
Yale University
Department of Computer Science

P.O. Box 208205
New Haven, CT 06520–8285

Assigning Tasks for Efficiency in Hadoop

Michael J. Fischer
Yale University

Xueyuan Su
Yale University

Yitong Yin
Nanjing University, China

YALEU/DCS/TR-1423
March 31, 2010

(corrected to May 14, 2010)

Assigning Tasks for Efficiency in Hadoop∗

Michael J. Fischer
Department of Computer Science

Yale University
michael.fischer@yale.edu

Xueyuan Su†

Department of Computer Science
Yale University

xueyuan.su@yale.edu

Yitong Yin‡

State Key Laboratory for Novel Software Technology
Nanjing University, China

yinyt@nju.edu.cn

Abstract

In recent years Google’s MapReduce has emerged as a leading large-scale data processing
architecture. Adopted by companies such as Amazon, Facebook, Google, IBM and Yahoo!
in daily use, and more recently put in use by several universities, it allows parallel processing
of huge volumes of data over cluster of machines. Hadoop is a free Java implementation of
MapReduce. In Hadoop, files are split into blocks and replicated and spread over all servers
in a network. Each job is also split into many small pieces called tasks. Several tasks are
processed on a single server, and a job is not completed until all the assigned tasks are finished.
A crucial factor that affects the completion time of a job is the particular assignment of tasks to
servers. Given a placement of the input data over servers, one wishes to find the assignment that
minimizes the total completion time. In this paper, an idealized Hadoop model is proposed to
investigate the Hadoop task assignment problem. It is shown that there is no feasible algorithm
to find the optimal Hadoop task assignment unless P = NP . Assignments that are computed
by the round robin algorithm inspired by the current Hadoop scheduler are shown to deviate
from optimum by a multiplicative factor in the worst case. A flow-based algorithm is presented
that computes assignments that are optimal to within an additive constant.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifications—concur-
rent, distributed, and parallel languages; F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion—parallelism and concurrency; F.1.3 [Computation by Abstract Devices]: Complexity Measures and
Classes—reducibility and completeness; F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—sequencing and scheduling

General Terms: Algorithms, Performance, Theory
Additional Key Words and Phrases: task assignment, load balancing, NP-completeness, approximation algo-
rithm, MapReduce, Hadoop

∗To be presented at SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
†Supported by the Kempner Fellowship from the Department of Computer Science at Yale University.
‡Supported by the National Science Foundation of China under Grant No. 60721002. This work was done when

Yitong Yin was at Yale University.

1

2 1 INTRODUCTION

1 Introduction

1.1 Background

The cloud computing paradigm has recently received significant attention in the media. The cloud is
a metaphor for the Internet, which is an abstraction for the complex infrastructure it conceals. Cloud
computing refers to both the applications delivered as services over the Internet and the hardware
and software that provide such services. It envisions shifting data storage and computing power
away from local servers, across the network cloud, and into large clusters of machines hosted by
companies such as Amazon, Google, IBM, Microsoft, Yahoo! and so on.

Google’s MapReduce [8, 9, 16] parallel computing architecture, for example, splits workload
over large clusters of commodity PCs and enables automatic parallelization. By exploiting parallel
processing, it provides a software platform that lets one easily write and run applications that process
vast amounts of data.

Apache Hadoop [4] is a free Java implementation of MapReduce in the open source software
community. It is originally designed to efficiently process large volumes of data by parallel process-
ing over commodity computers in local networks. In academia, researchers have adapted Hadoop to
several different architectures. For example, Ranger et al. [18] evaluate MapReduce in multi-core
and multi-processor systems, Kruijf et al. [7] implement MapReduce on the Cell B.E. processor
architecture, and He et al. [14] propose a MapReduce framework on graphics processors. Many
related applications using Hadoop have also been developed to solve various practical problems.

1.2 The MapReduce Framework

A Hadoop system runs on top of a distributed file system, called the Hadoop Distributed File System
(HDFS). HDFS usually runs on networked commodity PCs, where data are replicated and locally
stored on hard disks of each machine. To store and process huge volume of data sets, HDFS typically
uses a block size of 64MB. Therefore, moving computation close to the data is a design goal in the
MapReduce framework.

In the MapReduce framework, any application is specified by jobs. A MapReduce job splits
the input data into independent blocks, which are processed by the map tasks in parallel. Each map
task processes a single block1 consisting of some number of records. Each record in turn consists
of a key/value pair. A map task applies the user defined map function to each input key/value pair
and produces intermediate key/value pairs. The framework then sorts the intermediate data, and
forwards them to the reduce tasks via interconnected networks. After receiving all intermediate
key/value pairs with the same key, a reduce task executes the user defined reduce function and
produces the output data. Finally, these output data are written back to the HDFS.

In such a framework, there is a single server, called the master, that keeps track of all jobs
in the whole distributed system. The master runs a special process, called the jobtracker, that is
responsible for task assignment and scheduling for the whole system. For the rest of servers that are
called the slaves, each of them runs a process called the tasktracker. The tasktracker schedules the
several tasks assigned to the single server in a way similar to a normal operating system.

1Strictly speaking, a map task in Hadoop sometimes processes data that comes from two successive file blocks.
This occurs because file blocks do not respect logical record boundaries, so the last logical record processed by a map
task might lie partly in the current data block and partly in the succeeding block, requiring the map task to access the
succeeding block in order to fetch the tail end of its last logical record.

1.3 Related Work 3

The map task assignment is a vital part that affects the completion time of the whole job. First,
each reduce task cannot begin until it receives the required intermediate data from all finished map
tasks. Second, the assignment determines the location of intermediate data and the pattern of the
communication traffic. Therefore, some algorithms should be in place to optimize the task assign-
ment.

1.3 Related Work

Since Kuhn [15] proposed the first method for the classic assignment problem in 1955, variations of
the assignment problem have been under extensive study in many areas [5]. In the classic assignment
problem, there are identical number of jobs and persons. An assignment is a one-to-one mapping
from tasks to persons. Each job introduces a cost when it is assigned to a person. Therefore, an
optimal assignment minimizes the total cost over all persons.

In the area of parallel and distributed computing, when jobs are processed in parallel over sev-
eral machines, one is interested in minimizing the maximum processing time of any machines. This
problem is sometimes called the minimum makespan scheduling problem. This problem in gen-
eral is known to be NP-complete [11]. Under the identical-machine model, there are some well-
known approximation algorithms. For example, Graham [12] proposed a (2− 1/n)-approximation
algorithm in 1966, where n is the total number of machines. Graham [13] proposed another 4/3-
approximation algorithm in 1969. However, under the unrelated-machine model, this problem is
known to be APX-hard, both in terms of its offline [17] and online [1, 2] approximability.

As some researchers [3, 4] pointed out, the scheduling mechanisms and polices that assign tasks
to servers within the MapReduce framework can have a profound effect on efficiency. An early
version of Hadoop uses a simple heuristic algorithm that greedily exploits data locality. Zaharia,
Konwinski and Joseph [19] proposed some heuristic refinements based on experimental results.

1.4 Our Contributions

We investigate task assignment in Hadoop. In Section 2, we propose an idealized Hadoop model to
evaluate the cost of task assignments. Based on this model, we show in Section 3 that there is no
feasible algorithm to find the optimal assignment unless P = NP . In Section 4, we show that task
assignments computed by a simple greedy round-robin algorithm might deviate from the optimum
by a multiplicative factor. In Section 5, we present an algorithm that employs maximum flow and
increasing threshold techniques to compute task assignments that are optimal to within an additive
constant.

2 Problem Formalization

Definition 1 A Map-Reduce schema (MR-schema) is a pair (T, S), where T is a set of tasks and
S is a set of servers. Let m = |T | and n = |S|. A task assignment is a function A : T → S that
assigns each task t to a server A(t).2 LetA = {T → S} be the set of all possible task assignments.

2In an MR-schema, it is common that |T | ≥ |S|. Therefore in this paper, unlike the classic assignment problem
where an assignment refers to a one-to-one mapping or a permutation [5, 15], we instead use the notion of many-to-one
mapping.

4 2 PROBLEM FORMALIZATION

An MR-system is a triple (T, S,w), where (T, S) is an MR-schema and w : T ×A → Q+ is a cost
function.

Intuitively, w(t, A) is the time to perform task t on server A(t) in the context of the complete
assignment A. The motivation for this level of generality is that the time to execute a task t in
Hadoop depends not only on the task and the server speed, but also on possible network congestion,
which in turn is influenced by the other tasks running on the cluster.

Definition 2 The load of server s under assignment A is defined as LAs =
∑

t:A(t)=sw(t, A). The
maximum load under assignment A is defined as LA = maxs LAs . The total load under assignment
A is defined as HA =

∑
s L

A
s .

An MR-system models a cloud computer where all servers work in parallel. Tasks assigned
to the same server are processed sequentially, whereas tasks assigned to different servers run in
parallel. Thus, the total completion time of the cloud under task assignment A is given by the
maximum load LA.

Our notion of an MR-system is very general and admits arbitrary cost functions. To usefully
model Hadoop as an MR-system, we need a realistic but simplified cost model.

In Hadoop, the cost of a map task depends frequently on the location of its data. If the data is on
the server’s local disk, then the cost (execution time) is considerably lower than if the data is located
remotely and must be fetched across the network before being processed.

We make several simplifying assumptions. We assume that all tasks and all servers are identical,
so that for any particular assignment of tasks to servers, all tasks whose data is locally available take
the same amount of time wloc, and all tasks whose data is remote take the same amount of time
wrem. However, we do not assume that wrem is constant over all assignments. Rather, we let it grow
with the total number of tasks whose data is remote. This reflects the increased data fetch time due
to overall network congestion. Thus, wrem(r) is the cost of each remote task in every assignment
with exactly r remote tasks. We assume that wrem(r) ≥ wloc for all r and that wrem(r) is (weakly)
monotone increasing in r.

We formalize these concepts below. In each of the following, (T, S) is an MR-schema.

Definition 3 A data placement is a relation ρ ⊆ T × S such that for every task t ∈ T , there exists
at least one server s ∈ S such that ρ(t, s) holds.

The placement relation describes where the input data blocks are placed. If ρ(t, s) holds, then
server s locally stores a replica of the data block that task t needs.

Definition 4 We represent the placement relation ρ by an unweighted bipartite graph, called the
placement graph. In the placement graph Gρ = ((T, S), E), T consists of m task nodes and S
consists of n server nodes. There is an edge (t, s) ∈ E iff ρ(t, s) holds.

Definition 5 A partial assignment α is a partial function from T to S. We regard a partial assign-
ment as a set of ordered pairs with pairwise distinct first elements, so for partial assignments β
and α, β ⊇ α means β extends α. If s ∈ S, the restriction of α to s is the partial assignment
α|s = α∩ (T ×{s}). Thus, α|s agrees with α for those tasks that α assigns to s, but all other tasks
are unassigned in α|s.

5

Definition 6 Let ρ be a data placement and β be a partial assignment. A task t ∈ T is local in
β if β(t) is defined and ρ(t, β(t)). A task t ∈ T is remote in α if β(t) is defined and ¬ρ(t, β(t)).
Otherwise t is unassigned in β. Let `β , rβ and uβ be the number of local tasks, remote tasks, and
unassigned tasks in β, respectively. For any s ∈ S, let `βs be the number of local tasks assigned to s
by β. Let kβ = maxs∈S `

β
s .

Definition 7 Let ρ be a data placement, β be a partial assignment, wloc ∈ Q+, and wrem : N →
Q+ such that wloc ≤ wrem(0) ≤ wrem(1) ≤ wrem(2) Let wβrem = wrem(rβ + uβ). The Hadoop
cost function with parameters ρ, wloc, and wrem(·) is the function w defined by

w(t, β) =
{
wloc if t is local in β,
wβrem otherwise.

We call ρ the placement of w, and wloc and wrem(·) the local and remote costs of w, respectively.
Let Kβ = kβ · wloc.

The definition of remote cost under a partial assignment β is pessimistic. It assumes that tasks
not assigned by β will eventually become remote, and each remote task will eventually have cost
wrem(rβ + uβ). This definition agrees with the definition of remote cost under a complete assign-
ment A, because uA = 0 and thus wArem = wrem(rA + uA) = wrem(rA).

Since ρ is encoded by mn bits, wloc is encoded by one rational number, and wrem(·) is encoded
by m + 1 rational numbers, the Hadoop cost function w(ρ, wloc, wrem(·)) is encoded by mn bits
plus m+ 2 rational numbers.

Definition 8 A Hadoop MR-system (HMR-system) is the MR-system (T, S,w), where w is the
Hadoop cost function with parameters ρ, wloc, and wrem(·). A HMR-system is defined by
(T, S, ρ, wloc, wrem(·)).

Problem 1 Hadoop Task Assignment Problem (HTA)

1. Instance: An HMR-system (T, S, ρ, wloc, wrem(·)).

2. Objective: Find an assignment A that minimizes LA.

Sometimes the cost of running a task on a server only depends on the placement relation and its
data locality, but not on the assignment of other tasks.

Definition 9 A Hadoop cost function w is called uniform if wrem(r) = c for some constant c and
all r ∈ N. A uniform HMR-system (UHMR-system) is an HMR-system (T, S, ρ, wloc, wrem(·)),
where w is uniform.

Problem 2 Uniform Hadoop Task Assignment Problem (UHTA)

1. Instance: A UHMR-system (T, S, ρ, wloc, wrem(·)).

2. Objective: Find an assignment A that minimizes LA.

6 3 HARDNESS OF TASK ASSIGNMENT

The number of replicas of each data block may be bounded, often by a small number such as 2
or 3.

Definition 10 Call a placement graph G = ((T, S), E) j-replica-bounded if the degree of t is at
most j for all t ∈ T . A j-replica-bounded-UHMR-system (j-UHMR-system) is a UHMR-system
(T, S, ρ, wloc, wrem(·)), where Gρ is j-replica-bounded.

Problem 3 j-Uniform Hadoop Task Assignment Problem (j-UHTA)

1. Instance: A j-UHMR-system (T, S, ρ, wloc, wrem(·)).

2. Objective: Find an assignment A that minimizes LA.

3 Hardness of Task Assignment

In this section, we analyze the hardness of the various HTA optimization problems by showing the
corresponding decision problems to be NP-complete.

3.1 Task Assignment Decision Problems

Definition 11 Given a server capacity k, a task assignment A is k-feasible if LA ≤ k. An HMR-
system is k-admissible if there exists a k-feasible task assignment.

The decision problem corresponding to a class of HMR-systems and capacity k asks whether a
given HMR-system in the class is k-admissible. Thus, the k-HTA problem asks about arbitrary
HMR-systems, the k-UHTA problem asks about arbitrary UHMR-systems, and the k-j-UHTA
problem (which we write (j, k)-UHTA) asks about arbitrary j-UHMR-systems.

3.2 NP-completeness of (2,3)-UHTA

The (2,3)-UHTA problem is a very restricted subclass of the general k-admissibility problem for
HMR-systems. In this section, we restrict even further by taking wloc = 1 and wrem = 3. This
problem represents a simple scenario where the cost function assumes only the two possible values
1 and 3, each data block has at most 2 replicas, and each server has capacity 3. Despite its obvious
simplicity, we show that (2,3)-UHTA is NP-complete. It follows that all of the less restritive
decision problems are alsoNP-complete, and the correponding optimization problems do not have
feasible solutions unless P = NP .

Theorem 3.1 (2, 3)-UHTA with costs wloc = 1 and wrem = 3 is NP-complete.

The proof method is to construct a polynomial-time reduction from 3SAT to (2,3)-UHTA. Let
G be the set of all 2-replica-bounded placement graphs. Given Gρ ∈ G, we define the HMR-
system MG = (T, S, ρ, wloc, wrem(·)), where wloc = 1 and wrem(r) = 3 for all r. We say that
G is 3-admissible if MG is 3-admissible. We construct a polynomial-time computable mapping

3.2 NP-completeness of (2,3)-UHTA 7

f : 3CNF→ G, and show that a 3CNF formula φ is satisfiable iff f(φ) is 3-admissible. We shorten
“3-admissible” to “admissible” in the following discussion.

We first describe the construction of f . Let φ = C1 ∧ C2 · · · ∧ Cα be a 3CNF formula, where
each Cu = (lu1 ∨ lu2 ∨ lu3) is a clause and each luv is a literal. Let x1, · · · , xβ be the variables
that appear in φ. Therefore, φ contains exactly 3α instances of literals, each of which is either xi or
¬xi, where i ∈ [1, β].3 Let ω be the maximum number of occurrences of any literal in φ. Table 1
summarizes the parameters of φ.

Table 1: Parameters of the 3CNF φ
clauses (Cu) α variables (vi) β

literals (luv) 3α max-occur of any literal ω

For example, in φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x4 ∨ x5) ∧ (¬x1 ∨ x4 ∨ ¬x6), we have α = 3,
β = 6, and ω = 2 since x1 occurs twice.

Given φ, we construct the corresponding placement graph G which comprises several disjoint
copies of the three types of gadget described below, connected together with additional edges.

The first type of gadget is called a clause gadget. Each clause gadget u contains a clause server
Cu, three literal tasks lu1, lu2, lu3 and an auxiliary task au. There is an edge between each of these
tasks and the clause server. Since φ contains α clauses, G contains α clause gadgets. Thus, G
contains α clause servers, 3α literal tasks and α auxiliary tasks. Figure 1 describes the structure of
the u-th clause gadget. We use circles and boxes to represent tasks and servers, respectively.

u
C

1u
l

2u
l

3u
l

u
a

Figure 1: The structure of the u-th clause gadget.

The second type of gadget is called a variable gadget. Each variable gadget contains 2ω ring
servers placed around a circle. Let R(i)

j denote the server at position j ∈ [1, 2ω] in ring i. Define
the set Ti to be the servers in odd-numbered positions. Similarly, define the set Fi to be the servers
in even-numbered positions. Between each pair of ring servers R(i)

j and R(i)
j+1, we place a ring task

r
(i)
j connected to its two neighboring servers. To complete the circle, r(i)2ω is connected to R(i)

2ω and

R
(i)
1 . There are also ω variable tasks v(i)

j : j ∈ [1, ω] in ring i, but they do not connect to any ring
server. Since φ contains β variables, G contains β variable gadgets. Thus, G contains 2βω ring
servers, 2βω ring tasks and βω variable tasks. Figure 2 describes the structure of the i-th variable
gadget.

3The notation [a,b] in our discussion represents the set of integers {a, a + 1, · · · , b− 1, b}.

8 3 HARDNESS OF TASK ASSIGNMENT

)(

1

i
R

)(

2

i
r


)(

2

i
R

)(

3

i
R

)(

2

i
R



)(

1

i
r

)(

2

i
r

)(

1

i
v

)(

2

i
v

)(i
v


i
T

i
F

i
T

i
T

i
T

i
F

i
F

i
F

Figure 2: The structure of the i-th variable gadget.

The third type of gadget is called a sink gadget. The sink gadget contains a sink server P and
three sink tasks p1, p2, p3. Each sink task is connected to the sink server. G only contains one sink
gadget. Figure 3 describes the structure of the sink gadget.

P

1
p

2
p

3
p

Figure 3: The structure of the sink gadget.

There are also some inter-gadget edges in G. We connect each variable task v(i)
j to the sink

server P . We also connect each literal task luv to a unique ring server R(i)
j . To be more precise, if

literal luv is the j-th occurrence of xi in φ, connect the literal task luv to ring server R(i)
2j−1 ∈ Ti; if

literal luv is the j-th occurrence of ¬xi in φ, connect the literal task luv to ring server R(i)
2j ∈ Fi.

These inter-gadget edges complete the graph G. Table 2 summarizes the parameters of G.

Table 2: Parameters of the HMR-graph G
clause server Cu α literal task luv 3α
auxiliary task au α ring server R(i)

j 2βω

ring task r(i)j 2βω variable task v(i)
j βω

sink server P 1 sink task pj 3

Lemma 3.2 For any φ ∈ 3CNF, the graph f(φ) is 2-replica-bounded.

3.2 NP-completeness of (2,3)-UHTA 9

Proof. We count the number of edges from each task node in f(φ). Each clause task has 2 edges,
each auxiliary task has 1 edge, each ring task has 2 edges, each variable task has 1 edge, and each
sink task has 1 edge. Therefore, f(φ) is 2-replica-bounded. ut

The following lemma is immediate.

Lemma 3.3 The mapping f : 3CNF→ G is polynomial-time computable.

Lemma 3.4 If φ is satisfiable, then G = f(φ) is admissible.

Proof.
Let σ be a satisfying truth assignment for φ, and we construct a feasible assignment A in G =

f(φ). First of all, assign each sink task to the sink server, i.e., let A(pi) = P for all i ∈ [1, 3].
Then assign each auxiliary task au to the clause server Cu, i.e., let A(au) = Cu for all u ∈ [1, α].
If σ(xi) = true , then assign ring tasks r(i)j : j ∈ [1, 2ω] to ring servers in Ti, variable tasks

v
(i)
j : j ∈ [1, ω] to ring servers in Fi. If σ(xi) = false , then assign ring tasks r(i)j : j ∈ [1, 2ω]

to ring servers in Fi, variable tasks v(i)
j : j ∈ [1, ω] to ring servers in Ti. If literal luv = xi

and σ(xi) = true , then assign task luv to its local ring server in Ti. If literal luv = ¬xi and
σ(xi) = false , then assign task luv to its local ring server in Fi. Otherwise, assign task luv to its
local clause server Cu.

We then check this task assignment is feasible. Each ring server is assigned either at most three
local tasks (two ring tasks and one literal task), or one remote variable task. In either case, the load
does not exceed the capacity 3. The number of tasks assigned to each clause server Cu is exactly
the number of false literals in Cu under σ plus one (the auxiliary task), and each task is local to Cu.
Thus, the load is at most 3. The sink server is assigned three local sink tasks and the load is exactly
3. Therefore, all constraints are satisfied and A is feasible. This completes the proof of Lemma 3.4.

ut

The proof of the converse of Lemma 3.4 is more involved. The method is given a feasible as-
signmentA inG = f(φ), we first construct a feasible assignmentB inG such thatB(t) 6= P for all
t ∈ T − {p1, p2, p3}. Then we remove the sink tasks and the sink server from further consideration
and consider the resulting graph G′. After that, we partition G′ into two subgraphs, and construct
a feasible assignment B′ such that no tasks from one partition are remotely assigned to servers in
the other partition. This step involves a case analysis. Finally, a natural way of constructing the
satisfying truth assignment for φ follows.

Lemma 3.5 Let A be a feasible task assignment. Then there exists a feasible task assignment B
such that B(t) 6= P for all t ∈ T − {p1, p2, p3}.

Proof. When A satisfies that A(t) 6= P for all t ∈ T −{p1, p2, p3}, let B = A. Otherwise, assume
there exists a task t′ such that A(t′) = P and t′ ∈ T − {p1, p2, p3}. Since the capacity of P is 3,
there is at least one sink task, say p1, is not assigned to P . Let A(p1) = Q. Since ρ(p1, Q) does not
hold, Q has only been assigned p1 and LAQ = 3. Let B(p1) = P and B(t′) = Q. Repeat the same
process for all tasks other than p1, p2, p3 that are assigned to P in A. Then let B(t) = A(t) for the
remaining tasks t ∈ T . To see B is feasible, note that LBs ≤ LAs ≤ 3 for all servers s ∈ S. ut

10 3 HARDNESS OF TASK ASSIGNMENT

Let G′ be the subgraph induced by (T − {p1, p2, p3}, S − {P}) = (T ′, S′). We have the
following lemma.

Lemma 3.6 Let A be a feasible task assignment in G. Then there exists a feasible task assignment
A′ in G′.

Proof. Given A, Lemma 3.5 tells us that there exists another feasible assignment B in G such that
B(t) 6= P for all t ∈ T ′. Let A′(t) = B(t) for all t ∈ T ′. Then A′ is an assignment in G′ since
A′(t) ∈ S − {P} for all t ∈ T ′. To see A′ is feasible, note that LA

′
s ≤ LBs ≤ 3 for all servers

s ∈ S′. ut

We further partition G′ into two subgraphs GC and GR. GC is induced by nodes {Cu : u ∈
[1, α]} ∪ {au : u ∈ [1, α]} ∪ {luv : u ∈ [1, α], v ∈ [1, 3]} and GR is induced by nodes {R(i)

j : i ∈
[1, β], j ∈ [1, 2ω]} ∪ {r(i)j : i ∈ [1, β], j ∈ [1, 2ω]} ∪ {v(i)

j : i ∈ [1, β], j ∈ [1, ω]}. In other words,
GC consists of all clause gadgets while GR consists of all variable gadgets.

If a task in one partition is remotely assigned to a server in the other partition, we call this task
a cross-boundary task. Let nAc be the number of cross-boundary tasks that are in GC and assigned
to servers in GR by A, nAr be the number of cross-boundary tasks that are in GR and assigned to
servers in GC by A. We have the following lemmas.

Lemma 3.7 Let A be a feasible assignment in G′ such that nAc > 0 and nAr > 0. Then there exist a
feasible assignment B in G′ such that one of nBc and nBr equals |nAc −nAr | and the other one equals
0.

Proof. Assume ti ∈ GC , si ∈ GR and A(ti) = si; t′i ∈ GR, s′i ∈ GC and A(t′i) = s′i. Then each
of si and s′i is assigned one remote task. Let B(ti) = s′i and B(t′i) = si, and then LBsi ≤ LAsi = 3
and LBs′i ≤ LAs′i

= 3. This process decreases nc and nr each by one, and the resulting assignment
is also feasible. Repeat the same process until the smaller one of nc and nr becomes 0. Then let
B(t) = A(t) for all the remaining tasks t ∈ T ′. It is obvious that B is feasible, and one of nBc and
nBr equals |nAc − nAr | and the other one equals 0. ut

Lemma 3.8 Let A be a feasible assignment in G′ such that nAc = 0. Then nAr = 0.

Proof. For the sake of contradiction, assume ti ∈ GR, si ∈ GC and A(ti) = si. For each server
sj ∈ GC , there is one auxiliary task au : u ∈ [1, α] such that ρ(au, sj) holds. Since wloc = 1 and
wrem = 3, if A is feasible then A(au) 6= A(av) for u 6= v. Since there are α auxiliary tasks and α
servers inGC , one server is assigned exactly one auxiliary task. SinceA(ti) = si, LAsi ≥ 1+3 > 3,
contradicting the fact that A is feasible. Therefore, there is no ti ∈ GR and si ∈ GC such that
A(ti) = si. Thus, nAr = 0. ut

Lemma 3.9 Let A be a feasible assignment in G′ such that nAr = 0. Then nAc = 0.

Proof. For the sake of contradiction, assume ti ∈ GC , si ∈ GR and A(ti) = si. Let k0, k1, k2, k3

denote the number of ring servers filled to load 0, 1, 2, 3, respectively. From the total number of
servers in GR, we have

k0 + k1 + k2 + k3 = 2βω (1)

11

Similarly, from the total number of tasks in GR, we have

0 · k0 + 1 · k1 + 2 · k2 + 1 · k3 = 3βω (2)

Subtracting (1) from (2) gives k2 = βω + k0. Assigning both neighboring ring tasks to the same
ring server fills it to load 2. Since there are only 2βω ring servers, we have k2 ≤ βω. Hence, k0 = 0
and k2 = βω. This implies that all ring tasks are assigned to ring servers in alternating positions in
each ring.

There are βω remaining ring servers and βω variable tasks. Therefore, a variable task is re-
motely assigned to one of the remaining ring servers by A.

Now consider the server si that has been remotely assigned ti ∈ GC . If it is assigned two ring
tasks, its load is LAsi = 2 + 3 > 3. If it is assigned one variable task, its load is LAsi = 3 + 3 > 3.
A is not feasible in either case. Therefore, there is no ti ∈ GC and si ∈ GR such that A(ti) = si.
Thus, nAc = 0. ut

Now we prove the following Lemma.

Lemma 3.10 If G = f(φ) is admissible, then φ is satisfiable.

Proof. Given feasible task assignmentA inG = f(φ), we construct the satisfying truth assignment
σ for φ. From Lemmas 3.6, 3.7, 3.8 and 3.9, we construct a feasible assignment B in G′, such that
nBc = nBr = 0, and in each variable gadget i, either servers in Ti or servers in Fi are saturated by
variable tasks. If ring servers in Fi are saturated by variable tasks, let σ(xi) = true . If ring servers
in Ti are saturated by variable tasks, let σ(xi) = false .

To check that this truth assignment is a satisfying assignment, note that for the three literal tasks
lu1, lu2, lu3, at most two of them are assigned to the clause server Cu. There must be one literal
task, say luv, that is locally assigned to a ring server. In this case, σ(luv) = true and thus the clause
σ(Cu) = true . This fact holds for all clauses and thus indicates that σ(φ) = σ(

∧
Cu) = true . This

completes the proof of Lemma 3.10. ut

Finally we prove the main theorem.

Proof of Theorem 3.1: Lemmas 3.3, 3.4 and 3.10 establish that 3SAT ≤p (2,3)-UHTA via f .
Therefore, (2,3)-UHTA is NP-hard. It is easy to see that (2,3)-UHTA ∈ NP because in time
O(mn) a nondeterministic Turing machine could guess the assignment and accept iff the maximum
load under the assignment does not exceed 3. Therefore, (2, 3)-UHTA is NP-complete. ut

4 A Round Robin Algorithm

In this section, we analyze a simple round robin algorithm for the UHTA problem. Algorithm 1
is inspired by the Hadoop scheduler algorithm. It scans over each server in a round robin fashion.
When assigning a new task to a server, Algorithm 1 tries heuristically to exploit data locality. Since
we have not specified the order of assigned tasks, Algorithm 1 may produce many possible outputs
(assignments).

Algorithm 1 is analogous to the Hadoop scheduler algorithm up to core version 0.19. There are
three differences, though. First, the Hadoop algorithm assumes three kinds of placement: data-local,

12 4 A ROUND ROBIN ALGORITHM

Algorithm 1 The round robin algorithm exploring locality.
1: input: a set of unassigned tasks T , a list of servers {s1, s2, · · · , sn}, a placement relation ρ
2: define i← 1 as an index variable
3: define A as an assignment
4: A(t) = ⊥ (task t is unassigned) for all t
5: while exists unassigned task do
6: if exists unassigned task t such that ρ(t, si) holds then
7: update A by assigning A(t) = si
8: else
9: pick any unassigned task t′, update A by assigning A(t′) = si

10: end if
11: i← (i mod n) + 1
12: end while
13: output: assignment A

rack-local and rack-remote, whereas Algorithm 1 assumes only two: local and remote. Second, the
Hadoop scheduler works incrementally rather than assigning all tasks initially. Last, the Hadoop
algorithm is deterministic, whereas Algorithm 1 is nondeterministic.

Theorem 4.1 If wrem > wloc, increasing the number of data block replicas may increase the maxi-
mum load of the assignment computed by Algorithm 1.

Proof. The number of edges in the placement graph is equal to the number of data block replicas,
and thus adding a new edge in the placement graph is equivalent to adding a new replica in the
system. Consider the simple placement graph G where m = n, and there is an edge between task ti
and si for all 1 ≤ i ≤ n. Running Algorithm 1 gives an assignment A in which task ti is assigned
to si for all 1 ≤ i ≤ n, and thus LA = wloc. Now we add one edge between task tn and server
s1. We run Algorithm 1 on this new placement graph G′ to get assignment A′. It might assign task
tn to server s1 in the first step. Following that, it assigns ti to si for 2 ≤ i ≤ n − 1, and it finally
assigns t1 to sn. Since t1 is remote to sn, this gives LA

′
= wrem. Therefore LA

′
> LA. ut

Theorem 4.1 indicates that increasing the number of data block replicas is not always beneficial
for Algorithm 1. In the remaining part of this section, we show that the assignments computed by
Algorithm 1 might deviate from the optimum by a multiplicative factor. In the following, let O be
an assignment that minimizes LO.

Theorem 4.2 Let A be an assignment computed by Algorithm 1. Then LA ≤ (wrem/wloc) · LO.

Proof. On the one hand, pigeonhole principle says there is a server assigned at least dm/ne tasks.
Since the cost of each task is at least wloc, the load of this server is at least dm/ne · wloc. Thus,
LO ≥ dm/ne · wloc. On the other hand, Algorithm 1 runs in a round robin fashion where one task
is assigned at a time. Therefore, the number of tasks assigned to each server is at most dm/ne.
Since the cost of each task is at most wrem, the load of a server is at most dm/ne · wrem. Thus,
LA ≤ dm/ne · wrem. Combining the two, we have LA ≤ (wrem/wloc) · LO. ut

Theorem 4.3 Let T and S be such thatm ≤ n(n−2). There exist a placement ρ and an assignment
A such that A is a possible output of Algorithm 1, LA ≥ bm/nc · wrem, and LO = dm/ne · wloc.

13

Proof. We prove the theorem by constructing a placement graphGρ. Partition the set T of tasks into
n disjoint subsets Ti : 1 ≤ i ≤ n, such that dm/ne ≥ |Ti| ≥ |Tj | ≥ bm/nc for all 1 ≤ i ≤ j ≤ n.
Now in the placement graph Gρ, connect tasks in Ti to server si, for all 1 ≤ i ≤ n. These set of
edges guarantee that LO = dm/ne · wloc. We then connect each task in Tn to a different server in
the subset S′ = {s1, s2, · · · , sn−1}. Since m ≤ n(n − 2), we have dm/ne ≤ m/n + 1 ≤ n − 1,
which guarantees |S′| ≥ |Tn|. This completes the placement graph Gρ. Now run Algorithm 1 on
Gρ. There is a possible output A where tasks in Tn are assigned to servers in S′. In that case, all
tasks that are local to server sn are assigned elsewhere, and thus sn is assigned remote tasks. Since
sn is assigned at least bm/nc tasks, this gives LA ≥ bm/nc · wrem. ut

When n | m, the lower bound in Theorem 4.3 matches the upper bound in Theorem 4.2.

5 A Flow-based Algorithm

Theorem 3.1 shows that the problem of computing an optimal task assignment for the HTA problem
is NP-complete. Nevertheless, it is feasible to find task assignments whose load is at most an
additive constant greater than the optimal load. We present such an algorithm in this section.

For two partial assignments α and β such that β ⊇ α, we define a new notation called virtual
load from α below.

Definition 12 For any task t and partial assignment β that extends α, let

vα(t, β) =
{
wloc if t is local in β,
wαrem otherwise.

The virtual load of server s under β from α is V β,α
s =

∑
t:β(t)=s v

α(t, β). The maximum virtual

load under β from α is V β,α = maxs∈S V
β,α
s .

Thus, v assumes pessimistically that tasks not assigned by β will eventually become remote, and
each remote task will eventully have cost wαrem. When α is clear from context, we omit α and write
v(t, β), V β

s and V β , respectively. Note that vα(t, α) = w(t, α) as in Definition 7.
Algorithm 2 works iteratively to produce a sequence of assignments and then outputs the best

one, i.e., the one of least maximum server load. The iteration is controlled by an integer variable τ
which is initialized to 1 and incremented on each iteration. Each iteration consists of two phases,
max-cover and bal-assign:

• Max-cover: Given as input a placement graphGρ, an integer value τ , and a partial assignment
α, max-cover returns a partial assignment α′ of a subset T ′ of tasks, such that α′ assigns no
server more than τ tasks, every task in T ′ is local in α′, and |T ′| is maximized over all such
assignments. Thus, α′ makes as many tasks local as is possible without assigning more than
τ tasks to any one server. The name “max-cover” follows the intuition that we are actually
trying to “cover” as many tasks as possible by their local servers, subject to the constraint that
no server is assigned more than τ tasks.

• Bal-assign: Given as input a set of tasks T , a set of servers S, a partial assignment α computed
by max-cover, and a cost function w, bal-assign uses a simple greedy algorithm to extend

14 5 A FLOW-BASED ALGORITHM

α to a complete assignment B by repeatedly choosing a server with minimal virtual load
and assigning some unassigned task to it. This continues until all tasks are assigned. It
thus generates a sequence of partial assignments α = α0 ⊆ α1 ⊆ · · · ⊆ αu = B, where
u = uα. Every task t assigned in bal-assign contributes vα(t, B) ≤ wαrem to the virtual load
of the server that it is assigned to. At the end, wBrem ≤ wαrem, and equality holds only when
rB = rα + uα.

The astute reader might feel that it is intellectually attractive to use real server load as the criterion
to choose servers in bal-assign because it embeds more accurate information. We do not know if
this change ever results in a better assignment. We do know that it may require more computation.
Whenever a local task is assigned, r + u decreases by 1, so the remote cost wrem(r + u) may
also decrease. If it does, the loads of all servers that have been assigned remote tasks must be
recomputed. In the current version of the algorithm, we do not need to update virtual load when
a local task is assigned because the virtual cost of remote tasks never changes in the course of
bal-assign.

Algorithm 2 A flow-based algorithm for HTA.
1: input: an HMR-system (T, S, ρ, wloc, wrem(·))
2: define A,B as assignments
3: define α as a partial assignment
4: α(t) = ⊥ (task t is unassigned) for all t
5: for τ = 1 to m do
6: α← max-cover(Gρ, τ, α)
7: B ← bal-assign(T, S, α,wloc, wrem(·))
8: end for
9: set A equal to a B with least maximum load

10: output: assignment A

5.1 Algorithm Description

We describe Algorithm 2 in greater detail here.

5.1.1 Max-cover

Max-cover (line 6 of Algorithm 2) augments the partial assignment ατ−1 computed by the previous
iteration to produce ατ . (We define α0 to be the empty partial assignment.) Thus, ατ ⊇ ατ−1,
and ατ maximizes the total number of local tasks assigned subject to the constraint that no server is
assigned more than τ tasks in all.

The core of the max-cover phase is an augmenting path algorithm by Ford and Fulkerson [10].
The Ford-Fulkerson algorithm takes as input a network with edge capacities and an existing network
flow, and outputs a maximum flow that respects the capacity constraints. A fact about this algorithm
is well-known [6, 10].

Fact 5.1 Given a flow network with integral capacities and an initial integral s-t flow f , the Ford-
Fulkerson algorithm computes an integral maximum s-t flow f ′ in time O(|E| · (|f ′| − |f |)), where
|E| is the number of edges in the network and |f | is the value of the flow f , i.e., the amount of flow
passing from the source to the sink.

5.1 Algorithm Description 15

During the max-cover phase at iteration τ , the input placement graph Gρ is first converted to a
corresponding flow network G′ρ. G′ρ includes all nodes in Gρ and an extra source u and an extra
sink v. InG′ρ, there is an edge (u, t) for all t ∈ T and an edge (s, v) for all s ∈ S. All of the original
edges (t, s) in Gρ remain in G′ρ. The edge capacity is defined as follows: edge (s, v) has capacity τ
for all s ∈ S, while all the other edges have capacity 1. Therefore, for any pair of (t, s), if there is
a flow through the path u→ t→ s→ v, the value of this flow is no greater than 1. Then the input
partial assignment α is converted into a network flow fα as follows: if task t is assigned to server s
in the partial assignment α, assign one unit of flow through the path u→ t→ s→ v.

The Ford-Fulkerson algorithm is then run on graph G′ρ with flow fα to find a maximum flow
f ′α. From Fact 5.1, we know that the Ford-Fulkerson algorithm takes time O(|E| · (|f ′α| − |fα|))
in this iteration. This output flow f ′α at iteration τ will act as the input flow to the Ford-Fulkerson
algorithm at iteration τ + 1. The flow network at iteration τ + 1 is the same as the one at iteration τ
except that each edge (s, v) has capacity τ+1 for all s ∈ S. This incremental use of Ford-Fulkerson
algorithm in successive iterations helps reduce the time complexity of the whole algorithm.

At the end of the max-cover phase, the augmented flow f ′α is converted back into a partial
assignment α′. If there is one unit of flow through the path u→ t→ s→ v in f ′α, we assign task t
is to server s in α′. This conversion from a network flow to a partial assignment can always be done,
because the flow is integral and all edges between tasks and servers have capacity 1. Therefore,
there is a one-to-one correspondence between a unit flow through the path u→ t→ s→ v and the
assignment of task t to its local server s. It follows that |f ′α| = `α

′
. By Fact 5.1, the Ford-Fulkerson

algorithm computes a maximum flow that respects the capacity constraint τ . Thus, the following
lemma is immediate.

Lemma 5.2 Let ατ be the partial assignment computed by max-cover at iteration τ , and β be any
partial assignment such that kβ ≤ τ . Then `α

τ ≥ `β .

5.1.2 Bal-assign

Definition 13 Let β and β′ be partial assignments, t a task and s a server. We say that β t:s−→ β′ is
a step that assigns t to s if t is unassigned in β and β′ = β ∪ {(t, s)}. We say β → β′ is a step, if
β

t:s−→ β′ for some t and s.
A sequence of steps α = α0 → α1 → . . . → αu is a trace if for each i ∈ [1, u], if αi−1

t:s−→ αi
is a step, then V αi−1,α

s ≤ V αi−1,α
s′ for all s′ 6= s.

Given two partial assignments αi−1 and αi in a trace such that αi−1
t:s−→ αi, it follows that

V αi,α
s ≤ V

αi−1,α
s + wαrem

V αi,α
s = V

αi−1,α
s′ for all s′ 6= s

The following lemma is immediate.

Lemma 5.3 Let u = uα
τ

and ατ = ατ0 ⊆ ατ1 ⊆ · · · ⊆ ατu be a sequence of partial assignments
generated by bal-assign at iteration τ . This sequence is a trace that ends in a complete assignment
Bτ = ατu.

16 5 A FLOW-BASED ALGORITHM

5.2 Main Result

It is obvious that Algorithm 2 is optimal for n = 1 since only one assignment is possible. Now we
show that for n ≥ 2, Algorithm 2 computes, in polynomial time, assignments that are optimal to
within an additive constant. The result is formally stated as Theorem 5.4.

Theorem 5.4 Let n ≥ 2. Given an HMR-system with m tasks and n servers, Algorithm 2 computes
an assignment A in time O(m2n) such that LA ≤ LO +

(
1− 1

n−1

)
· wOrem.

Lemma 5.5 Algorithm 2 runs in time O(m2n).

Proof. By Fact 5.1, we know that the Ford-Fulkerson algorithm takes timeO(|E|·|∆f |) to augment
the network flow by |∆f |. At iteration τ = 1, max-cover takes time O(|E| · |f1|), where |f1| ≤ n.
Then at iteration τ = 2, max-cover takes time O(|E| · (|f2| − |f1|)), where |f2| ≤ 2n. The same
process is repeated until |fm| = m. The total running time of max-cover for all iterations thus adds
up toO(|E| ·(|f1|+ |f2|−|f1|+ |f3|−|f2|+ · · ·+ |fm|)) = O(|E| · |fm|) = O(|E| ·m) = O(m2n).

We implement the greedy algorithm in the bal-assign phase with a priority queue. Since there
are n servers, each operation of the priority queue takes O(log n) time. During the bal-assign phase
at each iteration, at mostm tasks need to be assigned. This takes timeO(m log n). The total running
time of bal-assign for all iterations is thus O(m2 log n).

Combining the running time of the two phases for all iterations gives time complexity O(m2n).
ut

Lemma 5.5 suggests the max-cover phase is the main contributor to the time complexity of
Algorithm 2. However, in a typical Hadoop system, the number of replicas for each data block
is a small constant, say 2 or 3. Then the degree of each t ∈ G is bounded by this constant. In
this case, the placement graph G is sparse and |E| = O(m + n). As a result, max-cover runs in
time O(m(m+ n)). Therefore the bal-assign phase might become the main contributor to the time
complexity.

5.2.1 Properties of optimal assignments

In order to prove the approximation bound, we first establish some properties of optimal assign-
ments.

Definition 14 Given an HMR-system, let O be the set of all optimal assignments, i.e., those that
minimize the maximum load. Let rmin = min{rA | A ∈ O} and let O1 = {O ∈ O | rO = rmin}.

Lemma 5.6 Let O ∈ O1. If `Os = kO, then rOs = 0 and LOs = KO.

Proof. Let `Os = kO for some server s. Assume to the contrary that rOs ≥ 1. Then LOs ≥
KO + wOrem. Let t be a remote task assigned to s by O. By definition 3, ρ(t, s′) holds for at least
one server s′ 6= s.

Case 1: s′ has at least one remote task t′. Then move t′ to s and t to s′. This results in another
assignment B. B is still optimal because LBs ≤ LOs , LBs′ ≤ LOs′ , and LBs′′ = LOs′′ for any other server
s′′ ∈ S − {s, s′}.

5.2 Main Result 17

Case 2: s′ has only local tasks. By the definition of kO, s′ has at most kO local tasks assigned
by O. Then move t to s′. This results in another assignmentB. B is still optimal because LBs < LOs ,
LBs′ = KO + wloc ≤ KO + wrem ≤ LOs , and LBs′′ = LOs′′ for any other server s′′ ∈ S − {s, s′}.

In either case, we have shown the new assignment is in O. However, since t becomes local
in the new assignment, fewer remote tasks are assigned than in O. This contradicts that O ∈ O1.
Thus, s is assigned no remote tasks, so LOs = kOwloc = KO. ut

Definition 15 Let O ∈ O1. Define MO = HO−KO

n−1 .

Lemma 5.7 LO ≥MO.

Proof. Let s1 be a server of maximal local load in O, so kOs1 = kO. Let S2 = S − {s1}. By
Lemma 5.6, LOs1 = KO. The total load on S2 is

∑
s∈S2

LOs = HO −KO, so the average load on
S2 is MO. Hence, LO ≥ maxs∈S2 L

O
s ≥ avgs∈S2

LOs = MO. ut

5.2.2 Analyzing the algorithm

Assume throughout this section that O ∈ O1 and α = α0 → α1 → . . . → αu = B is a trace
generated by iteration τ = kO of the algorithm. Virtual loads are all based on α, so we generally
omit explicit mention of α in the superscripts of v and V .

Lemma 5.8 wloc ≤ wBrem ≤ wαrem ≤ wOrem.

Proof. wloc ≤ wBrem follows from the definition of a Hadoop cost function. Because B ⊇ α,
rB ≤ rα + uα. By Lemma 5.2, `α ≥ `O, so rα + uα = m − `α ≤ m − `O = rO. Hence,
wrem(rB) ≤ wrem(rα + uα) ≤ wrem(rO) by monotonicity of wrem(·). It follows by definition of
the wβrem notation that wBrem ≤ wαrem ≤ wOrem. ut

Lemma 5.9 kα = kO.

Proof. kα ≤ kO because no server is assigned more than τ local tasks by max-cover at iteration
τ = kO. For sake of contradiction, assume kα < kO. Then uα > 0, because otherwise α = B and
LB = kα · wloc < KO ≤ LO, violating the optimality of O. Let t be an unassigned task in α. By
definition, ρ(t, s) holds for some server s. Assign t to s in α to obtain a new partial assignment β.
We have kβ ≤ kα + 1 ≤ kO = τ . By Lemma 5.2, `α ≥ `β , contradicting the fact that `β = `α + 1.
We conclude that kα = kO. ut

Lemma 5.10 LB ≤ V B .

Proof. By definition, LBs =
∑

t:B(t)=sw(t, B) and V B
s =

∑
t:B(t)=s v(t, B). By Lemma 5.8,

wBrem ≤ wαrem, and thus w(t, B) ≤ v(t, B). It follows that ∀s ∈ S, LBs ≤ V B
s . Therefore

LB ≤ V B , because LB = maxs LBs and V B = V B = maxs V B
s . ut

For the remainder of this section, let s1 be a server such that `αs1 = kO. Such a server exists by
Lemma 5.9. Let S2 = S − {s1} be the set of remaining servers. For a partial assignment β ⊇ α,
define Nβ to be the average virtual load under β of the servers in S2. Formally,

Nβ =

∑
s∈S2

V β
s

|S2|
=

`βwloc + rβwαrem − V
β
s1

n− 1

18 5 A FLOW-BASED ALGORITHM

To obtain the approximation bound, we compare Nβ with the similar quantity MO for the optimal
assignment. For convenience, we let δ = wOrem/(n− 1).

Lemma 5.11 Let β = αi
t:s−→ αi+1 = β′. Then

V β
s ≤ Nβ ≤MO − δ.

Proof. Proof is by a counting argument. By Lemma 5.9, we have kα = kO, so `βs1 ≥ `αs1 = kO.
Hence, V β

s1 ≥ KO. By Lemma 5.2, we have `α ≥ `O. Let d = `β − `O. d ≥ 0 because
`β ≥ `α ≥ `O. Because `β + rβ + uβ = m = `O + rO, we have rβ + uβ + d = rO. Also, uβ ≥ 1
since t is unassigned in β. Then by Lemma 5.8,

(n− 1)Nβ = `βwloc + rβwαrem − V β
s1

= (`O + d)wloc + (rO − uβ − d)wαrem − V β
s1

≤ `Owloc + (rO − uβ)wOrem −KO

≤ (n− 1)MO − wOrem.

Hence, Nβ ≤MO − δ.
Now, since β is part of a trace, we have V β

s ≤ V β
s′ for all s′ ∈ S. In particular, V β

s ≤ Nβ , since
Nβ is the average virtual load of all servers in S2. We conclude that V β

s ≤ Nβ ≤MO − δ. ut

Proof of Theorem 5.4: Lemma 5.5 shows that the time complexity of Algorithm 2 is O(m2n).
Now we finish the proof for the approximation bound.

Let s be a server of maximum virtual load in B, so V B
s = V B . Let i be the smallest integer

such that αi|s = B|s, that is, no more tasks are assigned to s in the subtrace beginning with αi.

Case 1: i = 0: Then `α0
s ≤ kα0 = kO by Lemma 5.9, and rα0 = 0, so V B = V α0

s ≤ KO. Hence,
V B ≤ KO ≤ LO.

Case 2: i > 0: Then β = αi−1
t:s−→ αi = β′ for some task t. By lemma 5.11, V β

s ≤ MO − δ, so
using Lemma 5.8,

V β′
s ≤ V β

s + wαrem ≤MO − δ + wOrem.

Then by Lemma 5.7,

V B = V B
s = V β′

s ≤MO + wOrem − δ ≤ LO + wOrem − δ.

Both cases imply that V B ≤ LO + wOrem − δ. By Lemma 5.10, we have LB ≤ V B . Because
the algorithm chooses an assignment with least maximum load as the output A, we have LA ≤ LB .
Hence,

LA ≤ LO + wOrem − δ = LO +
(

1− 1
n− 1

)
· wOrem

ut

19

6 Conclusion

In this paper, we present an algorithmic study of the task assignment problem in the Hadoop MapRe-
duce framework and propose a mathematical model to evaluate the cost of task assignments. Based
on this model, we show that it is infeasible to find the optimal assignment unless P = NP . The-
orem 3.1 shows that the task assignment problem in Hadoop remains hard even if all servers have
equal capacity of 3, the cost function only has 2 values in its range, and each data block has at most
2 replicas.

Second, we analyze the simple round robin algorithm for the UHTA problem. Theorem 4.1
reveals that the intuition is wrong that increasing the number of replicas always helps load balancing.
Using round robin task assignment, adding more replicas into the system can sometimes result in
worse maximum load. Theorems 4.2 and 4.3 show there could be a multiplicative gap in maximum
load between the optimal assignment and the assignment computed by Algorithm 1.

Third, we present Algorithm 2 for the general HTA problem. This algorithm employs maximum
flow and increasing threshold techniques. Theorem 5.4 shows that the assignments computed by
Algorithm 2 are optimal to within an additive constant that depends only on the number of servers
and the remote cost function.

There are many interesting directions for future work. We have sketched a proof of a matching
lower bound to Theorem 5.4 for a class of Hadoop cost functions. We plan to present this result
in followup work. Sharing a MapReduce cluster between multiple users is becoming popular and
has led to recent development of multi-user multi-job schedulers such as fair scheduler and capacity
scheduler. We plan to analyze the performance of such schedulers and see if the optimization
techniques from this paper can be applied to improve them.

7 Acknowledgments

We would like to thank Avi Silberschatz, Daniel Abadi, Kamil Bajda-Pawlikowski, and Azza
Abouzeid for their inspiring discussions. We are also grateful to the anonymous referees for provid-
ing many useful suggestions that significantly improved the quality of our presentation.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM, 44(3):486–504,
1997.

[2] Y. Azar, J. S. Naor, and R. Rom. The competitiveness of on-line assignments. In Proceed-
ings of the 3rd Annual ACM-SIAM symposium on Discrete algorithms, pages 203–210. SIAM
Philadelphia, PA, USA, 1992.

[3] K. Birman, G. Chockler, and R. van Renesse. Towards a cloud computing research agenda.
SIGACT News, 40(2):68–80, 2009.

[4] E. Bortnikov. Open-source grid technologies for web-scale computing. SIGACT News,
40(2):87–93, 2009.

20 REFERENCES

[5] R. E. Burkard. Assignment problems: Recent solution methods and applications. In System
Modelling and Optimization: Proceedings of the 12th IFIP Conference, Budapest, Hungary,
September 2-6, 1985, pages 153–169. Springer, 1986.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms, 2nd ed. MIT
press Cambridge, MA, 2001.

[7] M. de Kruijf and K. Sankaralingam. MapReduce for the Cell B. E. architecture. University of
Wisconsin Computer Sciences Technical Report CS-TR-2007, 1625, 2007.

[8] J. Dean. Experiences with MapReduce, an abstraction for large-scale computation. In Pro-
ceedings of the 15th International Conference on Parallel Architectures and Compilation Tech-
niques. ACM New York, NY, USA, 2006.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. Proceed-
ings of the 6th Symposium on Operating Systems Design and Implementation, San Francisco,
CA, pages 137–150, 2004.

[10] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8(3):399–404, 1956.

[11] M. R. Garey, D. S. Johnson, et al. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman San Francisco, 1979.

[12] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966.

[13] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Math-
ematics, pages 416–429, 1969.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A MapReduce framework
on graphics processors. In Proceedings of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 260–269. ACM New York, NY, USA, 2008.

[15] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics,
52(1), 2005. Originally appeared in Naval Research Logistics Quarterly, 2, 1955, 83–97.

[16] R. Lämmel. Google’s MapReduce programming model—Revisited. Science of Computer
Programming, 68(3):208–237, 2007.

[17] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling unre-
lated parallel machines. Mathematical Programming, 46(1):259–271, 1990.

[18] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating MapRe-
duce for multi-core and multiprocessor systems. In Proceedings of the 2007 IEEE 13th Inter-
national Symposium on High Performance Computer Architecture, pages 13–24. IEEE Com-
puter Society Washington, DC, USA, 2007.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving MapReduce per-
formance in heterogeneous environments. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation, San Diego, CA, 2008.

	Introduction
	Background
	The MapReduce Framework
	Related Work
	Our Contributions

	Problem Formalization
	Hardness of Task Assignment
	Task Assignment Decision Problems
	NP-completeness of (2,3)-UHTA

	A Round Robin Algorithm
	A Flow-based Algorithm
	Algorithm Description
	Max-cover
	Bal-assign

	Main Result
	Properties of optimal assignments
	Analyzing the algorithm

	Conclusion
	Acknowledgments

