defined by the body of the function. The value of c(i,5,k), as
shown in its definitions, depends on the values a(3, 5, k), b(i, j, k), and ¢(3, j, k — 1). When implementing this
program on a parallel machine, we need to map index domains D? and D? x interval(0,7) to processors in
sunch a way that the resulting computation is efficient.

2.3 Manipulating Crystal Structures in Meta-Crystal

In order to manipulate Crystal programs, we need to treat Crystal programs, definitions, and expressions
as first class objects in Meta-Crystal. We would like to clarify two basic but often confusing concepts
pertaining to meta level processing. We call a syntactically correct sequence of characters that represents
a program, a definition, or an expression a notation. For example, the expressions “Az.z” and “3” are
notations. There are structures corresponding to notations. Structures can be thought of as abstract syntax
trees for notations. For clarity of presentation, we use the slanted font for structures. For example, the
structure of notation “(Az.z)(3)” is (Ax.x+1)(3). Structures enjoy some algebraic properties and have a set
of cbnstructors, selectors, predicates, and operators associated with them, while notations are just strings
of characters. For example, we have a predicate to test whether (Ax.x+1)(3) is an application. From
(Ax.x+1)(3), we can select its rator (i.e., the function, or equivalently, the operator), which is Ax.x+1;
and its rand (i.e., operands), which is 3. We also have an operator normalize for reducing §-redexes and
transforming (Ax.x+1)(3) to 3+1.

Let ¢ be any Crystal notation, we use “‘¢’” as the Meta-Crystal notation to denote the Crystal
structure for ¢. Only Crystal programs, definitions, and expressions can be quoted by ‘_’. Let r be
any meta expression, the meaning of “[7]” inside a quoted Crystal notation is the Crystal notation of
the Crystal structure to which 7 is evaluated. Thatis, ‘... [r] ...’ denotes ‘... % ...?, where ¢ is the
Crystal notation of the value of 7. The evaluation of 7 dereferences the meta variables in 7. The scoping
is lexical. We call [.] unquoting.

We will use Greek letters such as a, 3, k, 7 and ¢ for meta variables having Crystal structures as their
values. Meta-Crystal operators on Crystal structures will be written in sans-serif font for clarity. For
example, given the following meta definitions:

a = ‘(Az.z)(3)’, B = normalize(a), f = Az.‘[z] + [z]°.

The meta variable a is bound to the structure (Ax.x)(3), 3 is bound to the normalized structure 3, and f
is bound to a meta function. We have

fE1) = 1412, f(a) = ‘(Ae.o)(3)+ (Aaa)(3), f(B) = 3+3°.

Notice that an unquoted meta expression is only meaningful inside a quoted Crystal expression and it must
evaluate to a Crystal structure. Arbitrary nesting of quoting and unquoting is allowed in Meta-Crystal.
Meta variables in nested unquoted meta expressions are lexically scoped by its enclosing meta context,
regardless of the quoted Crystal expression. For example, given the meta definitions below:

a= ‘1, f=2z.‘(Az.[z] + [o])(4)’.




The unquoted z in the definition of f is bound to the leftmost occurrence of z, the formal argument of the
meta function. We have

f(¢z?) = “(Az.x + 1)A’, normalize(f(‘z’))=‘A+ 17,
f(¢y’) = “(Az.y+1)A’, normalize(f(‘y?)) = ‘y+1°.

A set of operators for transforming Crystal structures algebraically is provided in Meta-Crystal. For
example, normalize(x) (-reduces all S-redexes in k; and subst(k,7y,7;) substitutes all free occurrences
of 7y in k with 7. For example, let o denote the function composition and given two meta definitions

k= ‘fo((Af.f(z))(g9))’ and ¢ = ‘h?, we have subst(k, ‘ f*,¢) = ‘ho((Af.f(z))(g))’, and normalize(x) =
‘fo(g(z))’. Let e, eq,... range over Meta-Crystal expressions, x over Crystal definitions, f over Crystal
function names, and p over Crystal programs, some of the operators used in the examples in next section
are defined below:

parse-file(file) Denotes the definitions and the output expression in the Crystal program file.
produce-file(file, ey, e2,...) Writes the notations denoted by ej,e,,... to the Crystal program file.
output-exp(p) Picks out the output expression from the program p.

def(f, p) Denotes the definition, which is contained in p, that defines f.

expand(k, f, p) Substitutes all free occurrence of f in x with the right hand side of the definition of f in p.
unfold(k, f, p) Does normalize(expand(x, f,p)).

simplify-arith(x) Simplifies the arithmetic and boolean expressions into some canonical form.

3 Derivation of A Class of Matrix Multiplication Programs

In this section we use matrix multiplication as an example to demonstrate how a class of different programs
can be derived. Assuming the compiler generates code for a distributed-memory message-passing parallel
machine based on some popular interconnection network (e.g., hypercube or mesh) and the size of the
matrices is so large that replicating them on every processor is undesirable, these programs pose various
degrees of difficulty for the compiler to produce efficient code. Starting from a simple, intuitive, though
inefficient program, a sophisticated and efficient program can be derived by program transformation using
Meta-Crystal.

3.1 Initial Program

Consider the Crystal program mmi.cr in Figure 1 which computes the matrix product, C = A x B, where
A and B are matrices of size n by n and are read in from the input. D is an interval index domain from 1 to

A = X(4,7): D*read matrix, B = A(i,j): D%.read matrix,

D = interval(1,n),

C = A(4,7): D%reduce(+, 0, (Ak : D.A(i, k) * B(k,7)))
?C

Figure 1: Initial matrix multiplication program mm1.cr.

n. A and B are data fields over D2, which is the usual cartesian product D x D. C is a data field over D2,
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indexed by (%,7), with a reduction expression as its body. The primitive function reduce is a higher-order
function whose general form of its application is “reduce(®,ldg,data-field)”. Its first argument, @, is a
binary, associative operator, which is addition in this example. Its second argument, Idg, is the identity
element of @, which is 0 in this example. Its third argument, “data-field”, is a data field. Let F be a data
field containing a set of values z1,22,...,Z,, then “reduce(®,Idg, F)” is defined tobe 2; 22 D ... ® Tp.

Program mm1 . cr is just a straightforward translation of the definition for the matrix product: C(3,j) =
> kep(A(%, k) X B(k,7)). The matrices A, B and C are three two-dimensional data fields which are to be
aligned and then distributed among the processors by the compiler. Without replicating A and B, no
matter how these data fields are aligned and distributed there will be many long distance data movements
required for computing the values of C, as shown in Figure 2. To generate a good parallel implementation
for this program, the compiler needs to know how to implement reduction smartly on the target machine.
In general, this is a rather complicated task on distributed memory parallel machines because the long
distance data movements involved make the task of minimizing communication cost difficult.

A > k B > | _C _ J
b s SRR Do
/' ‘\\ — 3 eeeee.
rowi [£ < —=,°C(i}) .
\ "] -
Tt
Y column j
i k i

Figure 2: Data movements needed for computing reduction at C(z, 7).

3.2 Reduction Elimination

We can help the compiler by getting rid of the hard-to-compile reduction construct. Furthermore, because
the neighborhood communication is usually much less expensive on hypercube or mesh than long distance
communication, trying to make the data movements take place only among neighbors of each indexed
point will be beneficial as well. There are systematic ways to transform reduction expressions. Consider a
general reduction expression below:

reduce(®, Idg, (Ak : D.7[k]))

where @ and Idg are as described above, D = interval(l, u), and 7[k] is some expression with occurrences
of the formal argument k. Then, Ak : D.7[k] is the data field over which reduction is performed. One way
to eliminate the reduction is by introducing a temporary data field over the domain “interval((I —1),n)” to
compute the reduction linearly. Simple induction over interval((! — 1), n) shows that the expression below
yields the same value as the reduction expression above:

f(k) where{ f = Mk : interval(I - 1), ’”'{ f: zf, . ;:I?f‘;c ~ 1)@ 7[k] }}’

where f is the name for the temporary data field and the notation “k = [ — 1” in the conditional is the
equality testing between k£ and /—1. A meta procedure elim-reduction(k, f) can be written in Meta-Crystal
to look into the Crystal structure « recursively for an application structure with reduce as its rator, and
then transform the application structure as described above by using f as the name of the temporary data
field. Due to the space limitation the actual Meta-Crystal code for elim-reduction will not be presented here
and it will be used as a built-in operator. The derivation to transform the reduction expression follows:
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1. Read in the program mmi.cr: p = parse-file(mmi.cr).

2. Pick out the definition of C from p:
k1 = def(‘C?,p) = ‘C = A(4,5) : D%.reduce(+,0,(Ak: D.A(z, k) x B(k, j)))’

3. Eliminate the reduction and simplify the arithmetics:

kg = simplify-arith(elim-reduction(kq, ‘c?))
= ‘C = A(i,j): D.c(n)

. k=0—-0
where{ ¢ = Ak : interval(0, n). N %
1<k<n—clk-1)+ A(s,k)x B(k, j)

4. The local definition of ¢ in the definition of C contains free variables ¢ and j that are part of the
formal arguments of C. Preparing for the next step, we would like to make free variables ¢ and j
- locally bound in ¢. This is done by the operator expand-dom-of-local-def(k, ‘C’, ¢c’). It looks in &
for local definition ¢ inside C. If ¢ has any free variables which are part of C’s formal arguments, it
expands the domain of ¢ to include the domains over which those free variables range and transforms
all the applications of ¢ by augmenting the new arguments. That is, we can explicitly pass those free
variables through the new arguments of ¢ and the meaning of C stays intact. The derivation below
shows how this operator works:

I

expand-dom-of-local-def(kq, ‘C?, ‘c?)
= ‘C = A(1,5): D*.c(i,j,n)

K3

where{ ¢ = A(4, j, k) : (D* X interval(0, n)). ) oy
1<k<n—c(ijk—1)+ A, k) * B(k,7)

5. Make ¢ a global definition. This is done by the operator flatten-local-def(x, ‘C’, ‘c?). It looks in &
for local definition ¢ inside C. If (1) ¢ does not contain any free variable which is one of C’s formal
arguments; (2) ¢ does not contain any function application using other local function of C; (3) ¢ does

not introduce name conflict with other global definitions, then ¢ is moved out of C.
K4 flatten-local-def(x3, ‘C?, ‘¢?)

‘C = Ai,j5): D*.c(i, j,n),

k=0—-0
¢ = (3,4, k) : (D? X interval(0, n)). ’
1<k <n— eliyj, k1) + AG, k) * B(k, )

6. Produce program mm2.cr:
produce-file(mm2.cr, def(‘ D, p),def(‘ A?, p), def(*B?, p), k4, output-exp(p)).

Figure 3 shows the Crystal program mm2.cr produced by the transformations. The Meta-Crystal
program for producing mm2.cr is the concatenation of all the meta definitions introduced in steps 1 to 5,
together with the output expression in step 6. Figure 4 shows one possible parallel interpretation of this
program. The new data field ¢ is a three-dimensional data field indexed by (¢, 7, k). We conveniently place
the data field C on the i-j plane where k = n, the data field A on the i-k plane where j = 1, and the
data field B on the j-k plane where 7 = 1. The data movements are somewhat more regular than the
first program, but long distance communications are still required because each A(i, k) are referenced by
all j,1 < j < n, and each B(k,j) are referenced by all 7,1 < i < n. That is, values of A(¢,k) need to be
broadcast along the j dimension, and similarly for B(k,j) along the ¢ dimension. These communications
are still expensive on hypercube or mesh and it is not easy for the compiler to minimize the communication
cost.
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D = interval(1,n), A = A(4,7): D%.read matrix, B = A(i,j): D?.read matrix,
C = Xi,j): D%c(s,5,n),

. . 2 . k=0—0
¢ = A4,7,k): D* X interval(0, n). . e
1<k <n o c(ij k- 1)+ A(i, k) * B(k, )

?C
Figure 3: Program mm2.cr with reduction removed.
B _ B .
A
»[f |
...... 'e(i:ﬁ'.....
C C
Figure 4: Parallel Interpretation of mm2.cr. Figure 5: Parallel Interpretation of mm3.cr.
Values of A(%,k) and B(k,j) are broadcast Values of A(i,k) and B(k,j) are propagated
along the 7 and ¢ dimension, respectively. by a(i, 7, k) and b(z, j, k), respectively.

3.3 Broadcast Elimination

One way to reduce the long distance communications in mm2.cr is to propagate the values of A along
the j dimension (starting from j = 1) and B along the : dimension (starting from ¢ = 1) with new
data fields @ and b defined over D? X interval(0,n). This can be done by the elim-broadcast operator.
Elim-broadcast(x, f, g, §) looks in k for any usage of the data field g in the definition for the data field f.
Suppose the domain of g is Dy and the domain of f is Dy, if D, is one dimension lower than Dy, then a
new data field § over Dy is created to propagate the valued of g along the missing dimension, starting from
the lower bound of that dimension. Simple induction over the missing dimension shows that the meaning
of f stays intact. Derivations below give examples of how elim-broadcast works.

1. Read in mm2.cr: p = parse-file(mm2.cr).
2. Pick out the definition of c:

k1 = def(‘c’,p)
k=0—-0

= ‘c= A(i,J,k): (D? x interval(0, n)). ’
1<k<n—c(i,jk—1)+ A(i, k) * B(k, j)

3. Eliminate broadcasting of A(¢,k) and B(k,7) in ¢ by creating a and b:

kg = elim-broadcast(elim-broadcast(ky, ‘¢’, “A’, ‘a’), ‘c’,“B’,‘b?)

k=0—-0
‘c = A(i,j, k) : (D? X interval(0,n)).
1<k<n—c(i,j,k= 1)+ a(i, j, k) * b(s, j, k)
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i =1— A(3, k
where{a = A(4, 7, k) : (D? x interval(0,n)). J = A(i, k) ,
1<j<n—a(ij—1,k)

. b
b= A(4,4,k): (D2 X interval(0,n)). i=1- B(k,j) ps
1<i$n_)b(i_l’j,k)

4. Flatten local definitions @ and b in ¢:
K3 = flattén-Iocal-def(flatten-Ioca|-def(ﬁ2, ‘c’,‘a’), ‘c’,‘b’)

=1— A(s,k
= ‘a = A(i,j,k): (D? x interval(0, n)). I = AL, k) ,
0<j<n—a(i,j—1,k)

i =1— B(k,j
b=’\(i,j,k):(D2XintervaI(O,n)), ! (k,J) ’
0<i<n—b(i—1,j,k)

k=0—-0
¢ = A3, j,k): (D? x interval(0, n)). ” . ’
0<k<n-—a(ijk)xb(j,k)+c(i,j,k—1)

5. Produce program mm3.cr:
produce-file(mm3.cr,def(D?, p),def(‘ A?, p),def(* B’ p),def(‘C?, p), k3, output-exp(p)).

Figure 6 shows program mm3.cr produced by the derivation above. Figure 5 shows one straightforward
parallel interpretation of this program. We place data field a,b, and ¢ in the same three-dimensional
domain indexed by (¢,7,k), and place A, B, and C as before. Now all the data movements are local
because for any index point (3, 7, k), only the values on points (i — 1, j,k), (¢,5 — 1,k), and (4, j,k — 1) are
needed. This program is much easier for the compiler to produce efficient code because, firstly, mapping
a three-dimensional mesh onto a hypercube or onto a two-dimensional mesh is rather straightforward,
and, secondly, the communication now are all localized and there is no need to minimize long distance
communications any more.

D
C

interval(1,n), A = A(4,7): D%.read matrix, B = A(i,j): D*.read matrix,
(4, 5) : D2.e(d, j,m),

a = A(3,j,k): (D? x interval(O,n))_{j =1— A(i, k) },

0<j<n—a(i,j—1,k)

i =1 B(k,j
b = (i j,k): (D? x interval(0, n)). - = 1 = BUkd) ’
0<i<n—b(i-1,5k)

= 0
¢ = Ai,3j,k): (D? x interval(0,n)). k=0~ L
0<k<n—a(i,j,k)xb(i,j5,k)+c(i, 5,k 1)

Figure 6: Program mm3.cr with broadcasting removed.
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3.4 Space-Time Transformation with Reshape Morphism

A non-sophisticated compilation of the program mm3.cr needs a space of size O(n3) for the domain
D?xinterval(0,n). Examining the data dependencies among the index points, we observe that the compu-
tation can proceed in a wavefront fashion as shown in Figure 7. However, all the index points are only
used once through the course of the computation. Therefore, the space utilization is sparse. If the space
usage is a major concern, we can improve the space utilization by space-time transformation. Consider the

D, —1.v

oflrs

D,

Figure 7: Wavefronts of the computation in Figure 8: Commuting diagram of reshape
program mm3.cr. morphism.

following linear mappings:

E = interval(1,2n), T = interval(2,3n)
g = A,5,k): (D? x interval(0,n)).(i+ k,j + k,i+ 5+ k) : (E2x T)
g7 = Mz,y,t): (B2 x T).(t —y,t —z, 2 +y —t) : (D? x interval(0, 7))

|

The function g maps index points in (D?xinterval(0,n)) into the product domain of a two-dimensional
space E? times an explicit time domain 7', and g~! does the inverse. Coming up with the mapping g
requires some insight: the time component (i + j 4 k) defines the plane equations of the wavefronts, and
the space components (i + k, j + k) spreads out points in D? X interval(0,n) onto E? in a proper way. Given
g, E and T can be derived by mapping the extreme points of D through g. The mapping g~! can be
derived by solving for ¢, j, k in the simultaneous linear equation system: z =i+ k,y=j+ k,t =1+ 7+ k.

The task of deriving a new program given such mappings can be generalized as follows. Let Dy, D5 be
two index domains, and f: Dy — V, f: Dy — V be two data fields, where V' is some value domain. The
mapping g : Dy — Dy is a reshape morphism if it has an inverse ¢~ : Dy — D; which makes the diagram
in Figure 8 commute. Our goal is to derive f given f, g, and ¢! when computing f is more desirable than
computing f.

Given these mappings, deriving a new program by hand is rather tedious and error-prone. Meta-Crystal
can automate the transformation. Users can work at a higher conceptual level and be sure that the derived
program is correct with respect to the input program and mappings between index domains. A meta-
procedure for deriving f by utilizing the equality f = fo g, unfolding of g and g~!, and some equational
transformations is developed in [6]. A simplified version is presented in the following derivations for @,
where & = a 0 g~1. We assume that the definitions above for E,T,g and g~! have been incorporated into
mm3.cr.

1. Read in program mm3.cr: p = parse-file(mm3.cr).
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2. Do n-abstraction! on a 0 g~! in the equation ‘4 = a o g~!’, which is valid by definition:

k1= ‘a=XNz,y,t):(E*xT).(a0 g™ (z,y,1))’
3. Unfold the composition: kg = unfold(ky, ‘0 ?,p) = ‘a4 = A(z,y,t): (E?x T).a(g7(z,y,t))’
4. Unfold g=': k3 = unfold(ka, ‘g17,p) = ‘a4 = A(z,9,1): (E2x T).a(t — y,t —z,x +y — 1)’
5. Unfold a:

k4 = unfold(ks, ‘a’,p)

—z=1-At—y,z+y—1t) ,
O0<t—z<n—a(t-yt—z—-1l,z+y—1t)

= ‘4= Ma,y,1): (E2xT){

6. Remove a in the definition of @ by substituting @ with é o g:

ks = subst(ky, ‘a’,‘@og’)

t—z=1 A(t — -1
= a= Aoyt (BExT). O T Al-yety—) ,
O0<t-z<n—(aog)t—y,t—2z—l,z+y—1)

7. Unfold the composition, then unfold g, then simplify the arithmetics:

ke = simplify-arith(unfold(unfold(xs, ¢ 0 ?, p), ‘g7, p))

t= 1 At — -1
= 4= Moy t): (B2 xT). T T Al nedy -1
O0<t—-z<n—a(z,y—1,t—1)

Similarly, we can derive b and é, where b = bog—! and é = cog~!. We can abstract over ‘a’, ‘a@’, ‘g’ and
‘g~17, and generalize this derivation into a meta procedure reshape as shown in Flgure 10 Using reshape,
a can be derived by reshape(‘a’, ‘a’,‘g?, ‘g7 1?,p); b can be derived by reshape(b?, , ‘9%, ‘971, p);
and ¢ can be derived by reshape(‘c’, ‘é’, ‘g’, ‘g717, p), followed by a few steps to replace occurrences of
a and b with & and b: first substltute a and b with Gog and bo g, respectively, then unfold the composition,
finally unfold g. Similarly, for replacing the occurrence of ¢ in C with é. The derived program mm4.cr is
shown in Figure 9. It needs a space of size 4n? for the two-dimensional space E2, indexed by (z,y), as
opposed to the size of O(n3) in program mm3.cr. The parallel interpretation of mm4.cr is a sophisticated
parallel matrix multiplication program. From the definition of C, we can see that the result is scattered
all over the domain E? x T'. Index points of E? are re-used through successive steps of computation for ¢,
as opposed to being only used once in mm3.cr. This program is also efficient because all the dependencies
are local. Assuming the definitions of E,T, g, and g~! have been added into mm3.cr, a meta program that
transforms mm3.cr into mm4.cr is shown in Figure 10.

4 Concluding Remarks

The philosophy motivating the work described in this paper can be summarized as follows: we feel that,
firstly, program transformation is an effective methodology for deriving more efficient programs (in the sense
that the compiler can handle them better) and, secondly, no parallelizing compiler is able to perform well
for all input programs. Therefore, a metalanguage which allows the user to synthesize their transformation

'Doing n-abstractionon any f results in an equivalent function Az.(fz). That is, f is equivalent to Az.(fz) by n-abstraction.
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D = interval(1,n), A = A(i,5): D%read matrix, B = A(i,j): D*read matrix,

C = M4,5): D é(i+n,j+n,i+j+n), E=interval(1,2n), T = interval(2,3n),
t= 1— A(t - -1

i@ = Mz,y,t): E*x T. THl—Alt-y2ty—t) ,
O0<t—z<n-a(z,y—1,t-1)

- t= 1 B(t - -1

b= Aoy ) B x T YT Bl—paty—1) |
0<t—-y<n—oblz-1,y,t—1)

=t—0

¢ = Nayy,t): B2 x T TV . ,
0<z+y—-t<n—élz—1,y—1,t—1)+a(z,y,t) x b(z,y,t)

?7C

Figure 9: Program mm4.cr after space-time transformation.

reshape = A(a, &, 0,671, p). v where{
k1 = [l = Az, ,): (B2 x T).(([e] o [67 1) (3, 3, 1)),
k2 = unfold(ky, € 0 ?,p), k3 = unfold(kz, ¢, p), k4 = unfold(ks,a, p),
ks = subst(kq, @, ‘[&] o [¢]?), 7 = simplify-arith(unfold(unfold(ks, o *,p), ¢,p)) },
p = parse-file(mm3.cr),
ks = reshape(‘a’,‘a’,‘g’, ‘g™, p), Kj, = reshape(‘b’, b, g7, g1 p),
K1 = reshape(‘c’,é’,¢g’, ‘g™, p), Ko = subst(subst(ky, ‘a’,‘Gog’), b, ‘hog?),
ks = unfold(unfold(kz, ¢ 0, p), ‘g, p),
k3 = subst(ky, ‘¢’,‘éog’), k¢ = unfold(unfold(ks, ‘0 ’,p), ‘g, p),
? produce-file(mm4.cr,def(‘D?, p),def(‘ A?,p),def(‘ B?, p), k¢, def(‘ E?,p),def(‘T?, p),

Ka, Kijy Kéy OUtPUt'exp(p))

Figure 10: Meta program that transforms mm3.cr into mm4.cr.

schemes at a high conceptual level and assists in transforming programs should be very useful. Meta-
Crystal is designed to provide such a tool. As a general programming language, it is relatively flexible,
extensible, expressive, and powerful compared to other program transformation systems. It is also clean
and simple.

Some readers may feel that all of the transformations presented in this paper can be done at the
optimization phase of a very smart compiler. It is correct to the extent that we have to realize all these
optimization tricks and design the compiler to apply them in the right occasion, all before the compiler
is released. Having a metalanguage like Meta-Crystal allows us to implement transformation tricks that
we discover later and to deal with cases that may be too special to incorporate in a reasonably efficient
compiler. Sophisticated programmers may find it useful for building their own library of optimization
schemes as well.

Meta-Crystal has been implemented in T (a dialect of Scheme) and has been actually in use. An
interactive environment similar to a Lisp interpreter has been built. It has proved to be a very useful
tool for quickly deriving new programs for other examples. Users can concentrate on the creative phase of
the transformation and are relieved from the mechanical and error-prone algebraic manipulations. Many
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ideas used in the design of this metalanguage (such as quoting, unquoting, various semantic-preserving
operators on structures, normalization, and n-abstraction) are applicable to other languages for building
their own program manipulation and transformation systems. We believe that such a metalanguage and
an interactive environment is a useful tool for employing program transformation as a methodology for
developing efficient parallel programs.
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