Abstract

This paper compares three distributed algorithms for factoring a large sparse
symmetric positive definite matrix on a local-memory parallel processor. The
fan-out, fan-in, and distributed multifrontal schemes are presented in a unified
framework which highlights their communication requirements and their in-
nermost loops. Experimental results on an Intel iPSC/2 hypercube illustrate
their relative performance.

A Comparison of Three Column-based
Distributed Sparse Factorization Schemes

Cleve Ashcraft!, Stanley C. Eisenstat?,
Joseph W. H. Liu%, and Andrew H. Sherman?

Research Report YALEU/DCS/RR-810
July 1990

Approved for public release; distribution is unlimited.

! Department of Computer Science, Yale University, New Haven, Connecticut 06520. The research of this
author was supported in part by the Office of Naval Research under contract N00014-86-K-0310 and the
National Science Foundation under grant DCR-85-21451.

! Department of Computer Science and Research Center for Scientific Computation, Yale University, New
Haven, Connecticut 06520. The research of these authors was supported in part by the Office of Naval
Research under contract N00014-86-K-0310 and the National Science Foundation under grant DCR-85-
21451.

§ Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3. The research
of this author was supported in part by the Natural Sciences and Engineering Research Council of Canada
under grant A5509.

1 Introduction

The solution of large sparse systems of linear equations is an important application
of parallel computers. In this paper, we give a unified presentation and compare the
performance of three distributed schemes to compute the Cholesky factor of a large
sparse symmetric positive definite matrix on a local-memory parallel processor.

The three distributed schemes are column-based — we assume that each processor
has been assigned a set of columns in the matrix and is responsible for computing
the corresponding set of columns in the Cholesky factor. The fan-out method [11] is
a sparse analog of the parallel outer-product algorithm for factoring dense matrices
[10]. The fan-in method [1] is a parallel analog of the standard algorithm for factoring
sparse matrices [12] which uses a distributed fan-in scheme (cf. [19]). The distributed
multifrontal method [5, 6, 7, 16, 18] is a parallel implementation of the multifrontal
algorithm [21, 8].

The performance of these schemes depends on the ordering of the variables and
equations and the mapping of columns to processors, but we do not consider these
issues in this paper. We simply assume that the matrix has been ordered by some fill-
reducing ordering which is appropriate for parallel elimination, and that the columns
of the permuted matrix have been assigned to processors in a manner which is con-
sistent with efficiency.

In §2, we review Cholesky factorization by columns. In §3, we review elimination
trees and introduce domains and separators, two partitions of the matrix problem
based on the structure of the elimination tree and the mapping function. In §4, we
describe the fan-out algorithm and an improved variant, the domain fan-out algorithm
[3, 22], which offers substantial reductions in message traffic. In §5, we describe the
fan-in algorithm. In §6, we describe the distributed multifrontal algorithm in the
same terms and then relate this to the more standard description in terms of frontal
matrices.

In §7, we compare the three distributed schemes on an Intel iPSC/2 hypercube.
The fan-in and multifrontal schemes are shown to require significantly less message
traffic than the domain fan-out scheme on a model problem. In terms of overall par-
allel factorization time for our current implementations, the distributed multifrontal
method is better than the fan-in scheme, which is, in turn, better than the domain
fan-out scheme.

Throughout this paper, we assume that there are p processors interconnected
by some underlying network and communicating among themselves only through
messages. We assume that the jth column is assigned to processor map|j], which is
also responsible for computing the jth column of the Cholesky factor. We use 7 to
represent any of the p processors, and myname to denote the processor on which the
_code is running.

2 Column-Cholesky Factorization

Let A be an n X n symmetric positive definite matrix and let L be its Cholesky

Algorithm 1 Column-Cholesky Factorization

for column j := 1 to n do

begin
[ti ajj Lik
= - Z Lik (1)
\ tn QAnj If:;ZO lnk
[lis L (Y
: =7
\ l'n,j \/_J- ty
end

factor, with entries a;; and [;;, respectively. As shown in Algorithm 1, the column-
Cholesky method computes L column by column. The temporary vector (¢;,- - -, %,)7
is used only for clarity; its storage can overlap completely with that for ({;;,---,1,;)7.

Our formulation is applicable to both dense and sparse matrices. In the sparse
case, both column j of A and the updates l;x(ljx,---,l.x)T are sparse so that the
vector operations can be performed in a manner which takes advantage of sparsity.
The columns contributing updates to the sum are given precisely by the nonzero
structure of row j of L:

Struct(Lj*) = {k I k<y, ljk # 0} .

There are many ways to implement equation (1) in a distributed manner; the
algorithms we consider differ in the order in which and the processor on which updates
are computed and applied. As an aid in describing these schemes, we now introduce
four related notions [1]:

o factor column L.; = (lj;,---,1.;)7;
e update column Ljx(Lix, -+, lx)T, where Lix #£0;
o complete update column EkeStruct(L,-,) Lik(ligy - -+, L) T

e aggregate update column Y yex lik(Lik, - -+, luk)T, where K C Struct(L;.).

Update columns and complete update columns are special cases of aggregate update
columns where K = {k} and K = Struct(L;.), respectively.

1 7 4 19 13 16 _10

3 8 6 20 115 117 112

2 9 5 21 J14 118 |11

43 144 145 146 j47 148 149

23 130 126 142 (35 139 132

24 129 127 141 [36 38 133

22 128 125 140 (34 137 131

Figure 1: A nested dissection ordering of a 7-by-7 grid.

3 Elimination Trees, Domains, and Separators

3.1 Elimination Trees

If £ < jand ljx # 0 (i.e., k € Struct(L;.)),, then column j depends on column k. The
graph which represents this precedence relation is precisely the directed graph of the
matrix LT. Taking the transitive reduction yields the elimination tree [14, 15, 20].

More directly, the elimination tree of the matrix A is a tree! with n nodes
{1,---,n} such that node j is the parent of node k if and only if

J = min{i | k <1, lix #0}.

We will use j to refer to both a column of the matrix and the corresponding node in
the elimination tree. Figure 1 shows a nested dissection ordering of a 9-point finite
difference operator on a 7 X 7 grid. Figure 2 shows the corresponding elimination
tree. :

Without loss of generality, we will assume that the nodes are ordered in what
corresponds to a postorder traversal of the elimination tree (i.e., each of the subtrees
of a node is numbered and then the node itself is numbered as in Figure 2). Such an
ordering is equivalent? to any other ordering which generates the same elimination
tree [15].

3.2 Domains

Let T'[z] denote the subtree of the elimination tree T rooted at the node z (that is,
the node z together with all of its descendants in T'), and let parent[z] denote the

1If A is reducible, then the elimination “tree” is actually a forest.
2Here equivalence is in terms of the number of nonzeroes in L, the amount of work to factor A,
and the operations required to compute the factor.

3

Figure 2: The elimination tree for the ordering in Figure 1.

parent of node z in the tree. If every node y in T'[z] is mapped to the same processor
as z (i.e., maply] = maplz] for all y € T[z]), and this property is not satisfied by
T[parent[z]], then the nodes in T'[z] are said to form a domain.?

In Figure 3 the tree structure of Figure 2 has been annotated to illustrate features
corresponding to solution on a four-processor hypercube. The labels “P;” show a pos-
sible mapping of the nodes/columns to the processors, and the domains are indicated
by heavy outlines.

There are four domains, given by the subtrees rooted at nodes 9, 18, 30, and 39,
respectively. Figure 4 shows the same 7 x 7 grid as Figure 1, with the four domains
identified by heavy outlines.

Since the columns associated with a domain depend only on columns within the
same domain, these factor columns can be computed by the processor to which the
domain is mapped without any interprocessor communication. Mu and Rice [17] have
examined such mappings and shown that the total communication requirements are
lower than with other subtree-to-subcube mappings for fan-out type methods.

Since we have assumed that the nodes in the elimination tree are ordered by a
postorder traversal, the nodes within a domain are numbered consecutively; i.e., each
domain corresponds to a block of contiguous columns in the matrix.

3An alternate definition is that a domain is a connected subset R of nodes in the graph of A
satisfying:

e if y and z are in R, then map[y] = map[z];
e if y and u are adjacent and y is in R but u is not in R, then y is ordered before u;

e no superset of R satisfies these properties.

— 49 (Ps)
2{48 (P3)
5 47 (Pz)
46 (Pl)
145 (Py)
7] 44 (Ps)
{43 (P2)

21 (Py) 42 (Ps)

20 (Py) 41 (Py)

19 (P1) 40 (Ps)

DS ROR
9 18 30 39
8 17 29 38
7 16 28 37
3 6 12 15 24 27 33 36
1/ N2 44 \5 \[io/ \11 13/ \14| [22/ \23 25/ \26| [31/ \32 34/ \35

P P, Py Py

Figure 3: The elimination tree showing processor mapping, domains (heavy outlines),
and separators (shaded rectangles).

1 7 4 13 16 10
3 8 6 15 17 12
2 9 5 14 18 11

23 30 26 35 39 32
24 29 27 36 38 33
22 28 25 34 37 31

Figure 4: The 7 x 7 grid showing domains (heavy outlines) and separators (shaded

rectangles).

3.3 Separators

While domains group nodes based on the processor to which they are assigned, it
is also useful to group nodes based on the structure of their factor columns.

A maximal subset S of nodes/columns which are pairwise connected in the graph
of L and which have identical Cholesky column structures outside S is said to form
a (supernodal) separator [4]. In Figure 4 the top-level separators are identified by
shading. In terms of the elimination tree, each separator is a chain of nodes (although
not all chains are separators). In Figure 3, the top-level separators are identified by
shading.

Just as we defined the parent of a node in the elimination tree, we can define the
parent parent[S] of a separator S as the separator S’ containing the parent of the
highest node in S.

Since we have assumed that the nodes have been ordered by a postorder traversal,
a separator corresponds to a block of contiguous columns in the Cholesky factor, where
the diagonal block is dense triangular and the off-block-diagonal column structures
are identical.

4 The Fan-out Distributed Algorithm

The fan-out algorithm [11] is a distributed sparse factorization scheme in which all
communication is through factor columns and all updates to column j are computed
and applied by processor map[j]. The implementation in Algorithm 2 works for any
mapping and any network topology. For simplicity, we have allowed processors to send
factor columns to themselves; in practice, the corresponding updates are computed
and applied as soon as the factor column has been sent to other processors.

Most of the floating-point operations are performed in the assignment (2). This is
a sparse AXPY, adding a multiple (o = —I;;) of a sparse vector (z = (lix, ..., Li)T) to
another sparse vector (y = L.;). It can be implemented efficiently by expanding y into
a dense vector t, sparsely adding az (which is computed with a scalar-dense-vector
multiply), and then compressing the result back into y. The overhead (the expansion
and compression) can be reduced significantly by saving the factor columns so that all
of the updates to a column are computed and applied at the same time. Unfortunately,
this also increases the storage requirements.

If one processor owns all of the columns in some domain R, then that processor
can compute the factor columns corresponding to R without any interprocessor com-
munication. There are two ways to send the resulting updates to the other processors:

e send factor columns, as above;

e send aggregate update columns associated with the domain R (each aggregate
update is sent to only one processor).

We will refer to this second variant of the fan-out algorithm as the domain fan-out
algorithm (cf. [3], [22]).

Algorithm 2 Fan-out Distributed Factorization
mycols = {i | map[i] = myname} ;
for j € mycols do
L*J' = (a]'j, ...,anj)T H
for column j := 1 to n do
if j € mycols then
begin
while not all updates to column j have been applied do
begin
Receive a factor column L,y ;
for each ¢ > k with l;; # 0 and map[i] = myname do
L. = Lui — Lig(ligy ooy Lit)T 5 (2)

end ;

1
L*j = = L*J’ H

Ji
Send L,; to each processor 7 for which there exists 7 > j

such that [;; # 0 and map[i] = 7 ;
end

The computation proceeds in two phases. In the first phase, each domain is
factored as before, except that no factor columns are sent to other processors. When
the root j of the defining subtree for a domain is reached, the processor computes
an aggregate update column corresponding to each column ¢ > j for which [;; # 0,
and sends it to processor map[i] (again, for simplicity we have allowed processors to
send aggregate updates to themselves). Finally all of the updates are applied. In the
second phase, the algorithm proceeds as before.

Note that aggregate update columns are used to communicate between domain
and non-domain nodes, and factor columns are used to communicate among non-
domain nodes. As we will see in §7, the amount of communication is significantly
reduced.

5 The Fan-in Distributed Algorithm

The fan-in algorithm [1] is a distributed scheme for sparse factorization in which
all communication is through aggregate update columns. In essence, the complete
update column for column j is written as a sum of aggregate update columns (each
corresponding to a different processor 7):

Z ljk(ljk,"’,lnk)T = Z u[j,’ﬂ'])
keStruct(Lj.) [;r 140

Algorithm 3 Fan-in Distributed Factorization
mycols = { j | map[j] = myname} ;
for column j := 1 to n do
if row[j,myname]# 0 or j € mycols then

begin
t:=0;
for k € row[j, myname] do
t:= t-{-ljk(ljk,n-,lnk)T ; (3)

if j € mycols then
Send aggregate update column ¢ to processor map| j]
else
begin
Lyj := (a5, -+, an5)T = 15
while not all aggregate updates have been received do
begin
Receive aggregate update column u[j, 7] for column j ;
Lij i= Ly — ulj,] (4)
end ;
Luj i= Luj/ /T
end
end

where

ulgom] = 30 Lk -y k)T
k€row| j,x]
and
row[j, 7] = {k € Struct(L;.) | map[k] = 7} .

All of the update columns appearing in u[j, 7] come from factor columns that are
mapped to processor 7, and thus u[j, 7] can be computed without any interprocessor
communication. These aggregate updates are then sent to the processor map[j] to
which column j is assigned, and that processor subtracts the aggregate updates from
A.; and scales to obtain L,;. Our implementation of fan-in, Algorithm 3, works for
any mapping and network topology. Since only aggregate update columns are sent
between processors, the incorporation of domains is implicit.

Most of the floating-point computations are in the assignments (3), which is a
sparse AXPY, and (4), which is a sparse vector add. But most importantly, each is
part of a sequence of sparse vector operations to the same destination vector, so
that the expansion need be done only once for each j. Thus we would expect the
kernels for fan-in to be more efficient than the kernel for fan-out. Moreover, the
fan-in algorithm can be implemented in terms of supernodal updates, in which case

most of the assignments (3) can be implemented as dense AXPY’s, further improving
performance (see [4]).

Algorithm 3 proceeds one column at a time. If a processor working on column
J has to wait for some aggregate update column from another processor, then this
formulation keeps it idle even though it could be doing useful work on other columns.
This bottleneck can be avoided by allowing blocked processors to compute updates
to later columns while they wait. This compute-ahead strategy further enhances the
performance (see [2]).

6 The Distributed Multifrontal Algorithm

The multifrontal method [21, 8] has been implemented on both shared memory [5, 6, 7]
and distributed memory [16, 18] machines. Indeed, the notion of multiple fronts con-
veys the idea of performing independent elimination from many different “frontiers”
in the associated graph. In this section we express this algorithm in the same terms
that were used to describe the fan-out and fan-in schemes, and then relate this to the
more standard description in terms of frontal matrices.

If S is a separator and j € S, then we can write the complete update for column
J as

o[,81 = Y. Ll)T = DD o, ST + Y k(e s b)) T
keStruct(Lj«) S' childof S k<j
kes

where
v[j7 Sl] = E ljk(ljka M lnk)T
keT[S']
and T'[S’] denotes the subtree of the elimination tree rooted at the highest node in
the separator S’. The first term is a sum of aggregate updates; the second is a sum
of updates computed from factor columns within the separator. Moreover, we can
express the aggregate update v[j, S’] recursively as

U[j, Sl] = Z ’U[j, S,r.l + Z ljk(ljk7 Tt lnk)T (5)
S" child of S’ k<3
keS’!

which is again a sum of aggregate updates and updates computed from factor columns
within a separator. Finally, we see that if j € S, then v[j, S] also satisfies equation
(5).

Algorithm 4 is our implementation of the distributed multifrontal method; it works
for any mapping and network topology. Note that if v[4,S] # 0, then the processor
map(j, S] is assigned to compute v[4, S]. Thus map[j, S] = map[j] for j € S.

The multifrontal method is normally expressed in terms of the frontal matrix
associated with each separator S. The aggregate updates v[j, 5] all have the same
nonzero structure as (Ijx,- - -, k)T for any k € S’, k < j. Thus, if we delete the zero
rows, then we can gather these aggregate updates into a single lower triangular update

Algorithm 4 Distributed Multifrontal Factorization

mycols = {j | map[j,S’] = myname for some separator S’} ;
for j € mycols do
L.j = (@jjy ey anj) T ;
for column j := 1 to n do
if j € mycols then
begin
while not all updates to some v[j, S’] for which
map[j, S'] = myname have been applied do
begin
Receive aggregate update v[¢, S”] or factor column L.y ;
if received v[i, S”] then

begin
Let S’ = parent[S"] ;
o, 87 = oli, S + oli, 8" 3 (6)

if all updates to v[¢, 5] have been applied then
Send v[i, 8] to map[i, parent[S]] ;
end
else
for i€ S’ with l;; # 0 and map[i, S’] = myname do
begin
vli, 87 i= ofé, ST+ Lie(lik, - - lnk) T 5 (7)
if all updates to v[¢, S’] have been applied then
Send v[i, §'] to mapli, parent[S"]] ;
end
end
Let S be the separator to which j belongs ;
if map[j, S] = myname then

begin
Lyj = Ly — 0[5, 5];
1
Ly; := ——= Lyj ;
L

Send L,; to every processor 7 for which there exists ¢ > j
such that l;; # 0 and map[i, S] = 7 ;
end
end

10

Pure Domain Domain
From To Fan-out | Fan-out | Fan-in | Multifrontal
Domain | Parent factor | update | update | update
Domain | Ancestor || factor | update | update | —
Separator | Parent factor | factor update | update
Separator | Ancestor || factor | factor update
Separator | Self factor | factor update | factor

Table 1: Message types based on domain-separator model

matrix. This update matrix corresponds to the frontal matrix for S and represents
the sum of all update contributions from columns in the separator together with
descendant columns of the separator in the elimination tree.

Most of the floating-point arithmetic is in the assignment (7), which can be im-
plemented as a dense AXPY since v[i, S'] and lix(li, - - -, lnk)T have the same nonzero
structure. The assignment (6), which is a sparse AXPY, represents a lower order term.
Thus we would expect the kernels for multifrontal to be more efficient than the kernels
for either fan-out or fan-in (without supernodal updates).

It is straight-forward to incorporate domains into the multifrontal algorithm. Let
S denote the root separator for a domain. Then, after the domain has been fac-
~ tored, the aggregate updates v[j,S], j € S, can be computed and sent to processors
map|j, parent[S]]. We shall refer to this variant as the domain multifrontal algorithm.

In order to minimize communication, the processor maplj, S| assigned to compute
v[j, S] is always chosen from the set @ = {map[k]|k € S} in such a manner as to
balance the load among the processors in Q.

7 Comparisons of Distributed Algorithms

We have described several distributed factorization schemes in the last three sections.
In the pure fan-out scheme, processors communicate using only factor columns. In
the domain fan-out scheme, aggregate update columns are used to pass information
from domain to non-domain nodes, while factor columns are used to pass information
among non-domain nodes. In the fan-in scheme, processors communicate using only
aggregate update columns. In the domain multifrontal method, the processors use a
mixture of factor columns and aggregate update columns.

In Table 1, we summarize the communication aspects of these schemes. Here
“Parent” refers to the separator immediately above the domain or separator in the
elimination tree, and “Ancestor” refers to a non-parent separator lying on the path
from the domain or separator to the root of the elimination tree. Note that in the
multifrontal method, column information is never forwarded from a domain or sep-
arator directly to an ancestor separator; it must be passed to the parent separator,
then to the grand-parent separator, etc., until it reaches the destination.

11

No.of Distributed Total Messages || Send Mesgs || Recv Mesgs
Proc. Algorithm max | min | avg || max | min || max | min
Domain Fan-out || 711 | 650 | 681 || 372 307 || 353 323

16 Fan-in 238 | 220 | 234 || 119 115 || 123 101
Multifrontal 329 | 298 | 318 || 175 | 142 || 172 | 137
Domain Fan-out || 997 | 825 | 906 | 513 367 || 484 379

32 Fan-in 295 | 253 | 272 || 138 133 || 159 117
Multifrontal 348 | 307 | 332 || 186 145 || 184 145
Domain Fan-out | 916 | 614 [808 || 460 | 344 | 487 | 248

64 | Fan-in 348 | 246 | 298 || 151 144 || 200 96
Multifrontal 353 | 252 ({309 || 193 | 130 | 186 | 118

Table 2: Average message counts per processor for the 63-by-63 grid problem

We now present experimental results for a model problem, the sparse symmet-
ric positive definite system associated with a 9-point difference operator on a k-by-k
regular grid. The multiprocessor is an Intel iPSC/2 hypercube with Weitek 1167
floating-point chips. The three distributed schemes were implemented in C. Results
are not presented for the pure fan-out method because it was uniformly and substan-
tially worse than domain fan-out.

The nested dissection ordering was used to order the variables, since it gives
optimal-order fill and a well-balanced elimination tree [9]. A subtree-to-subcube
mapping [13] was used to assign columns to processors. We chose equal-size domains
(one per processor) of largest possible size, since that choice is known to give good load
balance and reduced communication [17]. Thus the columns/nodes in the last grid
dissector are assigned to the 2¢ processors of the entire hypercube, and the nodes
associated with each of the two remaining subgrids are mapped to one of the two
(d — 1)-dimensional subcubes in a recursive manner.

For each of the three distributed factorization schemes, the amount of message
traffic and the amount of parallel numerical computation depends on the mapping
function. Table 2 shows the actual message counts for a 63 x 63 grid. Table 3 shows
the corresponding message volumes. Figure 5 shows the average message volume
for a 63-by-63 grid problem, Figure 6 the average message counts, and Figure 7 the
efficiency of the domain fan-out, fan-in, and domain multifrontal methods. Table 4
gives speedups for these schemes, relative to a state-of-the-art serial code, also written
in C.

It is clear from these experimental results that domain fan-out is inferior to the fan-
in and the multifrontal schemes for our current implementations. The fan-in scheme
requires marginally less message traffic than the distributed multifrontal method, but
it is not as efficient.

12

No.of Distributed Total Volume Send Volume] Recv Volume
Proc. Algorithm max | min | avg || max | min | max | min
Domain Fan-out || 604.8 | 546.6 | 576.3 || 317.6 | 257.3 || 292.1 | 284.2

16 Fan-in 109.7 | 104.7 | 106.2 55.1 51.1 || 57.6 49.9
Multifrontal 152.4 |1 137.5 | 144.6 80.5 63.4 75.7 67.5
Domain Fan-out || 823.5 | 675.0 | 750.7 || 436.4 | 306.9 || 399.0 | 316.8

32 Fan-in 130.0 | 120.3 | 126.0 67.0 59.0 70.1 55.4
Multifrontal 163.2 | 144.8 | 154.6 83.9 70.0 81.3 70.2
Domain Fan-out || 756.5 | 477.1 | 647.7 || 385.6 | 260.8 || 402.4 | 194.2

64 Fan-in 155.6 | 123.3 | 138.2 73.7 64.3 88.8 52.1
Multifrontal 163.1 | 127.4 | 148.8 90.8 59.2 83.5 58.8

Table 3: Average message volumes per processor (kilobytes) for the 63-by-63 grid
problem

800 | T T

700

600 —
Domain Fan-out

500

Average Volume

(x 1000 bytes) 400 _

300 —

g Multifrontal _

~~~~~~ ‘o—__—“~’<o>_~.“..‘.f'.7:.~.g

.......... @ i A

100 =" 700 o
0 | 1 I

! 8 16 32 o)

Number of Processors

Figure 5: Average message volumes per processor for the 63-by-63 grid problem

No. of Domain Distributed
Processors || Fan-out | Fan-in | Multifrontal
8 5.2 6.0 6.5
16 6.8 9.7 10.6
32 6.8 14.9 17.5
64 8.3 20.6 25.6

Table 4: Speedups of distributed schemes on the 63-by-63 grid problem

13




1000 I I I
900
800
700
Average 600
Message 500

Count 400
300 R
20077 oo Fan-in 7
100F -
0 | | !
4 8 16 32 64

Number of Processors

Figure 6: Average message counts per processor for the 63-by-63 grid problem

100 I I

-
-

ST~ é\/[ultifrontal -
el T

Parallel 60
Efficiency 50}
(Percent) 40

~ - —
-~

Fan-in ... =

Number of Processors

Figure 7: Parallel efficiency for the 63-by-63 grid problem

14




References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Cleve Ashcraft, Stanley C. Eisenstat, and Joseph W. H. Liu, “A fan-in algorithm
for distributed sparse numerical factorization,” SIAM J. Sci. Statist. Comput.,
11(3):593-599, May 1990.

C. Ashcraft, S. C. Eisenstat, J. W. H. Liu, B. W. Peyton, and A. H. Sherman,
“A Compute-Ahead Fan-in Scheme for Parallel Sparse Matrix Factorization,”
in D. Pelletier, Editor, 4th Canadian Supercomputing Symposium (1990), pp.
351-361, June 1990.

Cleve Ashcraft, Stan Eisenstat, Joseph Liu, and Andy Sherman, A comparison of
three distributed sparse factorization schemes, presented at the STAM Symposium
on Sparse Matrices, Salishan Resort, Gleneden Beach, OR, May 1989.

C. Cleveland Ashcraft, Roger G. Grimes, John G. Lewis, Barry W. Peyton, and
Horst D. Simon, “Progress in sparse matrix methods for large linear systems on

vector supercomputers,” Internat. J. Supercomputer Appl., 1(4):10-30, Winter
1987.

R. E. Benner, G. R. Montry, and G. G. Weigand, “Concurrent multifrontal meth-
ods: Shared memory, cache, and frontwidth issues,” Internat. J. Supercomputer
Appl., 1(3):26-44, Fall 1987.

Tain S. Duff, “Parallel implementation of multifrontal schemes,” Parallel Com-
put., 3(3):193-204, July 1986.

I. S. Duff, N. I. M. Gould, M. Lescrenier, and J. K. Reid, The Multifrontal Method
in a Parallel Environment, Technical Report CSS 211, Harwell Laboratory, Ox-
fordshire, England, 1987.

I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse sym-
metric linear equations,” ACM Trans. Math. Software, 9(3):302-325, September
1983.

Alan George, “Nested dissection of a regular finite element mesh,” SIAM J.
Numer. Anal., 10(2):345-363, April 1973.

Alan George, Michael T. Heath, and Joseph Liu, “Parallel Cholesky factorization
on a shared-memory multiprocessor,” Linear Alg. and its Applications, 77:165—
187, May 1986.

Alan George, Michael T. Heath, Joseph Liu, and Esmond Ng, “Sparse Cholesky
factorization on a local-memory multiprocessor,” SIAM J. Sci. Statist. Comput.,
9(2):327-340, March 1988.

Alan George and Joseph W. H. Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

15




[13] Alan George, Joseph W. H. Liu, and Esmond Ng, “Communication results
for parallel sparse Cholesky factorization on a hypercube,” Parallel Comput.,
10(3):287-298, May 1989.

[14] Jochen A. G. Jess and H. G. M. Kees, “A data structure for parallel L/U de-
composition,” IEEE Trans. Comput., C-31(3):231-239, March 1982.

[15] J. W. H. Liu, The Role of Elimination Trees in Sparse Factorization, Technical
Report CS-87-12, Deptartment of Computer Science, York University, 1987. (to
appear in SIAM J. Matriz Anal. and Applic.).

[16] Robert Francis Lucas, Solving Planar Systems of Equations on Distributed-
Memory Multiprocessor, Ph.D. thesis, Department of Electrical Engineering,
Stanford University, Stanford, California, 1987.

[17] Mo Mu and J. R. Rice, A Grid Based Subtree-Subcube Assignment Strategy for
Solving PDEs on Hypercubes, Technical Report CSD-TR-869, Computer Sciences
Department, Purdue University, February 1989.

[18] Frans J. Peters, “Parallel pivoting algorithms for sparse symmetric matrices,”
Parallel Comput., 1(1):99-110, January 1984.

[19] Charles H. Romine and James M. Ortega, “Parallel solution of triangular systems
of equations,” Parallel Comput., 6(1):109-114, January 1988.

[20] Robert Schreiber, “A new implementation of sparse Gaussian elimination,” ACM
Trans. Math Software, 8(3):256-276, September 1982.

[21] B. Speelpenning, The Generalized Element Method, Technical Report UTUCDCS-
R-78-946, Department of Computer Science, University of Illinois at Urbana-
Champaign, November 1978.

[22] Earl Zmijewski, Limiting Communication in Parallel Sparse Cholesky Factoriza-
tion, Technical Report TRCS89-18, Department of Computer Science, University
of California at Santa Barbara, June 1989.

16




