- v

A Generalized One-Dimensional Fast Multipole Method
with Application to Filtering of Spherical Harmonics

Norman Yarvin and Vladimir Rokhlin
Research Report YALEU/DCS/RR-1142
January 1998

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

An algorithm is described for the rapid application to arbitrary vectors of a fairly broad
class of matrices. The scheme can be viewed as a generalized (and somewhat accelerated)
version of the Fast Multipole Method in one dimension. In place of multipole expansions,
the new scheme uses singular value decompositions of appropriately chosen submatrices
of the matrix to be applied. The scheme is applied to the uniform resolution filtering of
functions on the sphere, in a modification of the recently published scheme by Jakob-Chien
and Alpert. The performance of the method is illustrated with numerical examples.

A Generalized One-Dimensional Fast Multipole Method
with Application to Filtering of Spherical Harmonics

Norman Yarvin and Vladimir Rokhlin
Research Report YALEU/DCS/RR-1142
January 1998

The authors were supported in part by DARPA/AFOSR under Grant F49620-97-1-0011
and in part by ONR under Grant N00014-96-1-0188.

Approved for public release: distribution is unlimited.

Keywords: Singular Value Decompositions, Fast Algorithms, Spherical Harmonics.

)

1 Introduction

This paper describes an algorithm for the following task: given an n x m matrix P of a certain
structure, and given a desired accuracy ¢, compress P so that its product with a vector can be
efficiently computed to that accuracy. The structure the algorithm requires of P is as follows:
there must exist numbers z; < 23 < ... < zp, and §; < y2 < ... < y, such that, roughly
speaking, any submatrix of P which is separated in index space from the line z; = y; by a
distance greater than its own size has a rank less than some (reasonably small) number 7, to
the precision ¢; the CPU time taken by the algorithm for multiplication of P by a vector is then
O(nr). (A rigorous accounting of the execution time of the algorithm is somewhat complicated,
and is given in Section 3.2.6.) A typical matrix P = [p;;] having such a structure is given by

the formula 1

Pi= (1)
the multiplication of that matrix by a vector can be accomplished efficiently by the one-
dimensional versions [3, 9] of the Fast Multipole Method (FMM) [4]. The algorithm described
in this paper is also organized along the lines of the FMM.

This paper is arranged as follows. Section 2 briefly reviews numerical tools used by the
algorithm. Section 3 describes the generalized FMM, in its basic form. Section 4 describes
modifications to the algorithm of Section 3, the principal one of which is the diagonalization
of roughly a third of the interaction matrices. Section 5 contains numerical results for the
generalized FMM applied to the matrix (1). In Section 6, we use the constructed scheme as
a tool for the rapid uniform resolution filtering and interpolation of functions on the sphere.
It should be observed that the latter algorithm is a fairly straightforward modification of that
published by Jakob-Chien and Alpert in [7].

2 Numerical Preliminaries

2.1 Singular value decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, given for
the case of real matrices by the following lemma, (see, for instance, [8] for more details).

Lemma 2.1 For any n x m real matriz A, there ezist an integer p, an n x p real matric U
with orthonormal columns, an m X p real matriz V with orthonormal columns, and a p X p real
diagonal matriz S = [s;;] whose diagonal entries are nonnegative, such that A = USV* and
that s;; > siy1,i+1 foralli=1,...,p—1.

The diagonal entries s;; of S are called singular values of A; the columns of the matrix V are
called right singular vectors; the columns of the matrix U are called left singular vectors.
2.2 Least squares approximation

This section contains three lemmas on the least squares approximation of matrices, proven in a
more general setting in [9]. In this section, and in the remainder of the paper, R™™ will denote

the space of all real n X m matrices, and the matrix norm used will be the Schur norm; that is,

for an » X m real matrix A = [a;;],
n m
14l =, [>>) a3 @)
i=1 j=1

Lemma 2.2 Suppose A is a p X n real matriz, B is an m X k real matriz, and C is a p X k
real matriz, for some m, p, n, and k. Let A = U A.S' AVA be a singular value decomposition
of A, and let B = U BS BVB be a singular value decomposition of B. Let r be the number of
nonzero singular values of A, and let g be the number of nonzero singular values of B. Let Uy
and V consist of the first r columns of Us and V4 respectively, and let S 4 consist of the first
T rows of the first r columns of S4. Let Up and Vg consist of the first ¢ columns of Ug and
Vi respectively, and let Sg consist of the first q rows of the first ¢ columns of Sg. Then the
solution X of the minimization problem

mm » |1AXB - C]|| (3)
XeR
is given by the formula
X = VS 'UsCVESE Us. (4)
Furthermore,
[AXB - C|| = |IC = U,UCVpV3||- (5)

The following lemma provides a bound, in certain situations, on the error of the approxi-
mation given by Lemma 2.2.

Lemma 2.3 Under the conditions of Lemma 2.2, suppose that there exist an n X k matriz D
and an p X m matriz E such that

|AD - C|| < e, (6)
and
|EB - C|| < es. (M)
Then)
|AXB - C|| < &1 + €2 (8)

As shown by the following lemma, the error bound of Lemma 2.3 also applies when a
different formula for the minimizing matrix is used.

Lemma 2.4 Under the conditions of Lemma 2.3, let the nXm matriz Y be given by the formula
Y = DVgS5'U%. (9)

Then
|[AYB - C|| < &1 + €3. (10)

3 Basic FMM

This section describes the generalized FMM of this paper. It is described as a set of modifica-
tions to the FMM of [4, 3]; the reader is assumed to be familiar with that algorithm.

The overall FMM structure, of an upward pass for creation of far field expansions, followed
by a pass which computes local expansions from far field expansions, followed by a downward
pass which propagates far field expansions to lower levels and evaluates them, is retained.
However all the expansions are different, being based on singular value decompositions rather
than on analytical formulae. In addition, the hierarchical subdivision scheme is different, being
performed according to matrix indices rather than according to point locations. (The expansions
used permit almost any subdivision scheme, whether adaptive as in [9], or non-adaptive as in
[3]; the present scheme was chosen solely for its simplicity.)

3.1 Subdivision scheme
The hierarchical subdivision is performed on column indices of the matrix P, as follows:

¢ Each interval of column indices, if it is divided, is divided into two intervals of equal size
(or differing in size by one, if the number of indices in the interval is odd).

¢ The subdivision is uniform: either all the intervals at any given depth of the tree are
subdivided, or none are.

¢ The subdivision process continues until the lowest-level intervals are as close as possible
to a user-chosen size.

For each interval [j1,72] of column indices produced by the above process, a corresponding
interval [41, i5] of row indices is chosen such that the portion of P addressed by the two intervals
of indices contains as much as possible of the line z; = y;. The precise criterion used to choose
the interval [i1,49] is that it should be the interval of maximal size such that

(Th-1+25)/2 <wiy <. <¥iy < (2, + Tj41)/2 (11)

(If zj,—1 or zj,41 does not exist, the corresponding inequality in the above equation is not
enforced. The quantities 2 < 2 < ... < z,p and ¥3 < Y2 < ... < Y Wwere, in the present
implementation, user-provided; in an environment where they are not readily available, they
can be determined by numerically searching P for areas of high numerical rank.)

3.2 Expansions

This section describes the expansions used in the generalized FMM. Submatrices of P will be
designated as follows: P, denotes the portion of P whose column indices are in b and whose
row indices are in a, where a and b are either intervals of indices into P, or sets thereof.

For each interval, the FMM divides all other intervals at the same depth in the tree into
two sets:

¢ 1. The near field region, consisting of the two adjacent intervals at the same depth in the
tree of intervals.

with af’; =0, for allk <0, or1 <0, or m < 1. Then

m=1

(D"
m— m-— a 1p’
(—21+k>!(—2‘~k)!§ o

¥ (p)=

foranyodd m >3,1<k< mT‘l and A7 (p) is defined by (11).

Proof. Due to (11),
(-

CEyCy

K(p)= Cr'(»),

where

R0 = o L0+ 252 -0,

Thus it is sufficient to show that o
CP(p= ok
=1
This will be shown by induction. Indeed, if m = 3 then, due to (18),
Ci(p) =1 +p,

which is equivalent to (15-a),(15-b).

Assume now that for some m, k such that —mT‘l <k< m—;l-,

-1
2
Ci(p)= D_ afup'.
=1

Combining (18) and (21), we have

m=—1

2

|

m m+1 m+1 m
Cit(p) = (p+ —2““)(1’ -) Z ak,zpl
=1

2
m—1

= (P2 - (____é__)z) Z ak,zpl
=1

=1 m—1

3

u|

=1

which is equivalent to (15-d).
Now, assume that for some k

k
CEHI(p) = 3Bt
=1

4

= GZTIPI“ - (—2“)2 Z a?,"zpl,
=1

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Combining (23) and (18), we have

CHH(p) = (p- wpw+m2ﬂ“’

Il

(p +p- (k2+k))za2k+l !
=1

k
- Za2k+1 142 + Za2k+l 1+1 (k2 + k)Za%"'l !

1

=1 =1

(24)
which is equivalent to (15-c). O
Lemma 2.5 Suppose that m > 3 is odd. Then,
m—l
m (=177 *
i,k = (m2 1 +k)'(m -1 k)'ak 21 1(21) (25)
for any k, i such that -—-"lg-—l— <k< mT'l, and1<i< ’—"—231,
with the coefficients af’; defined by the recurrence relation in Lemma 2.4.
Proof. Substituting (16) into (13), we immediately obtain
’ m—1
m (_1)T+k 3(2' D% p=0
Di,k - (_-m_z_l +k)!(mT.-1_ k)'ap(% 1) Z klp I
m=1
(-1)"z *F :
Taioy(2t — 1)L 26
(_n_zi—_l + k)!(mT_l _ k)!a’k,Zz—l(4) ()
O
The following six lemmas provide identities which are used in the proof of Theorem 3.1.
Lemma 2.6 Ifk > 2 is an integer and a}); is defined in Lemma 2.4.
(et < 1+ -aits (27)

foralll=1,2,..,2k-3.

Proof.
Ifk=2,and I = 1then |(1)! a3, |=2, |(3)!-a}5|= 12, and therefore (27) is obviously true.
Now, assume that

|- ekt | < 10+ 2)afit |, (28)
for some k > 2andall I =1,2,...,,2k - 3.
Now, due to (15-a), (15-b), (15-c), and (15-d),

(! ah%3 = ((k+1) = (k + 1)?)afkt! + o254 + a25FL) . (1), (29)

expansion evaluation matrix for interval ¢, and let U;; be the local expansion evaluation matrix
for interval j, with rows deleted so that it only produces output on the interval :. Clearly the
translation matrix M; should be such that for any r;-vector a, the vector U; M;a is as close as
possible, by some measure, to the vector U;;a. The measure we use is the least squares measure;
in particular, M; ; is chosen so as to minimize the quantity ||U;; — U; M;||. The formula for such
minimization is given by Lemma 2.2; using the fact that the singular value decomposition of
any matrix with orthogonal columns consists of that matrix multiplied by two identity matrices,
it reduces in this case to

M; =UU;;. (18)
The error incurred by using M; is bounded by Lemma 2.4; the analysis is almost identical to
that presented in Section 3.2.3 for the far field translation matrix T3, and is omitted. We will
refer to M; as the local expansion translation matrix for interval 1.

3.2.5 Far field to local interaction matrices

A far field to local interaction matrix F;; takes as input a far field expansion on an interval ¢,
and produces as output a local expansion on another interval j. Such matrices are constructed
only for pairs of intervals (¢, j) such that j is in the interaction list of ¢. The matrix E;; should
be such that for all m;-vectors g, the product U; E;;V;*q is as close as possible, by some measure,
to the product P;;q. We choose E;; so as to minimize the quantity

&ji = U E5:Vi" — Piall- (19)
The formula for such minimization is given by Lemma 2.2; using the fact that the singular
value decomposition of any matrix with orthogonal columns consists of that matrix multiplied
by two identity matrices, it reduces in this case to

E;;= U;Pj,,'V,’. (20)

Lemma 2.3, combined with (12) and (13), gives a bound for ¢;;:

n;m; n'm!
s <<l (\/). (21)

We will refer to E;; as the far field to local interaction matrix from interval ¢ to interval j.

Remark 3.1 A brief inspection of the above formulae for the creation, translation, and evalu-
ation matrices {U;}, {V;}, {Ti}, {M:}, and {E;;}, shows that the same matrices are generated,
in different roles, if the input matriz to the algorithm is the adjoint P* of P, provided that the
hierarchical subdivision is retained: the far field ezpansion creation matrices for P are identi-
cal to the local expansion evaluation matrices for P*, and vice versa; the far field translation
matrices for P are identical to the local expansion translation matrices for P*, and vice versa;
and the far field to local matrices for P are the adjoints of the far field to local matrices for P*.
Thus the matrices precomputed for P can also be used for multiplying by P*.

3.2.6 Execution time

The FMM performs one matrix-vector multiplication for each instance of the matrices {U;},
{Vi}, {T3}, {M;}, and {E;;}. Thus the CPU time which it consumes is proportional to the
total number of elements in all instances of the matrices. The sizes of the matrices depend
on the numerical ranks p; and 7;, as defined by (12) and (13). We analyze the execution time
further only in the case that all those ranks are all bounded by some number r. In that case,
the computation of far field expansions from the input takes O(mr) time, the computation
of the output from local expansions takes O(nr) time, and the computations of expansions
from other expansions take O(kr?) time, where k is the total number of intervals produced
by the subdivision process. Assuming that m is proportional to =, the total execution time is
O(nr + kr?). The quantity nr + kr? is minimized (with respect to k) when n/k is equal to
r. Since n/k is proportional to the size of the lowest-level intervals, the minimum execution
time occurs when the size of the lowest-level intervals is proportional to 7, with the constant of
proportion depending on the details of the computer involved.

4 Technical Improvements

4.1 Diagonalization of far field to local matrices

A certain degree of freedom is present in the definition of far field and local expansions: the
results of the FMM are clearly unaffected if the far field expansion creation matrix V;* for an
interval 7 is multiplied on the left by any orthogonal matrix W, its far field translation matrix T}
is multiplied on the right by W*, and its far field to local matrices E;;, for all j, are multiplied
on the right by W*. Similarly, the results of the FMM are unaffected if the local expansion
evaluation matrix U; for an interval ¢ is multiplied on the right by any orthogonal matrix W,
its local expansion translation matrix M; is multiplied on the left by W*, and its far field to
local matrices E; ;, for all j, are multiplied on the left by W*.

We use this freedom to diagonalize one of the (usually three) far field to local matrices for
each interval. Suppose that E; ;, for some intervals ¢ and j, is the matrix to be diagonalized.
Let its singular value decomposition be denoted by E;; = USV*. Then we multiply V} on the
right by V*, and multiply U; on the left by U, also changing translation matrices and far field
to local matrices as indicated in the previous paragraph so that the results of the FMM are
unaffected.

Far field to local matrices are chosen for diagonalization in such a way that each expansion
redefined by this process is redefined only once. The scheme used is as follows: each level of
intervals is divided into blocks of four adjacent intervals, and inside each block, the interactions
chosen for diagonalization are: 1 — 3,2 — 4,3 — 1, and 4 — 2 (as depicted in Figure 1).

4.2 Splits by factors other than two

Another modification which was made to the above FMM is to split intervals into more than
two pieces. This clearly can be done to any interval, at any level in the tree. However, the
conly use which was made of this flexibility was to alter the top of the tree of intervals slightly,
so as to control better the size of the lowest-level intervals in the tree. The top interval was

7

Figure 1: Far field to local operators which are diagonalized

1 2 3 4

split either into two, three, or five pieces, and if three, its subintervals might each be split into
three parts, the remaining intervals in the tree all being split into two parts. This permits a
choice of the size of the lowest level intervals not only of n/2* for any k, but also of n/(3 x 2¥),
n/(5 x 2F), or n/(9 x 2).

5 Numerical results

For comparison against the older one-dimensional FMMs of [3, 9], the generalized FMM was
applied to the 1/z kernel; that is, the input matrix P = [p;;] was given by (1). Timings for
various numbers of points n are listed in Tables 1 and 2 for double and single precision (that is,
with the parameter ¢ set to 1071 and 10~7). In all cases, the parameter m was set to be equal to
n, the nodes {z;} were identical to the nodes {y;}, being slightly perturbed equispaced nodes.
All timings were performed on a Sun Sparcstation 10, in double precision (Fortran REAL*8)
arithmetic. Also included in the tables are ratios of the execution time of the algorithm to the
execution time of a standard SLATEC FFT of size n.

From the timings, it can be seen that the generalized FMM is similar in execution speed to
the best previous 1-D FMM (that of [9]) known to the authors. It is, however, far inferior to
the FMMs of [3, 9] in the time spent in the precomputation stage; initialization times for those
algorithms did not exceed execution time by more than a factor of ten, whereas the initialization
time for the generalized FMM exceeds the execution time by factors of thousands. Effectively,
it limits the usefulness of the procedure of this paper to problems of sufficient importance that
the initialization data can be precomputed and stored. The following section discusses one such
case.

Table 1: Double precision timings for the 1/z kernel

N Error Times Ratio || Memory
(L? (seconds) Eval || (REAL*8

norm) Init | Eval | Direct || /FFT || spaces)

64 | 0.35477E-15 0.070 | 0.001 | 0.001 5.21 3852

128 | 0.92042E-15 0.820 | 0.003 | 0.005 7.31 10407
256 | 0.23512E-14 6.620 | 0.007 | 0.019 8.93 26205
512 | 0.16144E-13 || 39.700 | 0.013 | 0.073 5.60 52263
1024 | 0.21925E-13 || 214.710 | 0.031 | 0.730 4.16 117881

Table 2: Single precision timings for the 1/z kernel

N Error Times Ratio || Memory
(L? (seconds) Eval | (REAL*8

norm) Init | Eval | Direct |- /FFT || spaces)

64 | 0.25040E-08 0.040 | 0.001 | 0.001 || 4.74 3500
128 | 0.23352E-07 0.440 | 0.002 | 0.005 | 5.90 8465

256 | 0.19125E-06 3.580 | 0.005 | 0.018 6.13 17803
512 | 0.64886E-06 || 22.710 | 0.010 | 0.074 4.03 36911
1024 | 0.28910E-06 || 124.690 | 0.021 | 0.590 2.77 79407

6 Application to Filtering

This section describes a use of the generalized FMM, in an algorithm recently published by
Jakob-Chien and Alpert [7] for uniform resolution filtering of functions on the sphere. Their
algorithm as a whole performs the following task: given numbers f(¢;,0;), fori =1,...,I and
j=1,...,J, such that

K n
f(i,87) =D D ¥ (4i,65), (22)

n=0m=-n

compute numbers f(gf),', éj) such that

| N on |
f@i,0)= 3 3 fvr(4:,6)), (23)

n=0m=-n

where the functions Y;" are the surface harmonics, and where {¢;}, {6;}, {¢:}, and {6;} are
appropriately chosen grid points (see [7] for details).

We modify only the core of the algorithm of [7], which performs the following one-dimensional
filtering operation: given numbers f™(6;),..., f™(8) such that

J-1
™6:) = Z PP (wi), i=1,...,J, (24)
J=m

Combining (14) and (58), we have

& h¥B -
Thn(f) = Tu(F) + Z Ty OO - £ @) - 205, (59)
Finally, combining (59) with Lemma 2.1, we observe that for some a < £ < b,
h™ By o
Tn(1) = [fete + 2BE0 + 0), (60)
and the theorem immediately follows from (60).]

Remark 3.2 It is easy to see that for m > 3 and odd, and any k such that —m—‘l <k< m‘
Ty = —D7%, and DY = 0 (due to (13)), and hence 8Ty = —f;* and fg* = 0 (due to 52)
Now, instead of (51) one could define the end-point corrected trapezoidal rule by the formula

m—1

Thn(f) = Tu(f) + h Y (f(b+kh) — f(b—kh) — f(a+ kkh) + f(a — kR))BF. (61)
k=1

4 End-point Corrections for Singular Functions

In this section we construct a group of quadrature formulae for end-point singular functions,
generalizing the classical end-point corrected trapezoidal rules. The actual values of end-point
corrections are obtained for each singularity as a solution of a system of linear algebraic equa-
tions. All the rules developed in this section are simple extensions of the corrected trapezoidal
rule Tn developed in the preceding section.

A right-end corrected trapezoidal rule Thsm is defined by the formula

m—1

Tpon(£) = EE L 1) + B30+ kR~ FO-RRDSE, (62)
=1 k=1

where f(0,b+4 mh] — R! is an integrable function, n,m are a pair of natural numbers with
m > 3 and odd, the coefficients S7* are given by (52), and

b
ho= n—1’
r; = th. (63)
We will say that the rule Tgsm is of right-end order m > 3 if for any f € ¢™*1[0,b+ mhA] such
that f(0)[214z = f'(0) = ... = f(™)(0) = 0, there exists ¢ > 0 such that
b c
| Thon(£) = [f@)da |< 5. (64)

10

It easily follows from Theorem 3.2 that Tggm is of right-end order m.
Similarly, a left-end corrected trapezoidal rule T7sm is defined by the formula

m=—1

z -1 n—-2 2
Tiom(5) = W) LS fa) 4 B 3D (= (b + kR) + S(-b— KRDSE, (65)
i=1 k=1

where f[—b— mh,0) — ‘Rl is an integrable function, n,m are a pair of natural numbers with
m > 3 and odd, the coefficients G]* are given by (52), and h, z; are defined by (63). We will
say that the rule T7s. is of left-end order m > 3 if for any f € ¢™*![~b — mh,0) such that

f(0) = f(0) = ... = f(™)(0) = 0, there exists ¢ > 0 such that

0 c
| Tign() - [f)da < = (66)
It also easily follows from Theorem 3.2 that T7sm is of left-end order m.

Suppose now that the function f(—kh,b+ mh] — R! is of the form

f(z) = ¢(z)s(z) + ¥(2), (67)

with @, € c*(—kh,b+mh], and s € ¢(—kh, b+ mh] an integrable function with a singularity at
0. For a finite sequence @ = (a—k, @_(t_1), @-1, @1, ...,) and TRsm defined in (62), we define
the end-point corrected rule T7sm by the formula

k
Topm(f) = Them(f)+h Y a;f(z)), (68)
J==k,j#0
with h =b/(n - 1), z; = jh.
We will use the expression T7sm with appropriately chosen o as quadrature formulae for
functions of the form (67), and the following construction provides a tool for finding o once
g™ = (BT, BT, ..., Bm—y) is given, so that the rule is of order k, i.e., there exists a ¢ > 0 such
2

that
b c
| Tagn(£) = [@)z < . (69)

For a pair of natural numbers k, m, with k > 1 and m > 3 and odd, we will consider the following
system of linear algebraic equations with respect to the unknowns af,withj = 0,+1,+£2, ..., £k:

k

. 1. :
E z;-'la? = E/o z;"ld:c - T{{ﬂm(a:"l), (70)
i=kj#0
fori=1,2,...,k, and
k . 1 fb . .
Z x;‘k'ls(mj)a}‘ = 5/0 x;’k‘ls(z)d:v - T;’.—Eﬂm(x“k‘ls(x)), (71)

11

even. In this case the separation of odd functions from even functions is accomplished by the
usual formulae

foaa(z) = (f(z) - f(-2))/2, (29)
feven(2) = (f(2) + f(-2))/2, (30)

where as usual each of the functions f,4g and feyen are symmetric around zero, and thus need
only be stored at half the nodes. It is easily shown, using (27) and (29), that in the case that
the nodes py,...,us are Legendre nodes, each block P = [§;;] of the block-diagonalized filtering
matrix is given by the equation
N Pﬁﬂ(ﬁj)PJ’\?(#i)wi - P]’\?(ﬂj)Pﬁ&H(Nz’)wi
L o .
Hi — Hi
PRy () PR (i)wi + PR (/) PRy (i)i
i+ pi ’

(31)

where, for the block which filters even functions, the “+” sign is an addition, and, for the block
which filters odd functions, it is a subtraction. An inspection of (31) immediately shows that
each block is compressible by a generalized FMM.

Remark 6.3 FEzperimentally, the ranks produced by the generalized FMM when applied to the
block-diagonalized matriz are almost identical to the ranks produced when applied to the original
filtering matriz, except near the point p = 0, where the ranks are slightly smaller in the block-
diagonalized version.

Remark 6.4 Since the generalized FMM is an O(n) procedure, splitting the problem into two
problems of half the size does not produce any asymptotic improvement in execution time, though
it does so for small to medium-sized n. By contrast, applying this optimization to the direct
method (as was done in the code used in the timings presented below) reduces the ezecution time
by a factor of two asymptotically, since the direct method is O(n?).

6.3 Numerical results

Table 3 contains experimental results for the filter for functions tabulated at Legendre nodes.
The filter was run for several values of J, with N = J/2, and for each m = 1,...,N; the
average initialization and execution times, the average L? error, and the average amount of
memory used for precomputed data (for all values of m) are tabulated. The quantity labeled
as initialization time is, as before, the amount of time taken to compute the matrices which
comprise the generalized FMM; this task only needs to be performed once for any combination
of J and N, since the precomputed matrices can be stored. All figures were produced by
an implementation in double precision (Fortran REAL*8) arithmetic on a Sun Sparcstation 10.
The table also contains the amount of time taken by the direct method, and the ratio of the
execution time of the FMM-based filter to the execution time of a standard SLATEC FFT of
size J. The direct method for which timings are listed is a modestly optimized variant: the

12

Table 3: Filter timings for points tabulated at Legendre nodes

J Average time per m Ratio: Average Average memory

(seconds), for: Eval | Error (L?) used

Direct | FMM eval | FMM init || /FFT (REAL*8 spaces)
Requested accuracy 1E-3:

64 || 0.00014 0.00021 0.038 1.10 || 0.87216E-04 637
128 || 0.00059 0.00063 0.173 1.73 || 0.21141E-03 1814
256 || 0.00239 0.00172 0.861 2.25 || 0.35270E-03 4684
512 || 0.00916 0.00406 4.528 1.64 || 0.55393E-03 10586

1024 || 0.15601 0.00930 22.708 1.26 || 0.72021E-03 22799
Requested accuracy 1E-7:

64 || 0.00016 0.00020 0.035 1.05 || 0.62995E-09 715
128 || 0.00069 0.00068 0.145 1.84 || 0.89805E-08 2351
256 || 0.00272 0.00199 0.749 2.61 || 0.20946E-07 7074
512 || 0.01015 0.00545 4.480 2.21 || 0.35158E-07 18763

1024 || 0.17623 0.01351 25.102 1.84 || 0.50011E-07 45001
_ Requested accuracy 1E-12:

64 || 0.00017 0.00018 0.035 0.97 || 0.64733E-13 712
128 || 0.00078 0.00070 0.118 1.88 || 0.36187E-12 2604
256 || 0.00312 0.00221 0.630 2.90 || 0.13528E-12 8496
512 || 0.01102 0.00656 3.752 2.64 || 0.30608E-12 26072

1024 || 0.19227 0.01763 26.347 2.37 || 0.14238E-11 66714

filtering matrix it used was precomputed, and certain optimizations used for the FMM-based
method were also applied to it, as described in Section 6.2.

The filter was also implemented for functions tabulated at general nodes (Section 6.1),
and was tested on Chebyshev nodes. The timings are almost identical, with the only major
difference being that considerably more time was required to compute the filtering matrix; they
are omitted. '

Remark 6.5 The implausibly large CPU times taken by the direct method for J = 1024 are
the result of the problem size exceeding the size of the cache; on the machine on which timings
were run, only two double precision vectors of length 1024 fit in the data cache. Such a jump
in timings is not expected to occur on most machines, and in any case could be eliminated by
use of a blocked matriz-vector multiplication routine.

References

[1] M. ABRAMOWITZ, I. STEGUN, Handbook of Mathematical Functions, Applied Mathematics
Series, National Bureau of Standards, DC, 1964

13

[2] B. ALPERT, G. BEYLKIN, R. COIFMAN, AND V. ROKHLIN, Wavelet-Like Bases for the
Fast Solution of Second-Kind Integral Equations, SIAM Journal on Scientific Computing,
Vol. 14, No. 1, pp. 159-184, January 1993

(3] A. DurT, M. GU, AND V. ROKHLIN, Fast Algorithms for Polynomial Interpolation, In-
tegration, and Differentiation, SIAM Journal on Numerical Analysis, Vol. 33, No. 5, Oct
1996

[4] L. GREENGARD AND V. ROKHLIN, A Fast Algorithm for Particle Simulations, Journal Of
Computational Physics, Vol. 73, No.2, Dec 1987

[5] L. GREENGARD AND V. ROKHLIN, A new version of the Fast Multipole Method for the
Laplace Equation in three dimensions, Acta Numerica, 1997, pp. 229-269

[6] GoLus, V. H., AND VAN LoaN, C. H., Matriz Computations, Johns Hopkins University
Press, Baltimore, 1983

[7] R. JAKOB-CHIEN AND B. ALPERT, A Fast Spherical Filter with Uniform Resolution,
Journal of Computational Physics, Vol. 136, No. 2, September 15, 1997, p 580-584

(8] J. SToER AND R. BULIRSCH, Introduction to Numerical Analysis, Second Edition,
Springer-Verlag, 1993

[9] N. YARVIN AND V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields
on One-Dimensional Structures, Research Report 1119, Yale Computer Science Depart-
ment, 1997 (submitted to the SIAM Journal on Numerical Analysis)

14

