Memo-Functions In Alfl

Pradeep Varma and Paul Hudak
Research Report YALEU/DCS/RR-759
December 1989

This work is supported by the National Science Foundation CCR-8809919.



Memo-Functions In Alfl

Pradeep Varma
Paul Hudak

Department of Computer Science
Yale University
Box 2158 Yale Station
New Haven, CT 06520

Dec 1989

Abstract

Memoisation is a well known technique for increasing the efficiency of elegantly written
programs. In this paper we present a memo-scheme that has been designed and implemented
for Alfl, a non-strict functional language at Yale. The scheme permits a choice between user
defined memo-functions and a default which is which is lazy memoisation. Allowing a user
full control over the design of memo-functions causes the loss of referential transparency. The
situation however is not intractable, as simple proof conditions can be given using which one

can guarantee a safe behavior of these functions. The conditions and a precise description of
the work via denotational semantics is given.



1 Introduction

Why memoisation? This is the first question that arises as we begin to delve in the subject.
Why should we worry about memoising anything? The answer is, memoisation provides a way
of increasing efficiency without compromising on elegance. It does so by avoiding unnecessary
computation. Externally a memo-function is just like any other function. The difference is internal.
A memo-function “remembers” the results of its applications so that if called on the same arguments
again, the old answer is returned, no recomputation occurs.

An simple example to demonstrate the method is fibonacci. The following! is how it is usually
defined.

fib 0 == 0;
fib 1 == 1;
fib n == fib(n-1) + £fib(n-2);

It is an elegant definition. It is also terribly inefficient, exponential in time requirements. Now
consider a slight variation of it.

fibonacci 0
fibonacci 1 == 1;

fibonacci n == fib(n-1) + f£ib(n-2);
fib == memoise fibonacci;

0;

This version shows a linear performance in terms of space and time. The improvement is because of
the recomputation avoided by converting fibonacci into a memo-function via memoise. Assuming
that this much of distortion? in the original definition is acceptable, we have achieved our goal of
gaining efficiency without compromising style or readability.

A problem is immediately obvious. We cannot do this optimization blindly. If we have side effects
in our language, then they may necessitate recomputation each time. However since we are only in-
terested in functional languages, this becomes a non issue for us. Identifying equal expressions and
avoiding recomputation is an old implementation trick. Lazy evaluation, common subexpression
elimination are examples. However the amount of recomputation they avoid is limited. Identifi-
cation of dynamically created equal expressions, as in the example above, requires aid from the
programmer. Memo-functions can be viewed as a way of providing it.

A thing to note about the fibonacci example is that nowhere have we mentioned how the memoised
version remembers the results it computes. This information is packaged in the definition of memoise
which can be defined anywhere. Writing programs so as to get a clean break between what is being

!This and all other examples are given in Al syntax, a partial glossary for which is given in appendix C.
2Syntax can be used for further packaging. We choose otherwise for reasons discussed in section 2.



computed, and how it is being computed is regarded as good style>. Memoisation is helpful in
realizing it.

All this indicates the desirability of having memoisation. What’s needed next is a handle to it in
a language. This forms the topic of discussion for the rest of the paper. We work with Alfl, a
higher order, lazy, dynamically typed, functional language, and extend it by a predefined function
called memo. This extended language permits a user three options in memoising. The easiest is a
default, called lazy memoisation. Here the user only specifies the number of arguments he wants
to cache a function on. All other details are left to the implementation. To get finer control, a
user must either switch to the so called applicative caching scheme, or the non-applicative one.
Applicative caching does not use the language extension. It relies instead on lazy evaluation. This
is nice, minimizing language extensions is a good policy. However it is also limited. Specification of
schemes such as a binary search tree, that take advantage of the dynamic behavior of a program is
not possible. Doing this requires a shift to non-applicative memoisation. As the name suggests, we
also exit purely functional programming upon doing so. This is unfortunate, but not intractable.
We give a set of simple proof conditions, which if followed guarantee that a cached function will
behave just like an uncached one. These conditions, along with a discussion of the three schemes,
their merits and demerits, are given. Also given is a formal description of the extended language
for reasons of portability and exact understanding. To begin, a description of the Alfl extension
memo is given first.

2 The extension to Alfl
Alfl is extended by the addition of a predefined function memo. Its use is as outlined below.

caching scheme == memo scheme;

Caching scheme takes a function and returns a memoised version of it. The way it caches
results is as described by scheme. If

scheme = n, n is a positive integer,
then caching scheme memoises a function by lazy
memoisation on n arguments,
scheme = [n, X, y, z], n is a positive integer,
then caching_scheme memoises a function by non-applicative
memoisation on n arguments using
x as the initial table,
y as the lookup function and
z as the update function.

3Separate specification of the functional and operational behaviors of programs is the subject of study in para-
functional programming. Some references are [7], {8].



The number of arguments a function is to be cached on, counted from left to right and often equal
to the arity, has to specified explicitly. A way to make it implicit is to insist that n is equal to
the number of arguments on the left hand side of a function definition. Hughes [2] follows this
method. Also, he uses a keyword memo to precede a function definition to indicate memoisation.
There are several reasons why we choose to not take this syntactic approach. First, the effective
arity of a function cannot generally be computed at compile time since Alfl is higher order, curried,
and dynamically typed. Even if possible, the user may desire a different value of n than this. So
fixing the value syntactically can be quite undesirable. Second, using syntax is justified when a
significant amount of saving occurs in the typing effort on the keyboard. This doesn’t seem to be
the case here. So we would like to leave the language as simple as possible. Finally, by making
the modification to the language simple, just a predefined function, the implementation effort is
simplified.

3 Lazy memoisation

In 1985, John Hughes [2] came up with a scheme that relies on the knowledge that most imple-
mentations of functional languages use objects that have a unique object identity (pointers in Lisp)
associated with them. A memo-function can use this identity value as a tag for looking up precom-
puted results. Since the test for equality of object identities (eq? test in Lisp) is quite efficiently
implementable, such functions would be quite fast. Also, since identities exist for all objects in-
cluding infinite lists, the function would work on any argument. However such a function is not a
full memo function. Given two equal objects with different identities, the function would be able
to resolve between them. Thus recomputation may be caused even when not needed. This is un-
fortunate, however the other advantages are still quite attractive. In particular the ability to work
on infinite objects. No full memo scheme can work on such objects since comparing two infinite
objects for equality is a potentially non terminating process. The fact that lazy memoisation is

able to compare such objects or for that matter any tree or list in constant time is very welcome
indeed.

How does one provide the user such memo functions to work with? One can’t just provide a
function like object-identity. For then referential transparency is lost as resolution between equal
objects is possible. A solution is to make this scheme a default scheme of memoisation. The user
no longer has to define the implementation?, and hence does not have to deal with object-identity
and related issues. Providing the user a general and efficient default scheme is a good idea in
its own right. It relieves him of the burden of defining a memo scheme each time he thinks of
memoising a function. This is the solution we opt for in Alfl. The <argument,value> pairs, or more
correctly <argument-identity, value> pairs, are stored in hash tables. The tables interact with the
garbage collector in a fashion that permits an entry to be deleted once the corresponding argument
is collected. This space reclamation feature is another advantage that accrues from the fact that
the scheme is not user definable. Because of implemention at a lower level, optimizations can be
carried out, that are not obvious at the language level.

At this point it is interesting to note that the name lazy memoisation is really a misnomer. A lazy
memo-fn f is not really lazy since (f L) is still L. Evaluation of the object-identity of arguments

“User defined lazy schemes are possible, but not inexpensively. See appendix B



leads to strictification. Another important point that hasn’t been clarified so far is what exactly
does the identity of an object mean? The example, pointers in Lisp, is good for intuition, however
a formal description must be given. We formalize lazy evaluation by giving a store semantics of
the language in appendices A and B.

We now present an example, taken from [2], that highlights the power of lazy memoisation. For
other interesting examples, and detail, we refer the reader to the same.

3.1 Example: Manipulation of cyclic structures

Infinite objects are most efficiently dealt with as cyclic structures. It is highly desirable that
operations manipulating these objects maintain them in this form. As this example demonstrates,
lazy memoisation can be quite helpful.

ones == 1 ones;
twos == map double ones;
double == 2 % X;

When twos is computed, a non-cyclic structure representing the infinite list twos is created. As
more and more of twos is evaluated, the space required by this structure also increases.

map double ones

= ——+| 2 | —— map double ones
=%>-———|2| 4—| 2| ——— map double ones
= e e e

If map is memoised lazily then a cyclic structure is created. The second application of map is
identical to the first, hence the same cons cell is returned. The space requirements reduce to a
constant value, and the time performance also improves.



map double ones

= ———— | 2 | —— map double ones
= ——l_—_ 2
= same

3.2 Insufficiency of lazy memoisation

The ideal scenario would be if just a default scheme were sufficient for all applications. Unfortu-
nately this is not so. Often the user has sufficient knowledge of a problem to be able to design
optimal schemes. He must be allowed a way of expressing this. Another problem is that lazy
memoisation can be hard to reason about. Being dependent on the implementation notion of
object identities, it requires the user to have knowledge of the implementation for effective use.
Optimizations such as common subexpression elimination can make this process harder. Since the
scheme is not really lazy and strictifies a function, it also necessitates reasoning about termination
of arguments for correct usage. These reasons lead us to consider alternative schemes for Alfl.

4 Applicative Caching

Building a caching scheme does not necessarily require an extension to a language. Alfl has lazy
evaluation, we are free to make full use of this fact. If we build a structure that contains all the
function applications we are interested in, repeated lookups will cause only singular computation.
This is what lazy evaluation guarantees . The following examples demonstrates this. Following
Keller and Sleep’s terminology [1], we call such caches applicative caches.

A stream cache.

cache £ == {enumerate f i == (f i)~ (enumerate f (i + 1));
result @ x == nth x table;
table == enumerate f 1;

}i

cache takes a function and returns a corresponding memo-function. The table here is an infinite
list of the function applications (f 1)~(f 2)~... Each time a cached function is applied on an
argument i, the i** element of the list gets picked up. The first call forces the evaluation, later ones
simply reuse it.



Another example is a vector cache.

cache_gen n f == {table == mkv n f;
result @ x == (x > n) — f x, table x;
}s

caching_scheme == cache_gen n;

Here cache._gen is a cache generator function that when given n, the size of the table, returns a
caching scheme. Upon application to a function f, this caching scheme returns a memo-function
with a vector table of size n bound within it. Each slot in the vector is occupied by (£ i). Since
the language is lazy, none of these entries is initially evaluated. Upon application to an argument
x (within range of vector), the corresponding entry is evaluated. This evaluation occurs only once.
Any further accesses simply read off the computed value.

The time cost of accessing a value in stream cache is a linear function of the argument. For
the vector cache, the cost is a constant. Getting linear performance from the fibonacci function
discussed in the introduction requires that memoise be a vector cache.

Applicative caches are useful, but they do have their limitations. One problem is that they work
only on arguments from enumerable domains. Mapping a domain to integers can be a difficult,
sometimes even impossible task. Also, the structure of a table must be completely determined at
the time the cached function is generated. It cannot depend, and hence cannot take advantage of,
the order in which arguments are applied. This means that dynamic schemes such as an association
list cannot be implemented. Overcoming these limitations requires that we consider another user
definable memoisation technique, non-applicative caching.

5 Non Applicative Memoisation

Many caching schemes such as a simple association list, or a Binary Search Tree cannot be expressed
in an applicative fashion. The table built in these schemes depends on the order in which function
calls occur at runtime. Normally accomplishing this requires a rewrite of the entire program and
carrying the table all over as an extra argument. However this is major surgery, we want to achieve
the same while making only local changes.

It seems the only way of achieving this is to encapsulate a table as state inside a memo-function
and to side-effect it in the course of program evaluation. Fine, but we lose referential transparency.
Is this acceptable? How much are we willing to give to achieve the expressive power that memo-
functions afford us? These questions arise as we investigate the territory between functional and
imperative programming.

The minimum a user needs to specify for such a memo scheme is an initial table and a lookup._and_update
function to operate on it. Though this can be made official, we prefer a slightly larger specification.
We require separate definitions of the lookup and update functions. The reason is that although
similar sets of proof conditions can be provided for the two specifications, the second one is more
conducive to maintaining the functional discipline in an unguarded territory. This can be seen by



writing a random number generator in the two schemes. Basically by removing the freedom of
combining the two functions from the users hand, we reduce, or at least make difficult, the po-
tential mischief that is possible. The following describes “memo” in Alfl enhanced with sequencing
(Aforce) and setting operations (%set). %force is a sequencer that takes 2 arguments, evaluates
them left to right, and returns the value of the second. %set is used for assignment. The formal
semantics of these operations is given in appendix A. Set and force are preceded with a % character
to emphasize the fact that these are not provided directly to the user.

memo [n,table,lookup,update] f ==
Qargs = {result found — val,
“force (set table (update table args value)) value;
found~val == lookup table args;

value == f args;
}i

memo n £ == (intp n) & (n > 0) — lazily memoisefn n £,
error ‘‘invalid usage of memo scheme’’;

Here args is a shorter syntax for arg, arg, .. arg,

As should be obvious from the above,
lookup :: table — args — Bool X value
update :: table — args — value — table

lookup takes a table and a sequence of arguments. It returns a value paired with a boolean flag
indicating whether it is valid or not (i.e found or not). If not, then it can well be anything, a “.” i.e
don’t care. update takes a table, a sequence of arguments, a value and returns an updated table.

Given the definition above, it is easy to show that if a memo scheme satisfies the following properties,
it is safe i.e the cached and uncached functions behave alike.

Theorem: f = memo [n,initial_dir,lookup,update] f if the following properties hold.

Propertyl

(lookup init_dir args) = <true,value> = value = (f args)
and

(lookup init.dir args) € {1,<L,.>} = (f args) = L



Property2
(lookup (update dir arguments val) args) = <true,value> =

(val = value) if args = arguments
(< true,value > = lookup dir args) if args # arguments

and

(lookup (update dir arguments val) args) € {L,<Ll,.>} =
(f args) = L

Proof: By reasoning over the possible answers that lookup can return and by induction.

Like applicative memoisation, the name and the idea behind non-applicative memoisation is taken
from Keller and Sleep [1]. However unlike applicative memoisation, there is significant divergence
between the two works beyond this. We differ by disallowing the user, direct access to side effecting
primitives like %force and %set. This way we are able to provide a framework of writing non-
applicative caches within (extended) Alfl. We are also able to give conditions for the correctness of
such a scheme, and to contain totally unrestrained imperative programming. This we believe is a
better way to approach non-functional language extensions.

5.1 Examples
5.1.1 A Simple Association List

initial_table == [];
lookup [] arg == false~"dont._care;
*  ((argument-val)“table) arg == (arg = argument) — true-val,
lookup table arg;
update table arg val == (arg-val) table;

In this example, the initial_table is an empty list. Updating a table simply requires consing an
arg~val pair to the front of it. Lookup requires cdring down the list while checking if arg matches
an argument in the stored pairs. If this runs off the end, not found is signalled by returning
false“dont_care.

5.1.2 Binary Search Tree

We define a data type tree in this example. A tree can either be a node with the argument-value
pair and its subtrees in it, or it can be a leaf. A leaf represents an empty tree or subtree, hence
the value of the initial tree. We restrict the argument type to numbers for simplicity, generalizing
to other types is not hard. The remaining details should now be fairly accessible.



data tree == node left_tree arg value right_tree | leaf;
initial _table == leaf;
lookup leaf arg == false“dont_care;
’  (node 1 argument value r) arg ==
(arg = argument) — true~value,
(arg < argument) — lookup 1 arg,
lookup r arg;
update leaf arg val == node leaf arg val leaf;
! (node 1 argument value r) arg val ==
(arg < argument) — node (update 1 arg val) argument value T,
node 1 argument value (update r arg val);

5.1.3 Hash Table - an example of cache composition

Caching schemes can be formed by composing preexisting ones. The following example illustrates
how for a hash table consisting of a vector of buckets, each bucket implemented by a linked list.

hash_cache_gen (no_of _buckets“hash fn) f ==
{result @ x == g (hash_fn x) x;
g == vector_cache no.of buckets (@ x == memo association_list_cache f);

}s

hash_scheme == hash_cache_gen (n~hash fn);

Here a vector cache and an association list cache (both described before) are composed together to
form a hash scheme generator. For a given (no_of_buckets, hash_fn) pair, Hash_cache_gen re-
turns a hashing scheme defined by these parameters. The basic computation in a function memoised
by such a hashing scheme is as follows. The application (g (hash_fn x)) returns a bucket in the
vector cache. The bucket represents a association-list cached version of £. This upon application
to x returns the answer.

Note that any caching scheme could have been used instead of a vector cache or association lists.
For instance changing to a scheme where buckets are managed like binary search trees only requires
replacing association list above by binary_search_tree.

5.2 Space reclamation

Each time an update occurs, a modified table is returned to be used in later applications. There
is nothing preventing an update operation from reclaiming space while carrying out such modi-
fications. For instance, it would be simple to implement a fixed size table based on say a FIFO
scheme of removing entries. A more complex space reclamation scheme would be expressing the
purge operator of Keller and Sleep. As defined in [1], purge [f, x] removes from the function




Appendix A: Semantics

The semantics given is for a simple language which can be considered as a core representative of
modern functional languages, extended with side effects.

Abstract Syntax

k € Con
xeld

eg € Eqgrp
e € Exp

¢ € Com
pr € Prog

pru=e
eu=k | x| e e |lambda x.e | eg | %force c e | (e)
c u= %set x e | (c)

eg = { result e ;

X1 == €;
X2 == €3
Xn == €n;,

}

Standard Semantic Categories
Bas = Int + Bool Basis Values

Fn = Locn X (Thunk — Store — (E x Store))

Thunk = Store — (E x Store)

E = Bas + Fn Expressible Values
p € Env =1Id — Locn Environments
o € Store = Locn —» E

Standard Semantic Functions
K:Con—E

£ : Exp — Env — Store — (E x Store)
C : Com — Env — Store — Store

&p i Prog - E

Elk]po=<K[k],o>

Elxlpo=(c(p[x])o

11



E[lambdax.e]po =
let < locy, 01> = get.new loc (o)
in << locy, lambda v o .
let < locy, 01> = get_newloc (o)
in £ [ e] pllocy /x] o1[v/loc1]>, o1 >

Eferes ] po=
let <f,o1 >=E[e1]po
< t,00 > = make-thunk (£ [e; ] p) o1
in (fn? f) — (snd f) t o9, (error “non function in application position”)

Ef{resulte;x; ==e;;xg==€3; ... Xn==en; } ] po =
let < locy,01> = getnew loc(o)
< locg,09> = get newloc(oy)

<locy,0,> = get_newloc(oy,)

Prew = p [loc1/x1, locy /X3, ...,Joc, /X, ]

< t1,0n41 > = make-thunk (€ [e1 ] prew) on
< t2,0n42 > = make-thunk (£ [e2 ] prew) Ont1

< tn, 02, > = make-thunk (€ [e, ] prew) o2n—1
Onew = O2n [ t1/locy, ta/locy, ...,tn/loc, ]
in & I[ e]l Prew Tnew

E[ Rforcece] po=

letoy=Clc]po
inEfelpo

Ef(exp) ] =€ [exp]

Cl%setxexp]po=
let < t,07 > = make-thunk (£ [exp ] p) o

in o1[t/(pl x 1))
Cle)l=clc]

Epl program | =
fst (£ [ program ] initial_env initial o)

12



Auxiliary Functions

get new _loc :: Store — (Locn X Store)

fst L =1L
fst <x,y> = x
snd L = L

snd <x,y> =y
make-thunk th ¢ =
let < flag,01 > = getnew_loc o
< val,o3 > = get_new_loc o,
in < lambda o . (¢ flag) — < (o val),o >,
let < value, oy > = (val o)
in < value, g¢[true/flag, value/val] >,
o, [false/flag, th/val]>

A treatment of pairs and vectors can be done similarly. The semantic categories Pair and Vector
can be defined as follows, each consisting of a sequence of values tagged by location.

Pair = Locn x (E x E)
Vector = Locn X E*

13



Appendix B: A Note on Lazy Memoisation
The meaning of object.identity is as follows.

object_identity :: E — Int
object identity x =
((int? x) | (bool? x)) — (encode x),
(encode (location x))

location = fst Returns locations of pairs, vectors and fns
encode :: Bool 4+ Int + Locn — Int
Each value is mapped to a unique integer code.

Now that object identity has been defined, we can make lazy memoisation user definable. Again
the method used does not hand over opaque constructs to the user directly. Following the definition
of non applicative memoisation,

lazymemo [n,table,lookup,update] f args ==
{result found — val,
%force (Yset table (update table ids value)) value;
found~val == lookup table ids;
value == f args;
td; == object_identity arg;;
id, == object_identity arg,;

}’

‘‘unable to pattern match on memo scheme’’;

error

Any “safe” non applicative memoisation scheme will work correctly as a lazy memoisation scheme
too. Such usage requires that the implementation maintain a consistent and unique identity of an
object throughout the duration of a program, not a simple requirement.

14



Appendix C: Partial Glossary of Alfl terms

{-..result...} A lexical block. The value of the overall expression is the value of the expression
following the result clause. This is evaluated in an environment extended by the definitions
in the current block.

== The equals sign used in definitions.

> Instead of rewriting the function name each time on the left hand side of a definition group, a

tick mark (*) can be used.
@ arg; .. arg, == body Corresponds to lambda arg, .. arg, = body
expl — exp2 , exp3 Corresponds to if expl then exp2 else exp3
= Equality predicate.

Pair forming operator (cons).
=~ Append operator.

nth i list Finds the i** element of list
hd list Returns the car or head of list.
tl list Returns the cdr or tail of list.

mkv n f Forms a vector of size n, 1 based, with each slot i initialized to (fi). A vector applied to
an integer i returns the value stored in location i.

data Syntax to construct data types.

Further details on Alfl can be found in [5].

15



Acknowledgements

We thank Duke Briscoe, Richard Kelsey, Siau Cheng Khoo and Raman S Sundaresh for the many
useful comments they made on earlier drafts of this report.

References

[1] R.M. Keller and R. Sleep, “Applicative Caching” ACM Trans. Programming Languages and
Systems, Jan. 1986, pp. 88-108,

[2] J. Hughes, “Lazy Memo-Functions” in Functional Programming Languages and Computer
Architecture, Springer-Verlag, LNCS 201, New York, 1985, pp129-146.

[3] R. M. Keller and G. Lindstrom, “Parallelism in Functional Programming through Applicative
loops”, University of Utah, Salt Lake City.

[4] D. Michie, “Memo Functions and Machine Learning”, Nature, April 1968, pp. 19-22.

[5] P. Hudak, “ALFL Reference Manual and Programmer’s Guide”, Research Report
YALEU/DCS/RR-322, Second Edition, Yale University, October 1984.

[6] P. Hudak, A. Bloss, and J. Young, “Code Optimization for Lazy Evaluation”, Lisp and Sym-
bolic Computation: An International Journal, 1988

[7] P. Hudak, “Exploring para-functional programming: Separating the What from the Houw”,
IEEFE Software, 5(1):54-61, January 1988,

[8] P. Hudak, “Para-functional programming”, Computer, 19(8):60-71, August 1986.

[9] L. Allison, A practical introduction to denotational semantics, Cambridge Computer Science
Texts 23, Cambridge University Press, 1986.

[10] G. L. Steele Jr, G. J. Sussman, “The Art of the Interpreter or, The Modularity Complex (Parts
Zero, One, and Two)”, AT Memo No. 453, Artificial Intelligence Laboratory, Massachusetts
Institute Of Technology, May 1978,

(11] A. J. Field, P. G. Harrison, Functional Programming, Chapter 19, International Computer
Science Series, Addison Wesley Publishing Company, 1988.

[12] P. Hudak “The Conception, Evolution, and Application of Functional Programming Lan-
guages”, To appear in ACM Computing Surveys.

16



