Yale University
Department of Computer Science

A Categorical Approach to Distributed Systems
Expressibility and Knowledge

Ruben Michel

YALEU/DCS/TR-669
January 1989

This work was supported in part by the National Science Foundation under grant
DCR-8405478 and by the Office of Naval Research under contract N0O0014-82-
K-0154.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

-REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPCRY NUMBER 2. GOVT ACCESSION NO.
TR 669

3. RECIPIENT'S CATALOG NUMBER

‘14, TITLE (and Subtitle)
A CATAGORICAL APPROACH TO DISTRIBUTED SYSTEMS
EXPRESSIBILITY AND KNOWLEDGE

S. TYPE OF REPORT & PERIOD COVERED

Technical Report

6. "PERFORMING ORG. REFORT NUMBER

7. AUTHOR(s)

Ruben Michel

8. CONTRACT OR GRANT NUMBER(a)

ONR: NOQ0O14-82-K-0154

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Dept. of Computer Science

Yale University
51 Prospect St.

New Haven, CT 06520-2158

1. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE
January 1989

13. NUMBER OF PAGES

14, MONIT:ORING AGENCY NAME & ADDRESS(if different from Controlling Office)
Office of Naval Research
800 N. Quincy
Arlington, VA 22217

15. SECURITY CL ASS. (of this report)

Unclassified

1Sa, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report;

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse alde if necesaary and identity by block number)

distributed systems
expressibility of protocols
logics of knowledge
cateogry theory

20. ABSTRACT {Continue on reverae aide if necessary and identity by block number)

1stributed protocols for unreliable nestworks are difficult both to design
and to compare. 1In this work we introduce a knowledge-based algebraic approact
to distributed systems that facilitates these two tasks.
Our approach reveals intrinsic connections between distributed systems,
expressibility of protocols, logics of knowledge and category theory, providinc
a better intuitive and mathematical understanding of distributed systems.

DD , 07", 1473 eoition oF 1 nov es 13 oBsoLETE
S/N 0102-L.F.014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entere

A Categorical Approach to Distributed Systems
Expressibility and Knowledge

Ruben Michel

Abstract

Distributed protocols for unreliable networks are difficult both to design
and to compare. In this work we introduce a knowledge-based algebraic
approach to.distributed systems that facilitates these two tasks.

Assuming a notion of comparable expressibility of faulty processors, we
construct a category whose objects are protocols and whose morphisms
are based on a known simulation of any protocol by the classical full-view
protocol 7V. The full-view protocol is, in fact, the universal element in
this category.

The categorical view leads to a hierarchy of protocols that has many ap-
pealing properties: As one goes up the hierarchy the protocols attain more
knowledge and more common knowledge. As one goes down, the messages
transmitted need not get longer. Within each isomorphism class in the
hierarchy there exists a protocol with least average bit complexity at each
round. To any set of protocols there corresponds a unique minimal protocol
that can simulate all the elements in the set in parallel. This protocol is the
categorical product of the elements in the set. Dually, every set of proto-
cols has a unique maximal element dominated by each member of the set.
We introduce universal predicates that provide a language for comparing
different protocols. While the very expressive monotone universal predi-
cates separate any protocol from the protocols it strictly dominates, they
are unable to separate each infinite decreasing sequence of protocols from
its limit protocol, which is guaranteed to exist. Any monotone universal
predicate can be implemented with a protocol having the following three
properties: First, it is as effective as ¥V for that predicate; second, it is -
minimal among the protocols that are as effective as ¥V for that predicate;
and third, its average bit complexity is arbitrarily close to optimal.

Finally, we prove lower bounds. We show that, subject to compara-
ble expressibility of faulty processors, ¥V attains strictly more common

This work was supported in part by the National Science Foundation under grant DCR-
8405478 and by the Office of Naval Research under contract N00014-82-K-0154.

knowledge than any other protocol. We prove that protocols that attain
Simultaneous Byzantine Agreement as early as possible require, in the worst
case, exponential communication in the number of faulty processors.

To summarize, our approach reveals intrinsic connections between dis-
tributed systems, expressibility of protocols, logics of knowledge and cate-
gory theory, providing us thereby with a better intuitive and mathematical
understanding of distributed systems.

1 Introduction

Designing distributed protocols for unreliable networks is complex. Comparing the
performance of protocols running in the same unreliable network seems no easier.
In this work we introduce a novel algebraic approach to distributed systems that
facilitates the two above mentioned tasks.

To exemplify the motivation for this work as well as the disarray currently
existing in distributed systems consider the following two problems:
Problem 1. Suppose that you have a standard synchronous distributed system
with n processors, and suppose that you have two protocols dictating the behavior
of the correct processors. In the first protocol, each processor informs all the other
processors at each computational round of the messages it has received in the
following order: First, it transmits the message it received from processor one,
next the message it received from processor two, and so on up to the message
it received from the nth processor. The second protocol is very similar to the
first, differing only in that each processor transmits its information in the opposite
ordering, i.e., it first transmits the message it received from the n'® processor, next
the message it received from the (n — 1)"h processor, and so on up to the message
it received from the first processor.
Our question is: In what sense are these two protocols ahke”
Problem 2. Consider the following two protocols in a system such as the one
above. In the first protocol every correct processor transmits to all other processors
at each round all the messages it has received so far. In the second protocol each
correct processor transmits to all other processors at each round all the messages
it has received from all processors but one.
-Our intuition dictates to us that the first protocol is “stronger” than the second.
Our questions are: Is the first protocol really stronger than the second? Is it
always the case that whatever elementary information is agreed upon amongst the
correct processors in a run of the second protocol is also agreed upon in a run of
the first?

In this work we present rigorous answers for these problems as well as many

others.

In order to establish a solid basis for this work we begin by introducing our
formal distributed model which closely resembles both the classical model defined
in [PSL] and the well-accepted model in [LFF]. Our starting point is the well-
known full-view protocol, ¥V, or full-information protocol introduced in [PSL]. In
this protocol, each processor transmits at every round all the information it has
seen so far, that is, its external inputs together with all the messages it has both
sent and received. A rather remarkable property of this protocol is that it can
“simulate” the behavior of any other protocol. Although the existence of these
simulations has been noted in the distributed system folklore, their implications
have not been well understood. This might have occurred for several reasons: The
models for distributed systems were not appropriately defined, the connection
between the theory of distributed systems and logics of knowledge was not yet
established, etc. In our algebraic setting, we introduce the category of Distributed
Systems, DS, in which every object is the set of states of some protocol, and the
morphisms are introduced through the simulations mentioned above.

The thesis of this work is that distributed systems, the expressibility of proto-
cols, logics of knowledge and the categorical viewpoint are all intrinsically entan-
gled. We will demonstrate this thesis repeatedly throughout this work.

Our most significant assumption in this work is the notion of comparable ex-
pressibility of faulty processors in runs of different protocols. Intuitively, we say
that two states of different protocols are comparable if they express the same infor-
mation insofar as their respective protocols allow. In other words, the two states
of the different protocols are both images under the corresponding morphisms of
a single state of 7V. For this definition to make sense we would have to prove
that for any protocol B, the morphism from the states of #V into the states of 8
is surjective. Fortunately, under natural assumptions that is the case.

The categorical approach induces a partial order on the set of protocols, giving
rise to a hierarchy of protocols. This hierarchy has several aesthetic properties
as follows. There are strong structural connections among its members. Suppose
that protocol B8 dominates protocol C in the hierarchy. Categorically, this means
that there exists a morphism from B to €. The state of a processor at a round
in the morphic image of a run of B is precisely the morphic image of the state of
that processor at that round in the run of B. As we go up the hierarchy, more
and more facts become known and also more facts become commonly known. As
we go down the hierarchy, the messages transmitted by the processors need not
become longer. In each isomorphism class of protocols in the hierarchy there
exists a protocol with least average bit complexity at each round. In every such
class there also exists a protocol in which all the processors transmit simply their

corresponding states. Any arbitrary set of (possibly uncountably many) protocols
has a unique least protocol that can simulate each of the protocols in the set in
parallel or, in other words, there exists a minimal protocol dominating each of
the elements of the set. Categorically, the existence of this minimal dominating
protocol corresponds precisely to the existence of the categorical product of the
members in the set. Dually, we construct for any given set of protocols the maximal
protocol dominated by all the elements in the set.

Based on the morphisms, we introduce universal predicates that allow us,
among other things, to compare the performance of the faulty processors in runs of
different protocols. In previous works, runs of different protocols were compared
through predicates such as the basic predicates of [M], which were not sufficiently
expressive to capture the behavior of faulty processors.

We examine separation and density properties of the hierarchy. We prove that
there are uncountably many isomorphism classes. We show that even though any
protocol can be separated through monotone universal predicates from the proto-
cols it strictly dominates, it is not the case that even the very expressive monotone
universal predicates can separate a strictly decreasing sequence of protocols from
its categorical limit protocol, which is guaranteed to exist. Informally, tasks that
can be executed by each of the members in a decreasing sequence of protocols can
also be executed by the limit of these protocols, which incidentally is lower in the
knowledge hierarchy than any of the elements in the sequence. Any monotone
universal predicate can be implemented with a protocol having the following three
properties: First, it is as effective as 7V for that predicate; second, it is minimal
among the protocols that are as effective as ¥V for that predicate; and third, its
average bit complexity is arbitrarily close to optimal.

Naturally, when faced with new algebraic structures, one looks for their univer-
sal elements. Not surprisingly, the universal element in the category of protocols
is the full-view protocol.

We complete this work by proving lower bounds on the information that must
be conveyed by protocols that attain certain goals and on the message complexity
of these protocols. Specifically, we prove that the protocols in the isomorphism
class of FV attain strictly more common knowledge than any other protocol. In
other words, for any protocol that is not isomorphic to ¥V, there exist a run of ¥V
and a monotone universal predicate, such that the predicate is.common knowledge
at some round in that run, but is not common knowledge at that same round in
the morphic image of the run. Furthermore, we show that protocols that attain
Simultaneous Byzantine Agreement as early as possible require, in the worst case,
exponentially long messages in the number of faulty processors. Evidently, this
result implies that protocols that attain the most common knowledge also require,

in the worst case, exponentially long messages.

To summarize, our approach reveals intrinsic connections between distributed
systems, expressibility of protocols, logics of knowledge and category theory, pro-
viding us thereby with a better intuitive and mathematical understanding of dis-
tributed systems.

This paper is organized as follows: Section 2 introduces our formal distributed
model. Section 3 presents a brief overview of the knowledge formalism used in this
paper. Section 4 introduces the objects in the category DS and the morphisms from
7V to any other protocol. Sections 5 and 6 examine structural and knowledge
properties of these morphisms. Section 7 extends this examination to general
morphisms in the category. Section 8 introduces the hierarchy of protocols and
investigates several of its properties: The monotonicity of the message length, the
best protocol in each isomorphism class, the minimal dominating protocol, the
maximal dominated protocol, the universal predicates, the partitions of state trees
induced by protocols, density and limit properties and, finally, minimal bit efficient
protocols for predicates. Section 9 proves that 7V attains strictly more common
knowledge than any other protocol. Section 10 shows that protocols that attain
Simultaneous Byzantine Agreement as early as possible require, in the worst case,
exponential communication in the number of faulty processors. Finally, section 11

shows that 77V is the universal element in the category. of protocols.

2 The Model

In this section we introduce our model of computation, which closely resembles
the models in both [PSL] and [LFF]. This formalization is based on the well-
established approach used in automata theory for formalizing computing devices
such as finite automata, pushdown automata, Turing machines, and so on.

We first introduce the notion of a protocol. Intuitively, the protocol completely
specifies the actions of each of the correct processors. The protocol B is in fact a
tuple,

B =< {32}, {12}, {a2},{ST2}, 5,1 > .

The set of processors taking part in the protocol, P, is implicit in the definition of
the protocol, and its cardinality is denoted by n. The external inputs to each of
the processors are drawn from the set & and, similarly, the messages are elements
in I'. The set I' includes two special messages: The empty message, denoted by 0,
standing for no transmission, and the ungrammatical message, L, representing a
non-empty ungrammatical message.

Each processor p is a state machine whose states are in STS . The state tran-
sition function
82 :STE x ™1 x £ — STE

maps the previous state of processor p along with both the messages and the
external input that p receives into its next state. The message generator ypq T
STB — T generates the message that p transmits to ¢ when it is at a given state.
The sets STB include special states denoted by (p,®,£) and (p, L, E), where £ > 0
denotes a round number. These states sa.txsfy By, q(p, 9,€) = 0 and y; q(p, 1,0 =
Finally, the action function. ag from ST into some other set determines the
remaining actions of processor p at each of its states, such as printing, blinking,
etc.

A note about notation: For s4 € STg, t €L and p = p;, wherei € {1...n},
we let 6; (sp--- yg,psq ...t) be a shorthand for the rather unappealing expression,

61?.' (spi’“ghmsl’l L “Si—xm.’sp-‘—l’“5.‘+1,P.'3P-'+1 100 “Sn‘,p.'sl"i ’ ")‘

We usually assume throughout this work that the processors have access to
both their own identification numbers and the global clock, which specifies the
-found number. Although these assumptions are not a,lwa.ys needed, they often
simplify both our notation and our treatment.

When there are no faulty processors, the protocol along with the external inputs
fully determine the actions of each of the processors. However, faulty processors
are usually allowed in models for distributed networks; thus, we formalize a run §
of the protocol B, as a tuple

§=<B,IN,CA,AD > .

Here B denotes a protocol, and IN denotes the external inputs that the pro-
cessors receive at each round; in other words, IN is a map

IN:PxN—Z

where N is the set of natural numbers, N = {1,2,...}. The crashing assignment
CA specifies the processors that are faulty along with each of the rounds at which
they do not follow the protocol. Formally, CA C P x N. In order to avoid issues of
processor recovery, we require that whenever (p,£) € CA, also (p,k) € CA for all
k > €. Finally, the adversary, AD, specifies for each faulty processor and recipient
the state that the faulty processor uses in its transmission to that recipient. Thus,
ADis a map (p,q,£) ~+ s where (p,¢) € CA,g€ Pand s € STB

Notice that the crashing assignment naturally partitions the set P x N into
two: If (p,£) € CA, then we say that p is faulty at £, otherwise, when {p,2) & CA,
we say that p is correct at .

So far we have not specified how a run determines the actions of the processors,
in the same way that a finite automaton, given as a tuple, does not directly specify
the computation of that automaton. In distributed systems the parallel of the
automaton’s computation is the message ezecution of the run €, which we denote
by MX[£]. The message execution of the run determines the sequence of events
occurring in the network. In particular, it specifies when the Processors recetve
the external inputs, how they modify their internal states, what messages they
transmit, and what other actions they perform.

We formalize the message execution of a run £ by examining the chronology
of the actions. Initially, that is at time 0, each processor p is in its untque initial
state sp,0. At the beginning of round 1, p performs whatever action is required by
evaluating agsp,o. Next, at the middle of the first round, each of the processors
receives the external input corresponding to that round, : = IN[€](p,1). Based
on this external input and its initial state, processor p calculates its next state by
evaluating 62 (sp0,...0...1), and it enters into this state at the end of round 1.
Suppose inductively that we have already constructed the events occurring until
the end of round £— 1. We now describe the actions at £ by concentrating first-on

‘a correct processor p at £, that is (p,€) & CA. Suppose that at the end of £— 1,
" processor p is at state s,_;. At the beginning of round £ processor p transmits to
each of the other processors ¢ by evaluating pg,qsbl, and it performs the actions
pertaining to that round by computing a®s,_,. At the middle of round ¢ processor
p receives all the messages that were transmitted to it along with its external input,
IN[€](p, €). By the end of round £, p will have concluded the calculation of its next
state s¢ by evaluating

se =6} (se-1...M[€|(g,p,0) ... IN[€](p,0))

where M[€](g,p,£) denotes the message that ¢ transmits to p at £ in §. This
completes the actions of the correct processor p at £in £&. What if p is faulty at ¢,
that is, (p,€) € CA? In this case the actions of p at ¢ are completely determined
by the adversary: For each processor g, p will send g a message at £ as if p were
at £— 1 in state AD[¢](p,q,£). Notice that since we allow the adversary to specify
completely the actions taken by the faulty processors, we are in effect considering
in this work the Byzantine case. :

Finally, how does our model compare with the one in [LFF]? Although these
two models seem identical at first sight, there is a basic conceptual difference in
their definitions: Whereas in [LFF] the adversary is given by a set of messages

7

transmitted by the faulty processors, in our model the adversary is modelled by the
states that the faulty processors use for transmitting. It is precisely this difference
that allows the development of the categorical approach introduced in this paper.

3 Knowledge Formalism

In this section we introduce the knowledge formalism used in this work. A predicate
© over B is a set of runs of B, that is, ¢ C R2. The predicate ¢ is basic if it depends
only on the crashing assignment and the external inputs. Asseen in future sections,
basic predicates are useful for comparing the performance of different protocols.
A predicate ¢ holds at a run &, denoted by & |= ¢, if simply € € .

We proceed to introduce the modal operators of knowledge and common knowl-
edge. Let the processor p be correct at round £ in the run £. Say that p knows the
predicate p at £ in €, which we denote by £ |= K, 09, if ¢ holds at all runs which
p cannot distinguish at £ from €. To make this definition more precise consider the
following equivalence relation: Two runs of the same protocol are (p, £)-equivalent,

(2.9 . .
denoted by € ~ &, if pis correct at £ in both, and it has exactly the same state

at £ in both. Therefore, £ = K(, ¢ iff p is correct at £ in £ and ¢’ |= ¢ for all

(p,t) . N ; ’ .
& ~ & Now, £ = Egp means that every correct processor p at round £ in the -

run € knows the predicate .
Next, we inductively define the notion of common knowledge. Let the predicate
EQ¢ be just o, and for m > 0 let

EEEM e i €k E(E]).
Now, a predicate ¢ is common knowledge at £ in &, denoted by & | Cep, if for
every m 20, § = EPp.
We proceed to introduce a more useful characterization of common knowledge.
Two runs of the same protocol are similar at £, denoted by £ £ &', if there exist a

finite sequence of runs of that protocol {£x}, for k € {1...(m — 1)}, and a finite
sequence of processors {p;, }, where k € {1...m}, such that:

(Pil ,l) (Pl'g ,l) (p‘m—l ‘t) (pt'm ,l)

¥ 6 & ... N Ep-1 =~ €.

It is apparent that £ is an equivalence relation. The following simple fact
establishes a clear connection between knowledge and distributed systems:

Fact 1
EECup iff €= forall § satisfying € ~ €.

4 The Morphism

In this section we introduce the category of distributed systems which we denote
by DS. For the time being, each of its objects is a set consisting of all the states
of some protocol. The more interesting part of this category are its morphisms
which we now carefully introduce.

First recall the well-known full-view protocol, ¥V, or full-information protocol
introduced in [PSL]. In this protocol, each processor transmits at every round
all the information it has seen so far, that is, its external inputs together with
all the messages it has both sent and received. A rather remarkable property of
this protocol is that it can “simulate” the behavior of any other protocol. This
simulation provides in turn the morphisms of the category of protocols.

What is the meaning of the statement that the full-view protocol can simulate
any other protocol? Well, this simulation is no more than a structure-preserving
map from each of the states of 7V into the states of any other protocol B, or,
stated differently, it is a morphism from the object corresponding to 7V, into the
object corresponding to 8.

For introducing this morphism we first need a crisp representation for the states
of the full-view protocol. In the following definition we show that each such state
can be given by an n-ary tree which we call a state tree.

Definition 1 A state tree s of processor p at round £ is given by the following
recursive definition:

Base case, £ =0: s 13 a single node tree labelled sg')

Inductive step, £ > 0: s is either a single node tree labelled (p,0,€) or (p,L,£), or
1t 13 a tree whose root is labelled (p,:,£), with . € T, and for each g € P, s has a
unique principal subtree which i3 a state tree of q at £— 1.

The semantics of the state tree are straightforward. In the base case, processor
p is in its initial state at round 0. In the inductive step, p is at round £ > 0
in either a non-transmitting state, an ungrammatical state, or a state recording
its external input at that round and the state trees of all the processors at the
previous round. Each such state tree can be recursively transformed into a state
of the target protocol B by applying B on the information encoded in the state
tree. The formal details are given in the following definition.

Definition 2 The morphism A, : ST; Vo ST,? 18 given by the following inductive.
definition on the structure of the state tree s € STg v,

Base case, £=0: Here s = s:w and hys = sao

Inductive step, £> 0: If s is ezther (p,0,8) or (p,L,0), then h,s = s. Otherwise,

9

s 18 a tree whose root is labelled (p,:,8), with . € T, and for each g€ P, s has a
unique principal subtree, sq, which ts a state tree of q at round € — 1. Then,

hss = 6; (hosp .. .pg,ph,sq ... k).
where h, i a map BV — 2B,

We proceed to extend the domain of h,. Let the relative state from processor

p to processor q at round £ in the run 8, denoted by S[f](p,€— 1| p L q), be given
by

S[0)(p,£—1) if pis correct at £in 6
S[0](p,£—_1[p—£>q)= S[0)(p,£—-1) ifpisfaultyatfinfandp=g
AD[6](p,q,€) if pisfaulty at £in @ and p# ¢

Now we may view the adversary AD in a run p of ¥V as a map

(p,4,€) ~ Slp](p,€~1|p 5 g)

where (p,€) is an element in the crashing assignment CA of p and ¢ is a processor
in P. The adversary haAD is obtained by applying the morphism h, to each of
the states constituting AD. More formally, hg AD is the map

(P,2,€) ~ haS[pl(p,€— 1] p > q)

defined for each (p, ¢,£) in the domain of AD.
The definition of h, naturally leads to the function A, : R¥Y — R2, mapping
the run p of ¥V given by '

p=<¥YV,IN,CA,AD >

into the run
hep =< B,h,JIN,CA,hsAD >

of B. We show in theorem 2 that, subject to some natural conditions, the morphism
h, maps R¥V onto R2. Consequently, we will sometimes view the category DS as
a category in which every object is a set of all runs of some protocol, as opposed to
a set of all states of some protocol, and whose morphisms are the maps h,. More
abstractly and without any danger of being imprecise, we will usually view the
objects in DS as just protocols, and the morphism in the category as whichever
map h,, hg or h, we happen to have in mind at the moment. Moreover, we will
usually blur the distinction between the maps h,, h,, hq and h, by referring to
them with the generic name h, unless precision or clarity dictate otherwise. In the
following sections we examine several structural and knowledge properties of the
maps introduced above.

10

5 Structural Properties of the Morphism

In this section we examine structural properties of the morphisms introduced
above. We prove that the operators h and S commute, and that the morphism A
is surjective.

5.1 The Commutativity of » and $

In this subsection we show that the operators h and S commute.
Theorem 1

hS=Sh
Proof: Let p be a run of FV and let € = hp. We want to show that

hS[l(p, 11 p 5) = S[€](p.t— 1| p 5 g).
. The case where p is faulty at round ¢ follows directly from the definition of the
run §. Consider therefore the case where p is correct at £. The proof proceeds by
induction on £. We only consider the following case: Let
Slltre-2[r S phyg)

denote the state that p informs ¢ at £ in p that r transmitted to p at £ — 1. For
notational convenience we will place the argumerts of 6,,5 vertically rather than
horizontally in this proof.

hSle)(p, e~ 1]p 4 g) =

(hSlel(p,e~2]p = p 4 g)
= 8| B hSl(re-2]rSFply)
\ RIN[)(p, €~ 1]p S q)

(hSlol(p,6~2 | p = p)

o | ul,hSlpl(r,e~2 | r < p)

\ RIN[p](p, €~ 1)

L[Selee-21p5p)

= 6? pf’pS[f](r,e—2|7’t——*l)

= SlElp,t-1]p5q). 1

11

5.2 The Surjectivity of the Morphism

In this subsection we show that, subject to some natural restrictions on the way
protocols are designed, the morphisms in the category DS are surjective. We need
a definition in order to formalize the restrictions mentioned above.

Definition 3 A4 states € STs 13 (p, £) reachable for the protocol B, if either £ =0

and s = sg’o, or, for £ > 0, s € {{p,0,8),{p,L,8)}, or, finally, if there ezist for
each g € P a (q,€ — 1) reachable state s4 for B and an input L € £ s0 that

s = 6‘?(3‘,...}12",34...&).
We denote by STg,l the set of all {p,£) reachable states for B.

The intuition here is that a state which is not reachable gives the adversary
unnecessary freedom to confuse the correct processors. Moreover, given any proto-
col, we can always inductively discard its non-reachable states, thereby generating
a new protocol with message generators and state transition functions as in the
original one, but having only reachable states. Thus, one should design proto-
cols with only reachable states; such protocols are called concise protocols. In the
following lemma we give a precise characterization of the concise protocols.

Lemma 1 A protocol B i3 concise iff for any morphism h with ‘surjective h,,
STE = hSTz V for each processor p€EP.

Proof: = We prove first that for each p,
8 Fy
ST, € hST, ".

Let s be a state in STf;. Since B is concise, there exists some round £ for
which 5% € STg,,. We now show that there exist some s¥V € ST,{ 7 such that

8 = h,s”Y,

where the map h, corresponding to h is an arbitrary surjective function. The proof
proceeds by induction on £. We consider only the case where there exist an input
® € £ and states 5, € STf,,_l such that

s? = 61?(3,...;;5,1,34...&3).

By the inductive hypothesis there exists for each ¢ € P some state sq? Ve

ST;: V_, such that

B _ has?'\)

Sq = NsSq

12

and by the surjectivity of h, there exists some input +¥¥ € 7V such that
B = ho%V.

Let s7V be the state of 7V with root labelled (p,t7V,8), whose principal subtrees
are sq7 V, for each g € P. By definition, sV € ST; }' , and furthermore

88 = hos*V.

The containment STE 2 hST; Y follows similarly.
<= We now prove that if STg = hSTg VY for each D, then B is concise. Fix a
processor p, and let s € STg. For demonstrating that B is concise we must show
that s2 € STg,z for some ¢£.

First, since STg = hST; Y, there exists some s¥V € ST; YV such that

s8 = hs¥V,

We prove now by induction on the height £ of the tree s¥¥ that s8 € STg,e. We only
consider the following case: Let sq7 Y be the principal subtree of s¥V corresponding
to g. Notice that sq7 Ve STq{ }'__1; therefore, by the inductive hypothesis, the state
sg = hsqy V satisfies sqa € STf,e_l. Let .7V denote the external input of p at round

€in ¥V, and let 13 = hu¥V. By the definition of i we have
88 = 5,,8(.3‘? ...uqa,psg ot8)
showing that s2 € ST2,. |

We now state the main theorem of this subsection, which asserts that the
morphism A, is surjective if the corresponding map h, is surjective and B is concise.

Theorem 2 Assume that the protocol B is concise, and let h, be a morphism with
surjective h,. Then h, s also surjective.
6 Knowledge Properties of the Morphism

We begin this section with the following key lemma which asserts that (p,£)-
equivalence is preserved under morphisms, i.e., if two runs are (p,£)-equivalent,
then their morphic images are also (p, £)-equivalent.

(r.8) {(r.0)
Lemma 2 If o' P p, then hp' =~ hp.

13

(2.0
Proof: Assume that g/ ~" p. Then S[p'|(p,2) = S[p|(p,£) and therefore by theo-
(p.€ '
rem 1, S[hp'|(p, £) = S[hp](p,). Hence, hp' =~ hp. |
Equipped with this lemma we proceed to prove several knowledge properties

of the morphism h. We first assert that, under natural assumptions, whatever is

known or commonly known in the morphic image of a run of ¥V is also known or
commonly known in the run itself.

Theorem 3

1. Let p be a predicate over B, and let the predicate h™'p be given by

hlo={peR?V | hp = p}.
Then,
(¢) If hp |= K(p,pyp then p = Kpnh™'o.
(p.8) (p,0)
(8) If hp |= Crp then p |= Ceh™ 1.

2. Assume that the map h, corresponding to h, is injective, and let o be a
basic predzcate over ¥V. Then,

() I ho |= Kpayhe then p = Kip .
(b) If hp l= Cehop then p = Cep.

Proof:

(r,0) (»,0)
l.a Let the run p' satisfy p' ~ p. By lemma 2, hp' ~ hp. But hp' |= @ since
hp = K(pgp- Thus, o' |= h~lyp, and therefore p = K(,,,)h'lgo.

1.b Similar to l.a.

2.a Assume as before that the run p' satisfies p’ (1::) p. Hence, hp' (&’5) hp.
Again hp |= K(, ¢ he implies hp' |= hp. Thus, there exists some p" |= o so
that hp' = hp". It follows that CA[p'] = CA[p"] and A, IN[p'] = h IN[p”]
Recall now that h, is injective, thus IN[p'] = IN[p"]. Finally, since ¢ is
a basic predicate and since p’ and p” have identical crashing assignments
and external inputs, we have p’ = ¢ and therefore p = K,)00

2.b Similar to 2.a. |

14

We examine now the effect of the morphisms on basic predicates. To this end,
we view the morphism &, as a map P(R¥V) — P(R2) given by

o™V~ {hep o EETVY,

where P(R2) denotes the power set of R2. An interesting property of h, when
viewed in this way is that, subject to some natural conditions, k. maps basic
predicates over ¥V onto basic predicates over B. We prove this fact using the
following two lemmas:

Lemma 3 Let the protocol B be concise and assume that the map h, corresponding
to h, is bijective. Then h, maps basic predicates over the full-view protocol into
basic predicates over B.

Proof: Let 7"V be a basic predicate over the full-view protocol. Let the run p of

7YV, given by
' p=< FV,IN,CA,AD >

satisfy p = ©¥V. Let ¢ be the run of B given by

‘ ¢ =< B,hIN,CA,AD > .

Recall that by assumption the protocol B is concise and h, is surjective. There-
fore, by theorem 2, there exists a run p’ of ¥V such that & = hp'. Thus, '

CAl'] = CAJ¢'| = CA[d]
and also
h.IN[p'] = IN[§'] = h.IN[p].
But h, is also injective, hence
IN[¢] = IN[].

Recall also that o7V is a basic predicate and p = o7 V. Hence p' = o’V and
therefore & = hp' |= hp®V. |
Lemma 4 Let ©? be a basic predicate over B. Then the predicate h=1p? given by

htp? ={pe RTY | hp = ?}

13 a basic predicate over FYV.

We now summarize the two lemmas given above in the following theorem which
asserts that the map h, when viewed as a map from predicates into predicates,
maps basic predicates onto basic predicates.

Theorem 4 Let the protocol B be concise and assume that the map h, correspond-
ing to h, 13 bijective. Then h, maps basic predicates onto basic predicates.

15

7 Morphisms Among General Protocols

We begin this section by introducing a relation between protocols, denoted by
>, which is based on the morphisms from the full-view protocol into any other
protocol introduced in previous sections. This relation leads in turn to morphisms
from protocols possibly different from the full-view protocol into other protocols,
thereby generating the category of distributed systems, DS.

In this section 8 and C denote two concise protocols in n participants. We
introduce now the relation > and the morphism k{8, C).

Definition 4 Let the function h, map £8 — . Say that B dominates C with
respect to h,, denoted by B >, C, if the map h,(B,C) : R® — RC given by

he(B,C) = he(FV,C)h, (R (FV,B))!
s well-defined.

Notice that a necessary and sufficient condition for the map h.(B,C) to be
well-defined is that the map

ho(B,C) = ho(FV,C)hu(he(F Y, B))?

be also well-defined.

We proceed to show that the morphism h(B,C) inherits many of the properties
of the morphism A from 7V to other protocols. Hereafter p, £ and denote runs
of ¥V, B and C respectively. For simplicity of notation we denote the morphisms
R{FV,B) and h(FV,C) by h8 and h¢ respectively. We now prove that, whenever
the morphism h(8,C) exists, the operators h(B,C) and S commute.

Theorem 5 Assume that B =, C. Then
h(8,C) S= S h(B,C).
Proof: Let £ be an arbitrary run of 8. We want to show that

h(B,C)S[E|(p, £~ 1| p 5 q) = S[R(B,C)€l(p, £~ 1| p > q).

By construction, this assertion is true when p is faulty at £. Consider now the case
where p is correct at £. Hence,

Slel(p, ¢~ 1] p = q) = S[El(p,€ - 1)-

16

Notice that the sets h(8, C)S[€](p, €~ 1) and h(B,C)¢ are both singleton sets,
thus, we feel free to identify each of these sets with their corresponding element.
Let s = S[h(B,C)&|(p,€ — 1) and let p be a run of 7V such that h8p = £. By
theorem 1, h2S[p](p, € — 1) = S[€](p, £ — 1). Thus,

Slel(p,€ - 1) € (h®) ' S[€] (p, £ - 1).
Applying theorem 1 again,
s = Sk hip)(p,€ — 1) = hCh,S[p](p, £ - 1).
Thus, we have s € hch‘(ha)'IS[E] (p,€ — 1), and therefore
s = h({B,C)S[¢](p,£ - 1). 1

In section 4 we used the equality
hs = 62 (h®s,.. B R8sy . hy)

for introducing the morphism k2 from 7V to B. We now show that this equality
extends to arbitrary morphisms k{8, C), and moreover that it characterizes them.

Theorem 6 Assume that sg € ST(?,, for all processors q € P, and let b stand for
the morphism h(B,C) = h°h,(h8)~1. Then,

hoP(sD ...l 8 . .0) = 8F(hsB ... S kst .. hu).
Furthermore, any map h' : STS — STg satisfying the following equalities

h’6f (sg . .pg,psg ceet)

85 (h'sB ... u RSB .. hy)

h's = s forse{(p,ﬂ,e),(p,l,e)}
¢

[N :] —
Rspo = sp0
1s tdentical to h.

Proof: By lemma 1 there are states sg Ve ST(‘{ 7 such that sf = hsg V. Let s7V

be the state tree whose root is labelled {p,¢,£+ 1) and whose ¢*? principal subtree
is sq”. Let s2 = 8 _s”. Then, on one hand,

= 63(33 ...ug,psg ceet)

17

and, on the other hand,

hs? hCh,s%V
8S(hCh STV ... pE R RSV . hu)

= 85 (hsB...pS hst .. hu).

The second part of the theorem holds since A and A’ satisfy both the same
recursive equation and the same initial conditions. 1

Next, we assert that, subject to some natural conditions, the morphisms h(8,C)
introduced above are surjective.

Theorem 7 Assume that B >j, C, that is, the morphism h(B,C) = hch.(ha)‘1
1s well-defined. Then, h{B,C) is surjective if h, 1s.

Finally, we examine knowledge properties of the morphism h{B,C). We show
. that lemma 2 in section 6 which asserts that (p, £)-equivalence is preserved under
morphism holds when the morphism h(8,C) replaces the morphism k2.

P,

. : ¢ : . (e
Lemma 5 If ¢ (N) &, then h(B,C)¢ (pm) h(B,C)&.

Applying this lemma we mé.y now extend theorem 3 using the more general mor-

phism h(B8,C).
Theorem 8 Let h denote the morphism h(B,C) = h h,(h8)~1.
1. Let ¢ be a predicate over C. Then,
(a) If hE |= K, g9 then € |= K(p,t)h'lgo.

(8) If he k= Cp then € = Ceh~lp.

2. Assume that the map h, is injective, and let ¢ be a basic predicate over B.
Then,

() If k€ |= K(p,ohe then & = Kip 0.
(b) If h€ |= Ceho then & |= Cep.

18

8 The Protocol Hierarchy

In this section we show that, subject to comparable expressibility of adversaries,
there is a natural and aesthetic hierarchy of protocols in distributed systems.

We restrict our attention to concise protocols over the same input set 3, and we
consider the relation 8 > C which stands for 8 >; C, where I denotes the identity
on X. The notion of comparability needs some clarification: Intuitively, two states
of different protocols are comparable if they express the same information insofar
as their respective protocols allow. Thus, the states s and s¢ of the protocols B
and C respectively are ezpressibly comparable if for some state s¥V of 7V both

2 =h8s¥V and s¢ = hCsTY,

Comparability of adversaries and of runs is defined similarly. For example, the
runs § and 7 of the protocols B and C respectively are comparable if for some run
p of ¥V both ¢ = h3p and 5 = h%p. Notice that many of the results developed
in the previous sections relied on this notion of comparability, and so will the
forthcoming assertions.

We begin by introducing a partial order on the set of protocols. First, we show
. that the relation > is transitive and therefore that it induces a preorder on the

category of protocols. :

Lemma 6 The relation > is transitive. Furthermore, if A, B and C are three
protocols such that A > B and B > C, then

h(8B,C) h{4,B) = h{4,C).

The standard succeeding step is to transform this preorder into a partial order
by identifying elements satisfying both > and <. Thus, say that the protocols B
and C are wsomorphic if both 8 > C and 8 < C.

As expected, it follows from theorem 8 that if two protocols are isomorphic,
then a processor knows a predicate at a round in a run iff that same processor
knows the morphic image of that predicate in the morphic image of the run. A
similar statement holds also for common knowledge. Furthermore, theorem 8
indicates how knowledge and common knowledge evolve as we go up and down the
hierarchy. In future sections we will examine this issue more closely.

8.1 The Monotonicity of the Message Length

We now show that as we go down the protocbl hierarchy, the messages transmitted
by the processors need not get longer.

19

Theorem 9 Assume that B > C and let h = h(B,C). Then there ezists a protocol
D isomorphic to C such that for every state s? € STS and processor g,

u2ghs?] < luBgs?)|

Proof: The only difficulty in this theorem is the construction of the protocol D.
Let the set of states in D be precisely as in €. Next, define the message generators.
Let s¢ be an arbitrary state of processor p in C. Then, ug'qsc is a shortest message
of the form pf,qsa, for states s2 € STS satisfying s¢ = hs®. Finally, the state

transition functions are given by,
¢
65 (sp qu q) =4 (s pg’psg eot).

This definition guarantees by theorem 6 that the protocols D and C are isomorphic.
We proceed to show that

Lemma 7 The protocol D is well-defined.

Proof: By theorem 7, the message generators are well-defined. We now prove that
also the state transition functions are well-defined. Assume that for every ¢ # p

D C = IC
Hq,p5¢ l‘q,p q-

We have to show that for every state s and Lt € I,

D Do
6},’(3, plosS .) =6 (s§...ul s .. 0).
First, by theorem 7, there are states sq and sff in ST? such that both sg = hsf
and sflc = hsff, and, furthermore, for ¢ # p,

D C___ 8 B D IC___ IB
BqpSq = HgpSq 2and pg,s “qpq .

Thus, we have

55(83 u”q L)-&B(s u“, s ...)
and furthermore, applying the morphxsm h to both sides and by theorem 6,
8E(sS .. pSps Cot) =85(sE ... uE 8K . 0).
Therefore) .
82 (s .. whysl) =6 (s§...uD, 8. 0). 1

We complete the proof of the theorem by noticing that, by definition,
lupqhs®| < Il‘g,qsal‘ I

20

8.2 The Best Protocol in the Isomorphism Class

In this section we constructively show that in each isomorphism class of protocols
there exists a protocol whose average bit complexity at each round is the smallest
in the isomorphism class. For this assertion to make sense, we assume that all the
protocols in the isomorphism class have exactly the same message set T,

We assume throughout this section that each processor continuously records
the round number and that the set of external inputs ¥ is finite. We also assume
without loss of generality that each message M in T\ {0, L} has a length | M|,
which is an integer greater than or equal to 0, and that the messages in I' are
indexed according to their lengths, that is,

[My| > |Ma| > |Ms| > ---

where M; €T\ {9, L}.
Notice that there might exist states s € ST,'f, g for which there exists no run
€ € R such that

S[¢](r, k) = s.

Since we will only count the number of bits transmitted by the correct Processors,
we define the set of achievable states of processor r at round k in protocol B,
AST,.{ k> to be the set of states s € ST,.% g for which there ezists a run & € R? such
that '

S[€](r, k) = s.

Pick an arbitrary isomorphism class of protocols, and let 8 be a protocol in
that class. Fix a pair of distinct processors r and p. We first set a lower bound on
the cardinality of the set

{uf,ps | s € AST,C.,p}

where C is an arbitrary protocol isomorphic to 8.
Consider the following equivalence relation on the states in ASTf, g+ For states

Bp
sy and s} in ASTf’k, say that s, ~ 5| iff forall g # r, 54 € STg,k, andt€Z,
B B B
82(sp.. wlosg. . pulyse.) = 65 (Sp - Mg pSq---BrpSy...t).

B.,p .
Thus, if the states s, and s} satisfy s, ~ s, we may safely construct a protocol C
- isomorphic to 8 satisfying

C
HEsSr = HE S

21

Byp
Conversely, suppose that s, % s/, but for some protocol € isomorphic to B
¢
HypSr = "E,ps;"
Then, on one hand, forall ¢ # r, s, € STS,I: and t € I,
¢ c c c
65 (Sp e Mg pSq---BrpSr...t) = 55(8, ceebqpSq - .pf’ps', celt)y

. Bp

and, on the other hand, since s, ¢ s, for some s € STg,k, g# r,and t€ X,

8 . 8 8 B 8
b7 (Sp-v bigpSq---Bopsr--t) # 82 (sp...ulysy ... ul sl . .0).

But B8 is isomorphic to C, thus the morphism kh(C, B) exists; hence, the equality
above together with the inequality below it contradict theorem 6. We summarize
this discussion in the following lemma,

Lemma 8 For every protocol B, there ezists a protocol C isomorphic to B such

that 5
P s
sp = s, implies pl,s, = pEysh.

" Furthermore, for any protocol C isomorphic to B

B
¢ — nC & : ; ~ of
BrpSr = BrpS, implies s = s.

We now introduce notation for defining the notion of average bit complexity
of a protocol. Consider a run § of protocol 8. Denote by 9(§,£) the number of
bits transmitted by the correct processors up to and including round £ in £. For

notational convenience we denote the state of a faulty processor r at round & in a
run § by T = S[€](r, k), and we let

Iﬂf,pTl =0.
With this notation we have

¢(€s e) = Z 'ﬂf,pslﬂ (7‘, k)l

r.p,1<k<t

Next, in order to talk about average bit complexity, we introduce the probability

- framework. Two runs of protocol B are identical at round £, denoted by & L &,
if both runs have identical external inputs and adversaries up to and including

22

round £. An initial A of R2 is a subset of R2 such that for some run €€ R2 and
round number £,

¢
A={¢|¢=¢}
A subset of R2 is measurable if it is an element in the o-algebra generated by the
initials, see [H] section 5. Finally, a probability measure on R2 is just a probability
measure defined on this o-algebra.

Since the function ¥(-, £) is measurable we may define the average bit complezity
of protocol B at round £, denoted by ABC(8,¢), as

ABC(8,0) = E¥(€,0) = [¥(€,0du(8)
where v is a probability measure on R2.

Definition 5 The protocol B has the least average bit complexity in its isomor-
phism class if for all protocols C isomorphic to B, -

ABC(B,¢) < ABC(C,£) for all .
Protocols such as B are called LAC protocols..

We proceed to show that in every isomorphism class there exists a LAC pro-
tocol. For a subset B of ASTf, ks let the indicator function of B in R2 be the

function xg : R2 — {0, 1} given by

1 if S[¢](r,k) e B
0 otherwise

xB(§) = {
Define the weight function § by

6B = Exp(§)-
For the state s € ASTf, &> let [s] denote the equivalence class of s with respect

B,p .« L. . .
to the relation =~. Let [s1],[s2],...,[sm] be all the distinct equivalence classes in
ASTg ¢ With respect to that relation, and assume without loss of generality that

8[s1] 2> 6[s2) = --- 2> b[sm].
Let A be the protocol whose set of states coincides with the ones in B such that

plosi=M; forall s} € [s5]-

23

The central theorem in this section asserts that the protocol A has the least
average bit complexity in its isomorphism class, which is, of course, also B’s iso-
morphism class. We need some more terminology. For the states s,,s} € ASTf,k,
let

¢, .
Sr 4 s;' iff p’rc',psr = p’rc-,ps;"

Notice that £ is an equivalence relation; thus, denote by (s) the equivalence class
in ASTS,,= of the state s, and by 7(C, r, p, k) the set of all equivalence classes induced
by this relation on ASTS,,‘.

Lemma 9

ElufpSlnl(r, k)| = 3 1ép(s)|6(s)
where the summation ranges over (s) € 7(C,r,p, k).

Lemma 10 Let A be the protocol constructed above, and let C be an arbitrary
protocol 1somorphic to A. Then,

PO TR TS S MR O IO

{s)er(C,r.p,k) (s)Er(A,r,p,k)

Proof: If the partitions 7(C,r,p, k) and r(4,r,p, k) of ASTS’,‘ are identical, this in-
equality is simple. Otherwise, by lemma 8, 7(C, r,p, k) is a refinement of 7(4, r, p, k).
Consider first the case where the probabilities corresponding to 7(A,r,p,k) and
7(C,r,p, k) are given by the following two sorted sequences

a 2 - 2 -l 2 @ 2 iyl 2
ay 2 0 2 0 2B 2 iy 2

aj
a; 2 9

v v

where o = 8 + 1.

Denote by A the difference between the average lengths of the partitions
7(C,r,p,k) and 7(4,r,p,k). We argue that A > 0. Indeed, if £; denotes the
length of the k*" message, then

i
A >) or(le-1 — &) + Bl + ALy — only

k=2
i
> ali— by —ag) (& — le-y)
k=2
> ay(li—b) - (b~ 4)
> 0.

24

The more general case follows by induction. |
Finally, we state and prove the central result in this section.

Theorem 10 In each isomorphism class of protocols there ezists a protocol that
has the least average bit complezity in its isomorphism class.

Proof: Pick an isomorphism class of protocols, and let 8 be a protocol in that
class. We show that the protocol A constructed above has the least average bit
complexity in B’s isomorphism class. Indeed, for any protocol C isomorphic to B8
and every round ¢,

EY(n,8) 2 EY(a,)

where 7 and o« denote runs of C and A respectively. |

8.3 The Minimal Dominating Protocol : :

Suppose that you have two protocols 8 and € for performing two different tasks,
and that you want to design a third protocol that will perform these two tasks
simultaneously. The full-view protocol can, of.course, serve that purpose. However,
in light of theorem 9, 2 more appealing approach would suggest using the minimal
protocol dominating 8 and C in order to perform these two tasks.

Several questions immediately emerge: Is there a minimal protocol dominating
B and C? If such a protocol exists, can it be given explicitly? Is it unique? Does
category theory provide a natural approach to this problem? In this subsection
we answer all these questions in the affirmative.

We begin with the categorical approach. The crucial observation is that the
existence of the minimal dominating protocol is precisely equivalent to the exis-
tence of the categorical product of B and C. Thus, uniqueness up to isomorphism
is guaranteed by the uniqueness of the product.

We now apply our set theoretic intuition to construct the product of two pro-
tocols. Let B II C be the protocol whose state transition functions are 6‘,3 X 65,
whose message generators are ug,q X ug,q and whose inputs are drawn from I.

The main theorem of this section asserts that 8 I C is the product of 8 and C.
Thus, B II C is also the minimal protocol dominating 8 and C.

Theorem 11 The protocol B I1 C is the product of B and C.

Before proving this theorem we examine the morphism R37¢. Not surprisingly,
we have,

25

Lemma 11
h2MC = hB x A

Proof: By induction on the depth of the state tree of the full-view protocol to
which A2T¢ is applied. i

An immediate result of this lemma is that the protocol 8 II ¢ dominates both B
and C. Furthermore, this lemma leads naturally to the notion of the product of
runs. We concentrate now on the proof of theorem 11.

Proof: Let D be any protocol such that D > 8,C. By definition, both k8 (RP)~!
and h¢ (hP)~! are well-defined. Thus, again by definition,

(R? x h€) (hP)1
is well-defined. Finally, by lemma 11,
hBHC (hD)—l
is also well-defined and therefore P > BII C. |

We leave it for the reader to verify that if at some round in a run of BII1C each
of the processors p is in a state in hBHcSTg V. 'then at the succeeding round each
of them will still be in a state of that form, showing thereby that the set of states
of BIIC, {hBMCSTZV}, is closed.

We conclude this section by examining the partition that the states of 8 IT €
induce on the set of states of the full-view protocol. Optimally, this partition
should be the coarsest refinement of the partitions induced on the set of states of
the full-view protocol by B and C. Fortunately, this is precisely the situation.

Corollary 1 The partition on the set of states of the full-view protocol induced by
the product of two protocols is the coarsest refinement of the partitions induced by
each of the protocols.

Previously we considered the product of two protocols. Due to various sub-
tleties we now give the products of an arbitrary indexed set of protocols. Following
conventions, let I be an index set, and consider the indexed family of protocols

 {B%|ael}.

For every state s € STg YV, let the state function f, : I — UST, be given by
a ~» h®s, where ST and h® denote STga and h2® respectively. The states of the

26

product protocol are equivalence classes of state functions induced by the relation
=, which is defined by f,, = fs, iff these two functions are equal pointwise. The
definition of the state transition functions as well as the proof that this protocol
is indeed the product of the family {B*} is left for the reader. We concentrate
on properties of this protocol. Notice first that the set of states of the product
protocol is countable regardless of the cardinality of the index set I, since the
set of state trees of the full-view protocol is countable. For this very reason, we
may encode each of the messages generated by the message generators using just
finitely many bits. Thus, the product protocol of an arbitrary set of protocols
is a perfectly legitimate protocol. Finally, the partition of the state trees of the
full-view protocol induced by the product protocol is optimal. In fact,

(M)Al = n(r*) A (o).

8.4 The Maximal Dominated Protocol

Our success in determining the minimal protocol dominating a given set of pro-
tocols tempts us naturally to seek the maximal protocol dominated by a set of
protocols. Categorically, this means searching for the coproduct of a set of proto-
cols. . - A : '

Before attempting to construct this coproduct, we settle the issue of its exis-
tence by recalling the following theorem from lattice theory: A partially ordered
set with a least element such that every non-vacuous subset has a least upper
bound is a complete lattice. Here a complete lattice is a partially ordered set in
which every subset has both a supremum and an infimum, see {J1] page 436.

Suppose that we are given two protocols B and . We proceed to determine
their coproduct by introducing the protocol 8 II . Consider first the relation <
on & = thCSTgv given by (sf,s§) =< (s8,s§) iff either sf = s or s§ = s§,
where both (s2,5{) and (s8,s§) are in . It is clear that =< is both reflexive and
symmetric; however, it is not transitive. Consider therefore the transitive closure
X of <, and denote by [s2, €] the equivalence class of (s2,5¢) induced by =. The
states corresponding to processor p in B II C are just these equivalence classes.

Assume for the moment that we could define a protocol with these sets of states
such that :

hfucs?v — [hfs?V,hES?V].
Then, we argue that B II ¢ would be the coproduct of 8 and C.
Lemma 12 Assume that hBUCsFV = [hBsFV RCsFV] and let D be an arbitrary
protocol satisfying both B > D and C = D. Then BUC = D.

27

Proof: Let s; and s3 be any two states in ST; V and assume that

hB].[Csl — hB].lC32

Thus, there exists a sequence of states s e ST; V., for i = 1...m, such that

sl = 81, 8™ = 59, and

hB].lel = hB].le2 a2 hBHCSm
Therefore, for each i € {1...m — 1}, either
R8s = hBsitl or hCs = pCsitl,

But recall now that by assumption both B > D and C > D. Hence, we have
hPs' = hPs**1 for each i € {1...m — 1}, and therefore

hpsl = h982. |

Encouraged by this result we proceed to construct the protocol 8 II C for
which we hope the equahty hBUC 57V — [hBs¥V hSs¥V] will hold. First, define the
message generator pp ¢ by a.ssxgnmg, for fixed p. a.nd g, different messa.ges to each
of the countably many triplets ([s2,s],p, q).

Next, define the transition functlon 65 BIIC 1y

S5 b5 1050 =
[6}? (sp pqpsq cet), 6c(sp pg,psg)

We proceed to persuade ourselves that this definition meets our expectations by
first showing that the protocol B II C is well-defined.
Lemma 13 The protocol B 1I C is well-defined.

Proof: In order to show that B II C is well-defined we only have to prove that
the transition functions 6}?“‘: are well-defined. To this end assume that for each
processor ¢ € P,

[sq)] = [sq ’sq
We have to prove that
(65 (sg "q 54 -) HEP B8 0)] =
[5;?(Sp - #qpsq ceet), Gc(s'c pqp 'C...L)].

28

This equality holds by definition if for each processor ¢ r,
[s7,56] = [sf »]

and for » we have,
[s sC] - [sr ’sIC].

'The extension for the more general case is immediate. 1

We now show that the equality we wanted h2U¢ to satisfy indeed holds. -

Lemma 14
hfl.[C = [hfahS]

Proof: By induction on the depth of the state tree of the full-view protocol to
which hauc is applied. | :

This completes the construction of the coproduct of two protocols. We conclude
this subsection by noticing that the partition that the states of 8 II C induce on
the set of states of the.full-view protocol is precisely the finest coarsening of the
partitions induced on the set of states of the full-view protocol by 8 and C. This
is the best we can hope for.

8.5 TUniversal Predicates

In order to examine properties of runs of a given protocol B we usually employ
predicates which are merely subsets of R2. Unfortunately, predicates designed in
this way often rely heavily on the protocol under consideration, thus, it is usually
difficult to use them in order to compare the performance of different protocols.
To overcome this difficulty, several researchers have considered special types of
predicates that are protocol independent. Since the performance of the adversary
depends heavily on the protocol, these predicates cannot be used to compare ad-
versaries in runs of different protocols. However, precisely the adversaries are the
central component that introduce action in runs; thus, predicates that are proto-
col independent cannot, by their very definition, capture this central ingredient in
distributed systems. ‘

In this subsection we employ our categorical approach in order to design uni-
versal predicates that allow us to examine in a natural way the effect of the different
components in the specification of runs, including, in particular, the effect of the
adversaries.

29

Elementary universal predicates are subsets of R¥V. We say that the run & of
B satisfies the universal predicate p, denoted by

§l=U ©,

if (h2)~1¢ is a subset of o which is denoted by (h2)~1£ |= . We now make these
predicates more expressive by introducing standard logic connectives and modal
operators of knowledge and common knowledge.

Definition 6 A universal predicate is one of the following:

1. An elementary universal predicate.

2. Either oV ¥, o A or —p, where both ¢ and Y are universal predicates.
8. Ky e or Cup where o is a universal predicate.

The semantics of these predicates are as follows:

1. If p is an elementary universal predicate, then
vy if (RB)TEEe.

2. € v p Vo iff either € =y p or € =y ¥. The other cases are treated
similarly. :

X4
3. € Fvu K(p,gp iff for each run €' of 8 such that & (pw) &, ¢ Ev ¢. Similarly,
€ Ev Cyp iff for each run &' of B such that & Le, e ev e

Say that a predicate is monotone if the negation symbol does not appear in it.
In the sequel we examine the role of monotone universal predicates in distributed
systems. Our first proposition shows, in the flavor of theorem 8, that whenever a
monotone universal predicate holds in the morphic image of a run, then it holds
in the run itself. We show thereafter that elementary universal predicates are
expressive enough to separate the protocol hierarchy.

Theorem 12 Assume that B > C, that £ 1s a run of B, and that ¢ is a monotone
universal predicate. Then h(B,C)¢ =u ¢ implies € =y .

Proof: The proof proceeds by induction on the structure of the predicate. The
only interesting case here is the base case, where ¢ is an elementary universal

30

predicate, which we now prove. Assume that h(8,C)¢ =y . Then, by definition,
(h€)"1h(B,C)€ k= . But we have

(h)7'R(B,C)€ = (h€)T'hE(hE) "¢ 2 (RE)l¢.
Thus, (h8)~1¢ k= p, and therefore & Euv . 1

We proceed to separate the protocol hierarchy using monotone universal pred-
icates. Evidently, the basic predicates are completely useless for that purpose.
Note first that if B is strictly bigger than C, that is 8 > C, then there exists a run
§ of B such that the set (h¢)~1(h(B,C)€) strictly contains the set (hB)~le. Now
consider the elementary universal predicate ¢ = (hB)~1e. This predicate satisfies
§ Fu o; however, h(B,C)€ [eu . Thus, o separates the protocols 8 and C.

8.6 Dominance and Conveying

We now examine the effect of the dominance relation on the notion of conveying
introduced in [M]. Intuitively, a processor p conveys a fact to another processor q
if p is certain that ¢ will know that fact if it trusts p.

* Definition 7 Let £ be a run of the protocol B, and assume that p is correct at ¢
in §. Let o be a predicate such that

'3 l= K(p,l-l)‘P'

Then, p conveys p to g at £in € +f
§ & K(pe-1)K(q,0) (if p 13 correct at ¢, then).

We now prove that if the protocol B dominates the protocol C, then whenever
the processor p conveys the monotone universal predicate ¢ to ¢ in the morphic
image of a run of B, it conveys that same predicate in the run itself. A similar
assertion holds if the predicate is basic.

Theorem 13 Assume that B > C, and let h = h(B,C). Let o be a monotone
universal predicate, and £ a run of B. If p conveys ¢ to q at € in hE, then p
conveys that same predicate to q at € in €.

(p,t-1) (2:0)
Proof: Let &' and £"” be any two runs of B such that & e £, &" ~ ¢ and

¢" v “p is correct at £7.

31

Then by lemma 5, we have both hf’ N hf and hE" ~ hE' Furthermore,
we also have h€” =y “pis correct at £°, showing that h¢” =y ¢. But ¢ is

monotone, thus, by theorem 12, §” =y . Therefore, p also conveys p to g at ¢
in €. |

The case where ¢ is a basic predicate follows similarly. In particular, we have
the natural property that processors in corresponding runs of isomorphic protocols
convey precisely the same monotone universal predicates at each round.

8.7 Partitions of State Trees Induced by Protocols

In subsection 5.2 we showed that the states of every concise protocol induce a
partition of the states of the full-view protocol. This statement naturally leads to
the question: Given a partition of the states of the full-view protocol, can it be
identified with the partition induced by some concise protocol? In this subsection
we give a precise characterization of these partitions. As an immediate corollary of
this characterization we show that each protocol can be matched with an isomor-
phic one in which all the message generators are just the identity function. Thus,
non-trivial message generators do not introduce new elements in the hierarchy of
protocols v

Let p be a partition of the states of the full-view protocol. Our intuition is that
p can be identified with a concise protocol iff it is the image of some morphism.
A partition p is protocol induced if the following holds for every set of states
sp € STy, fori = 1,2, rounds ¢; > 0, and processors pE P If s and s are in
the same equivalence class for all p, then the states s! and s? are also in the same
equivalence class, where s' is the state tree whose p*! principal subtree is s 5, and
the roots of s! and s? carry precisely the same labels. We now have

Theorem 14 The partition p can be identified with a concise protocol iff p 1s
protocol induced.

Proof: Suppose that p can be identified with a concise protocol B, that is, the
states st and s? of the full-view protocol belong to the same equivalence class iff
hBs! = hBs2. Then, by the definition of k8, p is protocol induced.

Conversely, let p be protocol induced, and denote by [s] the equivalence class
of the state s of the full-view protocol in p. We now define the protocol B cor-
responding to p. Not surprisingly, its states are the equivalence classes in p. Its
message generators are identities and its state transition functions are given by

82 ([sp)..-[sql---1) = [s]

32

‘where s is a depth £ state tree whose root is labelled (p,¢,£), and whose ¢*! principal
subtree is a depth £— 1 state tree drawn from the equivalence class s,. Finally, 51,5
is well-defined since p is protocol induced. 1

We conclude this subsection by noticing that the message generators in the
protocol constructed in the sufficient part of the proof above are all identities.
Thus, we have

Corollary 2 For every protocol there ezists an 1somorphic protocol with identity
message generators.

Consequently, while designing protocols it is sufficient to consider only proto-
cols with identity message generators. Each such protocol can then be transformed
into an isomorphic one with least average bit complexity by the construction in
section 8.2.

8.8 Density and Limit Properties

We begin this section by counting the number of isomorphism classes of protocols.
While a simple counting argument shows that there are uncountably many proto-
cols, such an argument seems too coarse for measuring the cardinality of the set
of isomorphism classes. We evaluate this cardinality using diagonalization.

Theorem 15 There are uncountably many isomorphism classes of protocols.

Next, we examine density properties of the hierarchy. Given any two protocols
B and C such that B strictly dominates C, is there always a protocol strictly
between them? The answer to that question is no. Indeed, just take for B an
arbitrary protocol in which all the processors have exactly one state, excluding one
processor which has two states. This protocol strictly dominates each protocol in
which every processor has precisely one state. Furthermore, there certainly cannot
exist any protocol strictly between these two.

However, we now show that there are both infinite strictly decreasing sequences
of protocols and infinite strictly increasing sequences of protocols in the protocol
hierarchy. Furthermore, such sequences exist even though the input set for the
protocols contains precisely one element.

Consider the following strictly decreasing sequence of protocols. The £th ele-
ment in the sequence, B¢, is given intuitively as follows: Each of the processors
remembers all the messages and external inputs it has received throughout the
execution, excluding processor p. Processor p also remembers all the messages

33

and the inputs it has received; however, it forgets (through state transition) at
each round k € {1...¢} each of the messages that some other processor, say ¢,
transmits to it at k. Now, it is readily verified that 8¢ > B%t!. Similarly, we can
construct strictly increasing sequences by letting processors remember more as the
round number £ increases.

Having settled the issue of existence for both infinite strictly increasing and
infinite strictly decreasing sequences, we proceed to examine their limit properties.
We need in this section a technical assumption about the crashing assignment:
Each faulty processor completely ceases transmitting within a bounded number of
rounds after it becomes faulty.

We show that even the very expressive monotone universal predicates are not
sufficiently strong for separating each infinite strictly decreasing sequence of pro-
tocols from its limit. In fact, we prove a stronger assertion. A subset of a poset is
called a chain if every two elements in the subset are related. We prove that every
chain of protocols cannot be separated from its direct limit through monotone
universal predicates. Notice that in the hierarchy of protocols, as in any other
poset, the direct limit of a chain of protocols coincides with the coproduct of its
members.

Theorem 16 Let {B* | a € I} be a chain of protocols with direct limit BY. For a
run p of ¥V, let €2 = h%p and, similarly, let €1 = hllp. Then for each monotone
universal predicate © such that

kv for each a
also €U =y .
We begin by constructing the coproduct of the elements in a chain of protocols.

Lemma 15 Let C = {B* | « € I} be a chain of protocols. Then the coproduct
of the elements in C, denoted by B, is the protocol whose states are equivalence
classes of state functions induced by the relation =, which 1s given by fa = fy2 iff
faa= f2a for some o € I, and whose state transition functions are given by

¢5I}I(f‘,‘p ...p},l,pf,q L)a= 5:(f,,a...y;pf,qa...c).

In the next two lemmas we give properties of the direct limit protocol in terms of
the protocols in the chain,

Lemma 16 Let C = {B® | a € I} be a chain of protocols. Then,
(hll)~—1€ll = U(ha)—l Ea'

34

Proof: Assume first that p' € (h*)~1£2. Then we have
hup’ = hl.[(ha)—lga = hup — El.[.

Hence, p' € (h1)~1el,

Conversely, assume that p' € (h)~1¢1. We show the existence of an element
a € I such that p’ € (h®)~1¢°,

For (p,£) € CA and ¢ € P, let s and &' denote S[p](p,¢— 1| p 4 g) and
Slol(p,—1]p 4 q) respectively. Since hlp! = hllp, by theorem 1, hll¢ = hls;
hence, by the definition of A, f,r = f,. Thus, forsome B € I s fsr7 = fs7y whenever
B7 < BP, and by the definition of state functions h7s' = h7s. Finally, since faulty
processors behave maliciously for only finitely many rounds, the minimum over all

(p,£) € CA and g € P of the corresponding B?’s exists. Denote this minimum
protocol by B*. Then, h®p’ = h%p. |

. .
Lemma 17 For the run p of FV let £* = h%p and €' = hllp. Assume €U (ew) e,

Then for some o € I there ezists some run £'“ such that both ¢! = h(B*,)¢

~ and €~ e g,

‘Next, we prove the following technical assertion.

Lemma 18 Let C = {B* | a € I} be a chain of protocols with coproduct BU. Let
I=9L U, andlet C; = {B* |a € I;}, for i = 1,2. Then, the coproduct of either
C) or Cs is BU,

Proof: Either B{! or BY is dominated by all the elements in C'; thus, at least one
of them is BU. |

Finally, we prove theorem 16.
Proof: The proof proceeds by induction on the structure of the universal predicate
@, that for any chain of protocols

C={B*|ael}

and run p of FV, if €% = h%p =y ¢ for all a € I, then also € = rllp =y .
Base case: Assume that ¢ is elementary. Since for each a € I, £€* =y ¢, we have
U(h®)~1€* C . Thus, by lemma 16, (h!')~1€! C ¢ and therefore ¢! Eu .
Inductive step: Assume first that ¢ = ¢ v ¢. Since £~ =y ¢, either €% = 9 or
§% Fu ¢. Thus, there are index sets Iy and Iy such that I = I, U Iy, for o € I,

35

é* =y ¢, and, similarly, for o € I, £€* Ey ¢. By lemma 18 we may assume
without loss of generality that the chain {8% | @ € I} has coproduct BY. Hence,
by the inductive hypothesis, £ =y 4. Therefore, ! }=¢y . The case p = Y A ¢
is simple.

Next, assume that @ = K, 9%. We want to show & =y K, 99, that is,

(ps9)
for each ¢! '~ €U, ¢! |z 4. By lemma 17 there exists an o € I and a run

€'* for which both ¢ = A(8%, Bl)¢'* and ¢ ("g) £%. But &% =y K(pg¥ thus
€' =y 9, and by lemma 5 combined with the definition of knowledge, we have,
in fact, that &% j=y ¢ for each B? < B®. Therefore, by the inductive hypothesis
and by lemma 18, £'! oy 4. Thus, € =y p. The case where ¢ = Cy9 is treated
similarly. |

8.9 Minimal Bit Efficient Protocols for Predicates

In this section we address the following problem: Given a monotone universal
predicate, show that there exists a protocol that is as effective for that predicate
as the full-view protocol, minimal among the protocols that are as effective as full-
view for that predicate,.and arbitrarily close to optimal in average bit complexity.

First, notice that by theorem 12 no protocol can outperform the full-view
protocol, assuming comparable expressibility of adversaries. Indeed, if a predicate
holds in the morphic image of a run of #V, then that predicate holds in the run
itself. Now, a protocol B is effective for a monotone universal predicate g, if it is
as effective for ¢ as the full-view protocol. Thus, B is effective for ¢ if whenever
p v @ for arun p of 7V, also h2p =y .

The first issue that we examine is the existence of minimal effective protocols.
More specifically, we show that for any given monotone universal predicate ¢ there
exists an effective protocol 8 for ¢, such that no protocol that B strictly dominates
is effective for . This assertion is proved using Zorn’s lemma.

Lemma 19 Let ¢ be a monotone universal predicate and let) denote the set of
effective protocols for o, that 1s,

Q={B|Vpe R plkve— kv e}

Then, there ezists a minimal protocol in 1.

Proof: We prove the existence of the minimal element in 2 by first showing that
Q is inductive, and by applying Zorn’s lemma to this inductive set.

36

Let C = {B* € | « € I} be a non-empty chain in 2. We have to prove that
C has a coproduct in . As shown in lemma 15, C has a coproduct B in the
hierarchy. Furthermore, for every run p of 7V, if p =iy @, then h%p Ev o for all
a € I, and therefore, by theorem 16, hllp Ev o. Hence, B € . |

Having settled the issue of existence of minimal effective protocols for predi-
cates, we examine how efficient these protocols are in terms of average bit com-
plexity. We consider two cases: In the first case the task defined by the universal
predicate always terminates within a finite number of rounds, and, in the second
case, the task always runs forever.

We proceed to formalize the notion of tasks that terminate within a finite
number of rounds. Recall that two runs are identical at round ¢, denoted by
13 £ €', if up to and including round £ both runs have identical external inputs
and adversaries. A universal predicate o holds at a round £ in the run €, if every
run §' that is identical at round £ with ¢ satisfies that predicate. Thus, ¢ holds
at £in £ iff £’ =y ¢ for every run ¢’ satisfying &' L €. A universal predicate ¢ is
finitely attainable for B if for every run € of B there exists some round £ such that
@ holds at round £ in €. Denote the least such round € by L(¢).

Consider a monotone universal predicate ¢ and let B be effective for that
predicate. We proceed to show that'a necessary and sufficient condition for P to
be finitely attainable for ¥V is that ¢ be finitely attainable for 8. '

Lemma 20 Let be a monotone universal predicate and let B be effective for o.
Then, © 1is finitely attainable for ¥V iff it is finitely attainable for B.

Proof: Assume that o is finitely attainable for #V. Pick an arbitrary run £ of B.

By theorem 2, there exists a run p of FV such that £ = h3p. Since p is finitely

attainable for 7V, there exists some round € such that ¢ holds at £ in p. Pick

any run & such that ¢ £ €. A slight refinement of theorem 2 shows that there

exists some run p' such that & = h8p’ and ' £ p. Hence, p' =y ¢ and since B is
effective for o, & v . .

Conversely, assume that ¢ is finitely attainable for B. Pick a run p of FV.
Then, there exists a round £ such that for all & satisfying &’ £ pe p, & Euv .
Next, pick a run p' such that p' £ p. Since h8p £ hBp, Ry =y . Thus, by
theorem 12, p' =y . |

Lemma 21 Let the monotone universal predicate o be finitely attainable for ¥V -
and let B and C be two effective protocols for ¢ such that B = C. Then, for each
run £ of B, L(§) = L(hE).

37

Proof: Notice that since B and C are effective protocols for ¢, by lemma 20, the
function L is well-defined on the runs of these two protocols. Next, notice that for
proving that L(&) = L(h€) for all runs € of B, it is sufficient to show that for any
run p of ¥V, L(p) = L(k3p). Finally, this last equality follows directly from the
proof of lemma 20. 1

Assume that the predicate o is finitely attainable for 8 and consider the run
€ of B. Let the bit complezity of £, ©(&), be the number of bits transmitted by
the correct processors in § up to and including round L(§).

Since the function © is measurable, we may define the Average Protocol Com-
plezity of protocol B with respect to o, denoted by APC(B, p), as

APC(B,p) = EO(¢) = [©(8)du().

Next, we show that the probability measure on the runs of ¥V induces in a
natural way a probability measure on the runs of any other protocol 8. First, we
argue that

Lemma 22 The morphism h(B,C) is measurable.

Notice that the initials can also be used to generate a metrizable topology on
the set of runs, and that the morphisms are not only continuous in this topology
but also Lipschitz. The most significant consequence of lemma 22 is that the

probability measure #¥V on R¥" induces in a natural way a probability measure
" on R2. This measure is given by

v8 =%V (hB)—l.

Now, let the Average Task Complezity of a monotone universal predicate ¢,
denoted by ATC(p), be the minimum over each effective protocol for ¢ of the
average protocol complexity of that protocol. Thus, ATC is given by

ATC = min APC(B,p).
(e) B effective for p (B,%)

In the main theorem of this section we show that the average task complexity
of every monotone universal predicate can be approximated as close as desired
by minimal effective protocols for ¢. Moreover, within each isomorphism class
of every minimal effective protocol, we need only consider the protocol with least
average bit complexity whose construction was given in section 8.2. '

38

Theorem 17 Let the monotone universal predicate o be finitely attainable. Then,
there ezists a LAC minimal effective protocol for o with average protocol complezity
arbitrarily close to the average task complezity of .

We first show that the average protocol complexity monotonically decreases
with the relation > in Q2. We need the following technical result:

Lemma 23 Assume that B > C and let A C RC. Then,
(hB)—lhB (hC)—lA — (hc)_lA.
Proof: Assume that s € (h3)~'hB(h¢)~1A. Then, there exists some s’ such that

both h®s' € A and h8s = hBs. But B > C, therefore h¢s = hCs'. Hence,
s € (h6)1A. |

Lemma 24 Let the predicate o be finitely attainable for ¥V, and let B and D
be any two effective protocols for p such that B > D. Then, for some protocol C
isomorphic to D,

APC(B,p) 2 APC(C, p).

Proof: By theorem 9 there exists a protocol € isomorphic to D such that for every
state s2 € STB and processor ¢,

2 58| > |ug ,hs?|

where the morphism h stands for h(8,C).
Pick now an arbitrary run £ of 8. By lemma 21, L(€) = L(h€); hence,

6(&) = 6(h€) 2 0.
For proving this lemma we now show that
E6(rE) = ES(n)

where the expectation on the left hand side is taken over runs £ of B and on the
right hand side over runs 5 of C. In other words, we show that

[ewowr@ = [emasm).

39

We use an argument similar to the one appearing in theorem C, section 39 in
[H]. We only have to show that for any measurable set A C RC,

[y xara2@ = [xamavsin

where x 4 is the characteristic function of A in R€.
Indeed, by lemma 23

[, xatbya (@) =
= p¥V ((hB)—lhB (hc)—lA)
vV ((r6)714)

= [xamacm 0

Next, we state two simple lemmas, the first about inductive posets and the second
about subsets of the real line.

Lemma 25 Let 2 be an inductive poset, and let M be the set of all minimal
elements in Q. Then for each w € Q there ezists an m € M sich that w.> m.

Lemma 26 Let A be a subset of [0,00). Then, A has either a least point or a
least cluster point.

We complete now the proof of theorem 17.
Proof: Notice first that by lemma 24 the average protocol complexity monoton-
ically decreases with > in . Second, notice that by lemma 25 each protocol
that is effective for ¢ dominates a minimal effective protocol for that predicate.
Thus, in evaluating the average task complexity of ¢, it is sufficient to consider
only minimal effective protocols for that predicate whose existence is guaranteed
by lemma 19. Furthermore, within each isomorphism class of minimal effective .
protocols one need only consider the LAC protocol constructed in section 8.2.
Let A be the set of average protocol complexities of LAC minimal effective
protocols for ¢. By lemma 26, A has either a least point or a least cluster point.
Thus, there exists a LAC minimal effective protocol for ¢, with average protocol
complexity arbitrarily close to the average task complexity of ©. |

Finally, we consider the case where the task defined by ¢ runs forever. Here
the bit complexity of the run &, ®(£), might be given by the limsup over the round
number £ of the (possibly weighted) average number of bits transmitted per round

40

by the correct processors in the first £ rounds of £. Recall that the limsup of a
sequence of measurable functions is measurable, see [H], section 20, theorem A;
hence, ® is also measurable and, therefore, our approach extends to this case as
well.

-9 FYV is Optimal for Common Knowledge

In this section we show that, assuming comparable expressibility of adversaries,
the full-view protocol along with all the other protocols in its isomorphism class
attain strictly more common knowledge about monotone universal predicates than
any other protocol in the hierarchy.

We impose some restrictions on the behavior of faulty processors in runs con-
sidered both in this section and in the following one. An arbitrary processor is
either correct at all rounds, or otherwise, it is correct up to some round, after
which it malfunctions, and thereafter it does not transmit at all. The actions of
malfunctioning processors are fully determined by the adversary as in previous
sections. We also bound the number of faulty processors by the parameter £. For
avoiding degenerate cases we require that ¢ < n — 1, where n denotes the number
of faulty processors in the system.

Notice that whenever p and ¢ are faulty at the same round £ in a run, the
correct processors will never know what information p transmitted to ¢ at £. To
eliminate this redundancy in the definition of runs, we assume in this section that
for such pair of processors p and ¢ at round ¢,

AD(p,q,¢) = 0.

For the same reasons we assume that the faulty processors do not receive external
‘inputs. These assumptions guarantee that in any pair of distinct runs of #V, there
always exists a processor and a round, such that either this processor is correct
at that round in both runs and in different states in both runs, or the processor
is correct at that round in one of the runs and faulty in the other. We now state
and prove the main theorem of this section.

Theorem 18 Let B be an arbitrary protocol such that ¥V > B. Then there exists
e run p of ¥V and a monotone universal predicate ¢ such that

p v Cep

but
hp v Cep.

41

Proof: Since ¥V > B, there exists a run & of B such that
|R~1e'] > 1.

Thus, there exist two runs p' and p" of FV such that hp' = hp" = €&, but p' # p".
Since IN[p'] = IN[p"] and CA[p'] = CA[p"], there exists a processor p and a round
¢—1 such that p is correct at £—1 in both p’ and p", and the states s' = S[p'](p, £-1)
and s" = S[p"](p, € — 1) satisfy s’ # &".

We proceed to construct the monotone universal predicate p. First, let

¥ ={pe RV | S[(p,t-1) = ¢'}.

Then, the monotone universal predicate ¢ is given by

p= K(p,t—1)¢-

In order to guarantee that ¢ will be common knowledge in some run of 7V, we
modify slightly the run p'. Denote by j the number of processors that are faulty
up to and including round £ — 1 in p'. Pick now an arbitrary set of { — 7 correct
processors at £—1 in p’, different from p, and let each of them become faulty at £-1
in p. Each of the malfunctioning processors at £~ 1 in p will transmit precisely as
in p’ with one exception: Let g # p be a correct processor at £ in p whose existence
is guaranteed since n — 1 > ¢. We let each malfunctioning processor at £— 1 in
p transmit the empty message to ¢ at £ — 1. Hence, by the end of round £ -1,
processor ¢ will have seen precisely ¢ empty messages, and therefore the views of
the correct processors at £ in p are common knowledge there.

We prove in the following two assertions that the run p that we just constructed
along with the universal predicate © indeed satisfies the two requirements stated
in the theorem.

Lemma 27

pEv Cep
Proof: Let the run p,, of ¥V be given by

(Pil it) (Pig 7‘) (pt'm ut)
p=p0 ~ pf1 ~ ... ~ Pm.

We have to show that pm Fu @, that is pm v K(p e-1)¥-

By the construction of p, the state of each correct processor at £in p completely
specifies the state of every other processor at £ in that run. By straightforward
induction we have that p;,, is correct at £ in both p and pm, and also that

Slpm](Dim > €) = S[p)(Pim ©)-

42

Now, since p, is a run of FV and p is correct at £ — 1 in pyp,

Slom)(p, - 1) =¢'.

(p,l—l)
Thus, every run p!, such that p, ~ pm also satisfies

S[p;n](pae -1) = s

showing that i, =v {p | S[p](p,€ — 1) = &'}, or written differently, o, =y .
Consequently, pm v K(p,e-1)¥ and also p =y Cep as required. |

Lemma 28

z hp ey Cep

Proof: We prove this lemma by showing that hp ey @. First, recall that hp' = hp".
Second, notice that p receives precisely the same messages up to and including

(pvt_l)
round £ — 1 in the runs p and p’. Hence, hp ~ ~ hp". Third, p" ¥ 1, since

Y = {p | Sppl(p,€ - 1) = §'} and &' # &". Thus, hp" v v, implying that
hp eu K(pe-1)¥ and, therefore, hp ey . |

This completes the proof of the theorem. |

Say that a protocol is best for common knowledge if it attains as much common
knowledge about monotone universal predicates as any other protocol, assuming
comparable expressibility of adversaries. In this light, theorem 18 asserts that best
protocols for common knowledge not only exist, but, in fact, they are isomorphic to
the full-view protocol. Theorem 18 does not estimate, however, the bit complexity
of best protocols for common knowledge. An exponential lower bound for this

- complexity follows directly from theorem 20 in the following section.

Corollary 3 Best protocols for common knowledge require, in the worst case, ez-
ponentially in t long messages.

10 The Lower Bound for SBA

Assume that the message set of the protocols in the hierarchy is the set of finite
binary strings. We show that, subject to comparable expressibility of adversaries,

43

every protocol that is as effective for Simultaneous Byzantine Agreement (SBA)
as ¥V requires in the worst case exponential in ¢ communication.

SBA is a variant of the classical Byzantine Agreement problem introduced in
[PSL]. Assume that the external inputs at round O are in {0, 1}. Say that a protocol
attains SBA if the following four conditions hold in every run of that protocol:

*= Every correct processor commits to either 0 or 1.
* All the correct processors commit to the same value.

* If the external inputs at round O are identical, then all the correct proces-
sors commit to this common input.

* The correct processors commit simultaneously, that is, at the same round.

The notion of effectiveness for SBA is motivated by the following result,

Theorem 19 Let p be a run of FV. If SBA s attained at £ in hp, then it is also
attained at that same round in p.

Proof: Assume by contradiction that SBA is not attained at £ in p. Then there
are two runs p’ and p” of 7V such that both p £ p and p £ p", and whereas the
initial inputs in p’ are all 1, the initial inputs in p" are all 0.

But since ~ is the transitive closure of the relations & and by lemma 2, hp £ hp'

and, similarly, hp £ hp". Thus, SBA is also not attained at £ in hp—a contradiction.
l .

A protocol B is effective for SBA if the converse of theorem 19 holds, that is,
whenever SBA is attained at a round in a run p of ¥V, then it is also attained at
that same round in the morphic image h2p of that run. Throughout this section
h will stand for h2. We first prove the following technical result:

Lemma 29 Let B be an effective protocol for SBA. Let s® be a state of B for
-which there exzist a run p of ¥V, a processor p € P, and a round number £ > 1,
such that p is correct at £ in p, the state s = S[p|(p,£ — 1) satisfies s = hs and
SBA ts not attained at £+ 1 in p. Then, the following two hold:

1. |h1s8| = 1.
2. For everyr# p correct at £+ 1,

hp |= K(r¢) “if p 1s correct at £, then its state at £— 1 is PLES

44

Proof:
1. Assume by contradiction that |h~2s2| > 1, that is, there exists a state s' of 7V
such that both s’ # s and hs' = hs = s2.

Since SBA is not attained at £4-1 in p, there exists (by appendix C in [M] and

section 6.1 in [MT]) a run p' of FV such that p’ el p, which differs from p in at
most the following: First, at least one processor other than p is malfunctioning at
¢ in p'. Second, denote by j the number of malfunctioning processors at £ in p.
Then, there exists a set of cardinality ¢ — j — 1 of correct processors in p distinct
from p, which are malfunctioning at £ in p'. Third, p is correct at £ in o', but does
not transmit at all at £+ 1 in p'. Finally, all the malfunctioning processors at ¢
in p' transmit at £ in p' precisely as in p at £ with one possible exception: Each of
them transmits the empty message to some other processor ¢ # p that is correct
at £+ 1. The existence of such a processor ¢ is guaranteed since n — 1 > ¢.

Recall that by assumption SBA is not attained at £+1 in p, thus, since p’ et P
SBA is also not attained at £+1 in p/. Next, since 7V > B, SBA is also not attained
at £+ 1in hp'.)

We now construct a run p” which differs from p’ only in that p malfunctions
at £in p" and the adversary corresponding to p at that round is given by:

Sl"l(p,l - T|p5q) = & _
Sl -1 p>u) = s for u # p,g
The crucial property satisfied by p” is
Lemma 30 SBA is attained at £+ 1 in p".

Proof: First, notice that all the correct processors at £+ 1 in p" receive ¢ empty
messages and therefore they know that the information conveyed through the non-
empty messages they receive at £4 1 is trustworthy. Furthermore, each of them
knows that precisely ¢ processors are faulty at £. Indeed, g conveys to all of them
at £+ 1 that it received ¢ — 1 empty messages at £, and that p conveyed to it at £
that p’s state at £—1 was s'. Next, there exists at least one other correct processor
u # g at £+ 1, and u conveys to all processors at £+ 1 that p conveyed to it that
p’s state at £ — 1 was s.

But s # ¢, thus, all the correct processors know that p malfunctioned at &,
since p transmitted asymmetrical messages. Therefore, the states of the correct
processors at £+ 1 in p" are common knowledge there, and SBA is attained at
£+ 1inp". |

However,

45

Lemma 31 SBA is not attained at £+ 1 in hp".

Proof: Since hs = hs', exactly the same messages are transmitted in the runs hp’
and hp”. Now, since SBA is not attained at £+ 1 in hp’, SBA is also not attained
at £+ 1in hp". 1

Finally, it follows from these two assertions that B is not effective for SBA-a
contradiction.

2. We have to prove that for every processor r # p correct at £+ 1,
hp b= K(r ¢ “if p is correct at £, then its state at - 1is s

Assume by contradiction that the above is false. Thus, there exists a run r'd

of ¥V such that hp' (2:) hp, p is correct at £ in hp/, but the state s given by
s' = S[hp'|(p, € — 1) satisfies s’ # 2. Informally, as far as r knows at £ in hp,
p could have been correct at £, and in either state s® or &8 or some other state.
Now, denote by s and s’ the states S[p](p,! — 1) and S[o'](p,£ — 1) respectively,
and notice that since s2 # &2, also s # s'. The proof, and in particular the
construction of p", proceed now exactly as in part one. |

Equipped with this lemma we now prove the central result in this section which
asserts that every effective protocol for SBA requires, in the worst case, exponential
in ¢ communication.

Theorem 20 Any effective protocol for SBA requires, in the worst case, exponen-
tially in t long messages.

Proof: Let B be an effective protocol for SBA. We will show that there exists a
run of that protocol in which some correct processor transmits exponentially in ¢
many bits before committing to the decision value of SBA.

Consider the following basic construction for runs of FV: Assume that t > 5

and let f be given by
f=10-3)/2].

Let the processors pai—; and pg; malfunction at round i, for ¢ = 1,..., f, but let
each of them follow 7V there. The processor pas+1 will malfunction at f+1 and it
will also transmit according to FV there to all the other processors excluding pn-1
to which it will convey some, and possibly many, actual lies as follows: Ptdcessor
p2ys+1 will forge at f+ 1 a content for every chain of processors given by

f

Piy 7 Dig = ... Pig

46

and satisfying either Pi; = P2j—1 OF p;; = paj, for each j = 1,..., f. Two remarks
are worth mentioning here: First, the state of p2r+1 at f determined by each set

of forged content for these chains is in ST;2 41,0+ Second, there are exponentially

in ¢ many such chains, say ¢!, for some ¢ > 1, and therefore 2¢ possible states for
P2s4+1 at round f.

Denote by p;, for j € {1... 2""}, the run whose first f rounds are as described
above, and in which pas4) transmits to pn—; at f+ 1 by applying the message
generator to the jth state. Finally, let the processors po s+2 and pagi3 malfunction
at f+2 and f+3 respectively, and let both of them follow 7V while malfunctioning.
Notice that the number of faulty processors up to and including f + 3 in each of
the runs p; is 2f + 3, and since

2f+3<2[(t-3)/2]+3<t

at most ¢ processors fail in each run p;. Finally, let the processors p,—; and p, be
correct at all rounds in each of these runs.

Lemma 32 The states Shp;|(pp-1,f + 1) for j € {1.. .2""} are all distinct.
Proof: Assume by cont;a.c_liction that

S[hpjl(Pn-1, f + 1) = Slhpr](Pn-1, f + 1)
forj,ke {1.. .2""}. Then, by theorem 1,

hS[p;)(Pn-1, f + 1) = hS[p](Pn—1, f + 1) = S[hp;](Pn-y, f + 1)

and therefore
|h=*S[ho;](Prm1, f + 1) > 1.

But the protocol B is effective for SBA and the state S[hp;](pn—1, f+1) satisfies the
conditions specified in lemma 29-a contradiction to part 1 of that lemma. |

Lemma 33 There ezists an integer j € {1.. .2"‘} such that processor p,..; trans-
mits at least ¢t bits to processor p, at f +2 in hp;j.

Proof: Assume by contradiction that for all j € {1...2¢'}

|M[hp;](Pr-1,Pn, f + 2)] < €.

47

Since there are at most 2¢ — 2 such messages, but 2¢° distinct runs pj, by the
pigeonhole principle there are two indices 7 and k in {1.. .2”‘} such that

M{hp;|(Pn—1,Pn, f +2) = M[hpe|(pn-1,Pn, f + 2).

Now, since corresponding processors, distinct from p,-1, in the runs hp; and hp;
are in identical states at round f + 1 we have

S{ko;](pn, f +2) = S[hpx](pa, f +2).
But by lemma 32,
S[hejl(Pa-1, f + 1) # Slhoe](pn-1, f + 1)

hence, processor p, does not know at f + 2 in hp; the state of p,—1 at f + 1. But
this contradicts part 2 of lemma 29 applied to the state S[hp;}(pn-1, f+1)- |

This assertion completes the proof of theorem 20. |

11 The Universality of FV

In this section we prove that the full-view protocol satisfies the universal property.
In order to make the universality assertion precise, we need to specify carefully
the categories and the functors that we employ.

Definition 8 Let DS denote the category whose objects are protocols and whose
morphisms are maps H : B — C such that H = (h,h,), for

h:STE —STS end h,:E8 = %C,

and the following diagrams commute:

8 B . ST
[1sT x £8 ST?
h™ x h, h
c : - c

[ISTS x = z ST

48

1 h h|

\ /S
s;c,!,o ST,

/(p’w7e> /(p?"L’e>

1\ h 1\ h
(p,9,¢) . (p,L,8)

We leave it for the reader to verify that the category DS given in this defini-
tion indeed satisfies the axioms of category theory. Furthermore, notice that by
theorem 6, this definition coincides with definition 4. Next, consider the category
INPUT whose objects are input sets and whose morphisms are maps £8 — ¢,
where £2 and ¢ are objects in INPUT. Finally, consider the very forgetful functor
F : DS — INPUT given in the obvious way. Now the universality statement can be
made precise.

Theorem 21 For ¥ € INPUT, let ¥V denote the full-view protocol with input set
L, and let I denote the identity morphism from I to itself. Then, the pair (FV,I)
18 universal from T to the functor F.

Proof: Let B be an object in DS with input set £2, and let f € hom(Z,28). We
must show that there exists a unique morphism

H=(h,h):FV — B

such that the following diagram commutes.

49

28
Since H is a morphism in DS we have the following recursive equations
7V B(pFV 8 p 7V
hspit = 6? (hsp,l—l .. ‘“q,phsq’t_l . .h‘_l.)

where the root of the state tree s; J is labelled {p, ¢, £) and the ¢*P principal subtree
of s;’," }’ is s; }’_1. The initial conditions for these recursive equations are given by
FV _. B8
hspo = sp0-
~ Hence, by induction on the round number £, the function h exists and is unique;
therefore, the morphism H also exists and is unique. |

Acknowledgements: I am indebted to Neil Inmerman for very substantial con-
tributions throughout the development of this work. I thank Jerrold Leichter for
untiring support. I am grateful to Michael Fischer and George Seligman. I also
thank Joyce Gastel, David Greenberg, Chun-Chung Hsieh, Gregory Kozlovsky,
Abhiram Ranade, Zeév Rudnick and Allan Woods. I thank Michael Barr for al-
lowing me to use his TgX routines for category theory. I thank Moshe Vardi for
encouraging me to find an alternate definition for the notion of ck-informative
introduced in [M].

References

[AM] Arbib M., Manes E. “Arrows, Structures, and Functors. The Cate-
gorical Imperative.” Academic Press, (1975).

[H] Halmos P. “Measure Theory.” D. Van Nostrand Company, Inc.
(1961). ‘

[J1] Jacobson N. “Basic Algebra 1.” Freeman and Company, San Fran-

cisco, (1974).

50

[92]

[LFF]

M]

[ML]

[MT]

[PSL]

Jacobson N. “Basic Algebra 2.” Freeman and Company, San Fran-
cisco, (1980).

Lynch N., Fischer M., Fowler R. “A Simple and Efficient Byzan-
tine Generals Algorithm.” Proc. of the 2"¢ Symp. on Reliability in
Distributed Software and Database Systems., (1982), 46-52.

Michel R. “Efficient Protocols for Common Knowledge and Simulta-
neous Byzantine Agreement.” YALEU/DCS/TR-608, Yale Univer-
sity, (Feb. 1988).

Mac Lane S. “Categories for the Working Mathematician.” Springer-
Verlag, (1971).

‘Moses Y., Tuttle M. “Programming Simultaneous Actions Using

Common Knowledge.” Algorithmica, Springer-Verlag, New York,
(1988), 3: 121-169. :

Pease M., Shostak R., Lamport L. “Reaching Agreement in the Pres-
ence of Faults.” JACM, 27:2., (1980), 228-234.

51

