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Abstract
Compiling Crystal for Distributed-Memory Machines

Jingke Li
Yale University
1991

This dissertation presents a set of novel compilation techniques and the overall design
of a compiler for distributed-memory machines. It demonstrates that efficient code
can be automatically generated from machine-independent shared-memory-based pro-
grams for massively parallel distributed-memory machines.

Compiling programs for distributed-memory machines faces great challenges. This
dissertation formulates precisely several key compilation problems, analyzes their
complexity, and presents practical algorithms for solving them. For the problem
of partitioning and distributing data to the processors, a technique called index do-
main alignment is developed. It aligns a group of arrays in a way that minimizes data
movement caused by cross-references between these arrays. For the problem of gen-
erating interprocessor message-passing, a novel approach based on pattern matching
is developed that enables the compiler to generate efficient collective communications
of various forms. The dissertation also presents an algorithm for transforming a func-
tional source program into an imperative intermediate program consisting of explicit
constructs for representing parallelism and control information.

In addition to developing and studying these techniques, this dissertation presents
the complete design of a compiler that transforms a program written in a high-
level functional language, Crystal, into C programs augmented with communication
primitives. A prototype of the Crystal compiler has been implemented for the Intel
1PSC/2 and the nCUBE I hypercube multiprocessors. Experimental results for a

variety of applications are included.
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Chapter 1

Introduction

The great advances of computer technology have made massively parallel, distributed-
memory computers a reality. Commercially available machines now have up to thou-
sands of processors per machine, and there seems no limit on how large these machines
can ultimately be. Potentially, a massively parallel machine can out-perform a sequen-
tial supercomputer of comparable cost by several orders of magnitude. Despite these
promises, however, massively parallel machines have not yet entered the mainstream
of computation. The main obstacle is the difficulty of programming them—sequential
programs cannot directly be executed on these machines and the currently available
programming tools require the user to control explicitly algorithm-irrelevant, low-
level issues in application programs. Ironically, this level of programming resembles

writing assembly programs for a sequential machine.

This dissertation presents a solution to this mismatch of hardware and software.
We take a compilation approach in which we allow the user to program an application
in a high-level language, and the compiler automatically generates a target program

which contains all the necessary details for execution.
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1.1 Distributed-Memory Machines

A distributed-memory machine consists of a set of identical processors linked by an
interconnecting network. Each processor has a private memory, which is accessible
only by that processor. There is no global shared memory, hence data sharing and task
coordination among processors are accomplished through message passing. Common
network topologies that are used to link processors in a distributed-memory machine
include hypercube, mesh, and butterfly. In each case, every processor has direct
links to a bounded number of other processors and all communications between non-
neighboring processors are routed through intermediate processors.

A distributed-memory machine is a coarse-grained machine if the processors are
powerful and the private memories are large. It is a fine-grained machine if it consists
of a massive nﬁmber of small processors. Examples of coarse-grained machines include
Intel’s iPSC/2 and iPSC/860, nCUBE’s nCUBE 2. Examples of fine-grain machines
include Thinking Machine’s CM-2, and the MasPar’s MP-1.

Writing efficient programs for distributed-memory machines is a great challenge
for a programmer. Many issues that do not arise in programming shared-memory ma-
chines (including sequential machines) must be addressed in programming distributed-

memory machines:

o Parallelism: Parallelism in the application must be made explicit in the user
program. Generally speaking, this involves breaking a computation into a col-
lection of parallel tasks, which are assigned to different processors and executed

in parallel.

e Data Layout: Since there is no global shared memory on a distributed-memory
machine, large data structures in an application must be partitioned and dis-

tributed over the processors.

o Communication and Coordination: Distributed tasks which coordinate a joint

computation often need to share data or to synchronize operations with each
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other. To realize this, explicit message passing must be constructed and inserted

into the user program.

The most naive approach to programming a distributed-memory machine is to
program each sequential processor with a conventional language and insert explicit
communication commands in the program for sending and receiving messages. The
advantage of this approach is that the programming model matches well with the
machine architecture, hence it requires few new compilation techniques to implement
a language of this model. In fact, almost all of the commercial machines support
languages of this model. For instance, C and Fortran with message-passing exten-
sions are available on Intel’s and nCUBE’s hypercubes and Occam is supported on
Transputer-based machines.

To the programmer, however, programming a distributed-memory machine in this
fashion is comparable to programming a sequential computer at the assembly level.
Many machine related details, such as partitioning data among processors and sending
and receiving messages, have to be specified in the user program, which can be tedious
and error-prone. Furthermore, the programs written this way are- not portable across
different machines, sometimes not even across different sizes of the same kind of
machine.

The difficulty in directly programming a distributed-memory machine is largely
due to the need to explicitly manage data distribution and communication. One
solution to overcoming this difficulty is to build a wvirtual shared memory on top of
a distributed-memory machine. As a result, the user programs in a virtual shared-
memory environment. In many ways, this is easier than programming the machine
directly. However, providing uniform access to an arbitrary memory will inevitably
slow down the unit access time. The overhead of supporting global memory on a
distributed-memory machine, especially when the underlying machine consists of a
massive number of processors, may greatly reduce the benefit that this approach
promises.

A second solution to the programming challenge is to develop a smart compiler to
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do the hard work. This would enable the user to program in a high-level language and
to express algorithms rather than machine-related details in the application program. -
Relying on a compiler for handling details has been the standard approach for pro-
gramming sequential machines. Fortran, C, and Pascal are all machine independent,
high-level languages. Building a smart compiler for distributed-memory machines is,
nevertheless, all but a trivial task. Conventional compilation techniques provide little
help for solving problems in compilation for parallel machines. Vectorizing compilers
do not address the issues of data layout and communication. Questions related to
compilation for distributed-memory machines are mostly still open.

The great promises and challenges of the compilation approach are the motivations

of this dissertation.

1.2 Research Objectives and Approach

The objective of this dissertation is to identify key problems in compilation for
distributed-memory machines and to seek practical solutions for them. Our ulti-
mate goal is to have automatic data layout and automatic generation of efficient
commaunication.

To this end, we choose to base our approach on the data-parallel paradigm, in which
a large amount of data is addressed collectively. In our compiler system, the source
language is the high-level functional language Crystal. It contains special constructs
for expressing data parallelism. The target code generated by our compiler is in the
so-called SPMD (Single Program Multiple Data) style, i.e. every processor of the
target machine executes the same program. The conditionals in the program control
what a specific processor does.

With respect to data layout over processors, a set of simple distribution strategies
is considered. These strategies have a common feature that a data array is partitioned
into sub-arrays that are more or less the same size and shape and are distributed

evenly to the processors of the target machine.
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To generate interprocessor communication, we consider not only the primitive send
and receive commands, but also many powerful aggregate communication routines

such as shifting, broadcasting, reduction, and array transpose.

1.3 Related Work

Research on compiling high-level languages for parallel machines can be traced back
to the 70’s. Kuck and his co-workers developed the Parafrase compiler, a restructur-
ing Fortran compiler targeted for vector machines [PKL80,KLC*83,KKLWS84,PWS§G].
The compiler performs comprehensive dependence analysis on the input sequential
Fortran program to detect parallelism and then applies various transformations to
generate a target program in vector form. Kennedy and his colleagues developed
the PFC automatic translator, which converts Fortran programs to Fortran S8x pro-
grams [AK87]. The same group later developed the ParaScope Editor, which pro-
vides an interactive programming environment for parallelizing Fortran 77 programs
[CCH*88,KMT91]. Advanced techniques for analyzing interprocedual data depen-
dences have been built into the PFC and the ParaScope systems [CKT86]. Re-
searchers at IBM Research at Yorktown Heights developed the PTRAN compiler sys-
tem [ABC*86,Sar91], which made extensive use of control dependence to acieve better
automatic parallelization.

Research efforts on compilation for distributed-memory machines started much
later [CK88,CCL88,RS88,ZBG88], but eversince it has grown rapidly. A large number
of researchers are building compilation systems or studying compilation techniques.

The following is a brief review of them.

Callahan and Kennedy [CK88] studied techniques for compiling a version of Fortran 77
that includes annotations for specifying data decomposition for distributed-memory
machines. They propose that the user provide data distribution functions and the

compiler generate communication statements (load and store commands) for nonlocal
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data references. They also propose a method for applying vectorization techniques
to aggregate messages to reduce overhead. Their techniques can handle both simple

doall loops and more involved doacross loops.

Fortran D Fortran D [FHK*90,HKK*91] is a version of Fortran enhanced with
data decomposition specifications, proposed by Kennedy and his co-workers. The
DECOMPOSITION statement is used to declare a problem domain for each compu-
tation; the ALIGN statement is used to specify how arrays should be aligned with
respect to one another; and the DISTRIBUTE statement is used to map the problem
and its associated arrays to the physical machine. The goal of Fortran D is to provide

an efficient machine-independent parallel programming model. A Fortran D compiler
for the iPSC/860 is under construction [HKT91a,HKT91b]. ‘

Fortran 90 Fortran 90 exteénds Fortran 77 with a set of parallel constructs and
intrinsic functions. The parallel constructs support whole array operations and ar-
ray sections, which simplifies the writing of data parallel applications. Wu and Fox
proposes to compile Fortran 90 programs for distributed-memory MIMD machines
[WF91]. The basic compilation strategy is to block the multidimentional array op-
erations into submatrix operations with different submatrices assugned to different

processors.

SUPERB Zima, Bast and Gerndt [ZBG88,Ger89] developed SUPERB, an interac-
tive system for semi-automatic transformation of Fortran 77 programs into parallel
programs for the SUPRENUM multiprocessor machine. The user of SUPERB specifies
the mapping from data arrays to processors. The compiler performs dependence anal-
ysis and program transformations, and generates communications. The compilation
techniques used in the SUPERB system are similar to those used in the Rice system.
However, the SUPERB system can automatically compute the overlaps between the

distributed array sections, and hence avoid locality-checks during execution.
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DINO Rosing, Schnabel, and Weaver [RS88,RSW88,RSW90] developed DINo; a
C-like, explicit parallel language. A construct called environment is used to represent
an abstract parallel machine and composite functions are used to specify parallel
computations. The DINO system requires the user to specify array distribution. It
also requires the user to annotate nonlocal data references. The user can specify
block, cyclic, and stencil-based data distributions. With the directives, the DINO

compiler assigns processes to each processor and generates communications.

Kali Mehrotra, Van Rosendale and Koelbel [KM89,KMV90] developed Kali, a For-
tran based language. The user of the Kali system provides the following information:
1) the processor. array on which the program is to be executed, 2) the distribution of
the data structures across these processors, and 3) the parallel loops and where they
are to be executed. The Kali compiler automatically generates the communications.
The Kali system also uses an inspector/ezecutor strategy for processing communica-

tion at runtime [KMSB90a], which enables it to handle irregular computations.

Id Nouveau Rogers and Pingali [RP89] developed techniques for compiling the
data flow language Id Nouveau on hypercube machines. They present a compilation
system which, given a program and its data partition, performs task partitions and
communication generation. The main technique is called compile-time resolution
which calculates the set of evaluators and participants for each statement. Send and
receive pairs for passing blocks of data between processors can be generated. The

system uses a runiime resolution algorithm to handle dynamic messages at runtime.

CM FORTRAN CM FORTRAN [cmf89] is an implementation of FORTRAN 77 sup-
plemented with array-processing extensions from the draft ANSI standard FORTRAN
8x. The user of CM FORTRAN explicitly specifies parallelism in his program via array
assignments and the forall loop construct. The CM FORTRAN compiler distributes the

data arrays and generates communications. It also automatically aligns arrays based
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on the analysis of the usage patterns of array occurrences [KLS88,KLS90]. The com-
piler relies heavily on the underlining SIMD architecture of the Connection Machine,

and hence does not address many issues that are critical to MIMD computers.

C* (C* [RS8T7] is a C and C++ based language developed to support data parallel
programming. The user spe;:iﬁes parallel computations as actions on a domain. The
compiler automatically determines the data distribution and generates communica-
tions. Quinn and Hatcher [QHV88| studied the compilation of C* for distributed-
memory machines. They developed optimization techniques for minimizing the num-

ber of global synchronizations and for reducing communication overhead.

AL AL [Tse89,Tse90] is a special array language for the WARP distributed-memory
systolic array [KM84,AAG™*87]. Parallel arrays are explicitly labeled in the user pro-
gram. The AL compiler distributes one-dimensional arrays and generates commu-
nication automatically. The compiler does not aggregate messages because of the

communication ability of the target machine.

PARTI and ARF PARTI [SCMB90] is a set of run-time library routines that sup-
port irregular computations on MIMD distributed-memory machines. ARF provides
a I'ortran interface for accessing PARTI run-time routines. ARF [KMSB90b,WSBH91]
supports both regular distributions and user-defined irregular distributions. It gen-

erates inspector and executor loops for run-time processing.

A few brief comments on comparison of our compilation system and the above sys-
tems are given below. (1) Despite the variety of languages used in these compilation
systems, the major forms of parallelism are parallel loops over arrays. Crystal has
the same power in expressing parallelism. (2) In most cases, the user-provided data
distribution directives in the above systems are used to specify regular distribution
functions such as block, cyclic, and their combinations. In our systems, a framework

for automating these special partitioning strategies is provided. (3) The forms of com-
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munication generated by the above systems are variations of simple sends and receives.
Our system is based on a different model. We extract syntactic reference patterns
that represent communication from the source program, and match each of them
with the most efficient communication routine. Using our technique, non-primitive

communication forms such as broadcasting and reduction, can be generated.

1.4 Organization of the Dissertation

Chapter 2. The source language Crystal and the overall structure of the Crys-
tal compiler are introduced. Intermediate program representations and an abstract

machine model are also presented.

Chapter 3. An overview of key compilation techniques is given. These techniques
facilitate two major program transformations, one from a Crystal program to a
shared-memory parallel program and the other from a shared-memory program to
a message-passing program. A general framework for optimizing the target code is

also presented.

Chapter 4. The index domain alignment problem is defined and studied. The
problem is modeled as a graph problem, and is shown to be NP-complete. Practical

algorithms for solving the problem are presented and their performance is studied.

Chapter 5. The problem of deriving parallel control structures from a Crystal
program is studied in detail. Issues addressed here include the representation of
data dependence of a Crystal program, the correspondence between Crystal program
constructs and shared-memory program constructs, the algorithm for synthesizing

control structures, and the analysis of the algorithm.

Chapter 6. The generation of explicit communications is the focus of this chapter.

An approach based on matching reference patterns with collective communication
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routines is presented. Three major issues in communication generation—the synthe-

sis, the synchronization, and the scheduling of communication primitives—are studied

in detail.

Chapter 7. Benchmark results of the experimental Crystal compiler for a set of

applications are presented and analyzed.

Chapter 8. Concluding remarks and directions of future work are presented.



Chapter 2

Language and Machine Models

This chapter introduces the source language Crystal and the compilation model of the
Crystal compiler. Section 2.1 presents a brief description of Crystal, emphasizing the
constructs that are most relevant to this dissertation. Section 2.2 defines the target
machine model for the compiler. An overview of the structure of the compiler is given
in Section 2.3. In the compilation process, a Crystal program is first transformed into
a shared-memory program, then the shared-memory program is transformed into a
message-passing program, and finally, the message-passing program is transformed
into a program executable on a specific target machine. Section 2.4 describes the
shared-memory program model. Section 2.5 describes data layout strategies. Finally,

in Section 2.6, the message-passing program model is presented.

2.1 Crystal

Crystal [Che86] is a language designed to provide a convenient means for expressing
parallelism and locality. It contains special constructs for representing data parallel
computations, and powerful operators for expressing aggregate operations. Crystal
is a functional language. It has clean semantics and nice algebraic properties. For

instance, program transformations can be mathematically defined and mechanically

11
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carried out [CC88]. We do not intend to describe the language in its full extent here.

We will only introduce major Crystal features that are relevant to this dissertation.

Programs

A Crystal program contains a set of possibly mutually recursive definitions and op-
tional output expressions. Definitions can be classified into index domain definitions,
data field definitions, function definitions, and definitions of constants. Index domains
and data fields are intended for representing distributed data structures and data
parallel computations, and functions are intended for representing atomic sequential
computations and combining data parallel components (via high-order functions). We

give a brief description of each of the constructs below.

Index Domains

Index domains are abstractions of the “shapes” of composite data structures. An
index domain consists of a set of elements, called indices.

An interval domain, denoted [m..n], where m and n are integers and m < n, is
one of the basic index domains. The elements of the interval domain are the set of
integers {m,m +1,m+2,...,n}. Other basic index domains include the tree domain
and the hypercube domain.

Given two index domains D and E, we can construct their product (D x E) and
disjoint union (D + E) in the usual way.

In a Crystal program, index domains are defined by the keyword dom. For exam-

ple, to define an n by n index domain D, we write

dom D = [1..n] x [1..n].

Data Fields

Data fields generalize the notion of distributed data structures, unifying the conven-

tional notions of arrays and functions. A data field is a function over some index
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domain D into some domain of values V. Usually, V will be the integers or the
floating point numbers. V can also be some domain of data fields.
A parallel computation is specified by a set of data field definitions, which may

be mutually recursive. The following example illustrates the use of data fields:
dom D; = [0..n]
dom Dy = D; x Dy
dfield a(z): D; =i + 2
dfield b(z,7) : D2 = if (: = 0) then a(j)

|| else b(i — 1,7) + a(5)
fi

D 1s an interval domain and D; is a product domain. Data field a is defined over

D, while data field b is defined over D,.

Functions

Any function that is not explicitly defined over an index domain is just a conventional
function. Functions are used for specifying computations that are intended to be
executed sequentially. Functions can be self-recursive or mutually recursive. The

following example illustrates the use of functions:
a(i) =1 +2
b(z,7) =if (¢ = 0) then 0
|| else b(z —1,5) + a(j)
fi

These two functions will produce the same results as the two data fields in the previous
example. The difference is that functions are not intended to be executed in parallel.
Conditionals

The general form for a conditional expression is

if yu then 1
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|| p2 then 5

|| else 7,

fi

where the p;’s are boolean expressions called guards, and the 7;’s are arbitrary expres-
sions. The guards p; are mutually exclusive. The value of the conditional expression

is 7 if pi is true.

Tuples and Aggregate Operators

Tuples are for expressing elements in aggregate forms. They are comparable to arrays

in other languages. Below are examples of tuples.

a=1[1,2,3,4,5,6]

b={[12,2],[4,7]]
Several APL-like aggregate operators are supported in Crystal. The reduction
operator “\” takes as arguments a binary associative function @ : 7T x T'— T over

some data type T" and a tuple a = [ay,...,a,] of elements of type T, and is defined

as

\@a:al@...@an.

For example, \ + [1,2,3,4,5,6] = 21.

A Program Example

Figure 2.1 shows a Crystal program for computing the product of two matrices.

Remarks

In this dissertation, we focus on compilation techniques for basic parallel constructs

of Crystal. We do not address the problem of compiling every feature of the Crystal
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! ag and by are input arrays

dom D = [1..n}] x [1..n]

dfield a(z, ) : D = aolt, J]

dfield 8(z, ) : D = bo[t, 7]

dfield ¢(z,7) : D =\ + {a(i,k) * b(k,7) | 1 <= k <= n}

Figure 2.1: MM: A Crystal program for matrix multiplication.

language. For instance, we do not consider complex index domains such as tree
domains or hypercube domains, nor complex data fields such as those whose return
values are other data fields (i.e. higher-level data fields). The excluded features either
have no immediate relation to parallel computafion or require different compilation

techniques than those presented in this dissertation.

2.2 Target Machine Model

We define a simple model to represent a class of actual distributed-memory multipro-
cessors. The physical target machines under consideration include various hypercubes

such as the iPSC/860 and the nCUBE 2, transputer arrays, and the iWarp systolic

arrays.

An abstract target machine has two major functions. Firstly, it provides a base for
the machine-independent message-passing program model. With the abstract target
machine, data partitioning functions and communication routines can be defined. A
message-passing program hence can be generated without referring to a specific target
machine. Secondly, communication metrics reflecting the communication cost on an
actual target machine can be defined using an abstract target machine. These metrics

are critical in decision-making processes at various compilation stages.
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2.2.1 Abstract Machine Definition

An abstract target machine is defined as a set of identical, independent processors
configured as a multi-dimensional grid. The topology of the network connecting the .
processors is not explicitly specified. The communication capabilities of the machine
are described by some communication metrics based on message-passing patterns.

An abstract machine can be represented by a pair M = [E, C] where

o F =[l.n;]x---x[l..ng] is an index domain in the form of a Cartesian product
of k interval domains for some integer k. E represents the spatial configuration
of the processors of the abstract machine, and will be referred to as the processor

domaszn.

e ( is a communication metric. The concrete form of C is flexible; it can either

be a closed-form function or a table of costs.

Multi-dimensional grid configuration is both simple and useful. Many data parallel
application programs use multi-dimensional array as the major data structure, which
maps naturally to multi-dimensional grids. In addition, multi-dimensional grids can

be nicely embedded into many architectures, in particular, meshes and hypercubes.

2.2.2 Communication Patterns

Interprocessor communication on an abstract machine can have several forms:

o Uniform Communication: The relationship between the sender and the receiver
is invariant of their locations. For example, every processor sends a message to

its neighboring processor on the left, as shown in Figure 2.2(a).

e Permutation: A collection of processors participate in a loosely synchronous
communication [FJL*88]. Each processor sends or receives at most one message.
An example is that of transpose, i.e. sending data in a row of processors to a

column of processors (Figure 2.2(b)).
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Figure 2.2: Different forms of communication.

o Aggregate Communication: This form of communication is used to achieve either
replication of data or reduction and scan of multiple data elements for a group
of processors in a loosely synchronous manner. Figure 2.2(c) shows data on a

processor being broadcast to all others.

o Arbitrary Communication: A collection of processors participate in a totally
asynchronous communication. No particular characterization of the relation

between the senders and receivers can be given, as shown by an example in

Figure 2.2(d).
The following notation describes communication precisely.

Definition 2.1 Consider an n-dimensional processor domain E. Let (o7, ...,0,) and
(61,...,6n) be two tuple expressions whose values range over E. We define a collective
communication to be the collective data motion of moving data from (oy,...,,) to
(61,...,8,) for all (o1,...,0,) € E. A collective communication can be described by

a communication pattern, as follows
‘aQ(ay,...,0,) = (61,...,6,) : E ' (2.1)

Tuple (o1,...,0,) is called the source ezpression, and (éi,...,6,) the destination

expression. Variable a represents the data to be transmitted.
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The communication pattern of a collective communication has two special forms.
In the sender’s form, the source expression consists of index variables (7),...,%,)
only, which range over E. In the receiver’s form, the destination expression consists

of index variables only:

Sender’s form:  fa@(iy,...,1,) = (61,-..,6,) : EY,

Receiver’s form:  "a@(o1,...,0)) = (41,...,1n) : E*

When (o1,...,0}) and (81,...,8,) are linear expressions of the indices, it is possible
to symbolically convert between the sender’s form and the receiver’s form.
Communication patterns can be used to describe uniform communication, per-
mutation, and aggregate communication. The notion can also be used to describe
an arbitrary communication; but since an arbitrary communication assumes no data

movement pattern, each sender and receiver pair must be described individually.
Example 2.1 Denote the processor domain in Figure 2.2 by E = [1..4] x [1..4] (as-

suming top left element is (1,1)). The four communication forms can be described

as follows:

)
(d) fa@(1,1) = (3,2): E', "a@(1,2) = (2,2): E,

Using the notion of communication pattern, we can define an important concept,

uniformity.

Definition 2.2 A communication pattern

TaQ (21, .. lpyevnyin) = (TiyeneyTpyeeeyTn): B
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jas

is uniform in the pth dimension of E if 7, = ", + ¢, where ¢ is a small constant
independent of domain bounds, and = denotes that two expressions have the same

canonical form.!

Example 2.2 Communication pattern ‘a@(z, ) = (z — 1,7) : E" is uniform in both
dimensions of E, while pattern "a@(z,7) = (¢ — 1,7 + j) : E" is uniform only in the

first dimension.

Communication patterns over a processor domain can be characterized according
to their uniformity. Some patterns are uniform in all the dimensions, some are uniform
in all but one dimension, some are uniform in only one dimension, and so forth.

Communication patterns over a processor domain can also be characterized ac-
cording their “complexity”. Patterns that can be implemented efficiently on an actual
target machine are defined as “primitive patterns.” Other communication patterns
~are then viewed as compositions of these primitive patterns. Note that a commu-
nication pattern with very low degree of uniformity may be a primitive pattern, for
instance one-to-all broadcasting. A full discussion on primitive patterns is given in

Section 6.2.

2.2.3 Communication Metrics

On an actual target machine, different communication patterns imply different source
and destination relationships, different traffic patterns, and hence different communi-
cation costs. For instance, the following observations are generally true on machines

with regular interprocessor network topology such as mesh or hypercube:

o A local memory access is far faster than interprocessor communication. The

difference in cost can be as much as one or two orders of magnitude.

1A canonical form of an expression is a syntactic form in which variables appear in a predefined
order and constants are partially evaluated. For example, 2 — i + j7and 7j — ¢ + 3 — 1? would have
the same canonical form M — ¢ + j + 21
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o The more uniform a pattern is, the lower is the communication cost. Nonuni-
formity implies nonlocal communications that are likely to cause message colli-
sions. The more nonuniform dimensions a pattern has, the greater the chance

of message collisions.

The following two communication metrics are defined for our abstract target ma-

chine. They reflect different levels of information about an actual target machine.

Communication Matric 1: Classify communication patterns according to their
uniformity and assign an appropriate cost to each class. This metric is based on
uniformity of communication patterns. It relies on very little information about

the target machine. It is suitable for use in early stages of the compilation.

Communication Matric 2: Compute the costs of a set of primitive communica-
tion patterns and then estimate the cost of general communication patterns by
decomposing them into primitive patterns. This metric is based on a reduc-
tion rule. It is more refined, since the costs of the primitive patterns can be
estimated quite accurately by actually implementing them on the actual target

machine.

2.3 The Structure of the Compiler

Figure 2.3 shows the structure of the Crystal compiler. The compiler transforms
a source Crystal program through several phases into a C program program aug-
mented with communication statements. The compilation process consists of three
major phases: (1) index domain alignment and control structure synthesis, (2) data
partitioning and communication generation, and (3) code generation. The two inter-
mediate representations in between the three phases are a shared-memory program

and a message-passing program, respectively. The final output of the compiler is a
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Figure 2.3: An overview of the Crystal compiler.
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program suitable for compilation and execution on a specific target machine. In addi-
tion, an abstract target machine as defined in the previous section is used to provide

guidance for compiler optimizations.

2.3.1 Index Domain Alignment and Control Structure Syn-

thesis

The first major phase of the compilation, index-domain alignment and control-structure
synthesis, transforms a Crystal program into an aligned shared-memory parallel pro-
gram.

In this phase, the compiler performs data-dependence analysis on the source Crys-
tal program to reveal the implicit parallelism and the implicit control structures of the
program. The information derived is added to the source program through explicit
constructs, transforming it into an explicitly parallel program.

The compiler also performs automatic domain alignment in this phase. The pur-
pose of domain alignment is to determine the relative allocations of data fields that
would minimize data movement between them. The major steps are as follows. The
source program is first decomposed into segments called blocks, based on the depen-
dence analysis result. Then dependences between data fields of the same block are
analyzed and the result is represented by an undirected graph. The alignment al-
gorithm is applied to the graph to generate alignment functions for the data fields.
Finally, the alignment information is added to the source program through redefini-
tions of data fields. Hence, the resulting program from this phase is a shared-memory

program with explicit alignment and parallelism.

2.3.2 Data Partitioning and Communication Generation

The second major phase of the compilation, data partitioning and communication
generation, transforms an aligned shared-memory program into a message-passing

program for an abstract target machine.
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This phase deals with two most important issues in compiling programs for distributed-
memory machines, data partitioning and interprocessor communication. We represent
partitioning strategies by a set of symbolic parameters, and analyze communication
with respect to these parameters. The result of the communication analysis is then

used to select the best partitioning strategy.

Given a set of symbolic partitioning parameters, the compiler takes the follow-
ing steps to generate interprocessor communication. Firstly, array references in the
shared-memory program are collected and represented in a data structure called ref-
erence patterns. Secondly, each reference pattern is analyzed and a single or a com-
bination of several communication routines from a set of predefined communication
routines is selected. Optimizations are applied in the process so that the most efficient
routines are selected. Next, communication routines generated from array references
are inserted into the shared-memory program. Appropriate conditionals are attached
to these communication routines to ensure synchronization of the message passing.
Finally, a partitioning strategy is selected based on the result of communication anal-

ysis, and an integrated message-passing program is generated.

2.3.3 Code Generation

The last phase of the compilation generates the actual target code for a specific
distributed-memory machine from an abstract message-passing program. The actual
target code is supported by a runtime system implemented on the target machine.
The runtime system consists of two libraries: one provides communication routines,
the other provides index mapping routines for embedding an abstract machine and

for implementing data partitioning,.
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2.4 Shared-Memory Parallel Programs

In this section, we describe a model of shared-memory parallel programs for repre-

senting explicit alignment information and parallelism.

2.4.1 Program Structure

A shared-memory program consists of a sequence of statements, separated by semi-
colons (“;”). The semi-colons indicate a sequential execution order. For example, the
sequence Sy; S; means that statement S; is executed before statement S,.

There are two restrictions that apply to a shared-memory program:

o The single-assignment rule: Each array element can be assigned a value only
once. However, an array can appear on the left-hand side of many assignment

statements (so long as different array elements are assigned values each time).

o Restricted left-hand side subscripts: Array subscript expressions on the left-
hand side of an assignment statement must be index variables. For instance,

the statement a(é, j —1) = b(i 42, j) should be written as a(%,7) = b(¢ +2,j +1).

These two restrictions can be naturally satisfied when transforming a Crystal program

to a shared-memory program.

2.4.2 Loop Constructs

Three types of loops are used in our shared-memory programs: for, forall, and while-active.

A for loop is just a sequential loop in which iterations are executed sequentially. The

other two loops are described below.

Forall Loops

Syntactically, a forall loop is represented by a keyword forall followed by a declaration

of the loop index and its iteration space (i.e. an interval domain) followed by the
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loop body. For instance, forall (z : [1..n]) S(¢); represents a forall loop of n itera-
tions. Nested forall loops can be represented by a combined header as in the following

example:

forall (¢ : Dy)
forall (5 : D7) =
S(4,5);

forall ((¢,7) : D1 x Dy)
S(4,7);

The semantics of the forall loop is quite simple, due to the single-assignment
rule.? A forall loop with a single array assignment statement represents a completely
parallelizable loop—all its iterations are independent and hence can be executed in
any order.

Multiple array assignment statements are allowed in a forall loop, provided that
there is no cross-iteration dependences among the statements. Such a loop can always

be distributed over the statements in its body, resulting in a collection of forall loops.

For instance,

forall (z: D) { forall (: : D)
a(?) = @ — a(?) = a;
b(z) = B; forall (: : D)

} b(1) = B;

While-Active Loops

A nonconventional loop, the while-active loop, is included in our model of shared-

memory program. It is used when the compiler can derive neither a for loop nor a

2Without the single-assignment rule, there can be many ways to handle the problem of multiple
writes to the same memory location. Hence many different semantics can be defined for forall loops
or other equivalent parallel loops (see, for instance, [LB80,cmf89, Wol89]).
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dom D = [l..n] x [1..n];
forall((¢,7) : D)

a3, j) = aoli, jl;
forall((z,5) : D)
b(é, 5) = boli, jl;

forall((z,7) : D)
(@) =\ + {a(, k) + b(k,j) | | <=k <=n};

Figure 2.4: The shared-memory version of the MM program:

forall loop for a group of data fields due to the lack of information. In such a case,
these data fields are put into a while-active loop.

The semantics of a while-active loop

while-active (¢ : D)

a(i) = a[ia a];

is as follows. Compute al, a] for every possible 7 in D. If some i, aft, a] is dependent
on some elements of a, the computation would be switched to other ¢’s. Repeat this
process until all the values of a are computed or a deadlock is reached.

On a sequential computer, the while-active loop can be emulated by a while loop:
keep computing while there are still “active” (i.e. Computable) elements of a. To
execute a while-active loop in a multiprocessor environment, appropriate run-time
support is needed. First of all, each processor must be able to handle interruptions,
since a message may arrive at any time. Secondly, there must be a queuing manager
which delays requests until the data is available. The overhead associated with the

execution of a while-active can be very high.

Example 2.3 Figure 2.4 shows the shared-memory version of the matrix multipli-

cation program.
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P1 Pz P3 P4

Figure 2.5: A 4-block layout of a one-dimensional domain.

2.5 Data Layout Strategies

We use the term data layout to refer to the process of decomposing an index domain
into segments and mapping the segments onto the processor domain of an abstract
target machine. Since our programs are based on the data-parallel model, decompos-
ing the index domain of an array implies that both the data and the computation
associated with the array are decomposed.

Data layout consists of two issues: partitioning a domain and distributing the
domain partitions. We consider these two issues together, since the distribution of
the domain partitions to a processor domain is straightforward under our abstract
machine model—both the array index domain and the processor domain are Cartesian
products of intervals and we can adjust the parameters of the abstract machine so
that there is always a simple relationship between the two.

In the Crystal compiler, two data layout strategies are considered. Both strategies

decompose an index domain into subdomains of the same size and shape.

The Block Layout Strategy

Definition 2.3 Given an interval domain D = [1..n], a k-block layout strategy divides
D into k equal-size segments and assigns them to an array of k processors, with the

tth segment assigned to the ith processor (Figure 2.5).

In case k divides n, the k segments can be specified as

1.n/k],[n/k+1.2n/k],...,[(k—Dn/k + 1..n]. (2.2)
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If k£ does not divide n, there are two standard ways to handle it. One way is to let

the first I (I < k, its exact value is defined below) segments to be of the same size,

[n/k], and let the (I + 1)th segment be of a smaller size n — I[n/k]. The value of [
is given by

= |n/n/k]. (2.3

The second approach is to let the first I segments to be of the size [n/k| + 1, and

the remaining segments to be of size [n/k]. The value of [ is given by
l=n-|n/k|. (2.4)
The second approach guarantees that segments differ in size by at most one.

Example 2.4 Consider a domain D = [1..41] and an array of 8 processors. Using

the first approach, the layout is
6 6 6 6 6 6 5 0,

and the last processor is wasted. Using the second approach, the layout is
6 555 5 5 5 5,

which achieves maximal load balance.

The block-layout strategy can be applied to two-dimensional index domains as
well. However, since a two-dimensional domain can be divided along either of the

two dimensions (or both), we need two parameters to describe a specific layout.

Definition 2.4 A (ki, k;)-block layout strategy for a two-dimensional domain D
divides the domain into k; X k; segments and maps them to a k; x k; proces-
sor domain. The segment indexed by (7,j) is assigned to processor (,j), for all

1<i<k;1 <5< k.

Example 2.5 Figure 2.6 shows four different layouts of a two-dimensional domain

using the block-layout strategy.
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Figure 2.6: Block layouts of a two-dimensional domain.

P P, P P, P P, P Py

Figure 2.7: A (4,2)-interleaving layout of a one-dimensional domain.

The Interleaving Layout Strategy

Definition 2.5 A (k,!)-interleaving layout strategy for a one-dimensional domain D
divides the domain into k x [ segments and maps them to a k processor array. The ith,

(¢ + k)th, (¢ 4 2k)th, ..., (i + (I — 1)k)th segments are assigned to the ith processor.
Example 2.6 Figure 2.7 shows a (4, 2)-interleaving layout strategy.

The advantage of an interleaving layout over a block layout is that it tends to
balance the computation load more. However, the overhead of an interleaving layout is
higher due to the context switching between segments assigned to the same processor.
Furthermore, using an interleaving layout may increase communication cost, since
messages tend to be smaller in size but larger in quantity.

A k-block layout strategy is a special case of a (k,[)-interleaving layout strategy
where [ = 1. In general, a data layout strategy for an n-dimensional index domain

can be described by n pairs: ((Ny,h),..., (N, 1n)).
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Notation

For the rest of the dissertation, the following notational convention is used. P denotes
a data layout. E(P, D) denotes the processor domain that is the result of applying
P to index domain D. D(’P,p) denotes the domain segment assigned to processor
p (an element of E(P,D)). When the context is clear, we simply use E and D to

represent a process domain and an index domain segment.

2.6 Message-Passing Programs

In this section, we describe a model of message-passing programs for the abstract
machine defined in Section 2.2. The message-passing program model uses the same
program constructs (e.g. forall loops) as the shared-memory program model does. The
data in a message-passing program, however, is now mapped to the private memory

of the processors and communication statements are presented.

A message-passing program in our model is in the so-called SPMD (Single-Program-
Multiple-Data) style. The program consists of an overall forall loop over the processor
domain.? The body of the forall loop is to be executed on every processor. It consists

of both for and forall loops, not necessarily in a perfectly-nested fashion.

Message-passing programs generated by the Crystal compiler are initially in a spe-
cial form in which all for loops appear outside of forall loops. Figure 2.8 illustrates the
general form of such programs. For simplicity, only one for loop is shown. The body
of the for loop consists of a sequence of program segments: computation segments
and communication segments. The structures of these two types of segments are also

shown in Figure 2.8.

3To be precise, a different loop construct should be used for the overall loop, since its iterations
are not completely independent.
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forall (p : E(P, D))
for (¢: T) {

omputation Segment);

r
(C
(Communication Segment);
(Computation Segment);

(

Communication Segment);

’

(Computation Segment) :: ~ (Communication Segment) ::
if pred then if pred then {
forall (3 : D) { (Buffer Preparation);
(Index Mapping); (Communication Routine);
(Array Assignment Statement); (Data Rearrangement);

} }

Figure 2.8: The general program structure of a message-passing program.
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2.6.1 Computation Segments

Consider a multiloop nest £ of a shared-memory program that ranges over an index
domain Dy x D3 X -+ x D,. Assume that the first k¥ loops of L are for loops (which
range over domain D; X --- X Dj) while the inner loops from level k¥ 4 1 to level n
(denoted Lg41, ..., Ly) are forall loops. Let T = Dyx-+-x Dy and D = Dypq x---xD,.

Given a data layout function P for D, the forall loops are eventually distributed
over the processor domain E(P, D). Each processor gets assigned a portion of these
loops. For a processor p, the portion is over a subdomain ﬁ('P,p).

We call a forall loop nest over a subdomain ﬁ('P,p) in a message-passing program,
a computation segment. For the above loop nest £, a computation segment would

appear in the form of

forall ((ik41, - - -,2n) : D(P, D)) {
(Index Mapping);

(Array Assignment Statement);
}

Although the forall loops in a message-passing program are to be executed sequen-
tially by a single processor, we still denote them with the header forall. The reason
is that the absence of data dependence of a forall loop allows communication to be

scheduled in a way that better performance can be obtained.

2.6.2 Communication Segments

‘Since the iterations of a forall loop are fully independent, no communication has to
occur inside a computation segment if the data it needs is fetched before the execution
begins. However, between two different computation segments there might be data
dependences, hence communication might be needed.

We call a group of statements in a message-passing program responsible for imple-

menting a reference pattern a communication segment. Each communication segment
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is guarded by a predicate that synchronizes multiple parties in a communication. It
consists of statements for preparing a message buffer, a call to a communication

routine, and statements for a possible rearrangement of the transferred data.

2.6.3 Index Mapping

In a message-passing program, each processor computes with local arrays that are the
results of data partitioning on the original arrays. Some portions of these arrays (e.g.
the temporal dimensions) can be accessed in the same way as the original arrays, but
other portions must be accessed by using a different set of indexing variables.

The following three generic mapping functions are used to translate between three
sets of indexing variables: (1) global indices for indexing portions of arrays that are
not partitioned; (2) local indices for indexing the partitioned portions of arrays; and
(3) processor indices for indexing the process domain. In all these functions, P
denotes a data layout function, D denotes an index domain, p denotes a processor in

the domain E(P, D), and i and & denote an element in D and D(P, p), respectively.

Global_to_Local(P, D, i, p): This function returns an element 2 € D(’P,p) that cor-

responds to z.

Local_to_Global(P, D, i, p): This function returns an element ¢ € D that corre-

sponds to 2.

Index_to_Pid(P, D, i): This function returns an element p € E(P, D) that holds the

portion of D that contains the element z.

On an actual target machine, each of these functions may be implemented by a group
of routines.

As illustrated above, we use different variables for indexing different data: (1)
plain variables like 7 and j are used to access global arrays; (2) variables with a hat,
such as # and j, are used to access local arrays; (3) variables p and ¢ are used to

identify processors. Corresponding boldface letters are short forms of vectors.
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dom D =[l..n] x [1..n];

dom FE = E(D,P);

forall((p,q) : E) {
forall((¢,7) : D)

aGj) = aoli il
Multi_Spread(E, 1, 4, a4, | D|);
forall((3,7) : D)

b, ) = boli,3l;
Multi_Spread(E, 2, b, b;, | D|);
forall((%, j) : D)

¢(,J) =\ + {as(i, k) % bu(k,J) | 1 <= k <=n};

Figure 2.9: The message-passing version of the MM program.

Example 2.7 Figure 2.9 shows the message-passing version of the matrix multipli-
cation program. Note that references to data outside the processor’s private memory
are replaced with references to message buffers (e.g. a; and b;) and a message buffer

is filled as the result of communication.



Chapter 3

Compilation Strategies

In this chapter, we discuss the major compilation techniques for transforming a Crys-
tal program into a message-passing program. Section 3.1 describes the first part of
the transformation: from a Crystal program to a shared-memory parallel program.
Section 3.2 describes the second part: from a shared-memory program to a message-
passing program. Issues of compiling a whole program are addressed in Section 3.3.

Finally, in Section 3.4, several code refinement techniques are presented.

3.1 Generation of Shared-Memory Programs

Crystal is a functional language. A Crystal program merely declares the index do-
mains and specifies the definitions of data fields. Other kinds of information such as
parallelism and control structures are implicit. The first phase of the Crystal compiler
is to reveal the implicit parallelism of a Crystal program and to add control structures
to the program.

Our method consists of the following steps (Figure 3.1). Firstly, data dependences
between data fields and those between data values are analyzed. The results become
the foundation for all the subsequent compilation analysis. Secondly, a Crystal pro-

gram is decomposed into program segments called blocks. A program block is used

35
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Crystal Program

Dependence Analysis

Y

Program Decomposition

v

Index Domain Alignment

Y
Aligned Crystal Program

¥

Control Structure Synthesis

Y
Aligned Shared-Memory
Program

Figure 3.1: Generation of a shared-memory program.

as the standard unit in many compilation modules. Then, data fields belonging to
the same program block are aligned to a common index domain. As the result, de-
pendences between data fields can now be addressed in a unified framework, which
enables the compiler to derive control structures more efficiently. Finally, each com-
mon index domain is analyzed with regard to data dependences. Some components
are labeled spatial and others temporal. For each program block, loop nests contain-
ing both sequential and parallel loops are generated at the end. In the following, we

describe these steps in turn.
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3.1.1 Dependence Analysis

The purpose of dependence analysis is to reveal dependence relations between data
objects in a Crystal program and represent them in some convenient form. For our
purpose, the most important dependence relations are those between data fields.

In the following, the Greek letters, such as 7 and ¢, denote arbitrary Crystal
expressions. A Greek letter with square bracket, such as 7[z1,...,z,], denotes an

expression containing the specifically given subexpressions.

Data Dependences

The functional nature of the Crystal language makes the dependence analysis of a
Crystal program quite straightforward. There exists only one simple form of depen-
dence in a Crystal program: data dependence, i.e. a value a depends on another value
b. Hence, the compiler can derive dependence information by analyzing both sides of
a definition equation.

We analyze data dependence of a Crystal program at two levels: (1) dependence

between data fields, and (2) dependence between data values.

Definition 3.1 Consider the definition of a data field a:
dfield a(z) : D = 71[b(7[2])], (3.1)

in which a data field b is referenced. We say that data field a is call-dependent on
data field .

Definition 3.2 With respect to the definition in Equation (3.1), for an specific ele-
ment 7o € D, the value a(p) is said to be data-dependent on the value b(7[z0]) if it is

contained in the expression 71[;_; .

Note that a data field a can be call-dependent on itself, but a value a(z) cannot be

data-dependent on itself.
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Example 3.1 Consider the following definition:

dom D = [1..10] x [1..10]
dfield a(z,5) : D = if (¢ < 5) then b(3, 5)
|| else a(i — 1, 7)
fi
Since references to both data fields a and b appear in the definition, data field a is call-
dependent on both b and itself. For some indices (,) € D, the value a(3, j) is data-
dependent on b(z, j), while for others it is not. For instance, a(1, 1) is data-dependent
on 6(1,1); but a(10,10) is not dependent on 5(10,10), since when (4,5) = (10, 10),

the right-hand expression becomes a(9, 10).

Call-Dependence Graphs

Call dependence derived from a Crystal program can be represented by a directed
graph called call-dependence graph (CDG). A CDG can be defined for a whole program

or for a subset of its data fields.

Definition 3.3 A call-dependence graph G for a group of data fields S is a directed
graph. FEach node of G corresponds to a data field in & and each directed edge
corresponds to a call dependence between two data fields. The direction of the edge
is defined as follows: if data field a is call-dependent on data field b, then the edge

points from node b to node a.

Example 3.2 Consider the following data fields:

dfield a(i,7) : D1 = 7 [b(¢1[3, 7])],

dfield b(3, ) : Dy = 7a[c(¢ali, 5])],

dfield c(3, 4, k) : D3 = 73[a(@als, §, k]), c(¢als, 7, £])],
dfield d(z,y) : Dy = 74]d(¢s[z, y])],
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d C

Figure 3.2: An example of call-dependence graphs.

Data field a is call-dependent on data field b. Data field b is call-dependent on ¢. Data
field c is call-dependent on a and itself. And finally, d is call-dependent on itself. The
CDG for these data fields is shown in Figure 3.2.

Reference Patterns

Data dependence at the level of data value is very fine-grained. Representing and
analyzing each data dependence individually would require too much storage and
processing time. We therefore define an aggregate representation form, called a ref-

erence pattern.

Definition 3.4 Consider the definition of a data field a. Assume it contains a refer-

ence to data field b as follows:
dfield a(71,...,7,): D =7[b(7,..., )]
The symbolic form
fa(i1, ... 1n) & (11, ..., )" (3.2)

is called a reference pattern (the arrow « reads “is dependent on”). If (7, ..., 7,)
appears in a conditional branch guarded by an expression v, then the reference pattern

takes the form of

fa(t1y. .. yin) &= (1, .y Tn) 1 YN (3.3)
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A reference pattern of form (3.2) represents a collection of dependences: those between
values a(7y,...,%,) and b(m,...,7,) for all the elements in the index domain of a.
Similarly, a reference pattern of form (3.3) represents dependences between values
a(t1,...,%,) and b(7y,...,7,) for all the elements in the index domain of a for which

the guard expression « is true.

Example 3.3 Consider the following data field definition:
dfield a(z,7) : D = a(i,j — 1) + b(j,i + 1)

Two reference patterns, ‘a(z, j) « a(¢,j —1)"and "a(s, j) « b(j,7+1)" can be derived.

3.1.2 Program Decomposition

Potentially, a Crystal program can be very large. It would be impractical to analyze
and transform a large program as a single object. The purpose of program decompo-
sition is to decompose a Crystal program into smaller and more manageable program
segments.

We borrow the idea of the 7-block used in decomposing Fortran programs[Kuc78].
We define a Crystal block to represent a group of data fields that are closely related
to each other (the precise definition given below). Each block is treated as a single
unit in analysis and transformation modules throughout the compiler. At the end the
individually transformed blocks are linked back together to form an integrated target
program.

Recall that a data field a is said to be call-dependent on a data field b if a reference
to b appears in the definition of a. In order to formulate a Crystal block, we extend
the dependence relation to data fields that are not directly call-dependent to each

other.

Definition 3.5 A data field a is said to be dependent on a data field b if (1) a is
call-dependent on b; or (2) there exists a data field ¢ (# a, # b), a is call-dependent

on ¢ and c is dependent on b.
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Algorithm Program_Decomposition(P)

Input: A Crystal program.
Output: A set of program blocks.

begin
Form the call-dependence graph of P;
Decompose the graph into strongly connected components;
Derive blocks based on the connected components.

end.

Figure 3.3: The program decomposition algorithm.

Definition 3.6 A Crystal block is a maximal set of data fields that are mutually

dependent on each other.

With respect to the call-dependence graph of a Crystal program, a block corre-
sponds to a strongly connected component of the graph. This correspondence pro-
vides a simple algorithm for computing blocks from a given program, as shown in

Figure 3.3.

Example 3.4 The CDG in Figure 3.2 consists of two strongly connected components:
one consists of nodes a,b and c, the other is a singleton d. Correspondingly, the four

data fields can be decomposed into two blocks: {a,b,c} and {d}.

- 3.1.3 Index Domain Alignment

Data fields of a Crystal program are defined over individual index domains. These
domains may have the same shape and size, but otherwise are independent of each
- other. However, it is not always possible, nor desirable, to analyze and transform data
fields individually, because data fields may be mutually dependent on each other and

hence they may need to be transformed into a single loop nest.
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Our approach is to analyze together all the data fields that belong to the same
Crystal program block (by definition, they are mutually dependent). The index do-
main alignment step aligns the index domains of these data fields into a single common
domain. By doing so, data field references, both self-references and cross-references,
reside in a single reference framework. Further analysis can thus be based on conven-
tional representations such as dependence vectors.

We formulate the domain alignment problem as finding a set of alignment func-
tions that map a group of index domains into a common domain. There are many
issues involved in this process. For instance, what type of alignment functions to
consider? How to select alignment functions for a given index domain? And so on.

Chapter 4 discusses the domain alignment problem in detail.
Example 3.5 Consider the following two data fields:

dom Dy = [l..n] x [1..n]

dom D, = [l..n] x [1..n] X [1..n]

dfield a(z,7) : Dy = a(3,5 — 1) + b(1,1,))

dfield b(¢,5,k) : Dy = a(i 4,k — 1)
The self-references "a(¢,j) « a(z,j — 1)" can be analyzed with respect to the index
domain D;. The cross-references "a(¢,7) « b(1,,7)" and "b(¢,7,k) — a(i + j, k — 1)
however, involve two index domains. Without knowing the relationship between D,
and D,, little can be analyzed from the cross-references.

Suppose we aligned Dy and D; to a common domain D = [l..n] X [1..n] X [1..n]

by the following alignment functions:

a(i,7): Dy — a(1,4,5) : D,
b(i,j,k) : Dy — b(3,5,k) : D.

Then the data fields can be transformed into

dom D = [1..n] x [1..n] % [L..n]
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dfield @(z,y,2) : D =d(z,y,2 — 1) + b(1,y, 2)
dfield E(a:,y,z) :D=a(l,z+y,z2—1)

In this new form, all the data dependences can be represented with respect to the

common domain D.

Note that in the process that transforms a Crystal program into a shared-memory
program, the index domain alignment module works as a preprocessing step for the
control structure synthesis module. However, the full effect of domain alignment goes

far beyond that, and the details are elaborated in Chapter 4.

3.1.4 Control Structure Synthesis

The function of the control structure synthesis module is to make explicit both the
sequential and the parallel control information in a Crystal program. It compietes
the transformation of a Crystal program into a shared-memory program.

The techniques for synthesizing control structures rely on natural correspondences
between program constructs of Crystal and those of the shared-memory program
model. In particular, they rely on the correspondences between index domains and
loop iteration spaces, and those between data fields and multiloop nests. The central
idea is to analyze data dependences with respect to a multidimensional index do-
main, to determine which dimensions are parallelizable and which dimensions must
be computed sequentially, and finally, to construct parallel or sequential loops corre-
spondingly.

There are several challenging issues involved in the synthesis process. First of all,
for a given Crystal program more than one shared-memory program could be gen-
erated. Making selections among multiple outputs is not trivial, since the compiler
does not have much information at this stage to provide accurate estimation of com-
putation and communication overhead. Secondly, the correspondences between data

- fields and multiloop nests may not always be straightforward. The resulting loop
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Ao = [[2.0,1.0,3.0,4.0,29.0], 1.0, 0.0, 0.0, 1.0, 5.0],
[3.0,1.0,1.0,0.0,8.0], [5.0,2.0,0.0, 1.0, 13.0]]

n=4
dom D; = [l..n] x [1..(n + 1)] x [0..n]
dom D, = [1..n]

dom D3 = [l..n] x [1..n]
dfield a(z, 5, k) : Dy = if (k = 0) then Aot j]
|| (7 < k) then a(i,7,k— 1)
|| (¢ = k) then a(ipivot(k), 7,k — 1)
l| (¢ = tpivot(k)) then
a(k,j,k - 1) - a(i,j9k - 1) *fac(ia k)
[| else a(7, 7,k — 1) — a(ipivot(k),j, k — 1) * fac(s, k)
fi
dfield apivot(k) : Dy = \max {|a(i, k, k= 1)| | k <=1i <= n}
dfield ipivot(k) : D = \max {i | k <=1 <=n:|a(i, k, k — 1)| = apivot(k)}
dfield fac(z, k) : D3 = if (¢ <= k) then 1.0
|| (z = ipivot(k)) then
a(k, k, k — 1)/ a(ipivot(k),k, k — 1)
|| else a(z,k, k — 1)/ a(ipivot(k), k, k — 1)
fi

Figure 3.4: Gauss: A Crystal program for Gaussian elimination with partial pivoting.

nests may contain complicated nesting structures. Finally, there may exist Crystal

programs whose dependences are too complex to analyze. Some default solutions

need to be provided in case the compiler cannot synthesize any control structures

from data dependences.

The control structure synthesis algorithm, the proof of its correctness and other

related issues are presented in Chapter 5.
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3.1.5 A Program Example

Figure 3.4 shows a Crystal program implementing an algorithm for Gaussian elimina-
tion with partial pivoting. The program iterates over the columns of the input matrix.
In iteration £ a pivot element is chosen from the elements in column k at or below the
diagonal (say element (5, k)) and rows k and j are exchanged. Then, the elements in
the column below the diagonal are eliminated using the pivot element. The aligned
version and the shared-memory version of the program are shown in Figure 3.5 and

Figure 3.6.

3.2 Generation of Message-Passing Programs

In this section, we give an overview of the transformation of a shared-memory pro-
gram into a message-passing program. The details of the communication generation
techniques of this transformation are presented in Chapter 6.

The following are two major issues involved in transforming a shared-memory

program into a message-passing program:

o Data layout: Parallel computations specified by forall loops in a shared-memory
program are partitioned and distributed over the processors of an abstract target

machine.

o Communication generation: Communication statements for passing messages
between processors are generated and inserted into the appropriate locations in
the program. Since our target program is in the SPMD style, each communica-

tion statement must be guarded by appropriate conditionals.

These two issues are interdependent. To analyze communication, a data layout strat-
egy must be given, because data distribution determines whether a communication
is needed and if so, where the source and the destination are. On the other hand,
the compiler does not know which data layout strategy is better until its cost can be

estimated by determining the communication involved.
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= [[2.0,1.0,3.0,4.0,29.0], [1.0,0.0,0.0, 1.0, 5.0],
[3.0,1.0,1.0,0.0,8.0], [5.0, 2.0, 0.0, 1.0, 13.0]]
n=4
dom D = [l..n] x [1..(n + 1)] X [0..n]
dfield a7, 5,k) : D = if (k= 0) then Agl, 5]
|| (# < k) then (4, 5,k —1)
I| (¢ = k) then W(ipivot(1, k, k), 5,k — 1)
|| (i = ipivot(1, k, k)) then ~
a(k,j, k — 1) — a4, 5,k — 1) * fac(i, k, k)
|| else a(z, 5, k — 1) — Q(dpivot(1, k, k), j, k — )*fac( k, k)
fi
dfield apivot(i, 5, k) : D =
if ((k>0)and (¢ =1) and (j = k)) then
\max {|a(s, k, k= 1)| | k <=1 <=n}

(
(2
(¢
(¢

fi
dfield ipivot(i,, k) : D =
if (k>0)and (z=1)and (§
=n:|[a

( k)) then
\max {i | k<=1i<

(i, k, k —1)| = apivot(1, k, k)}
fi
dfield fac(i,j, k) : D =
if (¢ <= k) then 1.0
|| (¢ = ipivot(1, k, k)),tjen
a(k,k,k—-1)/a (zpwot( K k), bk~
|| else a(i, k, k — 1)/a(ipivot(1, k, k), k, k
fi
fi

1)
~1)

Figure 3.5: The aligned Crystal version of the Gauss program:.




3.2. GENERATION OF MESSAGE-PASSING PROGRAMS

47

Ao = [[2.0,1.0,3.0,4.0,29.0], [1.0, 0.0, 0.0, 1.0, 5.0],
[3.0,1.0,1.0,0.0,8.0], [5.0, 2.0, 0.0, 1.0, 13.0]];
n =4,
dom T = [0..n];
dom D = [l..n] x [1..(n + 1)];
dom D; = [L..n];
for (k:T) {
if (k> 0) then
apivot(k) = \max {|a(i, k, k- 1)| | k <=1 <= n};
if (k> 0) then
ipiwot(k) = \max {i | k <=i <=n:|a(i,k, k — 1)| = apivot(k)};
if (k> 0) then
forall (¢ : Dq)
fac(i, k) = if (¢ <= k) then 1.0
l| (z = ipivot(k)) then

a(k,k, k — 1)/ a(ipivot(k), k, 1)
L[ else a(s, k, k — 1)/ a(ipivot(k), ,k 1)
forall ((z,7) : D) ,
a(i, 7, k) =if (k= 0) then Agz, J]
|| (¢ < k) then a(z,5,k — 1)
[| (¢ = k) then a(ipivot(k),j, k — 1)
|| (¢ = ipivot(k)) then

(k ]ak—l)_a(z .77 ) fac( )
L] else a(z,7,k — 1) — a(zpwot(k) — 1) * fac(s, k)

Figure 3.6: The shared-memory version of the Gauss program.
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Figure 3.7: Generation of a message-passing program.

To resolve the cyclic dependence between data layout and communication genera-
tion, we break up the compilation process for transforming a shared-memory program
into a message-passing program into several steps, as shown in Figure 3.7. In the pa-
rameterized data layout step, a set of parameters representing the most general data
layout strategy is introduced to the aligned shared-memory program. The result can
be represented in a partitioned shared-memory program. In the communication gen-
eration step, calls to communication routines are determined and inserted into the
program. In the data-layout selection step, the cost of computation and communica-
tion 1s estimated according to the day layout parameters and a particular data layout
strategy and parameters are selected. As the result, a message-passing program is

generated. In the following, we describe each step in more detail.
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3.2.1 Parameterized Data Layout

In Chapter 2, we described a set of data layout strategies for the compiler. All
of those strategies can be viewed as degenerate cases of the most general one, the
interleaved blocking strategy. To reduce the compilation cost, our compiler first
generates the message-passing program with the most general strategy. It then sets
the data layout parameters to appropriate values to generate programs with specific
data layout strategies.

Using this approach, the compiler does not need to analyze data dependence and
generate communications specifically for each data layout strategy. In addition, the
user has the option of executing the compiled program experimentally to determine
the best layout strategy and parameters if symbolic cost minimization is not used. It
needs to be pointed out, however, that the generality of the target program does not
come for free. Extra overhead may be incurred due to the bookkeeping process. It
is therefore necessary for the compiler to perform some optimizations once a specific

strategy is determined.

Example 3.6 Figure 3.8 shows two versions of a loop nest: the first one is just a
shared-memory program block and the second is a version with parameterized data
layout. In the second version, the original index domain D is partitioned into two
parts: the processor domain E and the local index domain D. Arrays with a hat,
such as apivot, refer to the local segments of data fields in some specific processor;
those without a hat, such as a, refer to data fields as a whole. References to a will be

converted into references to @ with communication at some later compilation stage.

3.2.2 Communication Generation

Given a parameterized data layout strategy, the compiler generates communication
statements. The main issue is what type of communication statements to generate.
The compiler can quite straightforwardly place a pair of send-and-receive com-

mands guarded by some predicates at each nonlocal data reference in the source
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for (k:T) {
forall ((¢,7) : D)
if (k> 0)and (i =1) and (j = k)) then
apiwot(k) = \max {|a(s, k, k= 1)| | k <=1 <=n};
b

forall ((p,q) : E)
for (k:T) {
forall ((3,7) : D) {
¢ = local_to_global(P, D, 1,3, (p, q));
J = local_to_global(P, D, 2, 3,(p,q));
if (k> 0)and (i=1) and (j = k)) then
apivot(k) = \max {|a(i,k, k —1)| | k <=1 <=n};
I

Figure 3.8: A loop nest before and after parameterized data layout.

program. During the execution, the processor that needs the referenced data tests
the predicate to determine whether it is available in the local memory of the same
processor. If the data is not available locally, the send-and-receive statements are
executed to bring in the data.

This naive approach ignores the reference patterns that may exist in the program,
and may generate many pairs of unorchestrated messages and cause congestion in the
network. Since both uniform and aggregate communication patterns occur extremely
often (and sometimes exclusively) in scientific computation applications, it becomes
worthwhile to identify these correlated communication patterns and invoke efficient
routines to implement them.

The central idea of our communication analysis is to generate efficient commu-
nications for nonlocal data references. Our approach emphasizes the generation of

collective communications, such as broadcasting, reduction, and array transpose. The



3.2. GENERATION OF MESSAGE-PASSING PROGRAMS 51

technique for generating communication statements consists of three steps:

(1) Matching: Match each reference pattern with the best communication routine.

(2) Scheduling: Insert the communication routines into the target program.

(3) Synchronizing: Set up appropriate guards for each communication routine.

The matching process works as follows. It first identifies the symbolic character-
istic of the reference pattern, for instance, whether the data is to be moved from a
single point in the domain or from multiple points. It then searches through the list
of communication primitives for a matching one. The search is conducted in such
a fashion that if there are multiple matching primitives, the most economical one
(based on a communication metric) is encountered first and hence is selected. In the
case where no matching primitive can be found, the reference pattern is decomposed
into simpler subpatterns, and the matching continues on each of them recursively.

The scheduling process addresses the problem of placing communication com-
mands in the appropriate location in the partitioned shared-memory program. Po-
tential locations for communication commands are first identified, and the actual
location is then selected. The decision-making problem involves trade-offs between
communication cost, storage use, and other related factors.

The synchronization process ensures that the communication statements are prop-

erly synchronized.

Example 3.7 Figures 3.9 and 3.10 show the message-passing version of the Gaussian
elimination algorithm. Compound communication statements in these figures are
represented in an abstract form, (Comm : P, R}, where P represents a data layout

strategy and R represents the communication routine being called.

3.2.3 Selection of Data Layout Strategy

After communication statements are generated with the most general data layout
strategy, estimation of the costs of computation and communication is made and

symbolic cost function is formulated. In the cases where program parameters and
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dom T = [0..n];
dom D = D(P,p);
dom E = E(P, D);
forall (p : E)
for (k:T){
forall ((,7) : D) {
(¢,7) = Local_to_Global(P, D, (3, 7), p);
if (k> 0)and (¢ =1) and (j = k)) then
apivot(k) = \max {|a;(i)| | k <= i <=n};
b
forall ((3,7) : D) {
(2,7) = Local_to_Global(P, D, (3, 7), p);
if (k> 0)and (¢ =1) and (j = k)) then
iptvot(k) = \max {i | k <=1 <=n:|a;(s)| = apivot(k)};

b
if (k> 0) then

(Comm: P, One-All-Broadcast(D, ipivot, ipivot, ));
if (k> 0) then

(Comm: P,Spread(D,1,k,a,as3));

Figure 3.9: The message-passing version of the Gauss program (Part 1).
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forall ((3,7) : D) {
(¢,7) = Local_to_Global(P, D, (3, ), p);
if (k> 0) and (j = k)) then
Jac(s, k) = if (i <= k) then 1.0
l| (i = ipivoty) then ay(k)/as(k)
|| else a(2, k, k — 1)/ as(k)
fi;
15 -
if (k> 0) the
(Comm: P, Spread(D, 2, k,ﬁz,facl));
forall ((2,7): D) {
(¢,5) = Local_to_Global(P, D, (3, 7), p);
a(3,5,k) = if (k= 0) then Aoli, ]
|| (2 < k) then a(2,7,k —1)
[| (¢ = k) then a3(k)
|| (i = ipivoty) then ag(5) — &(3, 7, k — 1) * fac, (2)
|| else @(%,7,k — 1) — a3(j) * fac,(3)
fi;
b
(Comm: P, Broadcast(D, 2, k, k, a, a;));
(Comm: P,Spread(D, 1,k, a, az));

}

Figure 3.10: The message-passing version of the Gauss program (Part 2).
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constants in the formula can be bound to values (for instance, through profiling
the program), the cost function is evaluated to obtain the best data layout parame-
ters. Once the best data layout strategy is chosen, communication statements can be
further optimized, since some reference patterns no longer describe communication

patterns across the processors.

Estimation of Communication Costs

When a specific target architecture is chosen, the cost of each communication routine
can be estimated. For instance, suppose that the architecture is a hypercube and the
index domain over which the routines are defined is embedded in the hypercube using
some Gray coding. Then the complexity of a One_All_Broadcast will be O(M log V)
where IV is the number of processors in the hypercube and M is the message size.

When a specific target machine is chosen, a more accurate cost function can be
obtained. By running each communication routine on the actual machine, we can
determine the constant factors in the complexity functions.

Given the estimations of communication routines, the communication cost of a

program can be estimated as follows:

1. Compute the message size B; for each communication routine C; in the program.
In general, B; is function of the size of the program data structure S (e.g. size
of an array) and the data layout parameters L. Since all the layout strategies
under our consideration are special cases of the interleaved blocking strategy,

B; is formulated in terms of the most general case.

o

Estimate the cost of C;, denoted f;, based on the communication routine C; and
its message size B;. The cost f; is a function of data structure S, data layout

parameters L, and the number of processors N.

3. Estimate the total communication cost of the program C by summing up
fi(S,L,N) for all C; according to the control structure of the program (i.e.

number of iterations and conditionals).
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If the data layout strategy is given by a set of parameters whose values are un-
known at compile time, message sizes in communication routines therefore cannot
be determined. However, symbolic expressions for the message sizes can still be ob-
tained and the communication costs can be given in an unevaluated symbolic form.
For simple cases, it is possible to compare expressions symbolically to determine the
relationship between their values. In general, due to conditionals and unknowns,

techniques such as profiling would be needed for cost estimation.

Communication Reduction

Communication reduction is an optimization step. When an index domain is not
partitioned in every dimension, some interprocessor message-passing can be replaced

by local memory accesses.

Example 3.8 Consider the spatial reference pattern fa@(7,j + 2) = (i,5) : § > 0,
which represents a communication pattern in a two-dimensional index domain. Sup-
pose that a data layout strategy is chosen such that only the first dimension of the
index domain is partitioned, then the communication pattern across the spatial index
domain can be described by "a@(z) = (3) : j > 0, which represents a local mem-
ory access. Consequently, communication statements corresponding to the original

reference pattern can be removed from the message-passing program.

3.3 Compilation of a Whole Program

The compilation techniques discussed in previous sections apply directly to program
blocks rather than a whole program. In this section, we describe methods for linking
program blocks to form a whole target program. We also describe a framework for

balancing compiler optimizations at different levels.
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A Crystal Program
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Figure 3.11: Compilation of a whole program.

3.3.1 Linking Program Blocks

The process of compiling a whole Crystal program works as follows. The program is
first decomposed into program blocks (Section 3.1.2). Each block is then transformed
through a sequence of intermediate forms: the aligned form, the shared-memory form,
the partitioned form, and finally, the message-passing form. After these transforma-
tions, the individual program blocks are linked back together to form an integrated
target program. Figure 3.11 illustrates this process. We present three block-linking
strategies: independent distribution, domain alignment, and block replication. The

following example is used to illustrate these strategies.

Example 3.9 Consider a program with two blocks:
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for (y : Dy) for (k : D)
forall (z : D) forall ((z,7) : D4 x Ds)
a(z,y) = m; . b(z,5, k) = mafa(s, k)];

In the first block, array a is defined over a two-dimensional domain D, x D,. In
the second block, array b is defined over a three-dimensional domain D3 x D4 x Ds.

Assume there is a data dependence from a to b.

Now suppose we have an abstract target machine with N processors. These pro-
cessors can be configured either as a one-dimensional array F; = [1..N] or as a
two-dimensional array E; = [1..N;] x [1..NV;] for some N; and N, that satisfy the
relation Ny x Ny = N.

Independent Distribution

In this strategy, program blocks are distributed over the processors of the target ma-
chine independently. Each block uses the best data layout strategy based on the
analysis of intrablock communications. To guarantee interblock data dependences,
communication statements are inserted between blocks to shuffle data from one dis-
tribution pattern to another.

Suppose that the independent distribution strategy is chosen to link the program
blocks in Example 3.9. Then the first block will be distributed over a one-dimensional
processor array £, since it matches the spatial index domain of the block; the second
block will be distributed over a two-dimensional processor array F,. Processors are
fully utilized in both cases. However, during the execution of the program, the values
of array a must be shuffled appropriately from a one-dimensional configuration to
a two-dimensional configuration at the end to be used by b in the second block.
Figure 3.12 (a) shows the resulting program and the arrangement of the processors

in the target machine.
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Independent distribution has the advantage that processors are fully utilized, since
all the processors can participate in execution no matter which program block is in

turn. Howevef, interblock data shuffling may cause high overhead.

Domain Alignment

Domain alignment for linking blocks is very similar to domain alignment for aligning
arrays within a block. The main difference is that for block linking, alignment is
applied to the common domains of the blocks. It maps these domains to a common
domain with the goal of minimizing the communication between blocks.

Suppose that the domain alignment strategy is chosen to link the blocks in Exam-
ple 3.9. Based on the data dependences shown in the example, the spatial domain D,
of the first block would be aligned to Dy, the first componént of the spatial domain
D4 x Ds of the second block. The two blocks would be distributed to a two-dimensional
processor array FE,;. The communication between the two blocks is now in the form of
simultaneous Spread along the second dimension of E,, which is less costly than the
data shuffling in the independent distribution case. However, during the execution
of the first block, only some of the processors (i.e. those in the first column) are
actively computing a, while others are sitting idle. The resulting program is shown
in Figure 3.12 (b).

Domain alignment may reduce or eliminate interblock data shuffling. However,
if some blocks have smaller or lower-dimensional domains than others, during their
executions some processors may stay idle. Whether or not domain alignment is ben-
eficial depends on the computation load of each block and the cost of interblock

communication. The optimization problem is addressed later in this section.

Block Replication

The block replication strategy applies to cases in which the index domains of program

blocks are of different dimensionality. Consider two such blocks. In the replication
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forall (p: E4) menmeesssseeiniiiiiiiinnne :
for (y . Dl) Cecveveaneecienaaas .......§ .
forall (z : Dz) a(z,y) =7 Rl Rt AR :
(Comm: fa(z) : Ey = (i,%) : EY); AR ] I '
forall ((¢,7) : E,) ) RS L] s .
for (k : D3) g :
forall ((3,5) : Dy x Ds) e :

b 5, k) = malai, B S .

(a) Independent distribution.

forall ((g,r) : E2) {

for (y : Dy)
forall ((,7) : Dy x Ds)

if (7 =0) then a(s,j,y) = m;
(Comm: Ta(7,0) = (3,*) : EyY);
for (k : D3)

forall ((3,7) : Dy x Ds)
b(z, 4, k) = m3[a(3, 0, k));

(b) Domain alignment.

forall ((g,7) : E3) {
for (y : D)
forall ((4,5) : Dy x Ds)
a(t,y) = 71;
for (k : D3)
forall ((4,7) : Dy x Ds)
b(z, 3, k) = m2la(i, k));

(c) Domain replication.

Figure 3.12: Three block-linking strategies.
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strategy, the domain with lower dimensionality is replicated along some dimensions
of the domain with higher dimensionality. The computation corresponding the repli-
cated block is duplicated, but interblock communication may be reduced.

Suppose that the block replication strategy is chosen to link the blocks in Ex-
ample 3.9. Then D, will be replicated along Dy, the first component of the spatial
domain of b, and the interblock communication will be completely eliminated. Fig-
ure 3.12 (c) shows the result.

The block replication strategy can be used along with the domain alignment strat-
egy: first apply the domain alignment strategy to select the best dimensions to align,

then apply the block replication strategy to replicate the computation.

3.3.2 A Framework for Global Optimizations

Both the block-to-block transformations and the block linking process can produce
many different outputs. To produce a single target program, selections must be made
in both stages. We refer to selections occurring in the block-to-block transformations
as intrablock optimizations and those occurring in the block linking stage interblock
optimizations. Intrablock optimizations deal with the selection of multiloop nests
and the selection of data layout strategies for a given program block. Interblock
optimizations deal with the selection of block-linking strategies.

These two types of optimizations are closely related. On the one hand, intrablock
optimizations reduce the number of program blocks that need to be handled at the
interblock level, hence reducing the complexity of interblock optimizations. On the
other hand, from the global point of view, it is desirable to keep more options open to
interblock optimizations, since the compiler will then have more global information
and hence will be able to make better selections. The following is the framework we

use to resolve this dilemmas:

1. Estimate both the computation and the communication costs for each program

block. Based on the estimation, a weight factor is determined for each block.
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The weight factor reflects the importance of the block to the whole program in

terms of execution time.

2. Use local information to purge multiloop nests and/or data layout strategies

that are known to be more costly (Section 3.2.3 and Section 5.3).

3. Use the weight factor information to further reduce the number of outputs from
block-to-block transformations. More outputs are preserved for heavy-weighted

blocks.

4. Compare the effects of different block-linking strategies on the available blocks,
and select the best strategy.

The idea is to reduce the number of outputs to as low as possible when applying
intrablock optimizations while avoiding purging options prematurely. For blocks that
contribute a substantial amount to the total execution time of the program, more
options should be kept open, since a small parameter change to these blocks can
cause a big change to the overall performance. For blocks that do not consume too

much computation resource, fewer options need to be considered.

Example 3.10 Consider a Crystal program with two program blocks. Suppose that
the first block consumes 90% of the total computation and communication time of
the program. Then selecting the control structure and data layout strategy for the
second block becomes trivial, since the difference these choices can make has little

effect on the global performance.

3.4 Code Refinement

The message-passing program generated by the compiler can be further transformed
to more efficient forms by applying transformations similar to those used in restruc-

turing Fortran programs (see, for instance, [PW86,Wol89]). This process is called code
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Message-Passing
Program

!
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Improved
Message-Passing
Program

Figure 3.13: Code refinement.

refinement. Due to the language models we use, two transformations are particularly
important: introduction of multiple assignments and elimination of common subex-
pressions. In the following, we discuss how these two optimizations affect performance

of a program.

3.4.1 Introduction of Multiple Assignments

In our shared-memory program model any data object can be assigned to a value only
once. This single-assignment property is preserved in domain partitioning and com-
munication generation, hence it is also observed in the initial version of the message-
passing programs. While it enables or simplifies compiler analysis and transforma-
tions, single-assignment may cause unnecessary memory consumption and computa-

tion overhkead.

Example 3.11 Consider the loop nest in Figure 3.14 (a). Suppose that the only
values of array a that need to be saved are those computed in the final iteration of
the for loop. Then a two-dimensional array, as shown Figure 3.14 (b), would serve
the need. In this new version, the result of the current iteration is stored in the same

memory location as that of the previous iteration. It substantially reduces memory



3.4. CODE REFINEMENT 63

for (k: T) | for (k:T)
forall ((¢,5): E) forall ((¢,7) : E)
a(, 4, k) = 7la(3, 5,k — 1)]; a(t, 5) = rla(z,5)];

(a) (b)

Figure 3.14: A simple example of introducing multiple assignment.

consumption.

In some cases, however, the reduction of memory consumption must be weighed -

against the increase of computation overhead, as shown in the following example.

Example 3.12 Consider the loop nest in Figure 3.15 (a). The memory allocated
for the third dimension of array a cannot be completely eliminated, because values
from two previous iterations must be accessible during the current iteration. Two
alternatives are shown Figure 3.15 (b) and (c¢). In (b), two extra elements are used

to hold previous values in each iteration and in (c), one extra element is used.

Both alternatives in the above example bring overhead to the loop nest. At some
point, the overhead may overwhelm the benefit of storage saving. An evaluation
according to some cost function should be made before applying the transformation.

Array assignment statements that are suitable for this transformation can be de-
tected by the compiler. Array dimensions that correspond to for loops are candidates
for elimination or reduction. Data dependence analysis with respect to for loop in-
dices can reveal whether the corresponding array dimensions can be eliminated or

reduced.

3.4.2 Common Subexpression Elimination

As the result of data layout, a nested forall loop may need to be executed on a single

processor. The ordering of the loops in the nest, which does not affect the semantics
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for (k:T)
forall ((,7) : E)
a2, 3, k) = 7la(é, j, k= 1), a(é, j, k — 2)};

(a)

for (k:T) for (k:T)
forall ((¢,7) : E) { forall ((z,7) : E)
a(t,,2) = 7la(s,7,1),a(, 4,0)]; a(i, 7,k mod 2) =
a(z,7,0) = a(i, j,1); r[a(i, 7, (k= 1) mod 2),
a(z,4,1) = a(s, 7,2); a(z,j, (k —2) mod 2)];

(b) (¢)

Figure 3.15: Another example of introducing multiple assignment.

of the loop nest, may have a big impact on the performance of the nest.

Example 3.13 Consider the loop nest in Figure 3.16 (a), which is to be executed on
a single processor. Figure 3.16 (b) and (c) show two different loop orderings of the
loop nest. In (b), the computation of array a does not depend on index j and hence
is lifted out of the inner j loop, avoiding a great deal of redundant computation. In

(¢), such a lifting is not possible.

To determine whether a statement can be lifted from a loop, the compiler needs
to analyze references of loop indices in expressions. Techniques for performing this

optimization have become a standard component of conventional compilers.
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forall ((z,7) : Ey x Ep) { forall (z: Ey) { forall (j : E,)
a(t) = 7y a(i) = m; forall (i : Ey) {
b(3,7) = m2; forall (j : E,) a(i) = m;

} b3, 5) = 7 b(i,5) = T

} }
(a) (b) (c)

Figure 3.16: An example of common subexpression elimination.
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Chapter 4
Index Domain Alignment

In this chapter, we discuss in detail the problem of index domain alignment. In Sec-
tion 4.1, we illustrate the alignment problem with a group of examples and discuss
the roles that domain alignment plays in the Crystal compiler. A reference metric
for modeling data movement cost and a group of alignment functions are defined in
Section 4.2. Section 4.3 presents a graph-theoretical formulation of the alignment
problem. Practical alignment algorithms and a study of their performance are pre-
sented in Section 4.4. Finally, a proof of NP-completeness of the alignment problem

is given in Section 4.5.

4.1 Domain Alignment and Its Roles in the Com-

piler

Index domain alignment refers to the process of aligning a group of index domains
onto a single index domain. The alignment problem arises whenever multiple arrays
are used in a program, which is the most common case for scientific subroutines and

application programs.

67
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4.1.1 Two Roles of Domain Alignment

In the Crystal compiler, index domain alignment plays two roles:

e It is a preprocessing step for the control structure synthesis module. It unifies
dependences between different data fields into a single framework, enabling
them to be represented by dependence vectors and direction vectors, which are

the bases of the control structure synthesis algorithm.

e It is an optimization step for reducing data movement between arrays. Data
fields in a Crystal program are eventually mapped to the distributed memory of
the target machine. How these data fields. are positioned with respect to each
other has a direct impact on the performance of the program (to be elaborated
below). Index domain alignment is the process that tries to find the optimal

relative locations of data fields.

Reducing data movement is the major and more difficult role of index domain
alignment. Such alignment is needed in any compiler system that compiles programs
with arrays to distributed-memory machines. As for the role of a preprocessing step,
as long as the given index domains are aligned to a single domain—whether the
alignment reduces data movement or not—the task of unifying dependences is ac-
complished. Because of this, in the rest of this chapter, we focus our attention on the
issue of reducing data movement.

It needs to be pointed out that with respect to the goal of reducing data movement,
the index domain alignment module could have been placed after the control structure
synthesis module. In that case, the alignment would be applied to the index domains
of forall loops (i.e. the spatial index domains). To be consistent with the compiler
structure shown in Figure 3.1 and to illustrate its double roles, we present index
domain alignment with respect to Crystal programs. For a presentation based on the
shared-memory program model, see [LC91b].

The following example illustrates the issue of reducing data movement.
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Figure 4.1: An example of index domain alignment.

Example 4.1 The following data field definition involves two data fields a and b:
dfield a(s) : [1..n] =\ + {b(,7) | 1l <=j <=n}.

There are at least two possible ways to align these two data fields, as shown in Fig-
ure 4.1. The resulting data movement patterns in the common domain are different.
Presumably one is better than the other, regardless of how the common domain is

mapped to the distributed memory of the target machine.

Knobe et al. [KLS88,KLS90] developed a compiler technique for optimizing data
allocation for the Connection Machine. In their method, the compiler does alignment
automatically as part of the data allocation process. The usage patterns of array
occurrences is analyzed to determine the allocation preferences of each occurrence. A
simple zero-one metric—an allocation is either motion producing or motion free—is

used to guide the alignment of each array occurrence.



70 CHAPTER 4. INDEX DOMAIN ALIGNMENT

4.1.2 Issues in Domain Alignment

To understand the alignment problem better, we present a group of examples below
to illustrate the issues involved in domain alignment. In all of these examples, D

denotes an index domain [1..n] x [1..n].

Example 4.2 Consider two data fields a and b defined over D.

dfield a(i, ) : D = b(j,1)
dfield b(z,7): D =1+

Even though the two arrays a and b are of exactly the same shape (defined by D), the
distribution of their elements to processors need not necessarily be done in the same
way. Due to the way b is referenced by a, it is beneficial to store a(z,;) and b(J, )
on the same processor to eliminate the need of communication. This simple example
indicates that the compiler can choose the relative location of arrays by analyzing

array reference patterns.
Example 4.3 dfield a(7,7) : D = b(4,1) + b(z,5 — 2).

This example illustrates conflicting reference patterns. Whether a(z, 5) is aligned to
b(4,1) or b(%, j —2), the data movement due to one of these two reference patterns can-
not be reduced. Thus, the alignment problem must be formulated as an optimization

problem where reference patterns may carry different weights.
Example 4.4 dfield a(z,5) : D = \+ {b(k,:) | 0 < k < n}.

This is a slightly more involved example where a reduction operator occurs in the
dafinition of data field a. We consider first the simple scenario of mapping one element
per processor. For each (z,7) € D, a set of elements of b is referenced. If we store
a(7,7) and b(7, §) at processor (4, 7), then for each ¢ we must do a reduction across the

1th column of elements of b and distribute the result along the ith row. Alternatively,
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if (7, ¢) is stored in processor (i, ), only a reduction operation over a row is needed,
provided the processors are connected by a network such as a hypercube, a butterfly,
etc., because the broadcast can be achieved at the same time as a side-effect of
reduction [HJ88,JH87]. Thus alignment is related to the communication routines
specific to the interconnection network of the target machine. The formulation of the
alignment problem is therefore dependent on the communication cost. In the next
section we will discuss the abstract model of a target machine and the metric we use
to guide the alignment process.

Next, for the same example, suppose each domain is partitioned into subdomains,
each of which is mapped to a processor: by aligning a(, j) with b(j, 1) for all (z,5) € D
(i.e. transpose of b), and partitioning the domain along the first dimension (mapping
a row into a processor), there will be no communication involved at all since the
reduction operations now take place within a single processor. However, if a(3,j)
and b(z,j) are mapped to the same processor, some communication must occur no
matter how partitioning is done (by row or by column). This example illustrates that
alignment always helps in reducing cross-references from a to b, independent of data

partitioning across the processors.
Example 4.5 dfield a(7,7) : D = b(j% — 7,7 + 7).

This example illustrates an array reference containing a nonlinear expression. Though
it might be possible to align a and & in such a way as to avoid communication, the
cost of evaluating the extra conditional and nonlinear expressions generated by the
alignment process may exceed the cost of communication. Thus, there are some
tradeoffs involved in doing alignment. We will discuss the class of alignment functions
under our consideration.

Finally, any compilation technique is limited by what is known at compile time,
and alignment is no exception. Below is an example where an array reference contains
an indirect reference a(z,j — 1) whose value may not be known until the program is

in execution. Hence, such references shall not be taken into account by the alignment
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algorithm.
Example 4.6 dfield a(¢,5) : D = b(a(z,j — 1), 7).

To summarize, alignment should use cost functions that reflect the communication
costs on real machines and the symbolic forms of the alignment functions should be

simple enough for a compiler to derive and to implement.

4.2 Reference Metric and Alignment Functions

In this section, we introduce concepts and notations for precisely describing the align-

ment problem.

4.2.1 Reference Metric

We classify reference patterns according to their uniformity (see Section 2.2): pat-
terns that are uniform in every dimension; those that are nonuniform in one, two,
three dimensions and so on; and those that are nonuniform in every dimension. In
particular, we have the following special cases:

Local Memory Access: patterns that can be described by
fa(i1, ... ,in) & b(T1,...,Ta) 17" where Ty X iy,..., Ty = i,.
Neighborhood Access: patterns that are uniform in all the dimensions as in
fa(it, ... in) & b(i1 +C1,...,tn+ ) : 7' wherecy,...,c, are constants.

Random Access: patterns that are nonuniform in all the dimensions.
The metric used for the alignment algorithm is built on this classification: the

goal is to derive alignments that produce most-uniform patterns.
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4.2.2 Alignment Functions

An index domain alignment can be thought of as a mapping between two index
domains. An alignment function is a mapping from an index domain D to another
index domain E. Correspondingly, a reference pattern will be transformed to a new
form if the original domains of the two arrays are mapped to new ones. The goal of
selecting alignment functions is to transform reference patterns to ones that have the
least cost.

The uniformity notion defined earlier suggests that we relate the components of
two index domains in such a way that maximum uniformity will be achieved. It
also suggests that we reduce the constant offsets in each dimension of a reference
pattern. Corresponding to these needs, we focus our attention on four simple types
of alignment functions, namely, permutation, embedding, shift, and reflection. All
these alignment functions have a simple symbolic form and are easy to compute.
This is important because otherwise the transformed program may ha.ve a very high
computation overhead. In addition, finding optimal alignment can be expensive.

Without loss of generality, we assume that all the index domains are aligned to
a common domain, and all the components of the common domain are large enough
to accommodate any component of the individual index domains. Each individual
index domain is aligned to a subdomain of the common domain. The boundary
information of each index domain is carried along when performing alignment, hence
the corresponding subdomain can always be correctly defined. For simplicity, we omit

the boundary conditions in the following definitions of alignment functions.

Definition 4.1 For two n-dimensional index domains, D and E, an alignment func-

tion ¢ : D — FE is said to be a pérmutation if

g(ilyi%”-ain)=(iq1aiq21'”7iqn) (41)

where (g1, ¢2,...,¢n) is a permutation of (1,2,...,n).
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Definition 4.2 For an m-dimensional index domain D and an n-dimensional index
domain £, where m < n, an alignment function g : D — F is said to be an embedding

if

g(il’i%“"im) = (iqni%a---,iqn) (4'2)
. where (q1,¢2,...,¢n) is a permutation of (1,2,...,n), and the expressions iz, where
m < k < n, are expressions that may contain iy,...,%,.

For example, functions g(¢, j) = (4,0,5) and g(¢,7) = (3,247, 7) are both embeddings.

Definition 4.3 Let D and F be two interval domains. An index domain function

g: D — E is said to be a shift if g(i) = i — ¢ where c is an integer.

Definition 4.4 Let D = [l.u] and E = [(—u)..(=!)]. An index domain function
g: D — E'is said to be a reflection if (i) = —i.

Permutation and embedding deal with transformation between different compo-
nents of a domain (intercomponent), while shift and reflection deal with transforma-
“tion within a given component (intra-component). The intercomponent alignment
functions are useful in transforming reference patterns into more uniform ones. The
intra-component alignment functions can be used to decrease the reference cost fur-
ther by reducing the constant offsets.

Since the intercomponent and intra-component alignment functions are indepen-
dent of each other, the domain alignment problem can be solved in two separate
steps: first by considering permutation and embedding, and then shift and reflection.
Retiming [LRS83] can be brought to bear on finding shifts. OQur approach to finding
reflections is ad hoc: we try to match special patterns. It turns out that generat-
ing appropriate permutations and embeddings is the central problem. Since it deals
with only intercomponent alignment, we call this problem the component alignment

problem, which is the focus of the following sections.



4.3. MODELING THE ALIGNMENT PROBLEM 75

4.3 Modeling the Alignment Problem

4.3.1 Affinity of Domain Components

We first define a notion relating the components of two domains in a reference pattern.

Definition 4.5 Given a cross-reference pattern

a1,y ipyevvsim) = B(Thy ey Tyyenny Tn) 14
two domain components, dom(a, p) and dom(b, q), are said to have an affinity relation

if 7, 2", + ¢!, where c is a small constant.

The affinity relation between two domain components reflects a preference for aligning
them, because aligning components according to their affinity relation will increase

uniformity.

Example 4.7 From the reference pattern "a(i, j) « 8(j,%) : 7" two affinity relations
can be derived, one between dom(a, 1) and dom(b,2) and the other between dom(a, 2)
and dom(b,1). If the two domains are aligned according to these relations, a(z, 7) and

b(7,%) will be mapped to the same processor, and hence no communication is needed.

We want to point out that the definition of affinity depends on the definition of
reference metric, which varies with the communication characteristics of the target
machines and the degree to which one desires to model them. The affinity definition

can always be refined to allow special patterns to be included.

4.3.2 Component Affinity Graph

We model component alignment as a graph problem. An undirected, weighted graph
called a component affinity graph (CAG) is constructed from the source program

based on the reference patterns as described below.
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The nodes of the graph represent the components of index domains to be aligned.
They are groupéd in columns: each column contains those nodes representing com-
ponents from the same index domain.

Using the concept of affinity, edges in a CAG are constructed as follows: For
each distinct reference pattern (excluding self-reference) in the program, an edge
is generated between two nodes if the two corresponding domain components have
affinity. An edge is denoted by a pair (dom(a,?),dom(b,5)) where dom(a,?) and
dom(b, 5) are the two corresponding domain components.

Note that self-reference patterns are ignored, because alignment occurs only be-
tween index domains of different arrays. Also, different instances of the same reference
pattern are considered only once since a datum can be referenced many times after
it 1s communicated.

Using edges to represent affinity relations between domain components does not
take into account the degree of alignment preference of each reference pattern. We

introduce edge weights for this purpose.

Definition 4.6 Two or more edges in a CAG are said to be competing if they are

generated by the same reference pattern and they are incident on the same node.

Example 4.8 Consider two reference patterns

‘a(i, j) & b(i,8) :

rb(zaJ) A a(zaJ) : 721
From the first reference pattern, two competing edges, (dom(a,1),dom(b, 1)) and
(dom(a,1),dom(d,2)), are derived. From the second reference pattern, two non-
competing edges, (dom(a,1),dom(b,1)) and (dom(a,?2),dom(b,2)), are derived. A
noncompeting edge indicates a strong preference for aligning the two domain com-

ponents. A competing edge indicates more than one equally good alignment in the

absence of any noncompeting edge.

We assign weights to the edges of a CAG to reflect the strength of preference:



4.3. MODELING THE ALIGNMENT PROBLEM 7

dom(apivot, N dbm (ipivot, 1)

dom(a,3)

Figure 4.2: A component affinity graph.

¢ each noncompeting edge is assigned weight 1;
e cach competing edge is assigned weight € (a value much smaller than 1).

A CAG so defined may contain multiple edges between a pair of nodes since there
might be multiple reference patterns between two arrays. The graph can be simplified
by replacing each set of multiple edges with a single edge whose weight is the sum of
their weights. Figure 4.2 illustrates the CAG of the Gaussian elimination program in

Figure 3.6.

4.3.3 The Component Alignment Problem

Given a component affinity graph G as defined above, we can now define the compo-

nent alignment problem as follows:

o Legitimacy: Let n be the maximum number of nodes in a column of G (i.e. n is

the maximum dimensionality of all index domains to be aligned). Partition the
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node set of G into n disjoint subsets ¥}, V4,..., V,, with the restriction that no

two nodes belonging to the same column are allowed to be in the same subset.

o Optimality: The underlying idea is that those nodes in the same subset corre-
spond to the domain components to be aligned. Since our goal of alignment is to
align those components that have afﬁﬁity, we want to partition the component
affinity graph G so as to minimize the total weight of edges that are between

those nodes that are in different subsets.

Among the set of index domains D to be aligned, choose one which is of the highest
dimensionality n to be the target domain E. A permutation g mapping from a domain
D € D (also of dimensionality n) into the target domain E can be constructed using

the above graph partition:

g:D = E, g(i1,%2,.--,tn) = (4., 840y« 5 tqn)

where the nodes representing component D; and component E,, are in the same
subset.

Similarly, an embedding can be defined using the graph partition if D is of lower
dimensionality than n. In this case, the components of the extra dimensions of E to

which an element of D maps needs to be determined.

Example 4.9 Consider reference pattern ‘a(z) « b(¢,2 + 1) : v. Suppose the only
component of dom(a) is aligned to the first component of dom(b), we now need to
decide where dom(a) should reside with respect to the second dimension in dom(b).
We check the reference patterns and find that the second component of dom(bd) is
referenced once with an expression ¢+1 in the definition of a. Clearly, if this reference

pattern is the only one between a and b we want to align dom(a) with those elements

(i,1 + 1) in dom(d).

In general, there can be more than one expression to be used if there are more reference
patterns. Our approach is ad hoc in this case, using default constants such as the

lower bounds of the interval domains.
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Cx>
dom(apivot, 1/ \ \iom(ipivot, 1)

dom(a, 3) dom(fac, 2

® ®

dom(a,1) dom(fac,1

Figure 4.3: The optimal partition of the CAG.

4.3.4 Aligned Crystal Programs

Using the above definition, the optimal partition of the CAG of the Gaussian elimi-
-nation program is illustrated in Figure 4.3.

The index domain of a, dom(a), is the target domain, since it is of highest di-
mensionality. dom(fac), which is two-dimensional, is embedded as a plane lying
diagonally within dom(a) by aligning its components with the first and third com-
ponents of dom(a). The domains of ipivot and apivot are embedded in the domain
of fac at the same location. Formally, these alignment functions are defined as the

following functions from the domain of an array to the target domain dom(a):

g1 : dom(fac) — dom(a), ¢1(¢, k) = (3, k, k)
g2 : dom(ipivot) — dom(a), go(k) = (0, k, k)
g3 : dom(apivot) — dom(a), gs(k) = (0, k, k)
The alignment functions given above can now be used to transform the original

Crystal program (Figure 3.4) into an aligned Crystal program as shown in Figure 3.5.

This program transformation process is completely mechanical.
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For this particular example, applying the optimal alignment results in a 20%

reduction in communication cost compared to a straightforward default alignment.!

4.4 Practical Alignment Algorithms

The component alignment problem described above is, unfortunately, expensive to
solve. A special case of the problem is one in which all the index domains are of two
dimensions. We can reduce the simple max cut (MAXCUT) problem [GJ79] to this
special case (with the number of index domains being the variable) and show it to be

NP-complete.

Due to the NP-completeness result, we do not expect any polynomial algorithm
to find the optimal alignment for index domains of dimensions higher than two.
Unfortunately, a naive exhaustive search algorithm is not practical: for a group of
six three-dimensional index domains, an exhaustive search algorithm may take two
or more hours to find the optimal alignment on a Sun 3/50. Thus, we have devised

the following practical alignment algorithms.

4.4.1 A Naive Algorithm

The naive algorithm is essentially a greedy algorithm where a single index domain is
chosen at each step for aligning with the target domain, and there is no back-tracking.
We use the fact that the problem of aligning two index domains is just a bipartite
graph;matching problem and there exist efficient algorithms [Law76] to solve it. The

naive algorithm is shown in Figure 4.4.

1The default alignment function for an m-dimensional index domain is to map its components
to the first m components of the common domain with the original ordering.
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Algorithm Naive_Alignment(G)

Comments: This algorithm runs in N steps, where N is the number of columns in
a component alignment graph G. In each step, an arbitrary column is aligned to
the target column by applying the optimal matching procedure to a bipartite graph
constructed from the nodes in the two columns and the edges between them.

begin
Cr « a column of G with the mazimum number of nodes;
G, « G
while G, is not empty do
Pick a new column, Cy;
G, « Form Bipartite_Graph(Cr, Cs, G1);

M « Optimal Alignment(G;);
Gy « Reduce_Graph(M,Cr,C;, Gy);

end.

Procedure Form Bipartite_Graph(Cr,C5,G1)

Comments: This procedure takes as input a CAG G, and two columns of nodes Cr
and C;, and returns a bipartite graph consisting only the two columns of nodes and
the edges between them.

Procedure Optimal_Alignment(G)

Comments: This is for finding the optimal weighted matching for a bipartite graph
G. See [LawT76] for polynomial time algorithms.

Procedure Reduce_Graph(M,Cr,C.,G1)

Comments: Merge columns C, and Cr by combining the matched nodes according to
the matching M. “Clean” the graph by replacing multiple edges between two nodes
with a single edge whose weight is the sum of their weights, and deleting all self cycles.

Figure 4.4: A naive index domain alignment algorithm.




é? CHAPTER 4. INDEX DOMAIN ALIGNMENT

Algorithm Heuristic_Alignment(G)

Comments: This algorithm has the same structure as the Naive alignment algorithm.
The difference is in the procedure Form Bipartite_Graph.

begin
Cr « a column of G with mazimum number of nodes;
G, « G,
while G is not empty do

Pick a new column, Cy;

Gz < Form_ Bipartite_Graph(Cr, Cz, G1);
M « Optimal Alignment(G;);

G:1 « Reduce_Graph(M, Cr, C,, Gy).

end.

Procedure Form_Bipartite_Graph(Cr,C.,G1)

Inputs: A CAG G and two columns of nodes Cr and C,.

Output: A bipartite graph with the transitive closure of the affinity relation.
Comments: Two nodes in the bipartite graph are connected by an edge if there is a
path between these two nodes in G;. The weight of such an edge is the sum of all
the edge weights in the connected component of G; that contains these two nodes.

begin
for each node pair (z,y), where z € Cr and y € C, do

Gy « the graph resulted from removing all the nodes in Cr and C, except
for z and y, and all the edges that are incident on those nodes from Gy;
Set up an edge between z and y if they are connected in Gy,

If the edge exists, assign its weight to be the sum of the weights of the
connected component that z and y belong to.

end.

Figure 4.5: A heuristic index domain alignment algorithm.
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4.4.2 A Heuristic Algorithm

The problem with the above naive greedy algorithm is that the quality of the align-
ment result is sensitive to the local alignment between two domains. For example,
suppose we have two edges, (dom(a,2),dom(d,1)) and (dom(b,1),dom(c,1)), in a
CAG. Even though there is no edge between dom(a, 2) and dom(c, 1), there is a pref-
erence to align these two nodes. What we really want is the transitive closure of the
affinity relation. We therefore augment the bipartite graph obtained from CAG with
a new edge between every pair of nodes that is connected in the original CAG. The
weight of such an edge is defined precisely below. The result is a heuristic algorithm,

shown in Figure 4.5.

4.4.3 Experimental Results

To see how the heuristic algorithm might work in general, we have conducted the
following experiment: apply three different domain alignment algorithms to a large
number of synthetic component alignment graphs. The three algorithms are: the
naive greedy algorithm, the heuristic algorithm, and an ezhaustive-search algorithm
which produces the optimal result.

The data in each trial of the experiment is a synthetic component alignment graph.
The edges in the graph are randomly generated according to a fixed density (i.e. an
edge appears in the graph with the probability equal to the specified density). Edge
weights are integers randomly chosen between 1 and 10, inclusive.

Fig 4.1 shows the results with graphs that consist of six columns with three nodes
in each (i.e. six different arrays, each of dimensionality 3 or less). The density of
the edges varies from 0.1 to 0.5. The middle three columns list the total edge weight
of the resulting graph under efxch algorithm. The last two columns list the relative
optimality of the results, which is defined to be the ratio of the total weight generated
by an algorithm and the optimal weight.

Fig 4.2 shows the results of a set of experiments each of which assumes the number
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Edge | Num. Resulting Weights Optimality
Density | Edges | Naive | Heur | Ezhaus | N/E | H/E

0.1 17 54 31 22 2.45 | 141
0.1 18 61 43 30 2.03 | 1.43
0.1 14 51 23 15 3.40 | 1.53
0.1 10 28 10 10 2.80 | 1.00
0.1 11 39 33 29 1.34 | 1.14

Average 46.6 28 21.2 2.20 | 1.32

0.2 27 135 72 59 2.29 | 1.22
0.2 32 101 66 66 1.53 | 1.00
0.2 32 120 72 66 1.82 | 1.09
0.2 33 126 86 81 1.56 | 1.06
0.2 34 130 89 88 1.48 | 1.01

Average 122.4 | 77.0 72.0 1.74 | 1.08
0.3 39 154 110 103 1.50 | 1.07
0.3 43 129 98 98 1.32 | 1.00

0.3 39 150 136 104 1.44 | 1.31
0.3 35 203 160 153 1.33 | 1.05
0.3 44 154 120 113 1.36 | 1.06

Average 158.0 | 124.8 | 114.2 | 1.39 | 1.10
0.4 62 235 184 184 1.28 | 1.00
0.4 68 222 189 189 1.17 | 1.00
0.4 62 216 174 153 1.41 | 1.14

0.4 64 232 168 164 1.41 | 1.02
0.4 66 266 214 199 1.34 | 1.08

Average 234.2 | 185.8 | 177.8 | 1.32 | 1.04
0.5 66 |. 292 213 206 1.42 | 1.03
0.5 71 301 248 229 1.31 | 1.08

0.5 79 347 232 232 1.50 | 1.00
0.5 70 255 216 199 1.28 | 1.09
0.5 7 350 295 288 1.22 | 1.02

Average 309 |240.8 | 230.8 | 1.34 | 1.04

Table 4.1: Experimental results of three alignment algorithms (Case 1).
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Dims| Fdge | Num. Resulting Weights Optimality

Density | Edges | Naive | Heur | Ezhaus | N/E | H/E
3 8 39 18 18 2.17 | 1.00
2 3 13 44 35 35 1.26 | 1.00
.3 7 15 6 6 2.50 | 1.00
Average 32.7 | 19.7 19.7 1.98 | 1.00
.6 14 31 19 19 1.63 | 1.00
2 .6 15 57 39 39 1.46 | 1.00
.6 22 58 49 49 1.18 | 1.00
Average 48.7 | 35.7 35.7 1.42 | 1.00
3 18 57 50 42 1.36 | 1.19
3 3 20 62 47 44 1.41 | 1.07
3 15 51 36 36 142 | 1.0
Average 56.7 | 44.3 40.7 1.39 | 1.09
.6 35 140 135 119 1.18 | 1.13
3 .6 37 148 124 124 1.19 } 1.0
.6 42 174 142 136 1.28 | 1.04
Average 154.0 | 133.7 | 126.3 | 1.22 | 1.06
3 37 165 131 122 1.35 | 1.07
4 .3 35 182 126 117 1.56 | 1.08
.3 39 180 137 136 1.32 | 1.01
Average 175.7 | 131.3 | 125.0 | 1.41 | 1.05
.6 71 334 | 266 266 1.26 | 1.0
4 .6 72 314 283 282 1.11 | 1.00
.6 60 273 203 200 1.38 | 1.03
Average 307.0 | 250.7 | 249.3 | 1.24 | 1.01
3 | 61 261 208 — — | —
5 3 50 239 174 —_ —_—
3 52 210 187 — — | —
.6 113 477 399 — — | -
) .6 122 604 530 — —_ -
.6 120 607 | 517 — — | —
3 78 404 | 299 — —_ ] —
5 .3 75 365 282 — — | —
3 7 377 | 284 — — | —
.6 164 742 650 — — | —
6 .6 175 870 773 — — —
.6 159 718 654 — —_ ] —

Table 4.2: Experimental results of three alignment algorithms (Case 2).
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of columns (i.e., the number of arrays) is fixed at four whiie the highest dimensionality
of the index domains varies from 2 to 6. The exhaustive algorithm takes too long to
run when the highest dimensionality is greater than 5.

The naive algorithm generates alignments which are 22% - 120% more costly than
the optimal ones. The alignments generated by the heuristic algorithm deviate from
the optimal results by less than 10% in most of the cases. As to the times these
algorithms take, both the naive and the heuristic algorithms run for periods of a
few seconds to a few minutes, depending on the graph density, while the exhaustive

algorithm runs for periods of 20 minutes to several hours or more.

4.5 NP-Completeness Result

The component alignment problem described above is, unfortunately, expensive to
solve. A special case of the problem is one in which all the index domains are of two
dimensions. We can reduce the simple max cut (MAXCUT) problem [GJ79] to this
special case (with the number of index domains being the variable) and show it to be
NP-complete.

We call an undirected graph G with an even number of nodes a multipair graph
if the nodes are grouped in pairs and no edge exists between the two nodes of the
same pair. A simple example of a multipair graph is the new graph obtained by
putting together two copies of a given graph and pairing the nodes according to the
isomorphic relation between the two copies.

Consider the domain alignment problem where all domains are two-dimensional.
Its component alignment graph has the property that every column consists of exactly
two nodes. Since no edge exists in any column of a CAG (due to the construction
rule that self-reference patterns are ignored), a CAG is a multipair graph.

The problem of finding the optimal alignment can now be defined as follows:

Component Alignment Problem (ALIGN).
Instance: A multipair graph G = (V, E) and a positive integer K.
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Question: Can V be decomposed into two equal-size sets V4 and Vp by putting one
node of each pair into V4 and the other into Vg, such that the number of edges
bridging V4 and Vp is < K?

To show this problem to be NP-complete, the most natural NP-complete problem
to use seems to be the minimum cut into bounded sets (MINCUT) problem. However,
there is a little problem in getting the reduction to work. When we put together two
copies of a general undirected graph (an instance of MINCUT) to form a multipair
graph (an instance of ALIGN), the latter is already in the optimal form with respect
to the ALIGN problem. To resolve this problem, we introduce the following problem.

Dual Component Alignment Problem (D-ALIGN).

Instance: A multipair graph G = (V, E) and a positive integer K.

Question: Can V be decomposed into two equal-size sets V4 and Vg by putting one
node of each pair into V4 and the other into Vj, such that the number of edges

between V4 and Vg is > K?
Lemma 4.1 The component alignment problem and its dual problem are equivalent.

Proof:
This is simply because we can define a dual graph for each multipair graph G in
which non-edges become edges and edges become non-edges. A mincut solution to G

corresponds to a maxcut solution to the dual graph. a

Theorem 4.1 The dual component alignment problem is NP-complete.

Proof:

The problem is obviously in NP. To show it is NP-hard, we reduce an NP-complete
problem, the simple mazcut problem (MAXCUT), to D-ALIGN. We show that for
each instance of MAXCUT, we can construct an instance for D-ALIGN such that a
solution to the latter can be transformed into a solution to the former.

First, we construct an instance. Let G = (V, E) be an undirected graph serving as

an instance of MAXCUT. Create an isomorphic copy of G and call it G' = (V' E').
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Let G = (V+ V', E+E"). Nodes in V + V' are paired according to the isomorphic
relation. G is a multipair graph and hence an instance of D-ALIGN.

Second, we convert a solution of D-ALIGN to that of MAXCUT. Suppose there is
an algorithm solving D-ALIGN. Providing an input G to the algorithm, we get back
a solution (VA, VB, é’), where VA and Vy decompose the edge set of G and C is the
set of edges which have one endpoint in V4 and one endpoint in V.

The cut set € can be decomposed into two disjoint sets C and C’, where C contains
only edges from G and C” contains only edges from G’. Due to the isomorphic relation
between G and G’ and the rule of decomposition defined in D-ALIGN, we know that
C and C' are isomorphic to each other. We claim that C is a maxcut (an edge set)
of G. Assume it were not. Let C” be a maxcut of G. Then |C”| > |C|. Let V and
Vg be the decomposition of V corresponding to C”. For G, we have the isomorphic
counterparts, C*, V4" and Vg'. Now that V) + V', VI + V§ and C” + C" define
a solution to D-ALIGN. But {C” + C"| > |C + C’|. This contradicts the result that
VA, Vg and C is a solution to D-ALIGN. a



Chapter 5
Control Structure Synthesis

In this chapter, we present an algorithm for synthesizing parallel and sequential con-
trol structures from a Crystal program and transforming the program into an ex-
plicitly parallel program. Section 5.1 gives an overview of our approach. Section 5.2
introduces some new notation for representing dependences of Cryétal programs. The
control structure synthesis algorithm is presented in Section 5.3. A proof of correct-

ness of the algorithm is given in Section 5.4.

5.1 Overview of the Approach

In Crystal, parallelism is expressed through data fields and index domains. Because
of the functional nature of a Crystal program, both parallel and sequential control

information are implicit. We illustrate this with a simple example.

Example 5.1 Suppose we want to use the Jacobi iteration to solve the first-order

finite difference equation corresponding to the Laplace’s equation
49;; — D; -1 — Dijj1 — Bicrj — Diy1,; = 0.

In this method, the trial value ®; ; at the kth iteration is obtained by solving the kth

equation for ®; ;, using the values from the previous iteration at the four neighboring

89
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dom D = [l..n] x [1..n]
dom T = [0..m]
dfield ®(i,j,k): D x T =
if (k = 0) then ao(s,7)
|| (k > 0) then
w(@(iE-1,5,k-1)+0(:,j —1,k-1)
+0(:E+1,5,k—-1)+ 83,7 +1,k—1))/4.0
fi

Figure 5.1: Jacobi: A Crystal program for the Jacobi iteration.

nodes. A Crystal program can be easily written to implement this method and it is
shown in Figure 5.1.

The Jacobi iteration method can be parallelized easily—the kth trial values at
all nodes can be computed simultaneously. In other words, domain D represents a
spatial domain and T represents a temporal domain. However, such information is
not explicitly given by the Crystal program constructs. To the compiler, the two
domains D and T bear no extra information except for their shapes and sizes. It
is only through analysis that the compiler can find out that, for a fixed value of k,

®(2,4,k) can be computed in parallel for all the elements (,7) in domain D.

In order to generate parallel code for a parallel machine, it is necessary to make
the parallelism in a program explicit. Our approach is to add control constructs such
as for loops and forall loops to the program to explicitly represent sequential and
parallel information. For the Jacobi iteration example, we can introduce a for loop
over domain T" and a forall over domain D. The resulting program is a shared-memory
parallel program with explicit control information (Figure 5.2).

The Jacobi iteration example shows a straightforward transformation of a Crystal
program to a shared-memory program: just adding two loop headings over the data

field definition. In general however, the transformation is not always as simple. For
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dom D = [l..n] x [1..n];
dom T = [0..m];
for (k: T)
forall ((¢,7) : D)
®(z, 5, k) = if (k = 0) then ao(%,7)
|| (k > 0) then
w(Q(Z - laj’k - 1) + (D(Z’] - 17k - 1)
+Q(+1,5,k—-1)+®(:,5 +1,k—1))/4.0
fi;

Figure 5.2: The Jacobi program with explicit control information.

dom D = D; x Dy dom E = Dy x Dy;
for (7 : D3) {
dfield a(z,7): D = forall (i : D)
a(iy ] — 1) + b(5,) i, ) = aj — 1,5 — 1) +2
forall (i : D)
dfield b(z,7): D = a(z,7) =a(i,7 — 1) + b(¢,7);
a(j—laj_1)+2 }

Figure 5.3: The transformation of two dependent data fields to a multiloop nest.

instance, it is not always possible to transform two data fields into two independent
loop nests. Mutually dependent data fields are likely to be transformed into a joint

loop nest.

Example 5.2 Figure 5.3 shows the transformation of a Crystal program with two
mutually dependent data fields. The transformed program consists of only one loop
nest. Note that the iteration space of the loop nest, £ = D, x Dy, is a permutation

of the original index domain D = D; x D,.

Our basic approach for synthesizing control structures for a Crystal program is to

start with an aligned Crystal program, in which data fields belonging to a program
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block (i.e. a group of mutually dependent data fields) are aligned to a common index
domain. Using our approach, each program block is transformed into a multiloop
nest. The transformation consists of two steps. In the first step, the common index
domain of the program block is transformed into the iteration space of a multiloop
nest. The domain of each loop in the nest is a component of the original index domain,
and hence the iteration space of the multiloop nest is a permutation of the original
index domain. In the second step, each data field definition is transformed into an
array assignment statement. The changes to the program in this transformation are
syntactic (e.g. removing the keyword dfield). Consequently, the transformed program

preserves the structure and the single-assignment property of the Crystal program.

5.2 Dependence Representations

In Chapter 2, we defined reference patterns and the call-dependence graph to represent
data dependences in a Crystal program. For convenience in presentation of the control
structure synthesis algorithm, we define a few new notions of dependence in this

section.

5.2.1 Dependence Vectors and Direction Vectors

Dependence vectors and direction vectors have been used to represent data depen-
dences of sequential Fortran programs. Many vectorizing compilers use techniques
based on analyzing these vectors (see for instance [Wol82]). We borrow these concepts

to describe similar dependence information in a Crystal program.

Definition 5.1 Given a reference pattern 'b(¢1,...,2,) «— a(m,...,7) : D | 7,
where data fields @ and b are both defined over the same index domain D, the symbolic

vector (i1 — T1,...,%, — 75 ) is called a dependence vector.
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Definition 5.2 With respect to the dependence vector in Definition 5.1, the vector
(sign(iy — 11, D), ..., sign(i, — Tn, D)) is called a direction vector, where

4

— if r[g] < 0, for all 2 € D;
= if r[z] =0, for all 2 € D;

sign(r(z], D) = <
+ if r[¢] > 0, for all 2 € D;

(5.1)

otherwise.

*

A dependence vector simplifies the dependence information represented by a reference
pattern. A direction vector further simplifies the dependence information represented
by a dependence vector. Each element in a direction vector represents the collective
information about the dependences of a reference pattern along a particular dimension

of its index domain.

Example 5.3 Consider the following two reference patterns
5(z,7,t) — a(3,,t): D |t > 1,
(i, j,t) — b(z,5,t —1): D |t <1

The dependence vectors are (: — 3,0,0) and (0,0,1), and the direction vectors are

(*,=,=) and (=,=,+).

5.2.2 Dependence Tuples

In an environment in which data dependences between a group of data fields need to
be analyzed in a single framework. The information represented by direction vectors
alone is not specific enough. We introduce the following notion to be used as the

major representation of data dependence in the rest of this chapter.

Definition 5.3 Given a reference pattern ‘b(zy,...,%,) « a(r1,...,7:) : D | 7, the

symbolic form

"(diy...,dn) (b a): D’ (5.2)

is called a dependence tuple, where (d,,...,d,) is the direction vector.
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Example 5.4 The dependence tuples for the reference patterns in Example 5.3 are

(#,=,=) (b — a) : D'and “(=,=,+) (b — ) : D"

A dependence tuple captures key aspects of the data dependences represented by
a reference pattern: the names of the two data fields involved, the index domain,
the direction of the dependences, and the direction vector. However, it glosses over
some information that might be essential in certain cases, such as the conditionals in

a reference pattern.

Definition 5.4 The data dependences represented by a dependence tuple as in Equa-
tion (5.2) are described by the following set

{b(¢1,...yin) —alli —c1,y . yin—cp) |

cx € range(dr),1 <k < n;(iy,...,%), (11— €15..-,2n —ca) € D} (5.3)

where ¢;’s are integral variables and

[—oo..—1] if di is —;
1.. if dy is +;
range(dy) = { Lo i
(0] if d is =;
| [—o0..00] ifdgis =

Theorem 5.1 To satisfy the data dependences represented by a reference pattern, it is
sufficient to satisfy the data dependences represented by the corresponding dependence

tuple.

Proof:
Data dependences represented by a dependence tuple form a superset of the data

dependences represented by the reference pattern from which the tuple is derived. O
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dom D = [l..n] x [1..n]

dfield a(s,) : D = b(3,j — 1)

dfield b(3,) : D = c(3,5) + ¢(i,j — 1)
dfield c(i,j) : D = a(i,j) + 2

dfield d(z,7) : D = d(i +2,j — 1)

Figure 5.4: A set of aligned data fields and their augmented CDG.

5.2.3 The Augmented Call-Dependence Graph

The concept of a call-dependence graph (CDQG) is defined in Chapter 3. In a CDG,
each node represents a data field and each directed edge represents a call dependence.
An augment call-dependence graph is an extension of a CDG in which auxiliary

information is attached to the edges.

Definition 5.5 The augmented call-dependence graph for an aligned Crystal pro-
gram is an acyclic graph. Each node of the graph corresponds to a data field in the
program and each directed edge corresponds to a call dependence and is labeled by

a direction vector. The direction of an edge indicates the call dependence.

Each edge in an augmented CDG can be described by a dependence tuple, and vice
versa. Note that unlike the original CDG, the augmented CDG may have multiple
edges between two nodes. Also note that the augmented CDG is defined for aligned
Crystal programs, because the concepts of dependence vector and direction vector

are not well-defined for unaligned Crystal programs.

Example 5.5 Figure 5.4 shows a group of aligned data fields and their augmented
call-dependence graph.
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5.2.4 Dependences with Respect to Domain Components

To determine what type of loop to introduce to a component of an index domain, we

need to analyze data dependences with respect to domain components.

Definition 5.6 Consider a group of aligned data fields. Denote their common index
domain by D = D; x --+ x D, and the set of dependence tuples by T'. With respect
to T, the kth component of D (i.e. Dy) is said to be
(1) a dependence-free component if for every direction vector in T, its kth element
dy is =;
(2) a dependence-carrying component if for all the direction vectors in T,
(i) dx is + or =, and at least one dj is +;
(ii) di is — or =, and at least one dj is —;
(3) a dependence-conflicting component if it does not belong to either of the above

two cases.

For an index domain D, a component being dependence-free means that computa-
tion can be carried out in parallel with respect to that component; a component
being dependence-carrying means that computation must be executed sequentially
to preserve the dependences; and a component being dependence-conflicting means
the dependences cannot be preserved through just ordering computation for that

dimension—they have to be resolved through other components.

Example 5.6 With respect to the two dependence tuples in Example 5.4, "(x,=,=
) (b — a) : D" and (=,=,+) (b — b) : D, the first component of domain D is a
dependence-conflicting component, the second is a dependence-free component, and

the third is a dependence-carrying component.

5.3 The Control Structure Synthesis Algorithm

In this section, we present an algorithm for transforming a group of aligned data

fields defined over a common index domain into a multiloop nest of a shared-memory
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program. The basic idea of the algorithm is to identify the ordering of the loops in

the nest and to select an appropriate loop type for each loop.

Our algorithm bears a resemblance to Allen and Kennedy’s algorithm [AK87] for
parallelizing multiloop nests of Fortran programs. Both algorithms have similar input
and output interfaces (e.g. labeled dependence graphs and multiloop nests) and use
similar criteria for determining parallel loops (e.g. concepts like dependence-carrying

and dependence-free).

The major difference of these two algorithms lies in the constraints associated with
their inputs. In the case of Allen and Kennedy’s algorithm, the input is a sequential
Fortran loop nest. The algorithm tries to find vectorizable inner loops in the input
loop nest, while preserving the loop nesting structure of the source program. Allen
and Kennedy did point out that loop interchange techniques can be used to increase

the flexibility of the algorithm’s output.?

In our case, the input is a set of aligned data fields. There are no a priori loop
nests. It is completely up to the compiler to determine the structure of the loop nest
as well as the type of each individual loop. The framework of our algorithm therefore

provides the maximum freedom for generating an optimal loop nest.

As a side note, it is interesting to know that our algorithm can also be applied
to a dependence graph derived from a Fortran loop nest. However, the dependence-
preserving property of our algorithm is too strong for such cases. Data dependences of
a Fortran programs include three different types: flow-dependences, anti-dependences
and output-dependences [Kuc78]. As pointed out by Allen and Kennedy in [AKS87],
only flow-dependences are the true dependences, because both anti-dependences and
output-dependences can be eliminated or transformed to flow-dependences. An ap-
propriate approach is to apply some transformations to eliminate or reduce anti- and

output-dependences first and then apply our control structure synthesis algorithm.

LA recent study [Ban90] shows that using loop interchanges alone may not be sufficient to trans-
form a loop nest into all the possible nesting structures.
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Algorithm Synthesize_Control_Structure(D,G)

Comments: This is a recursive algorithm. The parameters D and G represent an index
domain and an augmented CDG, respectively. Initially, D represents the common
index domain of a set of aligned data fields and G their augmented CDG. The values
of both- D and G change during recursions.

begin
if G is acyclic then
for every element in G (denote z) do
Sz « Form_Forall_Loop (D, Form_AssignStat(z));
- return Order_Sub_Structures(G,{S;});

else
X « the set of strongly connected components of G;
G « the (acyclic) graph of all the connected components;
for every element in X (denote Gi) do

Vi «— the set of dependence vectors appearing as labels in Gy;

Ck «— the set of dependence-carrying components of D with respect to Vi;
if Gi is a singleton

then Sy « Form_Forall_Loop (D, Form_AssignStat (G ));

else if Cy is empty then Sy Form_While-Active_Loop(D,Gy);

else

for every component in Cy (denoted D;) do
D’ « remove D; from D;

G' « remove from Gy all the edges whose corresponding depen-
dences are carried by D;;

St — Synthesize_Control_Structure(D',G’ );
S’ « Form_For_Loop(D;,5");
Sk + Select_Control_Structure({S'});

return Order_Sub_Structures(G,{Sk});

end.

Figure 5.5: The control structure synthesis algorithm.
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Procedure Form_AssignStat(z)

Inputs: z is a CDG node. _
Output: An array assignment corresponding to the data field definition represented
by z.

Procedure Form_Forall Loop(D,S)

Inputs: S is a statement or a sub-control-structure returned from lower recursion
stage and D is an index domain.

Output: If D is empty, then the result is just S; otherwise the result is a forall loop
with D as the iteration space and S as the loop body.

Procedure Form_For_Loop(D;,S)

Inputs: S is a statement or a sub-control-structure and D; is a single domain compo-
nent.

Output: A for loop with body S and index corresponding to .

Procedure Form_While-Active_Loop(D,G)

Inputs: GG is a call-dependence graph and D is an index domain.

Output: A while-active with D as the iteration space and data fields corresponding to
the nodes in GG as the loop body.

Procedure Order_Sub_Structures(G, S)

Inputs: G is a call-dependence graph and S is a set of loop nests.

Output: A sorted sequence of loops in § according to dependences represented by G.
Procedure Select_Control_Structure(S)

Input: S is a set of loop nests.
Output: One loop from the set; the selection is made on a given criterion.
Comments: See Section 3.3 for more discussions on this procedure.

Figure 5.6: Subroutines of the synthesis algorithm.
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5.3.1 The Algorithm

The control structure synthesis algorithm is shown in Figure 5.5. The subroutines

used in the algorithm are shown in Figure 5.6.

The input to the algorithm is a group of aligned data fields. It is represented
by two parameters: the common index domain and the augmented call-dependence

graph. The algorithm generates a multiloop nest that preserves the data dependences
of the data fields.

The control structure synthesis algorithm is a recursive algorithm. Its two pa-
rameters, D and G, are initially set to represent the common index domain and
the augmented CDG of the input data fields, but their values are updated at every

recursive stage. The algorithm works as follows.

Assume that the execution of the algorithm reaches the beginning of a recursive
stage. Let D and G denote the values of the two parameters at the time. If G is
acyclic, a statement is constructed for each node and a topological sorting is applied
to GG to arrange the statements into a right order that preserves the call dependences
represented by G. The statement for a node is either an array assignment statement or
a forall loop over an array assignment statement, depending on whether D is empty
or not. The array assignment statements are constructed based on the data field
definitions. The set of statements and loops constructed is returned as the result of

the recursive stage.

If G is cyclic, the algorithm gets more complicated. First, strongly connected
components of G are derived. Then the algorithm tries to construct a loop nest for
each strongly connected component (to be described blow). If this step is successful
for all the components, then a topological sorting is applied to the graph that is
reduced from G by collapsing each strongly connected component into a node. The
sorting result is used to arrange the statements and the for loops into the right order.
Finally, the ordered list of statements and loop nests is returned as the result of the

recursion stage. The case in which no for can resolve the dependence cycle in some
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strongly connected components is discussed below.

A strongly connected component of G means that there is a dependence cycle
among a group of data fields. We introduce a for loop to a domain component for
each strongly connected component. The idea is that the for loop would carry some
dependences, and hence it might break the dependence cycle. However, there are
several cases: (1) more than one for loop (with different domain components) can
break the dependence cycle; (2) a for loop reduces dependences, but not enough to
break the dependence cycle; (3) no for loop can break the dependence cycle. Our
method is to try every for loop that can reduce dependences. If there are more than
one such loops, an evaluation is conducted after the loop nests are constructed. The
loop which has the maximal parallelism is selected.? If after a for loop is constructed
there are still dependence cycles in existence in the strongly connected component,
the process has to be repeated. To do so, two new parameters D' and G’ are created
and the control structure synthesis algorithm is recursively applied upon them. The
new domain D’ is constructed from D by removing the component that has been
chosen for the for loop. The new CDG G’ is constructed from the strongly connected
component by removing all the edges whose corresponding dependences are carried

by the for loop.

The recursive process continues until it succeeds or until it exhausts the dependence-
carrying components in D. The latter case means that there is still a dependence
cycle and yet no for can be found to break it. For this case we enclose the data
fields involved in the dependence cycle in a While-Active loop. The runtime system is
responsible for executing a While-Active loop correctly and efficiently (see Section 2.4

for related discussions.)

2We also consider keeping several loop options open and make the evaluation and selection in the
later compilation stage. Section 3.3 discusses this issue in more detail.
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5.3.2 Selection of Multiloop Nests

The control structure synthesis algorithm can generate multiple outputs for a given
input. Since the performance of a multiloop nest depends on many factors, and some
of which are not available at the control structure synthesis stage, it is important not
to throw away prematurely the control structures that may potentially have good
performance. On the other hand, it is desirable to minimize the number of outputs so
that the complexity of program optimizations can be reduced. We use the following
strategy to purge the outputs of the synthesis algorithm as many as possible, while

keeping those that are potentially usefully:

1. At each recursion stage, compare multiloop nests that are generated from the
same input. Discard those that contain while-active loops, unless there is no

other alternative.

o

At each recursion stage, compare multiloop nests that are generated from the
same input. Discard those that have lower degrees of parallelism. The degree
of parallelism can be measured by the number of forall loops contained in a loop

nest.

5.3.3 An Illustrative Example

The control structure synthesis algorithm is illustrated here with a Crystal program.
The program is for finding connected components in a undirected graph, based on
an algorithm given in [Ull84]. The input to the algorithm is the adjacency matrix
of the graph, and the output is an assignment of group numbers to the nodes in the
graph. The algorithm works as follows. Initially each node is in a group by itself.
Repeatedly, each group ¢ finds the lowest-numbered group % to which it is adjacent,
in the sense that there is an edge from some node in g to some node of h. If & is lower
than g, ¢ is merged into A, by giving the nodes of g the same number as h. After

log n iterations, every group is a connected component by itself.



5.3. THE CONTROL STRUCTURE SYNTHESIS ALGORITHM 103

The original Crystal program and the aligned version of the program are shown
in Figure 5.7 and Figure 5.8, respectively. In the original program, there are four
data fields: comp(v,t) represents the component of node v at stage 7, which we take
to be the smallest index of any node in that component; min_nbr(v,?) represents the
minimum value of comp(u,¢) over all nodes u adjacent to v; min_comp(v, ) represents
the minimum value of comp(u, ¢) over all nodes u adjacent to component v-at stage ¢,
including vertex v itself; and finally, nezt(v,:,logn) represents the transitive closure
of min_comp(v, 1), i.e. the minimum value of comp(u,?) over all components reachable
from v at stage 7; we know this is computable in at most log(n) steps, hence the value
of the third index j. |

To synthesize the control structure for the program, the augmented CDG of the
aligned program is first derived. The CDG, as shown in Figure 5.9 (a), is cyclic. All
the nodes in the graph belong to the same strongly connected component. According
to the control structure synthesis algorithm, a for needs to be introduced to one of the |
three components of the common index domain D. With respect to the direction vec-
tors, only the second component (corresponding to index z) is a dependence-carrying
component. A for loop is thus chosen for that component (Figure 5.9 (b)). Three
edges, labeled ds, d7, and dg, are removed from G, since their dependences are carried
by the component. The reduced CDG is shown in Figure 5.9 (¢).

Next, find the strongly connected components of the new CDG and apply a topo-
logical sorting on them. As the result, three edges, labeled d,, d, and dg respectively,
are removed, and a partial loop nest is constructed (Figure 5.9 (d)).

There still exists a cyclic component. It consists of one node, labeled nezt, and two
edges, labeled ds and d4 (Figure 5.9 (e)). With respect to the two direction vectors,
ds and dy4, the third domain component (corresponding to index j) is a dependence-
carrying component. A for loop is thus constructed. The final loop nest is shown in
Figure 5.9 (f).

The full-scale shared-memory program is shown in Figure 5.10. Note that in

this program the domain components that are augmented during domain alignment
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n==06
vset = {v |0 < v <n}
E={[1,2],(1,3],2, 4],{2,1], 3, 1}, (4,2],[5,0], {0, 5]}
dom D; = [0..(n — 1)]
dom D, = [0..1log(n)]
dfield comp(v,i): Dy x D; =
if (¢ =0) thenv
[| (z > 0) then nezt(v,1,log(n))
fi
dfield nezt(v,¢,7) : Dy x Dy X Dy =
if (7 = 0) then min_comp(v, )
[| (7 > 0) then nezt(nezt(v,i,7 —1),¢,5 — 1)
fi
dfield min_comp(v,t) : Dy X D, =
min(comp(v,: — 1),

\ min [mén_nbr(u,t) | u in vset : comp(u,i — 1) = v])

dfield min_nbr(v,i): Dy x D, =

\ min [comp(u,i — 1) | u in vset, [v,u] in E]

Figure 5.7: Ccomp: A Crystal program for finding connected components.




5.3. THE CONTROL STRUCTURE SYNTHESIS ALGORITHM

105

n=~6
vset = {v |0 <v<n}
E = {[l’ 2]’ [l’ 3]’ [2, 4]7 [27 l], [3, 1]7 [4, 2]’ [5, 0], [0, 5]}
dom D = [0..(n — 1)] x [0..1log(n)] x [0..log(n)]
dfield comp(v,,7): D = -
if (7 = log(n)) then
if (¢ =0) then v
|| (¢ > 0) then nezt(v,1,log(n))
fi
fi
dfield next(v,4,7) : D =
if (7 = 0) then min_comp(v,1,log(n))
l| (7 > 0) then nezt(next(v,i,7 —1),4,5 — 1)
fi
dfield min_comp(v,i,7): D =
if (7 = log(n)) then
min(comp(v,: — 1,log(n)),
\ min [min_nbr(u,1, )
| uin vset: comp(u,i— 1,log(n)) = v])
fi
dfield min_nbr(v,4,5): D =
if (7 = log(n)) then
\ min [comp(u,i — 1,log(n)) | u in vset, [v,u] in E]
fi

Figure 5.8: The aligned version of the Ccomp program.
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dy
di: (=, =, *) min_comp
b (= = +) :
33 g:’ :’ i)) for (i : D,)
gt T (nezt, min_comp,
dsZ (=, >, *) .
do: (%, =, +) comp, min_nbr);
d? : (*’ >, *)
dg: (x, >, ¥) comp min_nbr
(a) Initial CDG. (b) A partial loop nest.
d ' for (i : D) {
min.comp forall (v: D)
di: (=, =, %) S(min_nbr);
dy: (=, =, *) forall (v : Dy)
ds: (=, =, +) S(min_comp);
dy : (*3 = +) (next);
de: (%, =, *) forall (v : D)
S(comp);
comp min_nbr }
(c) After a for loop is introduced. (d) Result of first iteration.
for (i : Ds) {
forall (v : Dy)
S(min_nbr);
dy forall (v : Dy)
dy: (=, =, +4) S(min_comp);
d3 (:’ _ + ds for (5 : D3)
4 ’ ’ next forall (’l) : Dl)
S(nezt);
forall (v : Dy)
S(comp);
}
(e) Input to the second iteration. (f) Final Result.

Figure 5.9: Synthesizing control structures for program Ccomp.
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n = 6;

vset = {v |0 <v<n}k

E= {[1,2]1 [1, 3]7 [214], [2, 1], [3’ 1]’ [4’2]’ [5’0]’ [0’5]}’
dom Dy = [0..(n - 1)};

dom D, = [0..1log(n)};

for (¢ : Dy) {
forall (v: Dy)
. min_nbr(v,1) = \ min [comp(u,i — 1) | u in vset, [v,u] in EJ;
forall (v: Dy)
min_comp(v,1) = min(comp(v,t — 1),
\ min {min_nbr(u,7) | u in vset: comp(u,i — 1) = v]);
for (7 : Dy)
forall (v: Dy)
nezt(v,1,7) = if (j = 0) then min_comp(v, 1)
[| (7 > 0) then nezt(nezt(v,i,5 —1),1,5 — 1)
fi;
forall (v : Dy)
comp(v,i) = if (i = 0) then v
[| ( > 0) then nezt(v,1,log(n))
fi;

Figure 5.10: The shared-memory version of the Ccomp program.
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dom E; = Dy, X ++- X Dy_;
dom Ey = D, X« X Dy;

for ((Zpyy- -« y2pm) : E1) {
for/forall ((2p,y1y---1%pa) : E2)

a(tyy...,in) = @

for/forall ((Zpmyiy--+»ipn) : F2)
b(il,...,in) = ,3,

Figure 5.11: The generic structure of a multiloop nest.

are removed. The arrays thus correspond to the data fields of the original Crystal

program.

5.4 Validation Results

In this section, we present the conditions under which the data dependences of the
original Crystal program are preserved in the transformed shared-memory program
and we prove the correctness of the control structure synthesis algorithm. We first

present some concepts and notations. Many of these concepts are developed from the

ideas of [AK87].

5.4.1 Notation and Representations

Consider a set of aligned data fields:

domD=D; x---x D,
dfield a(31,...,2,): D =«
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dfield b(iy,...,in) : D = 3

The output of the control structure synthesis algorithm for these data fields is a
multiloop nest, whose generic form is shown in Figure (5.11). According to the

algorithm, the multiloop nest has the following features:

e The outer loops are for loops and the inner loops are forall loops. Furthermore,
any loop containing two or more array assignment statements is a for loop. In

other words, each forall loop encloses only one array assignment statement.

o Fach array assignment statement corresponds to a data field definition and the

correspondence is one-to-one.

o The loop iteration space E; x E, is a permutation of index domain D, i.e. loop

subscripts (p1,...,pn) is a permutation of array index subscripts (1,...,n).

For convenience, we introduce the following notations. The multiloop nest in Fig-
ure 5.11 is denoted by £ and the individual loops in £ are denoted by Ly, Lo, ..., L,,
according to their nesting level. The outermost loop is L, and the innermost is L.,.
An array assignment statement in £ is denoted by S(a), where a is the array name.
Specific instances of S(a) are denoted using partial or complete indexing. Two in-
dexing schemes are used: indices with parentheses referring to array dimensions and
indices with square brackets referring to the nested loops. The following are a few

specific examples:
e S(a(t,...,%,)) denotes the instance of S(a) that assigns a value to the array
element a(iy,...,%).
e S(a[j1,..-,Jn]) denotes the instance of S(a) that appears in the loop iteration
where L,,..., L, assume values ji,..., jn, respectively.
The following relation holds for these two notations:
Sa(ty...yt0)) = S(afipg,---5ip,])-

Whenever needed, we use * to simplify the indexing expressions:
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e S(a(t1,...,im,*)) denotes the set of instances of S(a) that assign values to array
elements a(¢1,...,%m,bmt1y .- -, in) forall (émp1,-...,%,) ranging over D, 41 X. .. X
D,.

e S(afs1,...,Jm,*]) denotes the set of instances of S(a) that appear in the loop

iterations where loops Ly,..., L, assume values ji,..., ., respectively.

¢ Both S(a(*)) and S(a[*]) denote the set of all instances of S(a).

5.4.2 Data Dependences in a Multiloop Nest

Data dependences in a multiloop nest exist between array assignment statements.
Informally, a statement S(b) depends on a statement S(a) if some instance of S(b)
uses the value created by some instance of S(a).

Through the control structure synthesis, a data dependence from a data field
element a(7y,...,7,) to a data field element b(¢y,...,%,) becomes a data dependence
from an array element a(ry,...,7,) to an array element (¢y,...,2,). Since multiloop
nests obey the single-assignment rule, data dependence between two array elements
can be expressed as dependence between two statement instances. Hence for the above
example, the dependence from a(7y,...,7,:) to b(i1,...,%,) becomes the dependence
from S(a(m,...,m)) to S(b(z1,.-.,1,))-

Using the same idea, data dependences represented by a dependence tuple are
transformed into data dependences between two sets of statement instances. The
new form of dependences is described in the same dependence tuple notation, i.e.

from

t="(dy,...,dy) (b —a): D (5.4)

to

t="(d1,...,ds) (S(b) — S(a)) : D" (5.5)

For convenience, we also define a dual representation using loop subscripts:

t="[d},...,d.] (S(b) « S(a)) : E", (5.6)
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where £ =D, x---x D,, and d} =d,,, for 1 <i < n.

Lemma 5.1 Data dependences represented by a dependence tuple as in Equation (5.4)
are preserved in the multiloop nest generated by the control structure synthesis algo-
rithm, if the data dependences represented by the dependence tuple in Equation (5.6)

are satisfied.

Proof:
Follows from the previous discussions. a
The above lemma implies that the problem of preserving data dependences of
a Crystal program is reduced to the problem of satisfying data dependences of the

transformed shared-memory program.

Definition 5.7 Consider a multiloop nest £ as in Figure 5.11 and a debendence
tuple ¢ as in Equation (5.6). A common loop of statements S(a) and S(b), Ly, is said
to carry the dependences represented by ¢ if

(1) d} is + and Ly is an incremental for loop; or

(2) di is — and Ly is a decremental for loop.

The loop Ly is said to be independent of t if dj, is =.

Definition 5.8 The common loops of statements S(a) and S(b) in £ (i.e. the loops
L, to L, in Figure 5.11) are said to carry the dependences represented by t if there
exists a k (1 < k < m) such that loops Ly,..., Ly_; are all independent of t and L,
carries the dependences of t. The loop Ly is called the leading dependence-carrying

loop in L for t.

5.4.3 Conditions for Preserving Dependences

Data dependences in a shared-memory program are satisfied by executing statements
in the right order. For example, in a multiloop nest, a data dependence from an
instance of statement S(a) to an instance of statement S(b) is satisfied if the first

instance is executed before the second one.
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In the following presentation, a statement S(a) is said to precede a statement S(b)

if S(a) syntactically appears before S(b) in the program.

Lemma 5.2 If statement S(a) precedes a statement S(b) in their common loops

Ly,...,Ln, then for a fized set of values, 1,,...,i,, any dependence from an instance
in S(afty,...,tm,*]) to an instance in S(b[iy,...,%m,*]) is satisfied.
Proof:

Follows the definition of the notation. a

Theorem 5.2 The dependences represented by a dependence tuple t as in Equa-
tion (5.6) are preserved in a multiloop nest L if
(1) S(a) and S(b) share no common loop and S(a) precedes S(b); or
(2) the common loops containing S(a) and S(b) carry the dependences of t; or
(3) the common loops containing S(a) and S(b) are all independent of t, and S(a)

precedes S(b) in the common loops.

Proof:

In the first case, according to Lemma 5.2, any dependence from S(a) to S(b) is
satisfied.

In the second case, assume that there are m common loops and the kth loop Lj
(1 £ k < m) is the leading dependence-carrying loop in £ for ¢t. Then, according to
the definition of the dependence-carrying loop, all the loops L,..., Li_; are indepen-
dent of ¢. Hence the direction vector of ¢, in the dual form, is [=,...,=,d,,...,d"],
where d}, is either + or —. According to Definition 5.4, the dependences represented

by t are

{01, - -y dn] = aljny oy G150k = Chy v o Jn = €a) |
c; € range(d;), k < j < s, .o, dnls [y ooy Jkm1y0k = Chyevvsjn — Cn) € E}

Assume that d} is +. Then ¢; € [l..00] and Ly is an incremental for loop. Hence

S(aljiy s Jk-1,Jk — Chy. .., Jn — cn]) are executed before S(b[jy,...,7,]). All the
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dependences represented by t are satisfied. The case in which d}, is — can be proven
similarly.
In the third case, the direction vector of ¢ is in the form [=,...,=,d},,,,...,d,],

and the dependences represented by ¢ are

{b[]la 'aj'n] - a[jlgn' ’jmajm+1 — Cm41y.-- ajn - c-n] |

¢; € "a"ge(d;‘),m <.7 S n; [jla-“ajn],[jl,--o,jm,jm+1 "'Cm+1,-",jn - cn] € E}

Since S(a) precedes S(b) in the common loops (L; through L.,), any dependence
from S(afj1,...,Jm,*]) to S(bj1,...,Im,*]) is satisfied (Lemma 5.2). Thus all the

dependences represented by ¢ are satisfied. a

5.4.4 Correctness of the Algorithm

Theorem 5.3 A multiloop nest generated by the control structure synthesis algorithm

preserves the dependences of the input data fields.

Proof:

Let D and G be defined according to the algorithm. Let £ denote a multiloop
nest generated by the algorithm upon the inputs D and G. We prove the theorem by
showing that for each dependence tuple ¢, the data dependences represented by t are
preserved in L.

Denote the edge in G that corresponds to t by e. The following three cases cover
all the possible situations that can occur for e during the execution of the algorithm

(note that G changes during the execution of the algorithm):

1. eisremoved from G due to the introduction of a for loop to a domain component

of D and the dependences represented by ¢ are carried by the loop;

2. eis removed from G during a reduction step, in which edges that do not belong

to any strongly connected component of G are remdved;

3. e remains in G until the end of the execution.
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In the first case, assume the for loop is the kth loop in £. Since e is not removed by
loops Ly, ..., Ls_1, none of the loops carries the dependences of t. According to the
algorithm, no for loop is introduced to a dependence-conflicting domain component,
thus Ly,..., Ly_; are all independent of ¢ (Definition 5.7). This means the k loops
Li,..., Ly carry the dependences of ¢ (Definition 5.8). According to Theorem 5.2,
the dependences represented by t are satisfied in L.

In the second case, assume the situation occurs in the body of the first k loops of
L. As in the first case, we can infer that loops L,,..., L are all independent of t.
Furthermore, due to the topological sorting used in the algorithm, the subloop nest
containing S(a) precedes the subloop nest containing S(b) in Ly,..., L. According
to Theorem 5.2, the dependences represented by t are satisfied in L.

In the last case, according to the algorithm, a while-active loop is introduced to
the component containing e. The dependences within component, including those

. represented by ¢, are resolved at runtime. -0



Chapter 6

Generation of Explicit

Communication

In this chapter, we describe a compilation approach for automatically generating effi-
cient communication from array references of a shared-memory parallel program. In
Section 6.1, an overview of our approach is given. In Section 6.2, a set of communica-
tion routines defined with respect to an abstract machine model is introduced. The
algorithm for matching reference patterns with communication routines and several
related optimization issues are presented in Section 6.3. The methods for schedul-
ing and synchronizing communication routines are described in Section 6.4 and Sec-
tion 6.5, respectively. Section 6.6 contains discussions on alternatives and extensions

to our approach.

6.1 The Communication Generation Problem

In compiling a shared-memory program to a distributed-memory target machine,
explicit communication commands for interprocessor data transfer must be generated
from the references in the source program.

The primary issue in the communication generation process is how to generate

115
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efficient communication. It is fairly easy for a compiler to generate a naive send-
and-receive pair to replace a nonlocal data reference in the source program, provided
that data layout function is given. However, messages so generated are not globally
orchestrated and may cause congestion in the network.

The other two important issues in the communication generation process are
scheduling and synchronization. Scheduling refers to the process of placing com-
munication commands in appropriate locations in the target program to ensure data.
dependences. Synchronization refers to the process of setting up correct conditions
for invoking communication commands so that sends and receives in message-passing
are correctly matched.

The approach we present in this chapter is based on matching program references
with predefined communication routines. These routines implement various commu-
nication patterns using best algorithms on specific target machines. The compiler
analyzes the syntactic reference pattern of each program reference and selects the
most efficient communication routine for it. For the scheduling and synchroniza-
tion problems, we present a solution which ensures that the data dependency of the
shared-memory program is preserved in the message-passing program.

The problem of automatic generation of message-passing programs has been ad-
dressed by many other researchers [CK88,RS88,QHV88,ZBG88,KM89,RP89, KMSBIOb).
In these systems, individual send and receive commands are automatically generated
and inserted into the appropriate places in the target program. Optimizations are
then applied to increase message granularity. Unique to our approach is the use of

syntactic pattern matching to generate efficient communication.

6.2 Communication Routines

We select a set of communication patterns defined over an abstract machine and
implement them as the basic communication routines. These routines are to be used

in the target program to realize interprocessor communication. For a specific target
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machiﬁe, when the embedding of the abstract machine is known, each communication
routinevcan be carefully tuned for performance. This can be done by using a routing
algorithm that takes advantage of the routine’s particular communication pattern,
or by special hardware support. For instance, for a hypercube target machine and a
Gray-code embedding of the abstract machine, a one-to-all broadcast routine can be
implemented with an O(log(n)) complexity.

There are two criteria for selecting communication patterns to be basic commu-

nication routines:
1. A basic routine must have an efficient implementation on the target machine.

2. The communication pattern of a basic routine must have some unique symbolic

characteristics that the compiler can recognize.

There is no advantage in implementing a communication pattern as a basic routine
if there is no special algorithm for it, for instance, in the case of the arbitrary pattern
shown in Figure 2.2(d).

An efficient algorithm alone, however, is not enough. The compiler must be able
to recognize symbolically the references that can exploit the efficient communication
routines. Otherwise the communication routines must be explicitly called in the
program, forcing the processor structure to be known. In addition, the data must be
written or read via message buffers, as opposed to just being referenced in a shared
address space.

How successful a compiler can be in recognizing patterns depends on the amount
of explicit information available in the source program. For instance, with the use of
explicit aggregate operators, identifying reduction or scan becomes trivial. However,
different forms of permutations cannot always be identified.

Tables 6.1 and 6.2 show two lists of basic communication routines. Routines in
Table 6.1 are called general routines. Those in Table 6.2 are called simple routines.
For each general routine, the data movement crosses multiple dimensions of the index

domain of the abstract machine. For each simple routine, the data movement is
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confined to a single dimension of the index domain. There is a loose correspondence
between the routines in the two tables, e.g., One-All-Broadcast corresponds to Spread,
All-One-Reduce to Reduce, and so on. The cost column in each table shows a sample
list of cost functions that are used to guide the compiler to match the best routine
for a given reference pattern.

Tables 6.1 and 6.2 are by no means complete. More routines, such as gather,
scatter, shuffle-exchange, and other special permutations can be included.

We now give a brief description of each of the routines in Table 6.1. In each
routine, the parameter D is an index domain representing the abstract machine; a is
a pointer to the input data; B denotes the size of the data; and a; is a pointer to the

output data.

One-All-Broadcast(D, s, a,ay, B): The data pointed to by buffer pointer @ in virtual
processor s in domain D is sent to all the other virtual processors in D. This
pattern can be identified by the presence of a constant tuple in the source

expression and indices in the destination expression.

All-One-Reduce(D, d, a,a;, B, ®): A routine based on the reduction operator in APL.
Data pointed to by a in every virtual processor in D are combined using the
binary associative operator @ and sent to virtual processor d. This pattern is
identified by the presence of a constant tuple in the destination expression and

indices in the source expression.

Send-Receive(D, s, d, a, ay, B): Data pointed to by a in virtual processor s is sent to
virtual processor d. This pattern is identified by constant tuples appearing in

both the source and destination expressions.

Uniform-Shift(D, ¢, a, a;, B): Data pointed to by a is sent from every virtual processor
iin D to virtual processor i + ¢. This pattern is identified by the presence of
the same constant offset between the source and destination expressions over

all virtual processors in D.
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| Routine | Pattern | Cost |
One-All-Broadcast(D,s,a,a;,B) |'a@s=1i:D’ O(BlogN)
All-One-Reduce(D, d, a,a1,B,®) |'a@i=d:D' O(Blog N)
Send-Receive(D, s, d, a, a;, B) '‘a@s=d:D’ O(B)
Uniform-Shift(D, ¢, a, a;, B) 'a@i=>i+c:D' | O(BlogN)
Affine-Transform(D, M, ¢,a,a,,B) | '7a@i= Mi+c: D'| O(BlogN)

Table 6.1: General communication routines and their costs where B denotes the
message size, and N the number of processors in D. Bold-face letters i, s, and d are
shorthand for index tuples (,...,%,), (s1,...,85), and (dy,...,dy).

LRoutine | Pattern ] Cost J
Spread(D, p, s, a,a1, B) 'aQ(ly, s,1,) = (l,1,1;) : D' O(Blog N,)
Reduce(D, p,d,a, a1, B,®) | 'a@(l,2,15) = (I1,d,1;) : D O(Blog N,)
Multispread(D, p, a, a1, B) |'a@(ly,1,15) = (I1,4,13) : D° O(BN,)
Copy(D, p, s,d, a,ay, B) 'a@(ly, s,1) = (L,d,l3) : D O(B)
Shift(D, p,c,a,a;, B) 'aQ(ly,1,l,) = (h,i+¢c,lp) : D' | O(Blog N,)

Table 6.2: Simple communication routines and their costs where B denotes the mes-
sage size, N, the number of processors along the pth dimension of D, and [, and I,
denote lists of indices (¢1,...,%,-1) and (¢p41,-. ., 1), respectively.

Affine-Transform(D, M, ¢,a, a;, B): Input M is a constant n x n matrix, where n is
the dimensionality of D. Data pointed to by a in every virtual processor iin D is
sent to virtual processor Mi+ c. This pattern is identified by deriving both the
sender’s and the receiver’s forms of the pattern, and verifying the relationship

between the two forms. Note that Transpose is a special case of this routine.

Note that a composition of these routines can generate many more complex com-
munication patterns. Thus a complex spatial reference pattern may be decomposed

to match a composition of communication routines.
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6.3 Matching Communication Routines

In this section, we describe an algorithm for matching the spatial reference patterns of
a shared-memory program with the communication routines of an abstract machine.
For a given program and a given data layout strategy, we define the abstract machine
as being the same shape as the spatial index domain of the program. The matching
algorithm is applied to one reference pattern at a time. Each reference pattern is

matched with either a single routine or a composition of routines.

6.3.1 Definition of Matching

Definition 6.1 Given a syntactic reference pattern over an index domain D:
P:"aQo=6:D |7,

the set of reference instances represented by the pattern, denoted by I,(P), is defined
as the set of pairs of elements of D obtained by replacing the index variables in the

pattern by all possible values, disregarding the predicate!:
I,(P)={(s,6) | 0,6 € D}.

Definition 6.2 Given a communication routine R with a syntactic communication
pattern as described by P above, the set of communication instances represented by

the routine, denoted by I.(R), is defined similarly:
I(R) = {(0,6) | .6 € D}.
Example 6.1 Suppose that D = [1..N;] x [1..N], then

I,('aQ(2,j) = (6,7): D |j >3 =
{((23 1)1 (6a 1))’ ((2’ 2)’ (61 2)), ceey ((2, N2)’ (6’ N2))}1

! Presently, our communication routines do not have predicates, hence the predicate in a reference
pattern is not used in the matching.
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I,(Spread(D, 1, s,qa, a1, B)) =
{((s,1), (1, 1)), ((5, 1), (2, 1))s -+, (55 1), (N1, 1)),

.o
]

) (5, N2), (1, N2)), (s, N2), (2, N2)), . - 5 (85 Na), (N1, N2)) }5
I.(Copy(D, 1,s,d,a,a,B)) =

{((37 1)’ (ds 1)), (('Ss 2)s (ds 2))’ e ((33 N2)s (ds N2))}

Definition 6.3 A communication routine R is said to match a reference pattern P
if the set I.(R) for some choices of the routine’s parameters is a superset of the set
I(P). A communication routine is said to be perfectly matched with a reference

pattern if the two sets are exactly the same.

Example 6.2 Reference pattern 'a@(2,5) = (6,5) : D | j > 3" can be matched with
either Spread(D,1,2,a,aq,B) or Copy(D,1,2,6,a,a;, B), but is matched perfectly
only with the latter. |

Forced Communication The communication routines discussed in Section 6.1
are all defined over regular index domains. By regular, we mean that a domain is
either an interval domain or a Cartesian product of interval domains. But reference
patterns of a shared-memory program may have associated predicates, which means
that the required data movement may only occur in a selected part of a regular
domain. For instance, the required data movement of the above reference pattern P
is confined to a subdomain [1..Ni] x {4..N5], specified by the predicate j > 3. As far
as matching communication routines is concerned, such predicates are ignored, i.e.,
those processors that do not need data are nonetheless forced to participate in the
communication and receive unneeded data. In the implementation, these extraneous
data are discarded as soon as they arrive at the processor in order to free up the

buffer space of the processor.
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Algorithm Matching_Reference Patterns(P)

Input: A reference pattern of a shared-memory program.
Output: A single communication routine or a composition of communication routines
that best matches the reference pattern.

begin

Search through the list of routines from the simple ones to the general ones and
try to find a perfect match for the given reference pattern;

For a simple pattern which fails the first step, find the lowest cost matching
routine;

For a general pattern which fails the first step:

decompose it into subpatterns;
recursively apply the algorithm on the subpatterns;

optimize the composition of the resulting routines.
end.

Figure 6.1: A pattern-matching algorithm for generating communication routines.

6.3.2 The Matching Algorithm

The matching algorithm works as follows. Given a reference pattern, it first iden-
tifies the symbolic characteristic of the pattern, e.g. it decides whether the source
expression is a constant tuple. It then searches through the list of communication
routines for a match. The search is conducted in such a way that if there are multiple
matching routines, the most economical one (based on the given cost of the routines)
is encountered first and hence selected. In the case where no matching routine can
be found, the algorithm breaks the reference pattern into simpler subpatterns, and
works on each of them recursively. We first define the concept, then describe the

algorithm and its major procedures.
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Definition 6.4 A reference pattern whose source and destination tuples differ in

only one element is called a simple reference pattern, such as:
r . X
aQ@(01, ..., 0p1,0p, Opt1y---30n) = (015« 3 Op1,0p, Opt1y---,0n) : D | ¥

All other reference patterns are called general patterns.

Identifying a Perfect Match Identifying a perfect match is done by transforming
the reference pattern into its canonical form? and symbolically comparing it with the

data movement patterns of communication routines. We consider two cases.
Case 1: The input to the algorithm is a simple reference pattern as defined above.
Case 2: The input is a general reference pattern, as
'aQo = 6:D |~
where o and 8 are the source and destination expressions and 7~ is the predicate.

In Case 1, the following matching steps are taken:

Steps  Comparisons Matching Routines
1. ifo, =6, then (Local Memory Access)
2 if const(o,) A const(é,) then Copy(D,p,oy,,bp,a,a1,B)
3. if const(6, — op) then Shift(D, p, 6, — 0p,a, a1, B)
4 if const(ay) then Spread(D, p, oy, a,a;, B)
5 if const(é,) then Reduce(D,p,$,,a,a1, B, ®)

The binary relation 2 denotes two expressions having the same canonical form. The
two predicates, const(o,) and formal(o,), test whether an expression o, contains con-

stants only or indices only, respectively. Note that an expression containing temporal

2A canonical form of an expression is a syntactic form in which variables appear in a predefined
order and constants are partially evaluated. For example, 2 —i+jand"j—i+3— 1" would have the
same canonical formF—i+j+2%. A canonical form of a reference pattern is a pattern in which all the
expressions are in canonical forms. The process of deriving a canonical form is called normalization,
and involves symbolic transformations and partial evaluations.
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indices is considered a constant expression in the matching. The predicates in the left
column are not mutually exclusive, so the order in which they are tested is important.
If a pattern fails to satisfy any of the predicates in the above table, then it is not
perfectly matched with a simple routine.

In Case 2, the following steps are taken:

Steps  Comparisons Maiching Routines

1. ifoe=é then (Local Memory Access)

2 if const(o) A const(§)  then Send-Receive(D, o, §,a,a,, B)

3 if const(6 — o) then Uniform-Shift(D, 6 — o, a, a;, B)
4. if const(o) A formal(§) then One-All-Broadcast(D, o, a,a;, B)
5
6

if formal(o) A const(§) then All-One-Reduce(D, §,a,a;, B, @)
if affine(o, §) then Affine-Transform(D, M, e, a,ay, B)

The predicate affine(eo, §) tests if the two vector expressions o and 6§ have an affine
relationship, i.e. if there exists a constant matrix M and a constant tuple e, such
that & = M6 +c. If a pattern fails to satisfy any of the predicates in the above table,

then it is not perfectly matched with a general routine.

Matching a Simple Pattern A simple reference pattern is always matched with
a single routine. If a perfect match cannot be found, a less-perfect one is selected.
In the worst case, the routine Multispread(D, p, a, a1, B) is selected. It can match any

simple reference pattern.

Decomposing a Reference Pattern A general reference pattern over an n-dimensional
index domain can be thought of as a composition of n simple patterns, each describ-
ing data movement along one dimension. We call a composition of a subset of these
simple patterns a subpattern of the general pattern. When a general reference pattern
cannot be perfectly matched with a single routine, it is decomposed into subpatterns.

The matching algorithm is then applied to these subpatterns recursively.
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! T T
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'a@(c(i,7),7 — 3) = (4,5)" Shift(D, 2,3, a) Multi-Spread(D, 1, a)

Figure 6.2: Decomposition of a reference pattern.

Example 6.3 Reference pattern 'a@(c(i, ), — 3) = (¢,7) : D" cannot be perfectly
matched with a single routine. It is therefore decomposed into two subpatterns, each

of which is matched with a single routine:

aQ(c(2,7),7 —3) = (3,7 —3): D' Multispread(D, 1, q, a,, B),
'aQ(z,5 —3) = (¢,5) : D' Shift(D,2,3,4q,a,, B).

The composition of Shift(D, 2,3, a,ay, B) and Multispread(D, 1, a, a, B) is the result
of the matching algorithm (Fig 6.2).

In general, when the index domain is of high dimensionality, there are many
ways to decompose a reference pattern. To find the optimal composition of routines,

dynamic programming techniques are used.

Optimizing the Composition of Routines Notice that the ordering of the rou-
tines in the composition does not affect the correctness of the target program. How-
ever, it does affect the cost of communication. For the above example, we can have

two orderings:

Case 1: Shift(D, 2,3, a,a;, B) o Multispread(D, 1, a, a;, B)
(multispread in dimension one followed by shift in dimension two)—The message
size for multispread is the original message size B, and the cost of it is O(B|D:}).

However, the result of multispread is that every processor gets a whole column
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of data, hence the data size for shift becomes B|D,|. The corresponding cost is

O(B|Dyl).

Case 2: Multispread(D, 1, a, ay, B) o Shift(D, 2,3, a,a,, B)
(shift in dimension two followed by multispread in dimension one)—The message
size for shift is B, so the cost is O(B). The message size for multispread is the
same, and the cost is O(B|D;|). The total cost is less than that of the first

case.

The principle for ordering routines in a composition is to have them appear in the

following order:
1. Message-reducing routines, such as Reduce and All-One-Reduce;

2. Message-preserving routines, such as Copy, Shift, Uniform-Shift, Send-Receive,

and Affine-Transform;

3. Message-broadcasting routines, such as Spread, Multispread, and One-All-Broadcast.

6.3.3 Some Optimizations

Reference patterns derived directly from the input program are usually not in the most
efficient form. In the following, we introduce several optimizations which transform

the original set of reference patterns into ones better suited for implementation.

Constant Propagation

By constant propagation, the communication routine that perfectly matches a given
reference pattern may change to another with lower cost. For example, a perfect

match of the reference pattern

'a@(3,5) = (i,j): D |i= 4
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AY

would result in a Spread. However, the information that 7 is a constant or is space-

invariant results in the reference pattern
'a@(3,5) = (4,5) : D,

which matches perfectly with a Copy, which is less costly than a Spread.

Combining Identical Patterns

Two reference patterns can be combined if they are equivalent, disregarding the
guards. Clearly, the advantage of combining is that it reduces the number of com-
munication statements and thus the number of messages. For example, the following

two reference patterns

'a@(z +3,7) = (2,7) : D | 1 > 53",
@i +3,5) = (i,§): D | i < 7"

can be combined as
a@(i+3,7) = (,7): D]|i>530ri < 7,

thus eliminating a Shift.

Combining Subset Patterns

If the set of instantiated source-destination pairs of one reference pattern is a subset of

another, then it can be eliminated. For example, the following two reference patterns

a@(2,3) = (2,7): D] j > 1),
'0@(2,3) = (3,7): D |j > 1"

can be combined into

'a@(2,3) = (4,7): D] j> 1"
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Aggregating Patterns

In the case that there are many individual reference patterns sending messages from
the same source to different destinations, it is often better to use Spread instead of

many Copys. For example, consider the following reference patterns

'a@(2,7) = (c1,7): D | j > 1,
ra@(27j) = (C2,j) : D l] > 117

a@(2,j) = (c,4): D |j > 1

where ¢;,¢,...,¢; are constants. When k is large, it is better to combine these
reference patterns as

a@(2,7) = (3,7): D |5 > 1"
When to do this optimization depends on the relative costs of Copy and Spread and

must be determined experimentally for each target machine.

6.4 Scheduling Communication Routines

In this section, we consider the problem of inserting a communication routine into
the target program. We first introduce some concepts and notation, then present two

simple scheduling strategies.

6.4.1 Concepts and Notation

In Section 2.6, the concepts of computation segment and communication segment are
defined for a message-passing program. Loosely speaking, with respect to a multi-
loop nest (Figure 2.8), a computation segment is an inner loop nest consisting an
array assignment statement, and a communication segment is a group of statements
involving in a message-passing. We introduce some notation to represent these two

concepts.
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Assume L is a general loop nest over an n-dimensional index domain D x T, and

its first k£ loops are for loops over domain T'. Let L,,..., L, denote the n levels of
loops.

We denote a computation segment that consists of loops Lg41,...,L, and an
assignment statement of array a by S(a,D,%,...,%). The variables ¢,,...,%; are

the indices of the first k for loops, and are referred together as a time-stamp of the
segment.

Similarly, we denote a communication segment generated by the compiler for a ref-
erence pattern P : a(8ks1y--++6n) = (Pkg1y--+4%a) : D | ¥' by C(a, P, D, &1,...,6),
where (61,...,6k) is its time-stamp.

Any point between two computation segments is a potential location for a commu-
nication segment. However, not every such point is legal. A communication should
happen no earlier than the time when the referenced data is ready and no later than
the time when the data is to be used. We define the notion of a communication
window to specify the range within which a communication segment can be inserted
between any two computation segments.

Given a communication segment, C(a, P, D, éy,...,8;), the top of its communica-

tion window-is the point immediately after the last of the set of computation segments

including S(a, D, 64, ..., 6;) and those which compute the indirect array references oc-
curring in 78y, ..., 6, The bottom of the window is the point immediately before the
earliest of the set of computation segments in which a(z,...,1,) is used.

Example 6.4 Consider a reference pattern P : 7a(s, j,t) « b(4,c(s,4,t),t — 1)’ The
top of the communication window for communication segment C(b, P, D,t — 1) is the
point immediately after computation segments S(b, G,¢ — 1) and S(¢, G, ). Since the
time-stamp of S(¢, G, t) is newer, the top is the point right after it.

Example 6.5 Consider the shared-memory program in Figure 6.3. The following

spatial reference patterns can be derived from it:

P/ : 'aQ(i,2)= (i,7): D]|j=tand 1 <z <n)
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dom T = [0..n];
dom D = [1..n] x [1..n];
for (¢:T) {

forall ((,5) : D)
b(¢,5,t) =if (j =t) then \ + {a(i,z,t — 1) |1 < z < n}

|| else 1
fi;
forall ((¢,7) : D)
a(i,j,t) = if (¢t =0) then 0
[| (= 10(1,t,t)) then a(i,j,t — 1)
|| else b(z,¢,t)
fi;

Figure 6.3: A shared-memory program.

Py: b@(1,t) = (3,5): D | t &£ 0,
Py: fa®(i,j) = (i,5): D |t # 0 and i = b(1,¢,2)},
P;: Q(2,t) = (1,7): D | t # 0 and 1 # b(1,1,t)"

Corresponding to these reference patterns, three communication segments can be

defined. Pj corresponds to a local memory access, hence can be ignoréd. With

respect to these segments, the following communication windows can be derived:

Comm. Segment | Communication Window
C(a,P{,D,t —1) | S(a,G,t—-1) S(b,G,1)
C(b, P;, D, t) S(b,G,t) S(a, G,t)
C(b, P}, D,t) S(b,G,t) S(a,G,t)

Note that a communication window may cross loop iterations, which is the conse-

quence of cross-iteration dependences.
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Remarks

Consider the case where a processor computes some values and then sends them
to other processors. The processor can either compute and send one value at a
time or it can compute many values first and then send them all at once. The
difference is the memory usage (data needs to be stored if it doesn’t get sent) and
the communication overhead (more frequently, small messages incur more overhead
such as message startup time and time for the calls to the operating system kernel).
With respect to the above example, the inner multiple loops can be broken down to

smaller segments.

Example 6.6 The following three multiple loops are possible decompositions of com-

putation segment S(a, G,t) (assume G = G; x G3):

forall (¢ : Gh) forall (5 : Gq) forall ((z,7) : G)
S(a, Ga,t,5); S(a, Gy, t,1); S(a, nil, ¢,1,5);

Segments S(a, G, t,7), S(a,G1,t,1), and S(a,nil, t,%, ) are all of smaller granularity
than S(a, G, t).

Selecting the appropriate granularity of computation segments and consequently
the size and frequency of message-passing requires cost-driven optimization based
on both the target machine parameters and the cost estimation of the program.
The formulation here provides a framework for doing so. Our method uses both

computation segments and communication segments at their maximum granularity.

6.4.2 Two Simple Scheduling Strategies

Given a communication window, what is the best placement of a communication
segment? This problem involves trade-offs in communication cost, memory usage,
balanced network flow, and so on, and needs to be answered by cost-driven optimiza-

tions based on a model of target machine characteristics. We describe a scenario
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for (t:T) { for (t: T) {
5(b, G, t); C(a, P{,D,t - 1);
C(b, ;, D, t); S(b, G, t);
C(b, P;, D, t); C(b, P, D, t);
5(a, G, 1); C(b, Py, D,t);
C(a, P|, D, t); S(a, G, t);

} }

(a) Simple strategy 1 (b) Simple strategy 2

Figure 6.4: Two simple communication scheduling strategies.

here to illustrate the trade-off between processor idling time versus network message
traffic.

A processor waiting for a message cannot proceed with its own program until the
message is received. So the earlier the message is sent out by the processor which
produces the required data, the better. On the other hand, if the production and
consumption of the messages are too much off-balance, messages may start to saturate
the network. Profiling and estimating computation time, message size, etc., should
provide clues for where the communication segment should be placed to maintain a
smooth flow of message traffic.

Consequently, we want to put communication segments in places where message
aggregation can be performed. However, larger messages also mean larger buffers.
For large applications, this could cause a shortage of memory. Again, to balance the
issue, cost estimation and profiling are needed.

Here we propose two very simple strategies which do not take cost into consider-

ation:

1. Place a communication segment at the top of its communication window.

2. Place a communication segment at the top of its communication window if the
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top is a computation segment with the same time-stamp; otherwise place it
immediately before the first computation segment in the window that has the

same time-stamp.

Using the first strategy on the program shown in Figure 6.3, we obtain a schedule
shown in Figure 6.4(a); using the second strategy, the result is shown in Figure 6.4(b).
The first strategy has an advantage in controlling granularity, since strip-mining
(cf. [Wol89]) can be applied to a computation segment and the adjacent communica-
tion segments. The second strategy is slightly easier for generating code, since there
are no cross-iteration dependences between computation segments and communica-

tion segments.

6.5 Synchronizing Communication Routines

For the purpose of discussing message synchronization, communication routines are
categorized into two groups: uniform routines and aggregate routines. Uniform rou-
tines include Shift, Uniform-Shift, Copy, and Send-Receive (the last is a special case).

We illustrate each case with examples.

6.5.1 Synchronizing Uniform Routines

As mentioned in Chapter 2, there are two special forms of a communication pattern,
the sender’s form and the receiver’s form. For a uniform routine, the critical issue
in synchronization is to derive both the sender’s form and the receiver’s form of a

communication pattern.

Inverting a Communication Pattern The sender’s form and the receiver’s form

of a communication pattern

'a@(01,...,04) = (61,...,6:): D | ¥,
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can be expressed as
Sender’s form: fa@(iy,...,%,) = (81,...,6%) : D | ",
Receiver’s form: "a@(o1,...,00) = (¢1,...,%,) : D | 4"

Tuples (o1,...,0}) and (81,...,68,) are related in the following way. Suppose we can

write the source and destination expressions as

(85y--+56,) =Ti(i1y- -« 2n)s

(ff{,...,a;) =T2(t1,. . %n)
where T} and T are well-defined functions. Then Ty and T must be inverses of each
other.

When (o1,...,0,) and (81,...,68,) are linear expressions of the indices, it is pos-
sible to determine symbolically the sender’s and receiver’s forms. But in general,
a compiler would not be able to do so. Our restriction on the array index expres-
sions on the left-hand side of an assignment statement (the second assumption on the
shared-memory program form) is to assure that at least the receiver’s form is readily
available to the compiler.

Every uniform routine in Table 6.1 and 6.2 corresponds to a communication pat-
tern that can be transformed symbolically into both sender’s and receiver’s forms by

a compiler. We show the synchronization process through an example.

Example 6.7 Consider the multiloop nest in Figure 6.5 (a). First, a spatial reference
pattern, P : Ta@(: + 1,5 —2) = (3,5) : D | t > 17, is derived. Then the pattern is
matched with a uniform routine Uniform-Shift(D, (—-1,2),a,a;, B). The target code

is shown in Figure 6.5 (b), where C(a, P, D,t) includes a call to the routine.

The uniform communication routine Uniform-Shift(D, (—1,2), b) is actually imple-
mented by a pair of send and receive commands, which are executed on every processor
participating in the communication:

send(D, (~1,2),a, B);
receive(D, (1, —2), a;, B).
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for (t: T) » forall ((p,q) : E)
forall ((,7) : D) for (t: T) {
b(¢,7,t) =if (¢ > 1) then if (¢t > 1) then C(a, P, D, 1);
a(i +1,j —2,1) S(b,G,t);
|| else b(z,7,t — 1) }
fi;
(a) (b)

Figure 6.5: Synchronizing uniform communication routines.

The send statement is derived from the sender’s form of the reference pattern while
the receive statement is derived from the receiver’s form. Since the source program
already contains the receiver’s form, the compiler only needs to derive the sender’s
form

'aQ(3,j) = (1—1,j+2): D |t > 1.

The derivation involves a matrix inversion. Under the condition that the matrix is
full rank (which is met by all Uniform-Shift cases), the inversion can be computed
symbolically.

A pair of send and receive commands is always arranged as a nonblocking send
followed by a blocking receive in the program. The predicates for the send and receive
commands are arranged in such a way that for every message sent out to the network,

there is a receiving statement matching it.

6.5.2 Synchronizing Aggregate Routines

The synchronization issue for an aggregate communication routine is to make sure
that the routine is invoked under the same condition on all the participating proces-
sors, so that they will all reach whatever primitive communication commands that

implement the routine.
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As we mentioned in Section 6.3, predicates in a reference pattern are ignored
in the process of matching communication patterns. However, for synchronizing an

aggregate communication routine, predicates must be used.

Lifting Space-Invariant Predicates A Boolean predicate P of a reference pattern
is said to be space-invariant with respect to a data-layout strategy if the value of P
is invariant with respect to the values of the spatial indices, otherwise, it is said to
be space-variant.

For example, suppose indices (i, j,t) are defined over domain D x T where D is
partitioned. Then predicate (i > j) is space-variant since for different values of i
and j, (¢ > j) can have different values. On the other hand, predicate (t > 1) is a
space-invariant predicate.

When a space-invariant predicate is in conjunction with a space-variant predicate,
as in (t > 1) and (¢ > j), it is lifted outside of the call to the communication rou-
tine while the space-variant predicate is ignored. Since the space-invariant predicate
will evaluate to the same value for all participating processors, all, or none, of the

processors will participate in the communication, as shown in the following example:

Example 6.8 Consider the multiloop nest in Figure 6.6 (a). A spatial reference

pattern is derived from it:
P: %a@(3,5) = (4,7): D |t>1and i > j\

It is then matched with a Spread(D, 1,3, q, a;, B), by ignoring the predicate z > j.
The message-passing code is shown in Figure 6.6 (b), where C(a, P, D,t) includes a
call to Spread(D, 1,3, a,a;, B).

6.5.3 Proof of Deadlock-Free

We prove that the compiler does not introduce any deadlock during the communica-

tion generation process.
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for (¢:T) forall ((p,q) : E)
forall ((z,7) : D) for (t:T){
b(z,7,t) =if (t > 1) and (z > j) if (¢t > 1) then C(a, P, D,1);
then a(3,7,1) S(b, G, t);
|| else b(z,j,t — 1) }
fi;

(a) (b)

Figure 6.6: Synchronizing aggregate communication routines.

Recall that the target code generated by the compiler is in the SPMD style. It
consists of a sequence of multiple loops, each with a sequence of computation and

communication segments as its loop body.

Assume that each computation segment is a single-entry single-exit segment (i.e.
there are no goto or break statements), and is generated by the compiler based on
semantics-preserving transformations which do not introduce deadlock. Provided that
the source program is correct and all the data that a computation segment requires
are available, then its execution always terminates. Therefore, we only need to check
the behavior of communication segments which ensure the availability of the data
required by the computation segments. We prove, by induction on the sequence of
communication segments, that the communication segments of a loop do not introduce

any deadlock.
Induction Hypothesis: The program is deadlock-free up to the (N — 1)th communi-
cation segment.
Proof:
By the assumption on the computation segment and the induction hypothesis,

each processor will reach the beginning of the Nth communication segment. Now we

discuss two cases:
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Case 1: The communication segment consists of a uniform communication routine.
Since such a communication routine is guarded only by space-invariant predicates, all
processors will execute the routine. Since the communication routine is assumed to
terminate, the entire segment terminates.

Case 2: The communication segment consists of an aggregate communication routine.
We assume that the message buffer is large enough to hold the entire data transmitted
in a message.> According to the arrangement of send and receive statements, every
processor executes a send statement before a receive statement. Since no deadlock
would occur due to buffer overflow, every processor entering the communication seg-
ment will eventually finish executing the send statement, and move on to the receive
statement. Finally, because the predicates for the send and receive statements match
with each other, every receive statement will terminate with received data. There-
fore, the Nth communication segment eventually terminates, and so the program also

terminates. o

6.6 Discussions

Synchronizing a uniform routine depends on computing. the inverse of a reference
pattern. In the event that the inverse is not computable at compile-time, our current
solution is to use an aggregate routine instead. Such a routine requires every member
in a well-defined subset of the network of processors (such as a column) to participate,
including those that do not really need the data. This simple solution may incur a

high cost in some cases. For example, suppose the reference pattern
a@(2, 1) = (c(ir),5) : D"

contains an indirect reference ¢(%,j) whose value cannot be determined at compile-
time. Our pattern-matching algorithm would match it with a Spread, but a Copy

would suffice if ¢(z, ) was known to be constant at compile-time.

3This assumption can be relaxed if we take buffer size into consideration when generating
communication.
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Asynchronous Communication An alternative approach is to generate a request
and receive pair which interrupts the processor holding the requested value. The

target program looks like

forall (p: E) :
if (i = 2) then {
request(idx_to_pid(c(3, 5), ), a);
receive(idx.to_pid(c(4, 1), 1), a);

}

The request and receive pair works as follows: Whenever there is a request coming
to a processor, an interrupt handler will send out the requested data if it is ready,
otherwise it will queue the request and send out the value when it becomes available.

However, this could be very slow due to frequent context switching.

User Directives Another alternative is to allow the user to provide enough in-
formation to generate efficient communication. It turns out that all that is needed
are two functions that are the inverses of each other for specifying the sender’s form
and the receiver’s form of a given reference pattern. Using the same example shown

above, the user can say the following:

Communication Forms:
T(z,5) = (c(3,4),5) = {(Z div 5,5)}
Tanv(i, j) = if (1 <= (n div j)) then
{(k,3) [i%j <=k <min(n + 1, +1)*j)};
The inverse T.inv can then be used to generate a send and receive pair for efficient
communication. The corresponding target code will look like

forall (p: E)
if (2 = 2) then
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send(idx_to_pid(T'(z, 1)));
if (p € {idx_to_pid(Tinv(s,5))}) then
receive(idx_to_pid(2, J ));



Chapter 7
Experiments

Several programs have been successfully compiled using the Crystal compiler. The
target machines include an Intel iPSC/1 (with 32 nodes), an Intel iPSC/2 (with
64 nodes), an NCUBE/7 (with 128 nodes) and an NCUBE/10 (with 512 nodes).
Results from these machines indicate that the performance of the compiler-generated
code is comparable to those of manually written ones. In this chapter, we present
some preliminary performance results and discuss some performance-related issues. In
Section 7.1 a brief description of the experimental compiler is given. The performance
study method is presented in Section 7.2. Finally, concrete benchmark results for a

group of applications are shown in Section 7.3.

7.1 The Experimental Compiler

The experimental Crystal compileris written in T [RA82,RAMSS], a dialect of scheme
[SS78]. Currently, the compiler can generate code for the iPSC/2 and nCUBE I
hypercubes. In both cases, the compiler generates a C program to be executed on
each node processor. The program is extended with calls to communication routines
that are preimplemented on the specific target machine.

To run the compiler, the user first invokes a T process, then loads the Crystal

141
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compiler into T. The compilation process is broken into eight steps: (1) parsing;
(2) preprocessing; (3) dependence analysis; (4) index domain alignment; (5) control
structure synthesis; (6) communication analysis; (7) intermediate code generation;
and (8) target code generation. The user can choose to compile a program step
by step, and examine the output of each step. All the intermediate results can be
directed to a log file.

The experimental Crystal compiler has many limitations. First of all, with respect
to the topics covered by this dissertation, the following features are not implemented:
while-active loop, code refinement, block-linking by independent distribution and by
replication. Secondly, the compiler requests extra information to be input by the user.
This compiler is written for an old version of Crystal, in which index domains are
not explicitly declared. Thus the user has to provide the index domain declaration
and data type information separately. Thirdly, the programming environment is very
primitive. There is no debugger or on-line help manual. Finally, the compiler is still

quite buggy.

7.2 ‘Performance Study Method

7.2.1 Performance Measurement

The performance of each compiler-generated program is measured by two related

parameters: elapsed time and speedup.

Elapsed Time (T) To measure the total elapsed time of a node program, timing
statements are inserted into the program generated by the compiler. The starting
point of the timing is the first executable statement in the node program, and the
ending point of the timing is after the last executable statement.

The elapsed-time of an application can be divided into three parts:

e T; — Time for loading data into the nodes.
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e T, — Time for the essential computation using only the local copy of the data

on each node. This is the time that would be needed on a uniprocessor.
e T. — Time for interprocessor communication.

- To measure these portions, we put timing statements around computation segments
and communication segments to get T, and T, and around initialization statements

to get T;.

Speedup (S) Speedup is defined as the ratio of the parallel execution time to the
sequential execution time. It shows how an application program scales with the size
of a parallel machine.

Let T denote the elapsed time of a program running on a single processor, and
T, be that on k processors. The speedup is computed as

S—ﬁ'

(7.1)

7.2.2 Analysis and Comparisons

The goal of the performance study is to see how realistic the compiler techniques and

the compiler organizations are. We have conducted the study in several directions.

Comparison with Hand-Written Programs To see how the compiler-generated
code performs comparing to hand-crafted code, for several applications, we have ob-
tained independently written, hand-crafted programs. The performances of two pro-
grams for the same application are measured undef the same set of parameters. The
results show that the performance of the compiler-generated code is within a factor

of 2 or 3 of that of the hand-crafted code.

Effects of Code Refinement To see where the slowdown factors are in the compiler-

generated code, with two applications we have conducted studies on the effects of code
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refinement. Several refinement techniques are manually introduced to the target pro-
gram and turned on one by one, and program performance is measured for each case.
The results show that introducing multiple-assignment and lifting predicates out of
loops are the two most effective refinements, and together they can reduce the elapsed

time of a program by more than 50%.

Comparison with Programs Using Asynchronous Communication The com-
munication routines in the compiler-generated programs are so-called loosely syn-
chronous routines, in which the sender and the receiver of a message must synchronize
with each other. Using loosely synchronous routines may sometimes cause delays or
extra messages. In Chapter 6 we discussed some alternatives to this approach. Among
them is the asynchronous communication approach, in which each message is sent out
at the time it is needed, and it will interrupt the receiver when it arrives. With one
application, we have conducted a comparative study of synchronous and asynchronous
communication. The results show that the overhead of asynchronous communication

is very high; hence, overall using loosely synchronous routines is still better.

7.3 Application Benchmarks

7.3.1 Matrix Multiplication

The Crystal program MM (Figure 2.1) computes the product of two n x n matrices,
a and b, using the standard matrix multiplication algorithm.

The target code for node processors generated by the compiler consists of three
parts: initialization, broadcast, and computation. Two partition parameters, p, and
P2, are input at runtime, representing a (p;, p2)-block layout strategy for both matrices
a and b. Initially, each processor holds two submatrices agup, and by, of size n/p; x
n/ps.

The program runs in two steps. In the first step, each processor spreads its agy, to
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Machine | Matriz Size | 1 2 4 8 |16 | 32 | 64
iPSC/1 50 x 50 94 | 46 | 25 (14}1.0(05] -
100 x 100 169.9 (36.4]18.0[9.0{48}|25]| -
NCUBE/7 50 x 50 6.3 13115 108}05}0.3]0.2

100 x 100 - - 112115932116 1.0

(a) Elapsed time on iPSC/1 and NCUBE/7 (in seconds).

Matriz Size 1 2 4 8 16 | 32 | 64
100 x100 | 108 | 5.5 | 2.7 | 1.4 { 0.7 {04 0.2
128 x 128 | 22.7 { 113 | 5.7 | 29 | 1.5 | 0.8] 0.5
200 x 200 | 89.3 | 43.7 | 21.71109 | 5.5 | 28|14
256 x 256 | 184.2 | 92.9 | 46.1 { 22.9 |11.4 | 5.7 3.0
300 x 300 |[299.1 | 148.4|73.9137.3118.4|9.4|4.8

(b) Elapsed time on iPSC/2 (in seconds).

P 1 2 4 8 16 | 32 | 64
Matriz Size | 100 | 141 | 200 | 283 | 400 | 566 | 800
T 10.8 1 15.3 | 21.7 | 31.3 | 43.8 | 62.7 | 87.7

(c) Elapsed time with fixed problem size per node on iPSC/2 (in seconds).

Table 7.1: Performance of the MM program.

processors in the same row of the processor network, and spreads its bgy, to processors
in the same column. These data spreadings are done by the communication primitive
Spread. Each processor ends up having ayow and beo, which contain n/p; rows of A
and n/p; columns of B, respectively. In the second step, each processor computes

the product of a;ow and beq.

Tables 7.1(a) and (c) and Figures 7.3.1(a) and (b) show the performance of the
compiler-generated program. The experimental data is obtained as follows: the prob-
lem size (i.e. matrix size) is first fixed. The same problem is then run on different

numbers of processors, from one to 64.
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Figure 7.1: Performance of the MM program.




7.3. APPLICATION BENCHMARKS 147
7.3.2 Gaussian Elimination with Partial Pivoting

The Crystal program Gauss (Figure 3.4 in Section 3.1) implements an algorithm for
Gaussian elimination with partial pivoting. The program iterates over the columns of
the input matrix. In iteration & a pivot element is chosen from the elements in column
k at or below the diagonal (say element (7, k)) and rows k and j are exchanged. Then,

the elements in the column below the diagonal are eliminated using the pivot element.

Tables 7.2(a)-(d) and Figures 7.2(a)—(b) show the performance of the compiler-
generated program. The experimental data is obtained as follows: the problem size
(i.e. matrix size) is first fixed. The same problem is then run on different numbers
of processors, from one to 64. When running on more than one processors, column

partition of the matrix is used.

The speedup of program Gauss (Figure 7.2(a)) is not terrific. As the number of
processors increases, the amount of computation in each processor decreases linearly.
The communication time, in spite of the decrease in the size of the messages, stays
roughly the same since the cost of broadcasting a message of some unit size increases
with the increasing number of participating processors. Consequently, the overhead
of communication (with respect to some unit computation) increases, and results in

a speedup that is far from being linear.

Tables 7.2(c) and 7.2(d) show the- effects of various code refinements that are
discussed in Chapter 3. The combined effect of these refinements reduces the total
elapsed time by more than half. To see how each refinement contributes to the
reduction, a control experiment is conducted. In the experiment, refinements are
turned on one by one, and timing is measured after each new refinement is added
in. The results (Table 7.2(d)) show that introducing multiple assignments and lifting

predicates out of loops are the two most important refinements.

Table 7.2(b) and Figure 7.2(b) contain the comparison of the performance of
the compiler-generated program Gauss and a hand-crafted program for the same

application on an iPSC/2 hypercube. Gauss is obtained with all the optimization
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N 1 2 4 8 16 | 32 | 64
100 54 | 3.2 | 22 | 1.8 { 1.7 [1.7] 1.8
128 {106 | 6.0 | 3.9 | 29 | 2.5 |25]2.5
200 38.3208|12.7| 81 | 6.3 [5.6] 5.4
256 | 77.8 | 41.4 | 23.4 | 14.8|10.7 [ 8.9 | 8.3

(a) Elapsed time on iPSC/2 (in seconds).

N Programs 1 2 4 8 16 | 32 64
Hand-Written | 0.51 | 0.41|0.32{0.34 [0.39 | - -
64 Compiler 1.47 {0.96 | 0.72 | 0.63 | 0.62 | - -
Ratio 29 123|122 |19]16 | - -
Hand-Written | 3.82 | 2.72{1.63 | 1.14 | 1.07 [ 1.11 | 1.21
128 Compiler 10.08 | 5.75 | 3.64 | 2.65 | 2.21 | 2.05 | 2.11
Ratio 26 |21 |22 (232119 ] 17

(b) Comparisons of elapsed time on iPSC/2 (in seconds).

Programs

Comopiler code, no refinement

Compiler code, with refinement

Hand-written code

Time | Ratio
17.0 4.9
8.2 2.3
3.5 1

(c) Effects of code refinement on iPSC/2. M = 256 x 256, P = 32(1 x 32).

Code Refinement Time | Normalized
None 17.0 100 %
Introduce Multi-Assigns | 12.5 73.5 %
Lift Preds out of Loops 8.6 50.6 %
Eliminate Sub-Exprs 8.5 50.0 %
Reduce Buffer Copying 8.2 48.2 %

(d) Effect of each refinement step.

Table 7.2: Performance of the Gauss program.
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Speedup
12 4 —- 100 x 100
w——x 128 x 128
10 +— 200 x 200
+—— 256 x 256
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(a) Speedup.
Elapsed
Time
(sec)
12 - —o 64 x 64, Compiler
»-x 64 x 64, Hand-Written
10 4 —o 128 x 128, Compiler

+-—+ 128 x 128, Hand-Written

0 l-“T_“T-“T“-I T P
1 2 4 8 16 32 64  Processors

(b) Comparisons of elapsed time on iPSC/2.

Figure 7.2: Performance of the Gauss program.
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switches turned on. The hand-crafted program is written directly by an experienced
programmer familiar with the iPSC/2 system. Figures given in the table indicate the
total elapsed time in seconds of a program running on different numbers of processors,
with a fixed problem size. '

A factor of 2 to 3 inefficiency in the compiler generated program can be attributed
to two reasons. One is that the compiler-generated program is more flexible and
works for different data-layout strategies (e.g. row-, column-, or block-partition). The
hand-crafted version, however, is optimized for a particular partitioning strategy. The
compiler can be improved to produce more efficient code in this respect by performing
partial evaluating and optimizing the target code once a specific partitioning strategy
is chosen. The other factor is in the optimization of the sequential code. The hand-
crafted program uses pointers extensively while the compiler-generated code tends to
do more data copying. This indicates that a parallelizing compiler must also be good

at optimizing sequential code.

7.3.3 Connected Components of a Graph

The Crystal program Ccomp (Figure 5.7 in Chapter 5) implements the mesh-of-trees
connected components algorithm [Ull84](pages 160-164). The input to the algorithm
is the adjacency matrix of a directed graph, and the output is an assignment of group
numbers to the nodes in the graph. The overall outline of the algorithm is as follows.
Initially each node is in a group by itself. Repeatedly, each group g finds the lowest-
number group h to which it is adjacent, in the sense that there is an edge from some
node in g to some node of h. If & is lower than g, ¢ is merged into &, by giving the
nodes of g the same number as h. After log(n) iterations, every group is a connected
component by itself.

The Crystal program consists of four data fields: comp(v,?) represents the compo-
nent of node v at stage i, which we take to be the smallest index of any node in that

component; min_nbr(v,:) represents the minimum value of comp(u,t) over all nodes
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u adjacent to v; min_comp(v,i) represents the minimum valué of comp(u,:) over all
nodes u adjacent to component v at stage i, including vertex v itself; and finally,
nezt(v,i,logn) represents the transitive closure of min_comp(v, i), i.e. the minimum
value of comp(u,1) over all components reachable from v at stage ; we know this is

computable in at most log(n) steps, and hence value of the third index j.

Tables 7.3(a)-(c) and Figures 7.3.3(a)-(b) show the performance of the compiler-
generated code. Table 7.3(a) lists the elapsed time of the program with three sets of
data. In each case, a random graph with the specified features is generated. Since
the program is very communication-bounded, it does not have a very good speedup.

In fact, in the first two cases, we observe some “speed-down.”

Table 7.3(b) and Figure 7.3.3(a) show the detailed timing results. In all three
cases, the computation time T, decreases linearly with the increase in the number
of processors. However, the communication time T, which represen{:s the time the
~ program spends on several broadcasting routines, increases with the number of pro-

CEssors.

The communication required by this algorithm does not have regular patterns.
Using loosely synchronous routines to implement them, as the compiler does, causes
extra data to be passed around in the network. To confirm our belief that loosely
synchronous routines may behave just as well as other alternatives, we compared the
performance of the compiler generated code with that of an independently written
program using asynchronous communication (i.e. interruptions and handlers). The
results are shown in Table 7.3(c) and Figure 7.3.3(b). The overhead associated with
the asynchronous communication is very high, making the overall performance of
the asynchronous program unsatisfying. When running with large numbers of pro-
cessors, the asynchronous program encounters some unpredictable communication

errors, which cause the program to hang. A detailed study on this subject can be

found in [Hu91].
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Parameters 1 2 4 8 16 | 32 | 64

V =64,F =100 | 0.26 | 0.19 | 0.16 { 0.15 | 0.15 | 0.16 | 0.18

V =128, F =200 | 1.03 { 0.64 | 0.46 | 0.36 | 0.33 | 0.33 | 0.34

V =256,FE =200 |4.34 |239| 1.44 | 1.00 | 0.79 | 0.69 | 0.65

(a) Elapsed time (in seconds).

Parameters | Timing 1 2 4 8{ 16| 32| 64
V = 64, T, 203 | 102 | 56| 30| 15} 11 6
E =100 T, 55 91| 104 | 117 | 137 | 152 | 172
V =128, T, 879 | 447|225 |115| 59| 33| 18
E =200 T. 152 | 188 | 232 | 249 | 273 | 295 | 320

'V =256, T, 3954 | 1980 | 985 | 493 | 249 | 128 | 67
E =200 T. 388 | 408 | 455 | 510 | 541 | 557 | 586

(b) Classified timings (in milliseconds).

Parameters | Program | 1 2 4 8 16 | 32 | 64
V =64, Synch. |0.26 | 0.19 { 0.16 | 0.15 | 0.15 | 0.16 | 0.18
E =100 | Asynch. | 0.34]0.30 {0.24]0.22]0.290.29 | —
V =128, Synch. | 1.03 | 0.64 | 0.46 | 0.36 | 0.33 | 0.33 | 0.34
E =200 | Asynch. [145[097 069|055 — | — | —
V = 256, Synch. | 4.34|2.39|1.44|1.00 | 0.79 | 0.69 | 0.65
E =200 | Asynch. [6.24 392|250 {150 — | — | —

c) Comparisons of synch.- and asynch.-comm. (in seconds).
p

Table 7.3: Performance of the Ccomp program on iPSC/2.
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Time (ms)
4000  q — T (V =64, E = 100)
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1000 -
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(a) Classified timings.
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Time
(sec) .
64" — Tymern (V =64, E =100)
; &% lasynch
5 7 o Typnen (V = 128, E = 200)
4 ."-. ¥eeoo® | asynch
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3 4 09 [ asynch

-
-

64  Processors

(b) Comparisons of synchronous and asynchronous code.

Figure 7.3: Performance of the Ccomp program.
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7.3.4 A Financial Application

The Crystal program Finance implements a financial application for evaluating rhortga.ge-
backed securities. The algorithm is designed to determine the “fair” value of a pool
of mortgages for investors who collectively share the uncertainty in interest rates and
the risk of prepayments. The method of analyzing a pool of mortgages involves the
simulation of the beha,vior of uncertain monthly interest rates for thirty years and
the corresponding cash flows generated by a pool of mortgages for each interest rate

scenario.

This program is highly computation-intensive, but also highly parallelizable. The
C code generated by the Crystal compiler contains several reduction operations for
computing averages and covariances. Each reduction operation collects and combines
results from a set of nodes to a single node. For this application, due to its large size
(several Mbytes) the historical interest rates are stored on the disk and, at execution
time, read into main memory on the host and distributed to the nodes so that each

node gets a portion of the data. The host program is currently written manually.

The speedup results of the compiled parallel C code are given in the tables. Ta-
ble 7.4(a) summarizes the performance figures for the 512 node, 512 Kbyte memory
per node NCUBE/10 at Caltech, and Table 7.4(b) for the 64 node, 4Mbyte memory

per node Intel iPSC/2 with floating point unit at Yale. All times are in seconds.

The tables show two different definitions for speedup calculation. Both speedup
figures are calculated according to Equation 7.1. However, in calculating Sy, the par-
allel execution time Ty, includes both the computation time and the data loading
time. Everything except those portions of the program that perform essential com-
putation is considered as overhead, and we are ignoring the reduction time required
in a uniprocessor implementation. This definition of speedup was chosen because the
memory limitation on our processors prevents us from running the entire program on
one processor, which is required for the conventional definition of speedup. In shared-

memory multiprocessor machines, using only one processor gives that processor the
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PI T (T T, T)] 5 (5
512 | 108.8 (37.0, 134.3, 27.5) | 345.9 (419.2)
256 | 191.1 (31.5, 139.8, 19.8) | 187.3 (224.3)
128 | 186.6 (28.8, 147.5, 10.3) | 101.2 (119.6)

(a) Scaled-speedups for fixed problem size per node on NCUBE/10.

P T (T‘n Tpa TC) Sl (SZ)
64 | 1288 (14.3, 108.9, 55)|54.1 (60.8)
32 [ 126.3 (12.5, 109.5, 4.2)|27.8 (30.8)
16 | 122.7 (9.1, 110.2, 3.3) [ 144 (15.5)

(b) Scaled-speedups for fixed problem size per node on iPSC/2.

Table 7.4: Performance of the Finance program.

whole memory, but for distributed-memory machines, turning the other processors
off results in their memory being inaccessible.

The second speedup figure (S2) gives a more insightful and more optimistic view of
the performance and is calculated by excluding data loading time from Tj.,. It is our
observation that for small problem sizes (e.g. two-year simulations), the data loading
time dominates for runs with large numbers of processing elements. However, for
large problem sizes (30-year simulations for the cases in the tables), the data loading

time does not play a big role in total execution time.
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' Chapter 8

Conclusions

8.1 Summary of Contributions

This dissertation has made the following major contributions to the field of compiling

high-level languages to distributed-memory machines:

- 1. It provides an elegant formulation of and a practical solution to the index do-
main alignment problem, and it recognizes that domain alignment is a necessary

step preceding data layout in a compiler for distributed-memory machines.

2. It provides a novel compilation technique for generating communication state-
ments. Using this technique, the compiler can generate not only the simple
send-and-receive commands, but also more sophisticated routines like shifting,

broadcasting and reduction, thus making communication more efficient.

3. It provides a novel algorithm for transforming a functional program into an

explicit parallel program.

4. It presents a complete compiler design for a high-level language for distributed-
memory machines. The compilation model is based on source-level program
transformations and optimizations, and can be adapted to different source lan-

guages and different target machines.

157
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5. It demonstrates, through the implementation of an experimental compiler, that
both the individual compilation techniques and the overall compilation design

are practically sound.

Array allocation often has a critical impact on the overall performance of a pro-
gram on a distributed-memory machine. The index domain alignment technique
presented in this dissertation finds a set of alignment functions that map the index
domains of a set of arrays into a common index domain. The resulting alignment
minimizes data movements that are caused by the cross-references between the ar-
rays. Our technique does not depend on a particular architecture, but on a class of
machines that are modeled by a reference metric. The evolution of machines may
change the metric somewhat, but the methodology will still apply.

Automatic generation of interprocessor communication is one of the most critical
issues in compiling a high-level language for a distributed-memory machine. Our
approach to the problem is based on analyzing program references and matching
each reference with the most efficient communication routine. We have also developed
algorithms for scheduling and synchronizing communication routines, which ensure
that the compiler-generated communication preserves the data dependences of the
original program and is deadlock-free.

Deriving parallel control structures from a functional program is a fundamental
compilation issue. We have formulated the problem in terms of dependence vectors
and dependence graphs and developed a control structure synthesis algorithm. Based
on data dependence information, the algorithm automatically transforms a functional
program into an explicit parallel program with various loop constructs.

We have designed a compiler model that uses all the techniques mentioned above.
A compilation process consists of a sequence of program transformations: from a
Crystal program to an aligned program, to a shared-memory program, to a parti-
tioned program, and finally, to a message-passing program. We have also developed
an optimization framework based on an abstract target machine and communication

metrics, which consists of two levels of optimizations: intra-program-block (local) and
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inter-program-block (global). With this framework, a compiler can pursue optimfza—
tions in a systematic way, rationally adjusting and balancing conflicting goals. |
Compilation models and compilation techniques are not useful if they are not
practical. We have implemented an experimental Crystal compiler for hypercube ma-
chines based on our compilation model. The compilation techniques presented in this
dissertation have been incorporated into the compiler. The preliminary results that
we have obtained on a set of application programs, ranging from Gaussian elimina-
tion to a financial application, show that the compiler is able to generate code with
performance within a factor of 1.7 to 2.8 of that of the corresponding hand-crafted

programs.

8.2 Directions for Future 'Research

The work reported in this dissertation can be extended in many different directions.

The following are some suggestions for future research.

Techniques for more dynamic problems We have shown that by restricting the
arrays in the source program to be regular and static, the compiler is able to derive
useful information from the program and generate efficient target code. For applica-
tions that need to use irregular data structures such as sparse matrices, compile-time
analysis alone is no longer sufficient. Various runtime analysis techniques have been
developed to handle dynamic problems (for instance, [SCMB90,KMSB90b]). More
work needs to be done to see how to combine both compiler-time techniques and

runtime techniques into a coherent framework.

User-compiler interaction Many large scientific applications require large pro-
grams with complicated structures. For these programs, using dependence-analysis
based, fully-automatic techniques alone, the compiler may not be able to generate the

most efficient code. A better approach is to provide tools for the user to interact with
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the compiler, thus allowing the user to help the compiler make better decisions. With
respect to the Crystal system, the user can provide concrete alignment functions,

data layout strategies, communication forms, and so on.

Production-quality Crystal compiler The current experimental Crystal com-
piler has many limitations due to the shortage of manpower. Every part could be fur-
ther improved. For instance, dependence analysis could be sharpened to handle con-
ditionals; alignment techniques could be extended to cover more types of alignments;
linear transformations could be added to the control structure synthesis module, and
so on. In addition, new parts such as a performance estimator based on program
profiling ahd a module for optimizing memory usage could also be developed. The
Crystal group at Yale is now working towards building a production-quality Crystal

compiler.

Applying the techniques to other languages The compilation techniques pre-
sented in this dissertation, though originally developed for Crystal, should be adapt-
able to other data-parallel languages such as Fortran 90. The array features of For-
tran 90 are very suitable for our alignment techniques and communication generation
techniques. Furthermore, the structure of the Crystal compiler has nice intermodule

interfaces, making it very convenient to port to other source languages.
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Appendix A

A Compiler-Generated Program

Matrix Multiplication

/*

** Matrix Multiplication, Version mm2.1.
**x Compiler generated.

** (The result() routine is hand-wrriten.)
*%

*/

/*

** Node Program:
*/

#include <math.h>
#include COMP_HDR

#define n 64

int my_host,my_node,my_pid,rcnt,rnode,rpid,dest,num_nodes;
int cnt,type,size,unit_sz,bufsizel,bufsize2,param(40];

int i,j,10,jj0,1i1,jj1,12,32,120,j20;

int imin, jmin, imax, jmax;

int ia,ja,i_bz,j_bz,ni,nj;

float #**a,**b, **c;

- float **a_gl,**b_gi;

void *sendbuf,*recvbuf;

int *ibufil,*ibuf2;

float *bufi,*buf2;

167



168 APPENDIX A.

main()

{

crecv(INIT,param,40);
num_nodes = param[0];
param[1];
param[2];

ni
nj

init_params();

if (my_node>=num_nodes)
exit();

{
compute_a();
comm_a1();

3

{
compute_b();
comm_b1();

3

compute_c();
result();

csend (DONE,param,0,my_host,host_pid);

init_params()

{

my_pid = mypid();

my_node = mynode();

my_host = myhost();

unit_sz = sizeof(float);

imin = 0;

imax = (n-1);

jmin = O3

jmax = (n-1);

i_bz = (((imax=-imin) /ni) +1);

j-bz = (((jmax-jmin) /nj) +1);

ia
ja

(my_node/nj);
(my_node¥nj);

A COMPILER-GENERATED PROGRAM
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i0 = 0;
jjo = 0;
il = block_ubound(imax,imin,ia,i_bz,ni,0);

jj1 = block_ubound(jmax,jmin,ja,j_bz,nj,0);
120 = global_idx(imax,imin,ia,i_bz,ni,i0);
j20 = global_idx(jmax,jmin,ja,j_bz,nj,jjo);

a = alloc_float_2d_array(i_bz,j_bz);
b = alloc_float_2d_array(i_bz,j_bz);
¢ = alloc_float_2d_array(i_bz,j_bz);

a_gl = alloc_float_2d_array(i_bz, (jmax+1));
b_gl = alloc_float_2d_array((imax+1),j_bz);
bufsizel = (i_bz*j_bz);

bufsize2 = max((i_bz* (j_bz*nj)),((i_bz#*ni) *j_bz));
sendbuf = alloc_float_id_array(bufsizel);

recvbuf = alloc_float_id_array(bufsize2);

bufl = sendbuf;

buf2 = recvbuf;

ibufl = sendbuf;

ibuf2 = recvbuf;

}

compute_a()
{

int 1,j;

{
i2 = 120;
for ((i=i0); (i<i1); i++,i2+4)
{
j2 = j20;
for ((j=jjO); (3<jji); j++,j2++)
if (i2>=j2)
aliJ[j] = 1.0;
else

alilfj]

0.0;
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int i,j;
{
cnt = 0;

for ((j=jj0); (j<j_bz); j++)
for ((i=i0); (i<i_bz); i++)
bufilent++] = alil[j];
float_row_bcast(bufl,buf2,cnt,nj,my_node,my_pid);

¢nt = 0;
for ((j=jmin); (j<=jmax); j++)
{

if (is_dummy_idx(jmax, jmin,j_bz,nj,j) ==1)
cnt = (cnt+i_bz);

for ((i=i0); (i<i_bz); i++)
a_g1[i1[j]1 = buf2[cnt++];
}
}
}

compute_b()
{

int i,3;

i2 = i20;

for ((i=i0); (i<il); i++,12++)
{
j2 = j20;
for ((j=jjo); (§<jj1); j++,j2++)

b[il[§] = 10.0%i2+j2;
}
}

comm_b1()
{

int 1i,j;

{
cnt = 0;
for ((i=i0); (i<i_bz); i++)

for ((3j=3jjO); (j<j.bz); j++)

bufilent++] = b[i1[j]1;

float_col_bcast(bufl,buf2,cnt,nj,ni,my_node,my_pid);
cnt = 0;
for ((i=imin); (i<=imax); i++)



{

it (is_dummy_idx(imax,imin,i_bz,ni,i) ==1)

cnt = (ent+j_bz);

for ((j=jjo); (j<j_bz); j++)
b_gi[il[j] = buf2[cnt++];
}
}
}

compute_c()

{

int i,j;

for ((i=i0); (i<i1); i++)
for ((j=3jjo0); (j<jj1); j++)
{
int k;

c¢[il[j] = o;
tor ((k=0); (k<n); k++)

clil[j] = (elil[j] + (a_gil[iJ[x] * b_g1[x1[j1));

}

result()
{

int i,j;

{

for ((i=10); (i<i1); i++)
{
printf("**N%d: ", my_node);
for ((3=3j3j0); (j<jji); j++)

printf("%4.0£", c[il[j]1);

printf("\n");
}
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