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Urn Automata

Dana Angluin∗ James Aspnes∗,† Zoë Diamadi∗,‡ Michael J. Fischer∗,§

René Peralta∗,§

Abstract

Urn automata are a new class of automata consisting of an input tape, a finite-state con-
troller, and an urn containing tokens with a finite set of colors, where the finite-state controller
can sample and replace tokens in the urn but cannot control which tokens it receives. We con-
sider the computational power of urn automata, showing that an urn automaton with O(f(n))
tokens can, with high probability, simulate a probabilistic Turing machine using O(log f(n))
space and vice versa, as well as giving several technical results showing that the computational
power of urn automata is not affected by variations in parameters such as the size of the state
space, the number of tokens sampled per step, and so forth. Motivated by problems in dis-
tributed computing, we consider a special class of urn automata called pairing automata
that model systems of finite-state machines that interact through random pairwise encounters.
We show that pairing automata recognize precisely the symmetric languages recognized by urn
automata.

1 Introduction

Most work in distributed algorithms assumes that the agents in a system are computationally
powerful, capable of storing non-trivial amounts of data and carrying out complex calculations.
But in systems consisting of massive amounts of cheap, bulk-produced hardware, or of small mobile
agents that are tightly constrained by the systems they run on, the amount of storage available at
each agent may be severely limited—possibly as little as a constant number of bits per agent. Such
limitations are not crippling if the system designer has fine control over the interactions between
agents, as even finite-state agents can be regimented into cellular automata with computational
power equivalent to Turing machines. But if the system designer cannot control these interactions—
if which agents interact with each other is unpredictable or even random—then it is not clear what,
if anything, the system can compute.

The present work seeks to answer this question. We begin by defining (in Section 3) a new
model of storage, called an urn, that reflects the lack of structure in the collective memory of
diffuse distributed computing systems such as sensor networks. An urn is like a tape or pushdown
stack without the ordering among its storage cells. All that is left once the cell structure is discarded
is a set of storage cells, called tokens, each with a symbol written in it, called its color. Urns
support two operations: sample removes and returns a token selected with equal probability from
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among the tokens in the urn; insert(t) inserts token t into the urn. The essentially random behavior
of the sample operation differentiates urns from most previously-studied storage devices.

Urns can be used to model several different computational situations. In this paper, we consider
two new (and related) automaton models built from urns: urn automata and pairing automata. An
urn automaton (defined formally in Section 3) consists of an input source, a finite-state controller,
and an urn containing some number of tokens, each with a color from a fixed set. A transition of
the urn automaton depends on the current state, a possible input symbol, and a sequence of some
number of tokens sampled at random from the urn. The transition causes the controller to enter
a new state, insert some colored tokens into the urn, and possibly perform an action on the input
source or an action to halt with an indication of acceptance or rejection. The urn thus plays the
role of the stack in a push-down automaton or the work tape in a Turing machine.

We consider three variants of urn automata that differ only on how they receive their inputs: on
a two-way read-only input tape, on a one-way read-only input tape, or with the input represented
by tokens initially placed in the urn. Regardless of input convention, we focus on urn automata that
have constant width-k, meaning that every transition consumes exactly k tokens from the urn,
are deterministic, meaning that the transition chosen is completely determined by the current
state, the current input symbol, and the k tokens sampled, and conservative, meaning that every
transition puts the same number of tokens back into the urn as it consumes through its sampling.

Because an urn lacks structure, it might seem intuitively to be weaker than a push-down store
or a tape. Surprisingly, an urn can be considerably more powerful. We consider the computational
power of urn automata in Section 4. These results split into two classes depending on whether
we permit the urn automaton to make errors. If we insist that the computation be error-free
and the input supplied in the initial urn, then no non-trivial language can be recognized. With
a one-way input tape then error-free urn automata accept only regular languages; hence the urn
adds no power to the finite state controller. With a two-way input tape, however, a error-free
urn automata of size O(n) can accept any language in LOGSPACE.If errors are permitted with
small probability, then urn automata become much more powerful. With two-way input tape, a
conservative width-1 deterministic urn automaton can recognize, with high probability, precisely
those languages recognized with bounded two-sided error by a probabilistic Turing machine with
space proportional to the logarithm of the number of tokens in the urn.

One of the primary motivations for studying urn automata is to model systems of interacting
finite-state machines which we call conjugating automata. Imagine a society of mobile finite-
state agents wandering about randomly. Whenever two such agents encounter each other, they
each update their internal state as a function of their old state and the state of the other machine.
They then proceed on their way. Such machines are described in [4].

Various possibilities come to mind for supplying inputs to conjugating automata. One possi-
bility, natural in a distributed setting, is to supply each finite-state machine with its own input
stream. Another possibility is to assume a global input tape that can be accessed by any machine.
A third possibility is to ignore inputs altogether and investigate the behavior only as a function of
the initial state vector of the system. This is the conventional setting for studying such problems
as Byzantine agreement.

A system of conjugating automata with global input tape is easily modeled by a width-2 urn
automaton that has only one state. We call such a machine a pairing automaton. Each finite-
state machine in the conjugating system corresponds to a token in the urn with color corresponding
to its state. An encounter between two conjugating automata is modeled by a transition that
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samples two tokens and replaces them with a new pair of tokens depending on the colors of the
sampled pair. While there is a direct correspondence between computations of pairing automata
and conjugating automata, we find pairing automata are a more tractable formalism to use in our
studies.

The lack of global memory in pairing automata appears at first sight to be a major restriction
on their power. Nevertheless, a width-1 conservative urn automaton can be simulated by a pairing
automaton that elects some token leader and gives it the powers and responsibilities previously
held by the now-deposed finite-state controller. We focus therefore in Section 5 on the problem of
electing a leader using a pairing automaton under various conditions. In particular, electing a leader
is not possible in general in the no-input-tape or one-way input case. However, with a two-way
input tape, there is a leader election algorithm for a width-2 pairing automaton with polynomially
small error bound. If we restrict the empty input from consideration, then leader election becomes
possible in all three input models.

This paper only begins to explore this fascinating new model. In Section 6, we mention several
variations on the model that are worth studying, together with sketches of some preliminary results
we have about some of them.

2 Related work

Perhaps one way to approach urn automata is through the Petri net literature.1 Our primary
model corresponds to a form of randomized Petri net with the rule that when many transitions
are simultaneously enabled, the one to fire is chosen with probability proportional to the number
of distinct sequences of tokens it can consume from its input places. Randomized Petri nets were
introduced by Volzer in [11] using a transition rule, however, that does not depend on the number
of tokens in each input place; As noted in [6], most of the work on Petri nets focuses on properties
such as reachability, liveness, and deadlock. An interesting open problem is whether techniques
from the study of Petri nets can be applied to urn automata and whether the automata-theoretic
approach favored in this paper can advance our understanding of the computational capabilities of
Petri nets.

Milner’s bigraphical reactive systems [9] address the issues of modeling locality and connectivity
of agents by two distinct graph structures. In this work the primary focus is upon the expressiveness
of the models, whereas we consider issues of computational power and resource usage.

Brand and Zafiropulo [3] define a model of communicating processes consisting of a collection
of finite state machines that can communicate via pre-defined FIFO message queues, and focus on
general properties of protocols defined in the model, such as the possibility of deadlock or loss of
synchronization.

The Chemical Abstract Machine of Berry and Boudol [1] is an abstract machine designed to
model a situation in which components move about a system and communicate when they come
into contact, based on a metaphor of molecules in a solution governed by reaction rules. A concept
of enforced locality using membranes to confine subsolutions allows the machines to implement
classical process calculi or concurrent generalizations of the lambda calculus. No assumption is
made about the mixing rule.

1See [5] for a survey of Petri nets.
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3 Definitions

The class of urn automata is similar to many of the classes of automata defined in classical
automata theory, with the difference that the deterministic external data structures used to augment
the finite-state controller have been replaced by an urn, a container that imposes no structure on
its contents and the behavior of which is probabilistic.

The urn contains tokens, each painted a color chosen from a finite set colors T . The base
model does not specify the initial contents of the urn, which are treated as part of the input; this
issue is discussed in more detail in Section 3.1. We can represent the contents of the urn by an
element of T ∗, which is a finite sequence of token colors; we will interpret this sequence (as well
as other sequences of tokens that appear later) as a multiset of tokens by ignoring the order. We
will use x v y to denote the case that x is a sub-multiset of y when both x and y are interpreted
as multisets; this just means that each color c appears no more often in x than in y.

Managing the urn is a finite-state controller, with a state space Q containing a distinguished
start state q0. The finite-state controller also manages a finite input tape, each cell of which
is labeled with a symbol from a finite alphabet Σ. The leftmost and rightmost positions on the
tape are always labeled by special terminal symbols $L and $R, which are always elements of Σ.
We assume that the input head, which can move in either direction on the tape unless otherwise
specified, initially starts on the cell just to the right of the $L symbol.

A transition of an urn automaton removes zero or more tokens from the urn, reads the symbol
under the head on the input tape, and then updates the state of the finite-state controller, while
adding zero or more tokens back into the urn and executing an operation that either moves the input
head one cell to the left (l), leaves the input head where it is (-), moves the input head once cell to
the right (r), or causes the automaton to halt by either accepting (accept) or rejecting (reject).
Transitions of the urn automaton are controlled by a transition relation, which specifies for each
transition the previous state, a multiset of tokens to remove from the urn, the input symbol read,
the resulting state, the operation to apply, and a multiset of new tokens to add to the urn.

We require that the urn automaton never moves the input tape left past the $L symbol in the
leftmost cell or right past the $R symbol in the rightmost cell; this is an easily-enforced restriction
on the transition relation.

Formally, an urn automaton is defined as follows.

Definition 1 An urn automaton is a tuple (Q, q0, Σ, T, ∆), where

1. Q is the finite set of states for the controller;

2. q0 ∈ Q is the initial state;

3. Σ ⊇ {$L, $R} is the finite input alphabet;

4. T is the finite token alphabet, that is, the set of available token colors;

5. ∆ is the finite transition relation, which is a subset of Q×Σ×T ∗×Q×T ∗×{l, -,r,accept,reject}.

A state of an urn automaton is a 3-tuple (q, x, i), where q is the state of the finite-state
controller, x is a multiset of tokens from the token set T , and i is the position of the input tape
head, with the leftmost position assigned index 0. In an initial state, q = q0 and i = 1; and the
initial contents of the urn are taken to be part of the input.
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A transition (q, x, i) → (q′, x′, i′) can occur if there exists a transition (q, σ, t, q′, t′,op) such
that:

1. The symbol in cell i of the input tape is σ;

2. The tokens in t are a submultiset of x;

3. The new urn state x′ equals x− t + t′, where addition and subtraction of sequences of tokens
from and to multisets of tokens are interpreted in the obvious way; and

4. Depending on the type of op:

(a) If op is l, then i′ = i− 1;

(b) If op is r, then i′ = i + 1;

(c) If op is -, accept, or reject, then i′ = i.

The transitive closure of → is written ∗→; we have (q, x, i) ∗→ (q′, x′, i′) just in case there is a
sequence of transitions that take (q, x, i) to (q′, x′, i′). A computation of an urn automaton with
initial urn contents x0 consists of a sequence transitions ending with the first transition that executes
accept or reject. A computation is accepting/rejecting if this last operation is accept/reject.

The above model is quite general, and for the purposes of this paper we will make several
additional assumptions, all of which hold unless otherwise specified:

• The automaton has width k for some integer k, which means that every transition (q, t, σ, q′, t′,op)
in ∆ has |t| = k.

• The automaton is conservative, which means (following a similar usage in the Petri net
literature) that |t′| = |t| for each transition, or, equivalently, that the number of the tokens
in the urn is fixed.

• The controller is deterministic, which means (for a width-k urn automaton) that for each q
in Q, σ in Σ, each t in T k there is exactly one transition of the form (q, σ, t, q′, t′,op) in ∆.2

• The urn uses uniform sampling, which means that the probability of drawing a particular
sequence of tokens t from the urn is obtained by assuming that each token is drawn uniformly
at random without replacement.

The assumption of a deterministic finite-state controller and uniform sampling in the urn allows
us to define a probability distribution on transitions; given the current state q and input symbol
σ, the probability that the unique transition with previous state q, input symbol σ, and input
tokens t occurs is just the probability of drawing the sequence of tokens t from the urn in order
without replacement. Similarly, we can define the probability of acceptance/rejection given a
particular input and initial urn contents as the probability that the computation eventually reaches
an accept/reject operation. We will primarily be interested in urn automata that halt with
probability 1, i.e., those for which the probability of acceptance and rejection sum to 1, but we can
imagine urn automata that do not have this property.

2For variable-width urn automata, the more general definition is that for each q in Q and σ in Σ, the set Sq,σ = {t :
(q, σ, t, ·, ·, ·) ∈ ∆} is maximally prefix-free, and for each q in Q, σ in Σ and t in Sq,σ, there is exactly one transition
of the form (q, t, σ, q′, t′,op) in ∆.
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3.1 Urn automata and languages

We would like to compare the computation power of urn automata to that of such traditional
devices of classical automata theory as finite-state machines, Turing machines, etc. To do so, we
must define what it means for an urn automaton to accept a language L. Though we have been
careful to define urn automata in a way that is similar to classical automata, some questions must
yet be answered. These are:

How is the input word provided? There are two straightforward possibilities: it is written
either on the cells of the input tape or the tokens in the initial urn. The first case splits further
depending on what the finite-state controller can do with its input tape. If r operations are
forbidden, we have a one-way input tape. If they are permitted, we have a two-way input
tape, which turns out to be a surprisingly powerful tool for urn automata. If the input word is
distributed across the urn, one symbol per token, and both l and r operations are forbidden, then
we say that we have no input tape.

The two input tape models come closer to traditional automaton models, and allow an urn
automaton to recognize languages that are not symmetric; but having no input tape may more
natural in a distributed context, where it might be hard to justify a global input tape equally
accessible to all the agents in the system. We will consider all three models in this paper.

What is the initial state of the urn? Because a conservative urn automaton cannot generate
new tokens on its own, it must start with some initial population of tokens if the urn is to be
useful. How many tokens do we start with, and what colors do they have? For the purposes of
this paper, we will assume that for each urn automaton there is a function f(n) of the input size
n that determines the number of tokens in the urn (i.e., the size of the urn); we will also assume
that all f(n) of these tokens, with the exception of the n tokens representing the input word when
we have urn input, are initially a default blank color ν. (Some other possibilities are discussed in
Section 6.)

Having chosen an urn automaton with either tape input or urn input, and fixed the function f(n)
that determines the size of the urn, we have a complete specification of what the urn automaton
does when presented with an input word w. We can thus define:

Definition 2 A language L ⊆ Σ∗ is accepted by an urn automaton M with probability p if, for
each w ∈ L, the probability that M accepts w is at least p, and for each w 6∈ L, the probability that
M rejects w is at least p.

4 Computational power of urn automata

In this section, we characterize the computational power of urn automata. We first consider the
case where the urn automaton must produce the correct output with probability 1; here the power
of an urn automaton depends strongly on the input model. We then consider urn automata that are
allowed to err with small probability, and show that such automata can simulate (and be simulated
by) Turing machines with a space bound proportional to the logarithm of the size of the urn.
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4.1 Error-free urn automata

An urn automaton M is error-free if, for every input w ∈ Σ∗, M either accepts w with probability
1 or rejects w with probability 1. What languages are accepted by error-free urn automata?

The answer to this question depends very strongly on the input method. With the input
on a one-way input tape, the urn adds little power to the finite-state controller: the languages
accepted with probability 1 by an urn automaton with a one-way input tape are precisely the
regular languages. With the input on a two-way input tape, an urn automaton can accept any
language in LOGSPACE without errors. If the input appears in the initial state of the urn, then
an urn automaton accepts no nontrivial languages without errors.

Details are given in the full paper. The key idea behind the negative results is that if x is a
submultiset of y, then computations starting with urn contents x “lift” to computations with urn
contents y, simply by ignoring any extraneous tokens. This is enough to show that an automaton
with a one-way input tape can be simulated by a finite-state machine whose states represent both
the state of the urn automaton controller and some v-minimal element of the set of reachable urn
states; and the set of such v-minimal elements is finite by Higman’s Lemma [7]. With no input
tape we argue that if x + νi v y + νj , then an error-free machine accepts x if and only if it accepts
y, and then show (taking some care with the blank tokens) that all inputs are connected by chains
of submultiset relations.

For the positive result, we show how to exploit the error-free counter given by the input head
position to simulate error-free counters from error-prone probabilistic counters made out of urn
tokens, which is enough to get LOGSPACE by simulating the work tape with counters.

The combined statement of these results is:

Theorem 3 The class of languages accepted without error by urn automata:

1. Contains only ∅ and Σ∗ with no input tape;

2. Is precisely the regular languages with a one-way input tape; and

3. Contains all of LOGSPACE with a two-way input tape.

4.2 Urn automata and Turing machines

If errors are permitted with small probability, deterministic automata become much more powerful.
For each function f(n) of the input size n, let URN0(f(n)), URN1(f(n)), and URN2(f(n)) be
the class of languages accepted with probability 1 − O(nc) for any fixed c > 0 by a width-1 urn
automaton of size O(f(n)) with no input tape, a one-way input tape, and a two-way input tape,
respectively. Then

Theorem 4

1. URN0(f(n)) consists of the symmetric languages in URN1(f(n)).

2. URN1(f(n)) = URN2(f(n)) when f(n) = Ω(|Σ|n).

3. URN2(f(n)) ⊇ SPACE(log f(n)).

4. For any language L in URN0(f(n)), URN1(f(n)), or URN2(f(n)), there is a randomized
Turing machine that uses space O(log f(n)) and accepts L with polynomially small two-sided
error.
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Sketch of proof: Working backwards through the list, it is easy to see that a randomized
Turing machine can simulate an urn automaton using O(log f(n)) space, by storing the state of the
urn as a vector of counters, one for each color.

To show that URN2(f(n)) ⊇ SPACE(f(n)), we use Minsky’s simulation of a Turing machine
by a counter machine [10, Section14.1], where each half of the work tape is Gödel-encoded by a
polynomial ckx

kck−1x
k−1 + · · ·+ c0, reading the symbol under the work tape head involves finding

c0 by taking a mod operation, and moving the head multiplies or divides the polynomial by x. In
our simulation, each counter is represented in unary by the number of tokens of a particular color
in the urn. The only complication is that an urn automaton cannot test for emptiness, because
it has no way to tell if it has found all the tokens of a particular color. We solve this problem
probabilistically by inserting a single dummy token in the urn and testing for zero by waiting to
see the dummy k times in a row without seeing any tokens of the other color, a test which errs
with probability O(1/Nk−1) where N = f(n) is the size of the urn. Unfortunately this probability
of error is too high to use for every zero test in Minsky’s original simulation, so we have to look at
the probability of missing a token at any time during a multiply, divide, or mod operation, which
we show is O(log N/Nk−1). The result follow by an appropriate choice of k.

To show URN1(f(n)) ⊇ URN2(f(n)), we use the same Gödel-numbering technique to read
the entire input tape into a counter of size O(|Σ|n), and then simulate the URN2(f(n)) machine
using this counter in place of the two-way input tape.

Finally, to show URN0(f(n)) contains all the symmetric languages in URN1(f(n)), we simu-
late the URN1(f(n)) input tape by finding and marking as used an input-symbol token whenever
the URN1(f(n))-automaton moves to a new input cell.

5 Computational power of pairing automata

Our original goal in defining urn automata was to model populations of finite state machines
with unpredictable interaction. With this goal in mind, the tokens in the urn have a natural role
representing the states of the finite-state machines, but the finite-state controller is an unfortunate
asymmetry in the model whose existence appears to be justified only by the need to attach an
input tape somewhere to allow comparison between urn automata and the language classes of
classical automata theory. In this section we consider what happens if we reduce the finite-state
controller’s importance, restoring the original ideal of an interacting population of equals, with no
single machine chosen at birth to rule over the others. We do so by limiting the controller to the
minimum state space {q0}.

We concentrate on width-2 one-state urn automata, the smallest width that permits interaction
between tokens, and call these pairing automata for short. Our goal is to show that pairing
automata can simulate width-1 urn automata without the state restriction, by filling the leadership
void created by the abdication of the finite-state controller with a unique leader token that simulates
the controller in its interactions with other tokens. But because we cannot expect the input to
provide a unique leader, the question becomes whether we can elect one early in the execution of
the automaton.

Let us begin by observing that, unless we assume constant urn size, it is impossible to elect
a leader without exploiting the input in some way, where by electing a leader we mean that the
automaton eventually produces a token with color in some class C ⊆ T , and from that time on
always has exactly one such token. We will then show that electing a leader in this sense is generally
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not possible for an one-state automaton with no input tape. that it is trivial with a two-way tape
if we are allowed to exploit the $L token to simulate an extra state, and that it is possible under
any input tape assumption without such trickery if we exclude the empty input.

Lemma 5 Let M be a width-2 one-state urn automaton whose initial urn size N = f(n) grows
without bound. Suppose that the initial tokens in M ’s urn are all blank, and that no transition of
M executes l or r. Then the probability that M elects a unique leader converges to zero in the
limit.

Sketch of proof: The proof is based on examining the development of an interaction graph,
with vertices representing tokens and edges representing pairs of tokens that have interacted by
being sampled by the finite-state controller in the same step. We argue that by time N1−ε, for any
ε > 0, that no pair of token has interacted twice with probability 1 in the limit; this means that
before this time the interaction graph captures the full structure of the computation except for the
order and direction of interactions.

We then consider the smallest tree-structured sequences of interactions that produce elements
of the leader set C, and show using standard results from the theory of random graphs [8, 2] that
unboundedly many such copies of each tree appear as components by time N1−1/k+δ, where k is the
this of the tree and δ is a small constant. Since each such tree generates a leader with probability
2−k/k! = Θ(1), we get unboundedly many leaders in the limit.

It follows that we cannot elect a unique leader in the no-input-tape model unless we exclude
the empty input:

Corollary 6 Let M be a width-2 one-state urn automaton with no input tape whose initial urn size
N = f(n) grows without bound. Then if M elects a leader with nonzero probability on an empty
input, the probability that M elects a unique leader converges to zero in the limit.

Proof: Apply the proof of Lemma 5 to executions in which no non-blank tokens are sampled
during the first N1−1/k+δ transitions; observe that the existence of a minimal leader-electing tree
using only non-blank tokens follows from the empty-input case.

A more sophisticated version of this argument, given in the full paper, shows that a similar
excess of leadership arises with a one-way input tape on inputs of the form an for any single symbol
a.

In contrast, a one-state automaton with a two-way input tape does not suffer much from its
lack of extra states:

Theorem 7 For any k, there is a leader election algorithm for a width-2 one-state urn automaton
with a two-way input tape that succeeds with probability 1−O(N−k).

Sketch of proof: The trick is to generate the leader on the first transition, which consumes
two unmarked blank tokens and executes l to move onto the $L symbol. The leader can then mark
all the blank tokens (waiting to see some unique dummy token it generates k + 1 times in a row to
be sure it has found them all) before moving off $L.

If we do exclude the empty input, then leader election becomes possible even without exploiting
$L in all three input models, provided we have enough blank tokens. The intuition is that if the
non-blank tokens make up a polynomial fraction of the blank tokens, then each non-blank token
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can declare itself a candidate, emit a single dummy token for termination testing, and then declare
itself leader when it has seen k dummy tokens in row without encountering (and killing) a rival
candidate. With no input tape, the non-blank tokens are just the initial tokens representing the
input. With a one-way or two-way input tape, the finite-state controller walks across the input
generating non-blank tokens, reducing to the no-input case when $R is reached.

Theorem 8 For any k > 0 and ε > 0, there exists an urn automaton M that elects a unique leader
with probability 1−O(n−k) for all inputs except the empty input, provided the urn size is Ω(n1+ε).

Note that reducing to the no-tape case destroys all information about the order of the input
symbols in the one-way tape case. It is an interesting (and difficult) open problem whether it is
possible to preserve the ordering perfectly.

6 Conclusion and open problems

We have defined urn automata, a new model of randomized computation based on urns, and have
obtained a partial characterization of the power of urn automata under several natural assumptions.
But many questions remain open. Some in particular are suggested by relaxing the assumptions
made throughout this paper. In particular, we know little about what happens with:

Other sampling rules We have assumed throughout the present work that tokens are drawn
from the urn by uniform sampling. For some applications it may make sense to consider other
sampling rules. These might include weighted sampling, where the probability of drawing a
token from the urn is proportional to its weight (which may vary from token to token), or the
still more general fair sampling, where (following typical notions of fairness used in the theory of
distributed computing) there is no probability distribution on tokens, but the finite-state controller
is guaranteed to see any sequence of tokens that can be formed from the urn if it waits long enough.
Our suspicion is that with some minimal restrictions on the weights, weighted sampling yields the
same power as uniform sampling, while fair sampling is strictly weaker; but determining precisely
the relative power afforded by different sampling rules requires further study.

Other initial urn contents The urn automaton model does not specify the initial contents of
the urn, treating it as part of the input. We have considered two possibilities for the initial contents
of the urn: u(n) tokens, all blank; or n + u(n) tokens, of which n carry the symbols of the input
word and the remaining u(n) are all blank. Some other intriguing possibilities are a random urn,
where each of u(n) tokens is initially labeled with a color chosen uniformly at random from T ; or
an adversarial urn, where the colors of the tokens are chosen by an adversary. These assumptions
could be used to characterize the self-stabilization properties of urn automata.

Nonconservative urn automata In this paper, we have concentrated on conservative urn au-
tomata, as these most closely match our motivating examples involving interacting finite-state
machines. But we can ask what happens if we permit an urn automaton or pairing automaton to
be nonconservative. The interesting case is when interactions between k tokens generate more
than k tokens, and the size of the urn increases. Curiously, both the one-way case of Theorem 3
(limiting one-way error-free urn automata to accepting regular languages) and Lemma 5 (exclud-
ing certain leader election algorithms) continue to apply in this case, as the bad outcome in the
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proof of each theorem occurs before a significant number of new tokens can be added to the urn.
An analogue to Theorem 4 applies as well, but now an urn automaton, by generating arbitrarily
many tokens, can represent a Turing machine with no space limitation. Still open is the question
of whether a nonconservative urn automaton can exploit its ability to adjust the size of the urn
to improve time efficiency by dynamically removing unneeded blank tokens without significantly
increasing the error rate.

Nondeterministic urn automata Suppose that we relax the requirement that the finite-state
controller be deterministic, and say that an urn automaton accepts an input w if there is any
computation path starting with u(n) blank tokens in the urn that ends with an accept operation.
Though there are some complications in how we approach the interaction between the nondeter-
minism in the finite-state controller and the probabilistic behavior of the urn, we can quickly see
that such nondeterministic automata are strictly more powerful than deterministic urn automata
in the error-free case, as a nondeterministic urn automaton that emits an a token when it reads an
a and consumes one when it reads a b can recognize the non-regular language {aibj |a ≥ b}. But
characterizing the full power of nondeterministic urn automata, even in the error-free case, remains
open.

Nonuniform urn automata Suppose that the number of states or tokens is not constant, but
is allowed to grow slowly as a function of n. Now what can we compute? It is not hard to see that
O(f(n)) token colors are enough to simulate a Turing machine with f(n) space with a width-2 urn
automaton, by the simple expedient of assigning one token, labeled with cell contents and index,
to represent each cell of the Turing machine tape. But are there more subtle ways of augmenting
urn automaton power that require only small growth in the number of tokens?
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