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1 Introduction

It is a common occurrence in a programming environment to
apply a software tool to a series of similar inputs. Examples
include compilers, interpreters, text formatters, etc., whose
inputs are usually incrementally modifed text files. Thus
programming environment researchers have recognized the
importance of building incremental versions of these tools
— i.e. ones which can efficiently update the result of a com-
putation when the input changes only slightly.

However, despite the preponderance of work on incre-
mental algorithms and programs, formal and general treat-
ments of the problem are rare. Historically the approach
has been to hand-craft incremental algorithms for many im-
portant problems, and as a result common elements of the
designs are often obscured. Indeed, looking at various ex-
tant incremental algorithms, one might be led to believe that
there is no common element at all! There seems to be some
consensus that incremental algorithms are hard to derive,
debug and maintain [Pug88, YS89, FT90], and as we at-
tempt to create incremental programs for larger tasks, this
problem will only get worse.

Thus there is an increasing need for a framework for in-
cremental computation which will help us understand exist-
ing incremental algorithms and facilitate (if not automate)
the construction of new ones. We have developed such a
framework based on the recently popular notion of partial
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evaluation. Besides providing a precise definition of the term
“incremental program,” this framework offers:

¢ A methodology to generate an incremental program
from its non-incremental counterpart plus a specifica-
tion of a partition of the input domain. (This reduces
the designer’s primary task to determining the parti-
tion of the input domain, which controls the “granular-
ity” of the incrementality as well as overall efficiency.)

o An algebraic basis for reasoning about the correct-
ness of the incremental programs thus generated. (The
framework relies partially on the notion of a Brouwe-
rian algebra.)

o A comparative basis for better understanding existing
incremental algorithms. In particular, we have re-cast
many existing incremental programs into our frame-
work.

o To overcome the overhead of “incremental interpreta-
tion,” a method to generate “compiled” incremental
programs using Futamura projectionsis described.

2 Incremental Computation and Partial Evaluation

To understand our framework one must first have a good
understanding of partial evaluation, and thus we begin with
some basic definitions (for a good survey of the field see
[ISs89)).

2.1 .Partial Evaluation

Partial evaluationis a program transformation technique for
specializing a function with respect to some known (i.e. “static”)
part of its input. The result is called a residual function,
and has the property that when applied to the remaining
part of the input, will yield the desired result.  Following
Launchbury [Lau88], we give a precise definition of partial
evaluation using projections.

Definition 2.1 A projection on a domain D is a continu-
ous mappingp : D — D such that:




o p C ID (no information addition)

® pop=yp (idempotence)

Note that ID (the identity function) is the greatest pro-
jection and ABSENT (the constant function with value 1)
the least (under the standard information ordering on func-
tions).

Definition 2.2 If p and ¢ are projections and pU ¢ = ID,
then ¢ is a complement of p.

Note that by the above definition the complement of a pro-
Jection may not be unique (for example, ID is a complement
of every projection). We will tighten this definition in Sec-
tion 3 to achieve uniqueness by choosing the “least” of these
projections. Indeed, a major goal of that section is to define
domains of projections where such a construction always ex-
ists. We write § to denote the unique (to be defined later)
complement of p.

Definition 2.3 A partial evaluator P£ is a function which
takes representations of a function f, a projection p, and a
value a, and produces a representation of the residual func-
tion, fpa, defined as follows:

PE fp(applypa) = fpa
such that
apply fpa (apply  a) = apply f a

where apply takes the representation of a function and its
argument and produces a representation of the result.

The idea here is to use projections to capture the known
parts of the input. When there is no ambiguity we use rp
to denote PE f p a. Given this notation, note that r;p =
apply f a.

Although the partial evaluator really takes representa-
tions of its arguments and not actual values, hereafter we
will treat it as taking values as arguments (primarily to avoid
having to propagate apply everywhere). On the other hand,
the algorithm for “combining” residual functions in Section
5 depends: crucially on manipulating the representations.

2.2 Incremental Computation

Returning now to the problem of incremental computation,
we can summarize the situation as in Figure 1. Here the
function f (which may be a compiler, text formatter, etc.) is
being applied to a structured argument to give the result. If
only part of the argument changes, such as part b, we would
like to compute the new result without having to redo the
entire computation; in other words, we would like to avoid
having f reprocess parts a, ¢, and d.

1This can be seen extensionally as a restatement of Kleene's ST
theorem from recursive function theory.
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Figure 1: Incremental computation

Now, here’s the connection to partial evaluation, and
the basis of our framework: The partitioning of the input
domain can be described using a set of projections as defined
in the previous section; let’s call them pa, ps, pc, and pa for
the example in Figure 1. If we then compute the residual
functions rp,, rp,, Tp., and rp,, we have essentially “cached”
those portions of the computation that depend only on parts
a, b, ¢, and d of the input, respectively.

Recalling that r7p = apply f a, all we need now to com-
pute the final result is a (presumably efficient) way to con-
struct rrp from the set of residual functions — for now,
let’s assume that such a technique exists. If part of the in-
put were to change, say b changes to b’ then all we have to
do is replace rp, with rp,; computation of r;p then takes
place with this new residual function in place.

An alternative way to describe this process is as follows:

At the point when b changes to b’ suppose we had by

some means already computed ry, — then all we need to
do to compute the new result is to apply rys to b’. We
can thus view the problem as an attempt to find (at least
a conservative approximation to) rg, by combining existing
residual functions.

We can define all this more formally as follows:

Definition 2.4 A partition P of a domain D is a set of
projections {pi} on D such that U{p;} = ID.

Definition 2.5 An incremental program specification is a
pair {f, P} where f : D — £ is the function to be incremen-
talized and P is a partition of D.

We now describe an “incremental interpreter,” denoted
Z, which captures the methodology described earlier. T has
functionality:

I(f,P) - ap — (60,61,...) —_ (bo,bl,..‘)

(f, P) is the incremental program specification, and ao is
the initial argument. The §s are functions capturing “small”
changes to the input, and the bs are the successive output
results.

Algorithm I:

¢ Setup: Compute rp, = PE f pi a for each p; in the
partition P.




¢ Reestablish: If a changes to a’, recompute all rp; for
which p; a # pi a’.

o Combine: The new result rp is obtained from {rp,}
using appropriate combining operations.

The main purpose of 7T is to maintain the invariant:

rp; = PE f pi a for all p; € P, and in so doing satisfies -

the following correctness criterion:

bi = f a; where a; = §i—1 ai—

The above forms the basis for our approach. But we have
so far made many assumptions that require fleshing out. In
particular:

1. What is the basis for choosing a good partition of the
input domain? (If it is too coarse, even small changes
will trigger massive recomputation; if too fine, the
stored residual functions will each capture very little
computation and excessive work will be done in the
combining phase.)

2. How do we combine residual functions to get “larger”
ones? (Does the construction even exist? If so, is it
unique? Can it be done efficiently?)

3. How does one determine which residual functions need
to be recomputed? (I.e., how does one determine the
set of projections that “see” the changes to the input?)

These and other technical questions are answered in the
next 3 sections. For examples of the applicationof our frame-
work, the reader may wish to jump to Section 6 and return
to the technical sections after having developed more intu-
ition for the methodology.

3 Projection Algebras

The most critical aspect of our methodology is the ability to
combine residual functions — correctly and efficiently. We
first deal with correctness, which requires the construction

of domains in which suitable combining operators are well-
defined.

We begin with a set of domains and domain formers that
are adequate in capturing most of the domains found in
conventional programming languages.

t:: 1, Nat,... base domains
Ti type parameter

ty + 12 separated sum
1 X1z non-strict product
ur. t recursive domain

The structure described above can be easily generalized
to more than one type parameter. In what follows we as-
sume that standard domains such as lists, pairs, and natural
numbers have been pre-defined, and we use conventional no-
tation (1, 2, Nil, Cons, etc.) when referring to elements of

the domains. For example, polymorphic lists and pairs can
be defined by:

List(n) = pr2. 1 4+ (11 X )
Pair(n,n)=nxn

. 3.1 Projection Domains

Consider a domain of projections under the standard infor-
mation ordering of functions — this domain is not closed
with respect to greatest lower bound. This is because p; N
p2 = Az. (p1z) M (p2z) is not necessarily idempotent, and
therefore may not be a projection. A simple example should
convince the reader of this:

Example 3.1 Consider projections on the domain of pairs
of natural numbers. Let p; and p2 be defined as follows:

p1(z,y) = if 2=2 then (lyy) else (z,y)
p2 (z,y) = if 2= L1 then (z,1) else (z,v)

Let p be Az.(p1z) N (p2z). It is easy to verify that p (2,3) =
(L,3) which is not the same as pop (2,3) = (L,L). Thus
p is not idempotent, and is therefore not a projection.

This problem arises because the domain of all projections
is too large. We are interested (for purposes of partial eval-
uation) in projections which only depend on the structure
of the object they are manipulating and not on the values
of its components. Launchbury [Lau88] describes a smaller
(finite) domain of projections, but his domain does not serve
our purpose because it does not contain useful projections
such as the following one on the domain of lists:

p Nil = Nil
p (Cons z z£3s) = Cons L zs

Here is a first attempt at constructing a domain of pro-
jections small enough to possess properties of interest to us
yet large enough to contain examples such as the above.

Definition 3.1 A polymorphic projection on a domain F(r)
is a collection of instances fa : F(A) — F(A), such that for
any strict function « : A — B, the diagram in Figure 2
commutes; i.e. fg o mapF(a) = mapF(a)o fa. By mapF
we mean the appropriate map function for the datatype F.

Example 3.2 Define two projections over the domain of
pairs: p (L,b) = (L,1), p (a,b) = (a,b); LEFT (z,y) =
(z,1). p is not polymorphic , but LEFT is.

Unfortunately, the domain of polymorphic projections
does not exactly capture the intuition of depending only on
the structure of the input. Consider g: g N#l = Nil, ¢
(z:L)=L1:1,gz=rz. gisapolymorphic projection but
still depends on the values of subcomponents of its input (in
this case L as the tail). To restrict away projections like g,
we define a domain of projections as follows:
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Figure 2: Polymorphic projections
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Figure 3: Projections on the domain of pairs

P () = {IDas ABSENT, }(d is a base domain)
P(r) = {ID, ABSENT, )}
P(di+d) = {pi+p2]|p €P(dh), p2 € P(d2) }
P(dixd2) = {p1xp2|p1 €P(dh), p2 €Pd)}
P urT(r)) = PTur.T(r))) U{ ABSENT,10r) }

The subscript to ID or ABSENT refers to the domain
of definition. + and x are defined for functions as follows:
(f x g)(a,b) = (fa,gb) and (f +g)L = L, (f + g)(inl a) =
inl(f a), (f + g)(inr b) = inr(g b). Note the case of the
recursive domain where the ABSENT projection can be
invoked on any tail of the list. We use D 2 D to denote
the domain defined above, under the standard information
ordering. Note that any element of D Z D is guaranteed
to be polymorphic.

Example 3.3 Consider projections on the domain of pairs.

Pair(my,m2) Breg Pair(ri,m2) is shown in Figure 8, where
LEFT(z,y) = (z,1) and RIGHT(z,y) = (1,y).

3.2 Properties of D ol p

Definition 3.2 A commutative domain is one whose ele-
ments commute wrt function composition.

Lemma 3.1 D 2% D is a commutative domain.
Proof: The proof is by induction on the structure of do-
mains. The base domains are commutative (because the

only projections defined on them are ID and ABSENT).
Assume that d; ==} d; and d, T2 4, are commutative do-
mains, p1,ps € dy =2 dy, p2,ps € d2 F3 d.

® (p1xp2)o(ps xps) = (p10p3)x (p20ps) = (p3op1)x (pso
p2) = (ps X ps) 0 (p1 x p2). Thus dy x d2 ¥3 d; x d,

mapF (a) is commutative.

o (p1+p2)o(ps+p4) = (props)+(p20ps) = (p3op1)+(pso
proj

pz) = (p3 +p4) [} (p1 +p2). Thus dy +d; — d; +d; .
is commutative.

In the case of the recursive domain, if one of the pro-
jections chosen is ABSENT commutativity holds since p o
g is ABSENT if either p or ¢ is ABSENT. If both of
the projections are in P(T(r)), then whether or not the
projections commute depend on whether the elements of
P(ur.T(7)) chosen in place of r commute. This follows from
the fact that since T is constructed from + and x, T(r) com-
mutes whenever T does. Repeating the earlier argument, if
ABSENT is chosen for either of the projections, we are
done. By repeating this argument, as long as ABSENT is
chosen at some level of recursion, the projections will com-
mute. The other case is when ABSENT is never chosen.
This represents the single projection pp.T(p). In this case
since both the projections have to be the same, they com-
mute. O

We prove the following properties (Lemmas 3.2 through'
3.4) for any p, ¢ from a commutative projection domain.

Lemma 3.2 pogq is a projection, if p and ¢ are members of
a commutative domain.

Proof: No information addition: p C ID and ¢ CE ID =
pog L ID. Idempotence: (pog)o(pog)=po(gop)og=
po(pog)og=(pop)o(gog)=pog O

Lemma 3.3 In a commutative projection domain, the great-
est lower bound (glb) of p and ¢ ezxists and is poq.

Proof: Note that since p C ID and ¢ C ID, pog C p and
pogq C g. Let r be any projection such that r Cpand r C g.
Then by montonicity, r or C po g and by the definition of
projection, r Cpog. O

Lemma 3.4 In a commutative projection domain, the least
upper bound (lub) ezists.

Proof: (By contradiction.) Suppose that there exists p and
g such that pUgq does not exist. Since ID is the top element,
this implies that there exist two incomparable upper bounds
l; and I, and that there is no upper bound less than both
l; and l;. (This is because there are no infinite descending
chains in D ¥ D.) But since glbs exist, I; o, is an upper
bound of p and ¢ which is (by definition of glb) less than
both !; and l;. Contradiction. O

Commutative domains with the additional property of
distributivity are of special interest.




Definition 3.3 A domain is said to be distributive iff for
all elements p, q,r of the domain, pU(gNr) = (rug)N(pur)
andpN(gUr)=(pRg)U(pnr).

Lemma 3.5 D ¥ D is a distributive domain. _

Proof: The proof is by induction on the domain structure.
We detail the proof of pU(gMr) = (pUg) N (pUr); the proof
of pN(gUr) = (pNg)U(pNr) is similar. The distributivity
properties of the base domains are easy to verify. Assume
that dy 22 d; and d2 2 d; are distributive, and py, g1, r1
€ dy and pa, g2, r2 € d2. In what follows we write (f, g) for
fxg.

® (p1,p2) U ((g1,92)N(r1,72)) = (p1,p2) U (q1071, g2073)
=(PU(pon)pU(gor)=(mUa)nN(mu
n),(p2Ug)N(p2Ur2)) = (;Uq,p2Ug)N(py U
r1,p2 Ur2) = ((p1,p2) U (a1, 92)) N ((p1,p2) U (r1,72)).
Thus dy x dy ©3 d; x d, is distributive.

o The proof for d; + d; works similarly.

¢ In the case of the recursive domain construction, first
note that if any of p, ¢ or r is chosen as ABSENT,
the distributivity property holds. If none of them are
ABSENT, then each of them must be in P(T())
where 7 is in P(ur.T(r)). Now by the above argu-
ments, we know that T(r) commutes whenever r does.
Thus if any of the s are chosen as ABSENT then we
are done. We can repeat this argument to show that
as long as ABSENT is chosen at some level of re-
cursion, commutativity holds. The other case (when
ABSENT is never chosen) represents the single pro-
jection up.T(p). In this case since the three projections
are the same, distributivity holds.

0

Lemma 3.6 For a commutative distributive domain, there
ezists a least r such thatp C qU'r. )

Proof: Clearly there is always at least one r which sat-
isfies the definition (take r = ID). Assume we have two
incomparable elements r; and r; such that p C gUr; and
P E qUr;. Also assume that there is no element smaller
than both ry and r; satisfying the difference condition. Then
pE gUr; and p C g U, implies (from definition of glb)
P C (gUr1)N(gUrz) and by distributivity: p C quU(riNr2).
But 7, M r; is less than 7y and r; and it satisfys the differ-
ence equation.” Contradiction. (In case there are an infinite
number of r; satisfying the above condition, the existence of
the infinite glb needs to be shown. The infinite glb exists
because we know that the domain has no infinite decreasing
chains (this can be seen from the definition of D ¥ D) and
r1, 11 Mr2, 11 N r2 Nra,... is a decreasing chain. It is also
easy to see that lub distributes over the infinite glb.) O

For domains which are distributive in addition to being com-
mutative, we define the difference operation as follows:

Definition 3.4 If p and ¢ are elements of a commutative
distributive domain, the difference of p and ¢ (written p—g)
is the least r such thatp C gL r.

Lemma 3.6 ensures that the difference is uniquely and well
defined. This leads us, as promised, to a unique definition
of complement:

Definition 3.5 The complement § of an element p in a
commutative distributive domain is ID — p.

3.3 Algebraic Properties of D ereg

The properties that we have thus far defined were motivated
by our application to incremental computation. Interest-
ingly, they form what is known as a Brouwerian algebra.

Definition 3.6 A Brouwerian algebra is an algebra
(L,u,n, =, T) where (L,U,N) is a lattice with greatest ele-
ment T, L is closed under —, anda~bC c iffa CbUc.

A Brouwerian algebra can be seen as a generalization of a
Boolean algebra where the following equation need not hold:
ID-(ID-p)=p.

Theorem 3.1 (D proj D,u,N, —, ID) is a Brouwerian alge-
bra.
Proof: Follows directly from lemmas 3.3 through 3.6. O

Knowing that we are dealing with a Brouwerian algebra al-
lows us to use known properties of such algebras for rea-
soning about our projection domains. For example, when
specifying an incremental program, the partition we are in-
terested in may only be a subset of D 22 D, and thus we
may need to extend the domain to make it Brouwerian; it is

-a known theorem that such “completions” always exist. The

following theorem partially addresses this problem, quoted
without proof from [MT46]:

Theorem 3.2 If (€,U,N,—, T) is a Brouwerian algebra,
and M is a finite aub.get of L containing n eIem,:nts, then
there exists a subset L of L and an operation — with the
following properties:

. (L',u,n, -',T) s a Brouwerian algebra.

o L' contains at most 22" elements.

o M is a subset of c.

o Ifz,y andz —y are in C', thenz—'y=z—y.

One possible L' is the set of all elements of £ which are
expressible as Us and Ms of elements of M.

Example 3.4 Consider projections on the domain of lists
of pairs. D = List(Pair(a,b)). A finite subdomain of D 3 D
is shown in Figure 4. LEFT, RIGHT and ABSENT are pro-
jections on pairs. Here £L =D %% D and L' and M are the

subdomain shown in the figure. However, if ID were not one
of the projections, then the algebra would not be Brouwerian.




ID ‘
MAP(LEFT) MAP(RIGHT)

MAP(ABSENT)

ABSENT

Figure 4: Projections on the domain of lists of pairs

An interesting and much more extensive application of
Brouwerian algebras, the modelling of program integration,
may be found in [Rep90].

4 Residual Function Algebras

We now return to partial evaluation. We demonstrate that
the domain of projections in the last section induces an iso-
morphic domain of residual functions. This will make pre-
cise the notion of “combining” residual functions which was
alluded to earlier. ‘

Definition 4.1 The domain R of residual functions for a
function f, its argument a, and a commutative, distributive
domain of projections P is definedasR = {r | r = PE f pa,
p € P }. The ordering relation on R is defined as follows:
"1 ErnifpC quherer; =PE fpaandr,=PE f qa for
some f, p, ¢ and a. We define U, N and — for the domain
R as follows:

def
rplrg = rpug

1
~

e

rpMrg = rpngand

[
~

3

Tp—=Tqg = Tp—gq

It is easy to verify that the ordering on residuals is a partial
order. This ordering is intimately related to the standard
information ordering. If the type of f is A — B, the type of
a residual function for a fixed argument a is A’ — B where
A' is the subdomain of A of elements  a. The monotonicity
of the P& implies:

PEg = rp,Cryg

Theorem 4.1 Given a commutative, distributive projection
domain P and its corresponding domain of residual func-

tions R, Ap. PE f p a is a homomorphism from (P,U,N, —, ID)

to (R,u,N,—, "ID)-
Proof: Clearly PE preserves the identities of LJ, M and —.
It follows directly from definition 4.2 that P£ satisfies:

PE f (pUg)a=(PE fpa)U(PE fga)

PE f(pNg) a=(PE fpa)N(PE fqa)
PESf(p—q)a=(PE fpa)—(PE fqa)

0

Corollary 4.1 U, M and — on the domain R are the lub,
glb and difference operations, respectively.

We quote the following theorem from [MT46]:

Theorem 4.2 Any homomorphic image of a Brouwerian
algebra is a Brouwerian algebra. ’

Since the domain of residuals is a homomorphic image of
the projection domain, we can state that:

Corollary 4.2 (R,U,N,—,r1p) is a Brouwerian algebra.

§ Algorithm for Least Upper Bound of Residual Functions

The last section described three binary operations on resid-
ual functions: U, M and —, but did not describe algorithms
for them. If we had an efficient algorithm for —, the whole
problem of incremental computation would be solved! But
this is a difficult operation to compute since it involves
“backing up” of computation. Our methods can be seen
as trying to approximate — by using the other two opera-
tions. In this paper (and in all applications that we have
investigated to date) we only use L, and thus in this section
we develop an efficient algorithm for it.  Since we know
that PE is a homomorphism from the domain of projections
to the domain of residual functions, the following equality
holds:

(PEfpa)u(PE fqa)=PE f(pUg)a

While this gives us a simple method to compute the lub, it is
obviously inefficient, since it ignores the work already done
in computing rp and rq. A good algorithm will avoid redoing
any reductions already done to compute rp and rq. Indeed if
our incremental interpreter is to achieve good performance,
this is essential. In what follows, we assume that the partial
evaluator is implemented using binding time analysis. This
technique has been shown to be crucial in achieving self-
application of partial evaluators [JSS89).

Binding time analysis. The algorithm to compute the lub
uses binding time information of the two residual functions
in the form of action trees [CD90]. Binding time analy-
sis computes the binding time (static or dynamic) of each
expression in the source program given the binding times
of the argument. For purposes of partial evaluation it is
common to determine the binding time information prior
to actual specialization. The source program (a A-term) is
represented as a tree with three kinds of nodes: application,
abstraction and variable. Given a source program and a de-
scription of the binding time of its input (in the form of a
projection), the result of binding time analysis is an action
tree, isomorphic to the source program, with the following
nodes:




¢ Reduce: An action tree which says process the chil-
dren of the syntax tree according to the action subtrees
rooted at this node and then Reduce the node.

¢ Rebuild: An action tree which says process the chil-
dren of the syntax tree according to the action subtrees
rooted at this node and then Rebuild the node.

The specializer simply processes each node of the source
program by executing the corresponding action.

Algorithm LUB. We describe the algorithm in the context
of the A-calculus; it can easily be adapted to languages with
more syntactic sugar. Also, we assume that the functions
have first been a-converted to avoid any name clashes.

A residual function is described by a triple (r, a, ) where
r is the A-term representing the residual function, a is the
action tree which produced the residual function and e is
an associated environment which is initially empty. The
environment is meant to map variables to pairs of the form
(t,a), where tis a A\-term and a is the associated action tree.

Algorithm LUB( (r1,a1,€1) , (r2,a2,¢€2) )

o Apply rewrite rules in Figure 5 to (r1,a1,€1) U (r2,a2, €2)
until all U symbols are removed from the term.

¢ Reduce nodes all of whose children are reduced. This is
needed to perform reductions not performed by either
of the two residual functions but made possible by their
combination.

To reduce the number of rules, symmetric cases have
been omitted from Figure 5. The rules can be understood if
we realize that the motivation is to avoid doing any reduc-
tion which has already been done in any one of the other
residual functions. For example in rule 1, an application
has been reduced in one residual function but has been left
residual in another. The rule reduces this to taking the U
of the bodies of the abstractions, but also updates the en-
vironment of the second residual function so as not to lose
reductions performed in the argument. The other rules are
similar. There is a final post-processing step to be executed,
whose purpose should be clear from the following example:

g (x,y) = if (x == 0) then f (x,y) else f (x,y) - 5
f (x,y) = x*x - y*y

Partial evaluating g with the projection LEFT and argu-
ment (0,2) gives:?

gl (x,y) = 0 - yy

Partial evaluating g with the projection RIGHT and the
same argument (0,2) gives:

2Note that since residual functions have the same type as the func-
tion being partially evaluated, gl still takes a pair as argument. It
simply ignores the left element of the pair. A similar comment applies
to g2.

1. { r1, Reduce(a11)(a12), €1 }U
( (Az.tn)(tzz), Rebuild(an)(an), €2 )
=> (r1, a11, €1 )U
(t21, an, e2fz/( t22,822 )])

2. ( r1, Reduce(a1)(a12), ei[z/( t1,81 )} U
( z, Rebuild()(), e2[z/( t2,02)])
= (r,a, 1)U
(12, a2, €2)

3. ( r1, Reduce(ai1)(a12), €1 ) U
( r2, Reduce(a21)(a22), €2 )
=> (r, an, 1)U
( r2, @21, €2 ) (If the node reduced was an application)

4. ( r1, Reduce(an)(alg), 31[.’c/( t1,a; )] ) u
( r2, Reduce(az1)(a22), e2[z/{ 12,02 )] )
= (r1, 61,€ )U
( r2, a2, e2 )(If the node reduced was a variable x)

5. { (Az.t11)t12, Rebuild(ai1)(a12), e1 ) U
( (Az.tn)tzz, R.ebuild(an)(azz), €2 )
=> Az.({ t11, @11, &1 YU ( ta1, @21, €2 ))
(( t12, a12, €1 YU (122, a2z, €2 ))

6. ( z, Rebuild()(), ea[z/(t1,a1)] ) U
( z, Rebuild()(), ez[z/(t:,az)] ) = (tl,a1,61) u

(t2, a2, €2)

7. { z, Rebuild()(), e1 ) U
( z, Rebuild()(), e2 ) = z (if neither e; nor ez have
bindings for z).

Figure 5: Rewrite rules for algorithm LUB -

g2 (x,y) = if (x == 0) then x*x - 4 else x*x - 9
The result of using the above rewrite rules is:
gl2 (x,y) =0 - 4

Clearly this can be further reduced; i.e., there may be
reductions in the least upper bound which are neither in g1
nor g2. These can be performed through another phase of
partial evaluation.

Before we go on to examine properties of algorithm LUB,
note that as long as there is still a U in the term, one of
the rules will apply. Termination of the first phase of the
algorithm is not difficult to verify: each rule reduces the
size of the A-term under consideration, until the base case
is reached. The second phase may not terminate when the
source program contains non-terminating computations, but
this is common among partial evaluators. First we prove
the correctness of algorithm LUB. To do so let us first exam- .
ine some properties of action trees. The domain of actions
is a two point domain with Rebuild C Reduce. We now
define an ordering on action trees. Note that since action:
trees are isomorphic to the source program, they are isomor-
phic to one another. Thus if at; and at, are two isomorphic




action trees for the same program,there is an obvious one-
to-one onto mapping from the nodes of at; to the nodes of
ats.

Definition 5.1 An action tree aty is C at; iff every action
in aty is C its corresponding action in aty. It is not diffi-
cult to see that least upper bounds exist under this ordering.
An enabling transformation on an action tree is the replace-
ment a Rebuild action node whose children are all Reduce
action nodes by a Reduce action node. The closure of an
action tree i3 the result of repeatedly applying enabling trans-
formations to it until no opportunities to do so remain. We
denote the closure of t by C(t).

How is the action tree corresponding to rpuq related to
rp and rq? We use the notation at, to refer to the action
tree corresponding to rp.

Lemma 5.1 atpyy = C(atp Uaty)

Proof: Any expression marked static in either rp or rq must
be marked static in atpue. In addition if this makes all the
children of a Rebuild node Reduce, then the Rebuild
node must also be made into Reduce. O

Lemma 5.2 Algorithm LUB outputs a lambda term whose
action tree is C(atp U aty) where rp and rq are the inputs to
the algorithm.

Proof: By case analysis of the rewrite rules of the algorithm,
it is not difficult to see that the result of the first phase has
the following action tree: at, U atq. This is because each
rule chooses Reduce over Rebuild. The post-processing
stage simply applies as many enabling transformations as
possible. l.e. it computes the closure of the action tree. O

Theorem 5.1 Algorithm LUB correctly computes the least -

upper bound.
Proof: From the last two lemmas we note that the output of
algorithm LUB and atyuq have the same action tree. Since
both are specializations of the same function, they have to
be equal. O

Theorem 5.2 Algorithm LUB does not re-perform any re-
duction already performed in the computation of either rp or
Tq.

Proof: During the application of the rewrite rules, no reduc-
tions are done (all of them are done in the post-processing
phase). At the end of this phase, the term has the action
tree atp U aty. This means that all reductions in rp and rg
are already incorporated. O

6 Applications

In this section we consider two well known problems — data
flow analysis and attribute grammar evaluation — for which
we have recast, and implemented, existing algorithms us-
ing our framework. Other problems for which we have con-
structed incremental programs include strictness analysis,
Hindley-Milner type inference and solving simple systems of
constraints [Sun91).

Figure 6: Example flow graph

6.1 Incremental Data Flow Analysis

As an example of compiler data flow analysis, consider the
problem of determining the set of “reaching definitions” at
every program point. A definition of a variable is said to
“reach” a program point if there exists a path from the def-
inition to the program point which does not pass through
a redefinition of the same variable. For example, consider
the flow graph in Figure 6 (taken from [MR90]). Each of
the circles denotes a basic block, where a label “z =” means
that z is assigned a value in that block. Arcs are labelled
with sets L; of definitions which reach that arc. For exam-
ple, the set Lo = {(z,e1),(y,€2)} means that the definition
of z at program point el and y at €2 reach the arc labelled
Lo. We can then write the following equations (“?” refers
to a wildcard):

e~
o
I

{(z,e1), (y,€2)}

LoUL;

L, - {(z,7)}u{(z, B)}

(L1 VL) = {(», N} U {( O}

~
»
nwn

The solution to these set equations is defined by a least
fixpoint construction in the obvious manner, yielding:

Lo = {(z,el),(y,€2)}

L, = {(z,el),(y,e2),($,3),(y, C)}
L, = {(ya 62),(3/’ C):(Z’B)}

Ly = {(z,el),(z,B), (v C)}

Recall that an incremental algorithm specification con-
sists of a non-incremental program plus a partition of the
input domain. Therefore we first need to describe a non-
incremental algorithm. (In this and subsequent examples
Haskell [HWe90] syntax is used to describe the algorithms.)

We assume the input to the algorithm to be a list eqns
of strongly connected components of the set of data flow
equations in topological order (which can be produced by
a standard dependency analysis). The overall solution is
defined by:

dfa eqns = foldl fix null-env eqns




where fix (defined below) is a function which takes an ini-
tial environment mapping arc labels to sets, and a set of
mutually recursive equations, and computes the least fix-
point of the equations using the initial environment as the
first approximation. The fixpoint is found by computing the
least upper bound of the ascending Kleene chain; since the
domain is finite, termination is guaranteed.

fix env eqns = if env == env’ then env
else fix env’ eqns
vhere env’ = eval eqns env

eval is a function which recomputes the identifiers defined
by the equations eqns using the old environmént env to
produce a new environment env’.

The next step is to describe a partition of the input. The
partition we use is quite simple:

p=lprili< [1..]]
wvhere pr 1 [] = bot
pr 1 (x:x8) = x : bot
pri [J = bot
pr i (x:xs) = bot : pr (i-1) xs

Note that pr i, the ith projection in the partition, discards
all information but the ith element of its input list (bot is
the “unknown” marker for the partial evaluator). Also note
that although the partition itself is infinite (the notation
[1..] denotes the infinite list of positive integers), for a
finite list only finitely many of these projections are needed;
i.e., there are only a finite number of residual functions to
store.

The incremental algorithm specification is thus (dfa,p).

Example 6.1 We use the flowgraph in Figure 6 to detail
the working of the algorithm. Assume that it represents the
second connected component in the input list. During the
Setup phase, the computation of the residual function cor-
reponding to projection pr 2 unrolls the fizpoint iteration
for that component to yield: (this is sanitized Haskell code
representing the actual output of our partial evaluator)

dfa_pr2 (eqnl : ( _ : rest_eqns)) =
foldl fix env2 rest_eqns
where env2 =
eval [ (L1, (union,LO,[(x,B),(y,C)])),
(L2, (union, (diff,L0, [(x,?)]),
[(x,B),(y,0)1)),
" (L3, (union, (diff,L0, [(y,?)]),
[(x,B),(y,001)) ]
envil :
envi = fix null-env eqni

Note that dfa_pr2 ignores the second element of its input
(the notation _ means don’t care). A similar computation
has been carried out for each element of the partition (a
connected component). If any of the components change,
then the Reestablish phase computes the residual for the

affected members of the partition. During the third phase
(Combine), the result is obtained by computing the lub of
all the residual functions, which effectively propagates in-
formation in topological order between the components. For
ezample, the predecessor (in topological order) of the com-
ponent above will supply the value of Lo, which will enable
this component to supply its topological successor the value
of L3, and so on. It is easy to see that there is no firpoint
iteration in this stage.

Note that partitioning into strongly connected compo-
nents plays an important role in enabling fixpoint iteration
to proceed to completion even when only part of the input
is known. This is essentially the intuition behind the algo-
rithm in [MR90]. How can we be sure that this algorithm -
posseses the same time complexity as the one in [MR90]?
The algorithm in [MR90] has two main steps (called steps 5
and 6 in the papet).:’ The first step corresponds to recom-
puting residual functions of projections which “see” changes
in the input. The second corresponds to the compuation of
the result via a lub construction.

During the Setup and Reestablish phases the partial
evaluator has enough information to unroll the function fix
for a given strongly connected component.

Lemma 6.1 The cost of the Reestablish phase is propor-
tional to the size of the affected strongly connected compo-
nent.

Proof: The cost of carrying fixpoint iteration (for this prob-
lem) to completion is well known to be O(B x V) where B is
the size of the component and V is the number of variables
of interest. For a fixed number of variables the cost is O(B).
0O

The next step simply combines residual functions using the
U operation. No fixpoint iteration needs to be performed.
The only task left to do is to transmit information among
the various components. The cost of this is easy to see:

Lemma 6.2. The Combine phase does no fizpoint itera-
tion, but only propagates information in topological order.
The cost of this step is proportional to the condensed flow
graph.

Proof: Follows from the fact that the information is prop-
agated in topological order with a constant amount of work
done at each component. O

6.2 Incremental Attribute Evaluation

The use of attribute grammars [?] to describe language
specifications is well known. These specifications have been
used as the starting point for the generation of language
based programming environments [Rep84]. Programs in this
model are represented as attributed trees, i.e. syntax trees

3The first four steps of the algorithm in [MR90] are implicitly
present in our algorithm because of the input DataFlowAnalysis ex-
pects, namely strongly connected components of the flow graph in
toplogical order.




N — SL {Lscale = 0
N.val = if S.neg then — L.val
elseL.val }
S - + { S.neg = false}
S - - { S.neg = true}
L — B { B.scale = L.scale
L.val = B.val}
Lo — LiB {Lj.scale = Lo.scale+1
B.scale = Lo.scale
Lo.val = [L;.val+ B.val }
B — o0 { B.val = 0}
B - 1 { B.val = 2Bscaley

Figure 7: Attribute grammar for signed binary numerals

N (0)
N

S (1) L (2)

- L@ B (4)
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Figure 8: Parse tree for -110

with attributes carrying semantic values. The goal of incre-
mental attribute evaluation is to efficiently produce a well
attributed tree after each editing operation. In what fol-
lows, editing is modelled by subtree replacement, and we
only consider non-circular attribute grammars.

As usual let us first describe a non-incremental algo-
rithm, which we do by means of an example. Consider the
attribute grammar in Figure 7, which describes the syntax
for signed binary numerals, as well as the semantics: the
decimal value that the numeral denotes. For example, the
parse tree for -110 is shown in Figure 8 (we will refer to this
example later).

Given an attribute grammar and a parse tree, the non-
incremental algorithm for attribute evaluation is as follows:

o Generate the equations described by the parse tree.
(For example, Figure 9 shows the equations for the
parse tree in Figure 8; note the subscripting of the
attributes by the node numbers.)

e Generate a dependency graph, where an attribute a;

valp = ifnegithen — valzelseval,
scalez = 0

neg: = true

val, = wvaly + val,
scalez = scalez +1
scales, = scalez

valy, = 0

vala = wvals 4 valg
scales = scales +1
scale¢ = scales

tlale = 2acaleg

vals = valy
scale; = scales

0617 = 2Jcale1

Figure 9: Attribute equations for the example parse tree

depends on a; iff the right hand side for the equation
defining a; contains a;. (See Figure 10.)

e Perform a topological sort of the dependency graph,
to get a safe order of evaluation of the attributes, and
then perform the evaluation.!

To generate an incremental algorithm, we need only spec-
ify a partition of the input domain (in this case a parse tree).
As a first attempt at such a partition, suppose p; is the pro-
jection reflecting the fact that only the descendants of node
i are known. Then 77 is the projection where every node ez-
cept the descendants of ¢ are known. A candidate partition
is thus:

P = {p:} U {7}

Recall that the Setup phase computes the residual func-
tions corresponding to each projection in the partition. Us-
ing the above partition for Figure 8, let us see what rz;
looks like. The partial evaluator has knowledge of all nodes
except 7. This means that it can construct the modified
dependency graph shown in Figure 11, where the dotted .
portion is unknown. It is not difficult to see that the partial
evaluation of a toplogical sort on this graph will result in
the evaluation of scalez, scales, scales, scales, scaleg, valy,
vals, and neg;, even though the subtree rooted at 5 is not
known.

The Reestablish and Combine phases work as follows.
If we are given a new subtree at (say) node 5, we compute
7ps and take the lub of rp; and rp, to obtain the answer. But
now the Reestablish phase can be unacceptably expensive. -
Changing a subtree rooted at node 5 causes residual func-
tions far away from node 5 to be altered. This means that
every time a subtree is changed, unacceptably many residual
functions will have to be recomputed.

This problem leads us to seek a new partition. Con-
sulting the literature, we find in' [RTD83] an incremental

4Since we are considering only noncircular attribute grammars,
the graph is guaranteed to be acyclic.
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Figure 11: Partial dependency graph

algorithm for the same problem which reduces the amount
of work done while updating the stored information. We
can use exactly the same method, described below in our
framework. :

The key idea is to make use of a restricted editing model,
in which cursor position is maintained:

o The cursor is at any given moment at one node in the
parse tree, and can be moved in one of two ways: to
the parent node, or to one of the children.

o The only edit operation permitted is subtree replace-
ment. ’ :

Thus at any given moment the nodes can be partitioned into
three disjoint sets: The first is the singleton set R consisting
of the cursor position r. The second is the set S of nodes
on the path from the root to the cursor position, including
the root. The third is the set T of remaining nodes, which
includes nodes below the cursor. Using this knowledge, the
new input partition is as follows:

P={pi,pili€R}U{pi[i €T} U {5i|i€S}

The Setup phase is similar to that described for the
previous partition, only simpler. The Reestablish phase,
however, is more interesting. Consider a node a with three
children b, c and d. There can now be three kinds of changes.

e Move To Parent. The set T gets a new member
(the old cursor position); but since the old R had both
rp and rgy computed, there is no work to do. The set
S loses a member, so again their is no work to do.
The set R gets a new member for which we need to
compute rp. Moving from child b (say) to parent a,
the operation needed to Reestablish the invariant is:

Tpe =Tp, U 1p. U 1p,

¢ Move to Child. By similar reasoning, the operation
to be performed for a move from parent a to child ¢ is:

5o = Tpo U rp, U rp,

¢ Replace Subtree. Here we simply need to recompute
rp for the current cursor position. By virtue of the
partition, nothing else needs to be changed (cf. the
previous partition).

When a subtree is replaced at node p, the new result is
obtained by computing r, U rg. The first observation we
make concerns the computation of rp: any attribute which
does not depend on projection p of the tree gets a value
during the computation of rg.

How much work is done when a subtree is replaced?

Theorem 6.1 The work done by the Reestablish phase
after a subtree replacement is proportional to the number of
attributes potentially affected by the change.




Proof: During the Reestablish stage, the work done is in
computing those attributes in the modified subtree which
do not depend on the rest of the tree. During the Com-
bine phase the work done is in computing those attributes
in the modified subtree which depend on the rest of the
tree. Thus the total work done is exactly in recomputing
those attributes which are potentially affected by the sub-
tree modification. O

Compare this to the algorithm in [RTD83] which achieves
a better time complexity, namely that an attribute will be
re-evaluated only if the values of any of the attributes it
depends upon change. The algorithm we outlined will re-
evaluate all attributes which depend on the changed subtree.
During cursor movement, the algorithm in [RTD83] achieves
unit cost per move. The algorithm we have outlined takes
time proportional to the number of attributes whose values
are resolved as a result of the Ul operation. We are investi-

gating ways to improve our solution to match the efficiency
of [RTD83).

7 Brief Comparison With Other Approaches

Readers familiar with the literature of partial evaluation
will recall Lombardi and Raphael’s pioneering paper [LR64],
which coined the term “partial evaluation” in the context of
doing “incremental computation.” However, their notion of
incremental computation was to monotonically add infor-
mation about the input to a function, and to do as much
computation as possible at each step. This is achieved by
computing a series of residual functions each of which is the
result of partially evaluating the previous one with the ad-
ditional input. Our definition of incremental computation
(and what is generally understood by the term today) is
more general than this in that changes to the input need not
always be in the form of adding information — information
can change non-monotonically. Thus our work can be seen
as a generalization of the work which originally introduced
partial evaluation.

The goals of all the following approaches are very similar
to ours, but they differ in methodology.

INC. Yellin and Strom [YS89] describe a restricted func-
tional language for incremental computation. The main
data structure in the language is a bag. Programs written in
the language make use of certain combining forms which are
guaranteed to have efficient incremental performance. The
emphasis in this work has been to design efficient incremen-
tal algorithms for the various operations in the language.
A main difference is that the target language for INC are
objects called circuits. Our target language is the same as
the one in which the non-incremental program is described.

Caching. Pugh [Pug88] tackles the problem of caching re-
sults of function calls to achieve incrementality. The scheme
depends crucially on clever run-time support. In addition,

programs have to be written using what Pugh calls stable de-
compositions of data structures to obtain good performance.

Incremental )-Calculus Reduction. In [FT90] Field and
Teitelbaum construct an incremental evaluator for the A-
calculus. It keeps track of exactly which reductions did not
depend on the part of the A-term which changed. For this
purpose the parts of the term which can change have to be
marked in advance. In contrast with all these approaches,
our approach allows the possibility of generating a “com-
piled” incremental program via partial evaluation of the in-
cremental interpreter itself. '

8 Discussion

Compiled Incremental Programs. The use of the incremen-
tal interpreter Z gives rise to inefficiency due to a level of in-
terpretation. Inspired by the Futamura Projections [Fut71],
we can achieve a process of “incrementalization” as follows:®
(we use the notation [f] to denote the function correspond-
ing to the program f, i.e. the semantic function of the lan-

guage)
[PE] T (f, P) = fine

Running finc is more efficient than using the incremental
interpreter, and has the advantage that it can be used inde-
pendently of the incremental interpreter. Using the second
Futamura projection, we can self apply the partial evalua-
tor to generate an incrementalizer: a program which con-
verts incremental program specifications into incremental
programs.

[P€] PE T =1TNC

Binding Time Analysis. Binding time analysis is essential
for good performance of the incremental programs we have
described. Since the partition is known before the actual
data elements are available, binding time analysis can be
carried out off-line. This means that the self-application
described above can avoid the overhead of interpretation.
Binding time analysis is usually achieved by an abstract in-
terpretation of the program. To ensure termination, finite
domains are usually used. But as we have seen our domain
of projections is infinite (although the number of projections
used in any given session is finite}. One way to overcome this
problem for implementation purposes is to place a fixed up-
per limit on the size of the input data. We are investigating
other solutions.

Maintaining the Partition. We have not discussed the cost
of maintaining the input partition. In some cases (the at-
tribute grammar example) the cost of maintaining the parti-
tion is not very high. In the case of the data flow analysis we

5In what follows we use the more common notation for partial eval-
uation: a partial evaluator takes a function and some of its arguments
to produce a residual function.




must employ a method to maintain the strongly connected
components of the flow graph. '

Restrictions on the use of Residual Functions. A draw-
back of our framework is that residual functions cannot be
freely used in the following sense. If two data flow graphs
share a strongly connected component, it should be possible
to use the residual function from one incremental session in
the other session. But this may not be possible since the
two strongly connected components, although they are the
same, may occupy different positions in the list of strongly
connected components. We are investigating ways of over-
coming such restrictions.

9 Conclusions

We have presented a framework for constructing incremen-
tal programs from their non-incremental counterparts. We
have used the notion of partial evaluation to provide a basis
for our framework. This is particularly appropriate since
binding-time analysis (an important phase of partial eval-
uation) is concerned with analysing dependencies in a pro-
gram based on the known/unkown signature of the input.
This approach offers a degree of automation in the construc-
tion of incremental programs. The framework presented in
this paper (including the examples) has actually been im-
plemented. For details of the implementation, the reader is
referred to [Sun90].
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