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1. Introduction.

In this paper we consider a particular implemen-
tation of the finite element procedure for approximating

the solution u(x,y) of the boundary value problem
t.1  -b [p(x,y)Du] - Dy[q(x,y)Dyu] + c(x,7)u = £(x,y)

for all (x,y) € S = {(x,y) | 0 <x, y <1}, and

i

(1.2) u(x,y) = 0

for all (x,y) € 39S = the boundary of S . We assume that
the functions p(x,y) , q(x,y) , c(x,y) , and f(x,y) are
smooth and that there exists a positive constant <Yy such

that

(1.3) Y £ p(xy) » Y £ a(x,y) , 0 5 c(xy)

for all (x,y) € S .
Our finite element procedure uses basis functions

consisting of piecewise bicubic Hermite polynomials defined

* This research was supported in part by the Office of
Naval Research, N0014-67-A-0097-0016.

*% Department of Computer Science, Yale University.
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on a mesh which is refined (in a well-defined manner) in a
neighborhood of each corner. The coefficients and right-
hand side of the resulting linear algebraic system of
equations involve integrals (over two-dimensional rectangu-
lar elements) which are approximated by the local nine-
point product Gaussian quadrature scheme (the tensor
product of the one-dimensional three-point Gaussian
quadrature schemes). Finally, the approximate linear
algebraic system of equations is symmetric and positive
definite and is solved by either the band Cholesky or
profile Cholesky decomposition procedure.

In sections 2 and 3, we will give theoretical
justifications for our procedure. We will show that
asymptotically our procedure is far more efficient than
the combination of the five-point central difference
approximation and SOR (successive overrelaxation) cf. [2].
Moreover, for constant coefficient problems, i.e., p(x,y),
q(x,y) , and c(x,y) are constants in S , it is
asymptotically more efficient than the five-point central
difference approximation coupled with the fast direct
methods, cf. [2]. 1In fact, a version of our procedure
with a slightly less efficient quadrature scheme has been
shown to be asymptotically optimal in a well-defined sense.
In section 4, we will present the results of some numerical
experiments which demonstrate the effectiveness of our
procedure for even modest sized problems. The results of
this paper can be directly generalized to other boundary
value problems and other piecewise polynomial basis

functions. The complete details will be given elsewhere.
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We introduce the tensor product mesh p = AX X Ay

where A_ : 0 =x, <%, < ... <x_ =1 and
X 0 1 n

Ay : 0= Yo $¥p S eer <V, < 1 . Moreover, for each
l1<ig<n-1, we define the basis functions

-
_z(xi—xi—l)_3(x_xi-l)
30wy ) Gexy_ D7,

x € [x;_;5x;1

L&) 4,00 =420, %) T Gemx))

- 3(xi+l—x_i)_2(x—xi)2 +1 ,
x € [xpoxg g1
o , x € [O,Xi_l] (8] [Xi+1’l] ,
|

r

(xi-xi_l)-z(x—xi_l)z(x-xi) ,

x € [Xi—l’xi] ,

i

(1.5) g 00 = G ) ) G0

i
x € [xi’xi+1] ,
0 ’ X € [O’Xi_l] U [Xi+l’l] b
(xzzx(xl—x)z . X € [O,X]_] s
(1.6) go(x) = <
o , X € [Xl’l] )
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and
(1-x__,) 2 (x=x ;) 2(x-1)

(1.7) gn(x) = X € [xn_l,l] s
o , X € [O’Xn-I] .

Similarly, we define ¢i(y) » 1 <i<n-1, and €i(y) s
0 £isn. Our piecewise bicubic Hermite basis functions
are defined to be '{¢i(x)¢j(y) , ¢i(x)Ek(y) , EQ(X)¢j(Y) s
El(x)gk(Y) |'1 <i,jsn-1 and 0<k, £ <n}.

There are 4n2 such basis functions. Each
interior mesh point (xi,yj) » 1 i, j<n-1, has
four basis functions associated with it; each corner mesh
point has one basis function associated with it; and each
of the other boundary mesh points has two basis functions
associated with it.

If we consecutively order the basis functions
associated with each mesh point of p and consecutively
order the mesh points along rows, we may rename our basis
functions as {Bi(x,y) | 1 £1i<4n° = m} and seek our

approximation of the form

-

m
w(x,y) = Z 8,8, (x,¥)

i=1

We determine the vector of coefficients B € R" by means
of the Rayleigh-Ritz-Galerkin procedure, cf. [12]. This
leads to a characterization of B as the solution of the

m X m linear system

(1.8) AB =k
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1 (1
A= [a,.] = f f {p(x,y)DxBliBj
oo

+ q(x,y)DyBiDyBj + c(x,y)BiBj }dxdy

and

11 '
f f f(x,y)Bi dxdy .
o“‘o

k = [ki]

The matrix A 1is symmetric, positive definite and hence
the linear system has a unique solution.

Because of the local nature of the basis
functions, each entry of A and k is the sum of
integrals over at most four contiguous elements. In
place of (1.8), we consider the approximate system

(1.9) A=k ,

where the entries of A and k are obtained from the
corresponding entries of A and k by using the nine-
point product Gaussian quadrature scheme over each
element [xi’xi+1] x [yj,yj+1] ,0<i, jsn-1. To
be precise, every integral of the form

f Y541 f Xi+1

Yj Xy

g(x,y)dxdy

is approximated by
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(3417% )(YJ+]_ Z Z

k=1 =1

1 1 1
g(f[xi+l—xi]ek + 2[ i+ ]’2[y3+1 Yj]e2 + E{yj+l+yj])

where

(1.10) Wy =Wy = 5/9 , w, = 8/9 ,

and

(1.11) el = -0.,774597 , 62 =0, 63 = 0.774597

We will show in section 2 that the matrix A is symmetric
positive definite and hence that (1.9) has akunique
solution.

The matrix A is a band matrix with band width
4(n + 2) . We solve (1.9) by the profile Cholesky

decomposition procedure.

2. The asymptotic rate of convergence.

In this section we study the asymptotic rate of
convergence of the approximation u generated by our
finite element procedure to the solution u of the
boundary value problem (1.1)-(1.2).

The standard analysis of the finite element
method shows that the L2 error in the finite element
approximation is of the same order as the L2 error in
the best approximation to the solution u from the sub-

space, or equivalently in the interpolant. Thus, for
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piecewise bicubic Hermite polynomials:
Theorem (cf. [12]): If u € WOP(S) (1 <k < 4,
1 <p <2), then

=t+1-(2
lu - un”0,2 < K (2/p)

where h = max (x. 141 " Xy Yy

i,3
In particular, if u € W4’2(S) » as is generally assumed

J l—yj)‘

in the literature, then |lu - un”O 2 =()(ﬁ4) . However,
b

even for Poisson's equation
Au=f in S, u=0 on 23S |,

the solution is likely to have logarithmic singularities
in the second derivative at each corner (cf. [9], [13]).
In such a case, u € W3’2 £(s) whence [|u - u”2 ()('-3-€
for any € > 0 , but u € W3’ (S) whence

[u - un”2 #()(H ) ; convergence is no better than third
order (see Table I).

Several ideas have been proposed to overcome this
loss of accuracy. Babuska [1] has given an overlay
technique to locally refine the mesh near each corner, and
Fix [4] and Schultz [11] have suggested adding singular
corner solutions to the piecewise polynomial basis. But
the implementation of these algorithms is rather compli-
cated, the approximate quadrature made more difficult, and
the condition number and nonzero structure of the finite
element matrix greatly increased. Instead, we use a non-
uniform tensor product mesh appropriately graded near the

corners which does not create implementation problems
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versus using a uniform mesh. Under mild assumptions on the
rate of growth of high derivatives of the solution u near
the corners, fourth order accuracy is restored. We state
our result for the case where there is only one singular

corner:

Theorem: Let r = sz + y2 and assume that
||rk+€—2Dku|b 5 S K for 2 sk g4 (e >0). Then for the
b

mesh p = A x A with
X y

o) n

we have

1\4-
Il = ulo, 2 sk(D)° .

The condition number K(A) of the finite

element matrix A 1is not greatly increased:

Theorem: If the coordinate basis functionms ¢i(x) ,

Ei(x) s ¢i(y) s Ei(y) are locally orthonormalized such
that
1 1 1
2 2
¢, =1, f g, =1, f $.8, =0
fO i o I g 11

then the condition number of the Gram matrix G = [gij]

= ffs Bi(x,y)Bj(X,Y)dXdY

is bounded independent of the mesh. Consequently,

K(4) < Kg'z
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where h = ?1?(xi+1—xi,yj+l—yj) .
b ]
Thus for the uniform mesh, K(A) ~((n

for the graded mesh, K(A)’M()(ns) .

2) s whereas
The remaining question to be answered is how to
compute the integrals appearing in the coefficients of the
finite element matrix A and the right-hand side k .
The integrals must be done numerically but the quadrature
rule must be efficient and the approximate finite element
matrix A positive definite, yet fourth order convergence
must be maintained. Our procedure uses the nine-point

product Gaussian quadrature scheme.
Theorem: The matrix A 1is positive definite.

Proof: Let Q denote the approximate quadrature operator.
Given B # 6, let
4n2
w(x,y) = Z B;B; (xy) .
i=1

Then
8" - e + a0 @’ + &) 3 am? + 0w

If §?A§_=<b , then the piecewise bicubic Hermite poly-
nomials wa N Dyw vanish at the nine quadrature points
in each mesh element. From this and the fact that w
vanishes on 39S , we conclude that w =0 , a

contradiction.
Q.E.D.
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A nine point quadrature seems to be minimal; any
lower degree scheme experimentally seems not to preserve
Yet our scheme maintains fourth

the high order accuracy.
following Fix [5] we introduce the

order convergence:
approximate bilinear forms

a(un,vn) = Q(pruanvn + qDyunDyVn + Cunvn) ’

B(f,Vn) = Q(fvn) s
= E. if and only if

™

and note that A

a(u v ) = B(f,vn)

in the subspace, where
2
4n

un = Z BiBi .

i=1

for all v
n

The form é(un,un) is strongly coercive
~ 2
>3
a(vn,vn) z c”Vn"1,2

and
é(un—ﬁ ,un—ﬁn) = {5(un,un—ﬁn) - a(un,u —ﬁn)}
+ {b(f,u -u ) - E(f,un—ﬁn)}

SO(n_4)u“n - l~1n”1,2

at least for a wide class of nonuniform meshes. Thus

- i -4
oy = Gl p < lluy = dJl; 5, ~O@™ .
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The result is not true for an arbitrary nonuniform mesh.

3. Operation counts.

In this section, we give operation counts for our
finite element procedure. In particular, we analyze the
number of arithmetic operations needed (1) to generate the
finite element matrix A and the right-hand side k by
numerical quadrature and (2) to solve the resulting linear
system AE = E_. Throughout this section we should keep
in mind the comparable results for the five-point central
difference scheme coupled with either SOR (for variable
coefficient problems) or the fast direct methods (for
constant coefficient problems). By the results of section
2 we know that the number N of mesh points in each
coordinate for the five-point difference scheme is
comparable to n2 for comparable accuracies.

We consider the quadratures first. The quadra-
ture question is particularly important since the quality
nf the implementation of this part of the procedure can
easily make a difference of a factor of forty or fifty in
the number of arithmetic operations. By symmetry we need
compute at most 80n2 nonzero entries in A and each
such entry is on the average the sum of quadratures over
at most two elements. Hence, it suffices to bound the
number of arithmetic operations needed for the quadratures
over the individual eléments. For each fixed element,
[xi,xi+1] x [yj,yj+l] > let o (x) = ¢, (x) , a, (x) = & (x),
ag(x) = 4000 5 0 (x) = & (), ag(y) = 9.(9)
ag (y) ij(y) > a,(y) = ¢j+l(y) » and  ag(y) £j+l(y) .

1
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Then, by symmetry, the quantities which we must compute are
1) a £s T8 55stszg8 .
(3.1) a(usat,araz) s, lsssrs<th and t<zg<8

To compute the quantities (3.1), we first compute for each
1<2 <3 and 1<s <srx<é

. - X,
X1+l i

2

n

X

p
(3.2) wsr(ij)

] Mw

p(xlk’yjl)D ¢ (xlk)Dxar(xik) ’

q - [ i+l i
(3.3) wsr(yjl) = N X
3
x Z kq(xik,yﬂ)a (e, ()
k=1
and
x - x
c - i+l i
(3.4) Wsr(le) = ————;;———- x
3
x Z W (o yyag Gy o () s
k=1
_1
where Ry = E{xi+l - X ]6 + [x i+1 + x.] s, 1lsksg3,

|_.|

and vy, o F [ J+l y ]6 + 2[yJ+l + y 1 . The computa—
-tlons requ1re approx1mately a total of 3(10-3-3- 2)n =

540n arithmetic operations for all the elements, where
we assume that we have already done the ()(n) operations

needed to evaluate the quantities
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*3417%4 *3417%
-——7;——— kaxas(xik)Dxar(xik) ———;———' L (X )a (Xik)

lss<sr<é4d, 1<kg3, 1<cig<n-1.

Finally we compute

- (Vipg — 79
a(a_a 50, 0 ) X
s t 2

<) GRS )6 )0,

gl e (7,00 (7,0}

which requires 10¢10+3+4 = 1200 arithmetic operations for
each element or 1200n2 arithmetic operations for all the
elements. Likewise, the number of operations needed to
compute k is bounded by 180n2 . Thus, the total of all
arithmetic operations to do the quadratures is bounded by
2000n2 .

Using the results of George, cf. [7], the number
of arithmetic operations for the profile Cholesky decompo-
sition procedure is bounded by the number for the band
Cholesky decomposition procedure which in turn is bounded

by ~ (4n2)(4n)2 = 64n4 . Thus we have the following

table:
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Finite Element Procedure

operations for operations for
n | quadrature = 2000n2 | solution = 64n" total
5 50,000 38,000 88,000
10 200,000 640,000 840,000
20 800,000 10,240,000 11,040,000

We see that for coarse meshes most of the operations are
used for the quadratures while for moderate or fine meshes
most of the operations are used for solving the linear
system. To give comparable work estimates for the five-
point difference scheme and SOR, we assume perfect knowl-
edge of the optimal relaxation factor and that we iterate

until the initial error is reduced by a factor of N2

Comparable Five-Point Central Difference Schemes

N afnz SORT(%-N3log2N) | fast methods (%-N210g2§2
32 100,000+ 23,040
128 9,000,000+ 504,000
512 1,000,000,000+ 16,000,000

cf. [2].

We can see from these figures that our finite
element algorithm is much more efficient than the five-
point difference scheme and SOR even for coarse meshes and
that the factor of improvement becomes larger as the mesh

becomes finer.

Better results can be obtained using SSOR, cf. [14].
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Moreover, for constant coefficient problems, we
need do only the quadratures to form E_ and we have
essentially only the arithmetic operations for solving the
system. Hence, our finite element algorithm is more
efficient than the fast methods for fine meshes and the
factor of improvement becomes larger as the mesh becomes
finer.

We should point out that the quadrature work
estimates appear to be relatively sharp. However, we can
substantially improve the solution work estimates by
improving our direct method; e.g., by using George's
nested ordering scheme, cf. [8], or by using a fast

iterative method, cf. [6].

4. Numerical results.

In this section we present thé results of some
numerical experiments which illustrate the preceding
theoretical results. All computations were performed on
a PDP-10 in single precision arithmetic (27 bit mantissa).

Let S denote the unit square [0,1] x [0,1] in
the (x,y)-plane with boundary 3S . We introduce the

tensor product mesh o
p=AxAj3; A:0=x%x,<x, < .0.<x =1

where

g A
_ 12k _ _ n+ 1
R e A T

For B =1, p is the uniform n x n mesh; for B =

Njw

p 1is the graded mesh referred to in §2. Our basis
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functions are the piecewise bicubic Hermite polynomials
described in §1. The integrals in the finite element
matrix A and the right-hand side E  were computed
numerically using the nine-point Gaussian quadrature scheme
on each mesh element as described in §1. The system of
linear equations AB = E_ were solved using a band Cholesky
routine with the natural ordering of unknowns. The L2
error estimates were computed numerically using the 25-
point product Gaussian quadrature scheme on each mesh
element; the L error estimate is the maximum error at
the quadrature points. The estimated rate of convergence
is given by

Lo ln(sn/en_l)

n 2n(n/(n-1))

where € is the estimated error for an n X n mesh.

Our first example is the Poisson equation:
Au=1 din S; u=0 on 23S .

There is no closed form representation for the solutionT
but the second derivatives are known to have logarithmic
singularities at each corner. Thus we would expect
ﬁ:CXn_B) convergence using a uniform mesh (see Table I).
By grading the mesh near the corners (B = %) ,» we improve

the convergence to ﬂa()(n_4) (see Table II).

A numerical solution was generated by the method of
particular solutions (cf. [3], [10]). Using singular
particular solutions and taking advantage of the fourfold
symmetry, ten terms were sufficient for ~ 1079 accuracy.
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By way of comparison, we also present the results
of solving the familiar five-point finite difference
approximation to the differential equation using the Fast
Fourier Transform (FFT) method to solve the difference
equations (see Table III). This example is somewhat biased
in favor of the finite difference method; the (}(hz)
convergence follows from the fact that the finite differ-
ence equations are precisely equivalent to the finite
element equations for piecewise linear splines on a
triangular mesh and not from the classical analysis. Yet
with a graded mesh, the error in the finite element
approximation on a 10 x 10 mesh is slightly better than the

error in the finite difference approximation on a 128 x 128

mesh,
Our second example is a variable coefficient
problem:
Xy x+y 1 - .
Dx(e Dxu) + Dy(e Dyu) + Ef;fg—:-y u=f in § ,

u=0 on 23S |,

where the right-hand side f is chosen to make the

solution

u(x,y) = sin mx + sin w1y .

Both the coefficients and the solution are analytic so that
it is not necessary to grade the mesh. The results (see

Table IV) indicate fourth order convergence, confirming the
fact that the nine-point product Gaussian quadrature scheme

is sufficient.
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TABLE I
N N
1 1.88E-03 4 ,45E-03
2 2.81E-04 2.7 6.27E-04 2.7
3 8.03E-05 3.1 2.20E-04 3.1
4 3.24E-05 3.2 1.14E-04 3.2
5 1.61E-05 3.1 7.15E-05 3.1
6 9.18E-06 3.1 4.93E-05 3.1
7 5.72E-06 3.1 3.62E-05 3.1
8 3.81E-06 3.0 2.77E-05 3.0
9 2.66E-06 3.0 2.19E-05 3.0
10 1.94E-06 3.0 1.77E-05 3.0
TABLE II
T L
1 1.88E-03 4,45E-03
2 2.81E-04 2.7 6.27E-04 2.7
3 9.73E-05 2.6 2.78E-04 2.6
4 3.86E-05 3.2 9.54E-05 3.2
5 1.83E-05 3.4 5.14E-05 3.4
6 9.51E-06 3.6 2.60E-05 3.6
7 5.43E-06 3.6 1.59E-05 3.6
8 3.30E-06 3.7 9.55E-06 3.7
9 2.12E-06 3.8 6.39E-06 3.8
10 1.42E-06 3.8 4.35E-06 3.8
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TABLE III
R A P
4 1.95E-03 3.36E-03
8 5.27E-04 8.89E-04
16 1.35E-04 2.26E-04
32 3.39E-05 5.67E-05
64 8.87E-06 1.50E-05
128 2.34E-06 4.00E-06
TABLE IV
L O L Y
1 3.31E-02 6.88E-02
2 2.41E-03 3.8 8.27E-03 3.8
3 5.98E-04 3.4 2.15E-03 3.4
4 2.10E-04 3.6 8.41E-04 3.6
5 9.05E-05 3.8 3.54E-04 3.8
6 4 ,50E-05 3.8 1.84E-04 3.8
7 2.47E-05 3.9 9.93E-05 3.9
8 1.47E-05 3.9 6.01E-05 3.9
9 9.24E-06 3.9 3.74E-05 3.9
0 6.10E-06 3.9 2 .50E-05 3.9

e
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