Yale University
Department of Computer Science

Explicit Routing in the Fluent Machine

Bjorn Lisper

YALEU/DCS/TR-645
August 1988

This work has been supported by the Office of Naval Research under contract
N00014-86-K-0564.

Explicit Routing in the Fluent Machine

Bjorn Lisper
Computer Science Department
Yale University
New Haven, CT06520

August 28, 1988

Abstract

Fluent routing is an efficient way to emulate shared memory in a processor
network with distributed memory. This allows for a conceptually simple parallel
computation model but the simplicity is bought for a communication cost that
is logarithmic in the number of processors. This is wasteful for computations
that have such a structure that they can use local communication, with commu-
nication time independent of the size of the given network, efficiently. Thus, it
is of interest to use local or near-local communication whenever it is beneficial
in a fluent parallel computer. We define ezplicit routing where full control is
given over the routing path. Explicit routing can be used to implement local
and near-local communication, and we show how to implement it so that it in-
terferes in a minimal way with the fluent routing scheme. Finally we isolate
some problems that can occur when explicit routing is employed and we discuss
ways of solving them.

1 Introduction

Programming parallel computers is a complex and error-prone task. Different approaches
have been taken to ease the burden of the programmer and simplify the transfer from
program specification to implementation. One way to go is to provide hardware support
for a relatively high-level programming model. If this is done the “semantic gap” between
the high-level program and the machine is diminished which makes the translation easier.

A particular, imperative programming model for parallel computing is the Concurrent-
Read Concurrent-Write Parallel Random-Access Machine (CRCW PRAM) model. In this
model an arbitrary number of synchronous processors share a common memory. Any pro-
cessor can read or write to any memory location at any time, and these operations take one
unit of time to complete. Memory access conflicts are resolved by some given rule. This
model has become quite popular for expressing parallel algorithms since it hides details
of communication and synchronization. Communication simply takes place through the
common memory.

CRCW PRAM’s cannot possibly be built directly in hardware, however, given the re-
strictions of available technology in the foreseeable future. Therefore, they have to be
emulated on technically feasible parallel hardware if this programming model is to be of
any practical use. A promising way to do this is Ranade’s fluent routing, [15,16]. In this
model a CRCW PRAM is emulated by a butterfly network of message-passing processors
with local memory. The common memory of the PRAM model is physically distributed
among the processors in the network. Memory accesses are implemented by sending mes-
sages in the network, from the requesting processor to the one holding the accessed memory
cell and back. Fluent routing is an efficient scheme for handling the message passing. If the
butterfly network has N processors the time for a fluent memory request to be completed
will be O(log N) with very high probability [15].

Whenever high-level concepts are supported in hardware a penalty has to be paid. This
penalty may be in the form of extra hardware, longer execution time or both. Therefore
there is another trend in parallel architectures that emphasizes raw hardware speed at the
cost of conceptual simplicity. As a matter of fact this way of building parallel machines has
been predominant so far, due to the need for high performance and technological limitations.
In order to bridge the semantic gap between hardware and the programming model, a
higher demand is placed on either the programmer or compilers. In the case of compilers
a quite interesting development has taken place during the last couple of years. Notable
is trace scheduling for VLIW architectures [4] and vectorizing compilers for conventional
supercomputers [12]. These techniques are common in that they isolate code segments that
consist of straight-line code or that can be unraveled into such code, e.g. simple loops.
They try to find a good scheduling of the events generated by the code segment such that
the communication pattern fits well with existing communication facilities while processor
utilization is kept high. On the theoretical side, the space-time mapping paradigm in its
general form [9] offers a new unified conceptual framework for these methods as well as a
theory in which the correctness of them can be ensured. This paradigm, while hitherto
mostly applied to synthesis of fixed special-purpose parallel hardware [10,14], may also lead
to new compiler techniques for parallel computers [2,7,8].

In the case of fluent routing the additional hardware requirements are quite minimal
[16] but the O(log N) time memory accesses may be far from optimal for certain types of
computations whose structures map well to the butterfly network used to implement the
fluent PRAM. If, for instance, the computation can be scheduled so that communication
only needs to take place between adjacent processors, then access time will be 0(1), i.e.
independent of the size of the network. Theoretical results exist about what kind of com-
putation structures that can be efficiently scheduled on butterfly networks [1]. Simulations
indicate that the difference in time between fluent and local accesses will typically be around
two magnitudes on a 13—dimensional butterfly network with 114688 processors [16]. There-
fore, if the true peak performance of the hardware is to be achieved then local or near-local
routing must be utilized when advantageous to do so. This is especially true for areas such
as scientific computing where performance is a main issue and the algorithms often exhibit
a large degree of structure that can be determined at compile-time and thus scheduled in
advance to yield a minimum of control overhead.

Therefore it seems likely that we will want to combine explicit routing with fluent
routing. A compiler, for instance, may isolate parts of a program that are suitable to

execute using fixed-connection, local or near-local communication in the network while
leaving other parts to use the general routing scheme. In this paper, we define explicit
routing and show how to implement it in the fluent network in a way that does not interfere
more than necessary with the fluent routing scheme.

The rest of this paper is organized as follows: Section 2 contains a brief primer of the
Fluent Abstract Machine and we show how it is supposed to be implemented. In section
3 we define explicit routing and present a way to implement it. Section 4 identifies some
problems that may occur in a system where explicit and fluent routing is used at the same
time. Here we also propose some ways to cope with these problems and we conclude with
a few remarks.

2 The Fluent Machine

In this chapter we give a brief introduction to the Fluent Machine as described elsewhere
[16] in order to enable the reader to understand the following discussion. We first describe
the Fluent Abstract Machine that is the CRCW PRAM model supported and then we
discuss how it is implemented.

2.1 The Fluent Abstract Machine

The Fluent Abstract Machine has IV processors represented by the integers {1,..., N} which
are connected to a shared memory. The processors operate synchronously. In each cycle
every processor can issue either a multiprefiz operation or a set operation. A multiprefix
operation is of the form MP(A,v,®) where A is a shared variable, v is a value, and ®
is a binary associative operator. Let P = {py,...,p;} be a set of processors such that
P1 < p2 < ... < pr. Assume at a given cycle that every p; € P executes the operation
MP(A,v;,®) and that no other processor refers to A. Let vy be the value of A at the
beginning of the cycle. Then, at the end of the cycle, every p; € P will receive the value
Qv ® - ®v;—1 and A will have the value o @ v, ® - - - ® vg.

We introduce two more primitives that are special cases of multiprefix: READ(A) that
returns the value of A and WRITE(A,v,®) that is equivalent to MP(A,v,®) except that
no values are returned to the processors executing it. Note that a standard overwrite is a
special case of WRITE; it can be expressed as WRITE(A,v,0) where “o” is the binary,
associative “overwrite” operator defined by z oy = y for all z,y. Thus, the Fluent Abstract
Machine supports ordinary concurrent reads and writes to the common memory and it can
be programmed exclusively with these if desired.

We can note that the behavior of the Fluent Abstract Machine is totally deterministic,
also in the case of memory conflicts. If, for instance, several processors write to a particular
memory location in the same cycle, the writes will always take place in the order the
processors are numbered.

For a description of the set operations supported we refer to Ranade, Bhatt, Johnsson
[16].

XX

-
R

Figure 1: A butterfly network

2.2 Implementing The Fluent Abstract Machine

The Fluent Abstract Machine is implemented on an n-dimensional butterfly network with
(n +1)2" nodes. In such a network every node can be given a two-dimensional coordinate
(c,7) where 0 < ¢ < mand 0 < r < 2. We will say that a node with label (c,r) is at
level c. A node (c,7) has a node address that consists of the binary representation of ¢
concatenated with the binary representation of r. Every node (e,), except for the ones at
level n, are connected by forward links to the two nodes (c+1,7)and (c+ 1,70 2¢) where
“@” denotes bitwise exclusive or. Thus, each node in level ¢, except for the levels 0 and n,
has two connections to level ¢ — 1 and two to level ¢ + 1.

Each node consists of a processor with memory and six routing switches. Each switch
has two inputs and two outputs. Every switch is used in a distinct routing phase [15,16].

The fluent memory space is physically distributed among the local memories of the
nodes. Every physical adress is of the form (p,a) where p is the address of a node and g is
an address in the local memory at p. Fluent adresses are translated to physical by a hash
function that randomizes the access pattern and ensures that all nodes hold about the same
number of fluent memory locations.

Fluent memory requests are implemented by messages that are sent from the requesting
processor and forwarded to the node holding the requested address. In the case of reads
and multiprefixes, a reply message with the requested data is sent back the same way. The
routing takes place in six phases [15,16]. In every phase the message is passed through the
corresponding switches throughout the network. Every switch has two FIFO queues, one

4

for each input line, where messages in transit are buffered. If a queue becomes full, flow
control is provided that causes any further messages over that line to be held until there is
space in the queue again.

A fluent request from (c,r) to (¢/,’) is routed as follows: in the first phase it is sent
forward to (n,7). In phase two it is directed the unique path back to (0,7'). In phase three
it is sent forward again to {c/,7’). The next three phases simply retrace the message back
through the network in case the message required a reply.

The path followed in phase two deserves a closer examination. In every step the switch
looks at the appropriate bit of the binary representation 747} ---7/_; of #' and directs the
message accordingly. This leads to a path where the message after i hops will be at node
(n—drQry - 7i_yrie e Tpoy).

Messages have three fields: DEST, TYPE and DATA. DEST holds the physical address
of the requested variable. The TYPE field contains the type of request, for instance READ,
WRITE or MP.

Consider the action of the network during the emulation of one cycle of the Fluent
Abstract Machine. All processors will issue memory requests of some type during the
cycle. Any two processors may or may not issue requests to the same fluent address.
The propagation of the requests is governed by two key ideas of fluent routing: message
sorting and message combining. Every switch always maintains its input queues sorted
so that messages with smaller destination addresses are stored first. At every time three
situations can occur: first, both queues may be non-empty and the first messages have
different destinations. Then, the message with the lower destination is forwarded. Second,
if the first messages in both queues have the same destination they are combined and the
combined message is transmitted. If, finally, any queue is empty no message is forwarded
(since possibly a message with lower destination may arrive to the empty input later and
thus the sortedness would be violated if the first message is prematurely forwarded).

The combination principle and the messages being sorted implies that only one request
to a given fluent address is transmitted over any connection. This greatly reduces the
risk of message congestion when many processors request the same fluent address. On the
other hand, this puts some restrictions on the kind of requests that can be issued to the
same fluent address in the same cycle [16]. The combination principle is also the reason why
binary operators in multiprefix operations must be associative; since messages may combine
at different stages depending on where they are issued, this is required to guarantee the
uniqueness of the result.

Fluent routing as sketched above is provably fast; the following theorem is due to Ranade
[16]:

Theorem 1 (Ranade) Assuming a perfect random access map, the probability that any
memory reference takes more than 15log N steps is less than N—20,

So far we have discussed the implementation of a single abstract memory cycle. Requests
belonging to different cycles are kept separate from each other by end-of-stream messages
(EOS). Immediately after a processor has sent a memory request it also issues an EOS
message. Such a message has destination co. Thus, all nodes issue an EOS in each cycle
so every node will eventually receive one. Because switches keep messages sorted the EOS
will be the last request to go out from any switch during a particular cycle.

physical f
time _
T fluent
time
>
processors

Figure 2: Fluent time vs. physical time

This property of EOS messages can be used to implement a global, distributed clock.
Since only one EOS is forwarded through a switch during a cycle, the switch can keep
a count of how many have passed. This count is a global time since it enumerates the
current cycle for which the switch transmits messages. Guided by this the processor at the
node in question can inject its proper request for that cycle. A processor can also use this
mechanism to stop the global clock simply by withholding the EOS.

3 Explicit routing
Let us first define what we mean by explicit routing:

Definition 1 A memory request that is explicitly routed (or e-routed, for short) has its
path completely specified through the network.

Thus, we may for instance route a message between {c,r) and (c — 2,7) explicitly as
{e,m) = {¢=1,7) = (c—2,7). E-routing should not be mixed up with the following concept:

Definition 2 A memory request that uses absolute-addressed fluent routing has a physical
destination address (processor ID + local address) but uses the fluent routing scheme.

An absolute-addressed request is a fluent request in all respects except that its address is
in the physical address space instead of the fluent address space. To illustrate the difference
between absolute-addressed requests and e-routed requests, consider an absolute-addressed

DIRECTIONS #HOPS

SFDF SB 3

Figure 3: An example of a path representation

request from (c,r) with destination (¢ — 2,7). According to the fluent routing scheme
[15,16] this message will be sent first using forward links to (n,r) (where n is the dimension
of the butterfly), then backwards to (0,r) and finally forward to (¢ —2,7). This should be
compared with the path of the e-routed request between the same two nodes above.

Absolute-addressed requests pose no problems whatsoever in the fluent environment
since they are treated exactly as fluent requests. The only thing that differs is that no
address translation is necessary before the request is sent out. E-routed requests is another
matter. Typically they will be used for computation structures that have good embeddings
in the network. These embeddings will in general imply communication routes that are
different from the fluent ones. It is therefore clear that e-routed requests should not be
treated by the switches in the same way as fluent and absolute-addressed requests.

3.1 Implementing explicit routing

We propose three new types of requests distinguished by new codes in the TYPE field: E-
WRITE, E-READ and E-REPLY. E-WRITE and E-READ are e-routed writes and reads,
respectively. An E-REPLY is the reply message to an E-READ carrying the requested data.

The DEST field for an e-routed request is different from that of a fluent request. Instead
of an absolute physical address — a pair consisting of a processor address and a local memory
address, the DEST field contains a path representation and a local memory address. The
path representation holds the explicit route to the destination node and the local memory
address refers to the memory of that node.

A path representation consists of two fields: #HOPS that contains the number of hops,
say , in the route and DIRECTIONS that holds n direction pointers DP(1),...,DP(n). For
every hop ¢ in the route DP(%) tells which neighbor of the current node the message should
be sent to. This is very akin to self-routing using control tags in permutation networks [6].

Since a node (¢, r) in a butterfly network has at most four neighbors, a direction pointer
can have four possible values; straight forward (SF) to (¢ + 1,r), diagonally forward (DF)
to (¢ + 1,7 @ 2°), straight backward (SB) to (c — 1,7) and diagonally backward (DB) to
(c—1,7®2°71). See figure 4. Thus, it can be encoded with two bits.

The butterfly network has the property that if a is a neighbor of b of a certain type, say

SB

DB

Figure 4: Directions from a butterfly network node

SF ~ SB
SB ~ SF
DF ~ DB
DB ~ DF

Table 1: Conversion of neighbor types when a path is reversed

X, then b’s neighbor type vs. a is uniquely given by X independent of a and b. If a is a
forward (backward) neighbor of b, then b is always a backward (forward) neighbor of a. If
a is a diagonal (straight) neighbor of b, then b is always a diagonal (straight) neighbor of
a. This property is important when reversing paths, see below.

When a switch detects an incoming e-routed request (by checking the TYPE field) it
lets the request bypass the queues for the fluent requests. It then decreases #HOPS by one.
If #HOPS then is zero the request has reached its target and the local memory access is
executed. Otherwise, the request is redirected to the neighbor node given by DP(#HOPS).

An E-REPLY message is routed backwards the same way as the E-READ request whose
requested data it carries. To make it possible to restore the path the E-READ request
carries the original value of its #HOPS in its DATA field. When the E-READ reaches its
destination its DATA field is copied to the #HOPS field of the E-REPLY, thus restoring the
length of the path. The DIRECTIONS field of the E-REPLY is created as follows: all DP(3)
of the E-READ are converted according to table 1 and copied to position DP(#HOPS—i+ 1)
of the DIRECTIONS field of the E-REPLY. It is not hard to convince oneself that this is
the correct reversed path representation. Finally the DATA field is filled with the locally
retrieved data, the TYPE is set to E-REPLY and the request is sent back to the node
issuing the original E-READ request.

3.2 Additional hardware requirements

In order to handle e-routed requests the switches will require additional circuitry for the
following:

o Recognizing the types for e-routed requests.

o Letting e-routed requests bypass the queues for fluent messages and putting them on
an output line while withholding the fluent message that would have used that line
otherwise.

e Decoding direction pointers and decrease #HOPS fields.
¢ Restoring path representations for E-REPLY’s from E-READ’s.

Depending on how fast the switches will handle the e-routed requests, a separate queue
may be necessary to hold waiting e-routed requests. Whether to have a queue or not is
a matter of performance, the flow control for fluent messages will work also for e-routed
requests and guarantee that no messages are lost. It is also possible that it is beneficial
to make the queues for fluent requests longer if fluent messages are frequently withheld
because of e-routed messages passing.

Some more local memory will probably be needed if e-routing is used. This is because
a computation using e-routing is likely to use its own explicit local addressing as well, and
we do not want to have fluent variables overwritten. Thus, it seems necessary to partition
the local memory into a fluent part and a “direct-addressed” part. As a matter of fact
this can be beneficial for processors issuing fluent requests only too, since they may need
some fast (compared with fluent access) local memory to hold temporary values during
computations. A processor accessing its own local memory directly can be seen as issuing
an e-routed request with zero hops.

This idea of partitioning the memory resembles the partitioning of memory in IBM’s
experimental multiprocessor system RP3 into a global and a local part [13]. As in RP3
it can be advantageous to have a “movable boundary” between the two memory types, so
that memory can be re-partitioned to meet the demands of a particular application. Note,
though, that the non-fluent part of the memory in a fluent node is accessible also to other
nodes via e-routed requests. Thus the memory is partitioned in a non-fluent and a fluent
part rather than in a local and shared part.

3.3 Message sizes

If explicitly routed requests are added it may be necessary to have slightly longer messages.
First, an additional bit may be necessary for the TYPE field since there will be three more
types to encode. Second, depending on how long we want the paths to be, the DEST field
may have to be larger.

Assume that we allow a maximum of m hops. A path representation of m hops requires
2m + [log m] bits, 2m for the DIRECTIONS field and [logm] for the #HOPS field. The
diameter of an n-dimensional butterfly network, consisting of n + 1 levels of 2" nodes
each, is 2n. Thus, if any node is to be able to send e-routed requests to any other node,
then 4n + [log 2n] bits are maximally needed in the path representation. This should be
compared with the size of a node address for a fluent request that is [log(n + 1)] + » in
the same network. The proposed Fluent-I [16] has a 13—dimensional butterfly network. In
this machine a node address requires 17 bits while the longest required representation path
needs 57 bits.

E-routed requests are intended to be used primarily for local or lear-local communi-
cation, however. If we allow variable-size DIRECTIONS fields then the size of the path
representation for a k-hops request is 2k + [log 2n]. With n = 13 a one-hop request needs 7
bits and a two-hop request needs 9 bits. Another possibility is to have fixed-size fields but
to restrict the longest path to some small number m. If we require the path representation
to fit into the 17 bits of the node address field for fluent requests in the Fluent-I, then m
can be 7 at the most.

3.4 Passing explicit messages in a pipelined manner

So far explicit routing has been described as a strict store-and-forward process, where the
whole message is stored completely in a node as a single packet before it is transmitted to
the next node in the path. As a matter of fact explicitly routed messages can be transmitted
in a pipelined fashion, analogous to wormhole routing [3].

In this scheme every explicit message consists of several packets. During a transmission
these packets are spread out over a sequence of nodes in the path. The first packet contains
the path representation. The direction pointers are used as flow control digits. Therefore
the DIRECTIONS field should come first in the path representation. This field should
be lead by the direction bits and these should in turn be arranged so that direction bits
specifying early hops in the path come before those specifying later hops. With the address
arranged in this fashion the first direction pointer can simply be “chopped off” when the
first packet enters a new node. This pointer is then stored in the switch while the packets
pass and it is used to direct them to the correct output line. A special marker at the end of
the last packet tells the switch that the message has passed completely; it can then discard
the direction pointer and start transmitting a new message.

This implementation of explicit routing has the advantage of being compatible with the
proposed bit-serial implementation of the fluent routing switch [16].

3.5 Operations that can be implemented by explicitly routed re-
quests

Three different operations can be implemented using explicitly routed requests: write, read
with wait for completion and read without wait for completion. The implementation of
write is straightforward: an E-WRITE is simply issued to the desired destination. The
read operations send out an E-READ and retrieve the E-REPLY that comes back. A read
with wait (for completion) issues an E-READ and halts the processor until the E-REPLY
comes back. A read without wait allows the processor to proceed without waiting for the
E-REPLY. In this case some kind of interrupt mechanism is necessary that interrupts the
processor and invokes the proper code when the E-REPLY returns.

E-REPLY messages have an important property: no E-REPLY will be sent to a processor
that did not issue an E-READ to the address from which the E-REPLY carries data. This
is because E-REPLY messages are sent only in response to E-READ requests and every
E-REPLY follows exactly the same path backwards as the corresponding E-READ came.
Thus, we can state the following:

10

Proposition 1 If a processor p has at most one outstanding E-READ request at any time,
then any E-REPLY arriving to p will be the answer to the latest E-READ issued by p.

We immediately get the following result for reads with wait:

Corollary 1 If a processor p only ezecutes read requests with wait, then any E-REPLY
arriving to p will be the answer to the latest E-READ issued by p.

If, however, a processor has several outstanding E-READ requests at the same time,
a situation that may occur if it executes reads without waiting for completion, then there
is no guarantee that the corresponding E-REPLY’s will come back in the same order as
the E-READ’s were issued. This is because different requests may follow paths of different
lengths, with a different amount of interfering traffic. We do, however, have the following
result:

Proposition 2 Assume that switches send out e-routed messages in the same order as
they arrive. Then, if the E-READ request 1 is issued before the E-READ request ro by
the processor p and if the path of 1 is subsumed by the path of ry, the E-REPLY of r1 will
arrive to p before the E-REPLY of ry.

Proof. Assume that r; is issued before r and the path of r; is subsumed by the one of
T9. Because switches preserve the order between messages r; will arrive to its destination d
before r; arrives to d. Thus, the E-REPLY for r; will leave d before r, is forwarded by d.
This implies that ro will reach its destination after 71’s reply is issued, and thus, ro’s reply
will also be issued after r1’s reply is. Since the reply paths are the reversed request paths
the path of 7;’s reply will be subsumed by the path of 72’s reply. The reasoning above that
showed that ry arrives to d before r can now be applied to the replies to show that the
reply to r; arrives to p before the reply to ry does. |

The proposition for E-WRITE’s below is proved in the same way as proposition 2.

Proposition 3 Assume that switches send out e-routed messages in the same order as they
arrive. Then, if the E-WRITE request r is issued before the E-WRITE request r, to the
same processor p and if the path of ry is subsumed by the path of ro, vy will arrive to p
before r,.

In general, however, some other mechanism must be used to distinguish between E-
REPLY’s than to rely on them going the same way. One possibility is to restrict the
read-without-wait instruction so that after such an instruction is executed the processor
continues, with one outstanding read request, only until another read instruction is encoun-
tered. When this happens the processor halts and waits for completion of the first request
until the new read instruction is executed. This assures that at most one read request is
outstanding at any time which totally determines the arriving order of the replies according
to proposition 1.

Another possibility is to add an ID field to each E-READ and E-REPLY message and
let the switch of the destination node copy the ID from the E-READ to the returned E-
REPLY. If the ID field is 4 bits wide a processor can have a register whose contents is

11

incremented by one modulo 2¢ and copied to the ID field every time an E-READ is issued.
In this way there can be 2¢ consecutively issued outstanding E-READ requests at the same
time whose E-REPLY’s all are uniquely identifiable. Note, though, that the administration
of these replies will require some enhancements of the hardware; either the switch must be
able to queue and sort incoming E-REPLY’s with respect to their ID so that the processor
is guaranteed to recieve them in order, or the processor itself must be equipped to handle
multiple choices when an E-REPLY interrupt occurs.

3.6 Synchronization of explicitly communicating processors

When two processors communicate through fluent variables there is a strong synchronization
given by the global, distributed clock implemented by the EOS messages. Each processor
knows which fluent time slice it is in and can, if it has knowledge about what other processors
are doing in which time slice, use that information to determine whether a desired value is
available or not. The fluent clock does not, however, apply to explicitly routed messages
since they are forwarded independently of the fluent EOS messages. Thus, processors using
e-routed requests to communicate cannot make assumptions about the result of requests
based on this clock.

Instead processors communicating via e-routed requests will have to rely on conventional
methods for synchronization. These differ depending on the type of program execution
that the fluent machine will use. The type of execution is not currently fixed. If the
communicating processors execute in SIMD mode, for instance, then there is some global
controller that has information about the instruction stream and holds the next instruction
until the previous one has completed. If the processors run as a MIMD system, then they
can synchronize via semaphores or test-and-set, some of which probably should be provided
as a separate type of e-routed request.

4 Problems with mixing explicit and fluent routing

In this section we will identify some problems that may occur when fluent routing and
explicit routing are used at the same time.

4.1 EOS depletion

If a processor only sends out e-routed requests and does not issue any fluent requests, then
it will not issue any EOS messages either. Since the global distributed clock relies on that
all processors send EOS regularly this means that the global fluent clock will stop and all
processors that are doing fluent computations will eventually stop too, when they reach the
last defined fluent time slice. This is a not a problem specific to e-routed communication; a
fluently communicating processor that runs a computation-bound program and issues few
fluent requests per time unit will also cause the same problem. It seems likely, though, that
the problem will be particularly serious when processors utilize e-routed communication
because of the type of computations that are likely to be done using such routing: long,
heavy computations with a largely predetermined structure that is embedded in the network
and where communication almost exclusively is accomplished through e-routed messages.

12

Some general methods to handle EOS depletion have been suggested [11] and they are ap-
plicable to processors sending e-routed requests. The idea is to have a “non-communicating”
mode for nodes (where “non-communicating” means “not fluently communicating”). A node
in non-communicating mode will simply pass on every EOS that arrives without injecting
its own fluent message in that fluent time-slice as otherwise would be required. This has two
consequences. The first is a positive one: fluent requests will not be halted at the switch
anymore. The second consequence is negative, the node will lose its fluent synchronization.
Whenever it will want to issue fluent requests again it must resynchronize in some way. This
can be done using standard techniques like semaphores implemented with fluent variables.

4.2 Slowdown of fluent requests

In the implementation of e-routing sketched in the previous chapter, e-routed requests will
always bypass the fluent queues and thus e-routed requests will always have priority over
fluent requests. If many e-routed requests per time unit are transmitted over a particular
line, then very few, if any fluent requests will be able to pass that line. As a matter of fact
there is no guarantee that any fluent request will ever be able to be completed in such a
system because of this possibility of livelock.

A possible remedy is to interleave fluent and e-routed messages when necessary. That is,
when there are both fluent and e-routed messages waiting to be transmitted over a certain
line then the switch alternates the type of the messages sent every time step until one of
the queues are empty. (This solution definitely will require a separate queue for e-routed
messages in each switch.)

It is also possible to have strategies where n. e-routed messages are transmitted for
every ny fluent message transmitted when conflicts arise. The selection of n. and n fisa
matter of what priority is desirable to give the different types of communication; maybe
this should be possible to set programmatically in the switch.

Tuning the priorities for requests

Under some simplified assumptions we can analyze the tradeoff and determine the optimal
ratio ny/ne. Our objective is to minimize the total execution time. Assume the following;:

1. Our fluent machine has N processors. At time 0 we reserve a group P of k processors to
execute E operations each using e-routing. The execution pattern is such that each
of these processors completes its task at the same time, which is F if no e-routed
request are delayed. All processors in P transmit n. e-routed requests for any ny
fluent requests they transmit in case of conflicts.

2. We also have F fluent operations to execute. Each fluent operation can be scheduled to
be executed at any time, either in one of the N — k& “fluent” processors not in P while
the “non-fluent” processors in P are executing e-routing operations or in any of the
N processors after P has completed.

3. All operations are communication-bound, so that the operations are slowed down the
amount the communication is slowed down.

13

4. Communication lines are saturated all the time so that the n./ny ratio of transmitted
requests actually holds for non-fluent processors.

5. All e-routed requests are routed so that they never pass a fluent processor not in P.

6. Define the (normalized) speed of a fluent request to be v; = 1 when it passes a fluent
processor and vy = nf/(n.+nys) when it passes a non-fluent processor. We assume that
any fluent message that passes p processors passes Iy = p(N — k)/N fluent processors
and Il = pk/N non-fluent processors, including EOS messages.

The average speed ¥ for any fluent request will then be

viva(litle) _ Nng/(ne +ny)
voly + v1ly (N —k)ng/(ne+mng)+k

(1)

Consider now the situation when the processors in P are executing non-fluent operations.
The e-routed requests sent between processors in P will be slowed down by the factor
ne/(me + ny) since fluent requests are interleaved with e-routed requests. Because of the
assumption about operation speed being communication bound P will thus use the time
E(ne + ng)/n. to complete the non-fluent task. During this time the speed of the fluent
operations will be ¥ because of the slowdown of the fluent clock caused by EOS messages
passing non-fluent processors. Thus, a maximum of

Ne + Ny
Te

oFE

fluent operations are executed while P is executing non-fluent operations. If the total

number F' of fluent operations is less than this amount, then the total execution time will

indeed be
Ne + Ny

Ne

E (2)
If not, then there are F' — TE(n. + ny)/n. fluent operations left to execute at this time. All
N processors will be available to do this and they will all run at speed 1 again, which yields
an additional execution time of

(F —TE(ne + ny)/ne)
T 3)

If we sum (2) and (3), substitute the expression (1) for ¥ and simplify we obtain the following
expression for the total execution time as a function of ny/n:

F ny 1
E+—=4+—FE1-
+ N n, ((N —k)ng/(ne +ny) +k)
F oy
= — 4+ = - <1.
E + ¥ + s E(1- a), where o < 1 (4)

The total execution time will thus be given by either (2) or (4). In either case it is minimized
if we choose ns/n. = 0, that is: ny = 0 and n. # 0.

Therefore, under the assumptions above, the total execution time is minimized if e-
routed requests are always given unconditional priority over fluent requests. This may seem

14

time 4

total
execution

time

FLUENT
nf + ne
E ne
%T FLUENT
k N processors

Figure 5: Phases of execution

a bit counterintuitive in the light of the preceding discussion about livelock. Note, that
ny = 0 implies that T = 0, i.e. the fluent clock is completely stopped while the non-fluent
processors are executing. One should be aware though, that the assumptions are very
idealized and do not reflect the real situation always. Especially assumption 2, that the
fluent operations can be freely rescheduled to be executed at any time on any processor, is
not entirely realistic. In a real situation it is likely that data dependencies will pose strong
restrictions in which order the operations can be executed. Nevertheless, the analysis gives
a hint that it might be advantageous to reschedule computations when possible so that there
will be phases with mostly fluent computations alternating with phases where most of the
machine is executing e-routed computations and e-routed requests are given high priority.

Partitioning the machine

The analysis in the previous section indicates that it is advantageous to separate fluent
and non-fluent computations so that communication conflicts between the different types
of requests are minimized. One way to do this is to separate the type of computations in
time. Another way is to separate them in space by partitioning the machine into one part
reserved for fluent computations and one part reserved for non-fluent computations. This
requires that the mapping of fluent addresses to physical addresses is changed so that no
fluent variables are stored in the part of the machine reserved for non-fluent computations.
Furthermore, the partitioning should preferably be done in such a way that no (or very few)
fluent messages between fluent processors ever will have to pass a non-fluent processor and

15

vice versa.

The partitions can communicate with each other in the following way: non-fluent pro-
cessors can send fluent requests to read fluent variables, and fluent processors can send
absolute-addressed requests to read memory locations in non-fluent processors. If this is to
work the general routing scheme that allows any processor to send fluent messages to any
other processor can not be changed. Only the fluent-to-physical memory mapping is to be
altered.

Since the fluent memory map is different when the machine is partitioned it seems that
a partitioning has to be static throughout a program execution. Changing the memory map
on the fly is bound to wreak havoc.

How to partition the network is an interesting problem. Other criteria than minimizing
message interference are important, like for instance how well a given computation structure
can be embedded in the assigned partition. We do not address this issue here. Instead we
will characterize a class of partitions for which it is guaranteed that fluent requests will only
pass through fluent processors. First we need a formal definition:

Definition 3 A subgraph of the butterfly network is closed under fluent routing iff the
fluent route between any two nodes in the subgraph constains edges in the subgraph only.

Lemma 1 A subgraph that contains only a part of a row in the butterfly network can not
be closed under fluent routing.

Proof. Consider a node (¢, 7) in the n-dimensional butterfly network that sends a fluent
request to itself. This request will first traverse all nodes (c+1,7), (¢c+2,r) etc. up to (n,r).
Then, it will go back in the network through all nodes in row r, back to (0,r). Finally, it
will be routed forwards to {c, 7).

Thus all nodes in row r will be traversed. It follows that a subgraph that contains (c, r)
but not the node (¢, r) cannot be closed under fluent routing. |

By lemma 1 all subgraphs closed under fluent routing are formed from full rows in the
butterfly network. Therefore, we can equally well consider rows instead of individual nodes
when discussing these subgraphs. In the following “A” and “V” denote bitwise “and” and
“or”, respectively.

Theorem 2 For any 0 < M, M’ < 2", the subset {(rV M)A M'|0<r < 2"} of rows of
the n-dimensional butterfly is closed under fluent routing.

Proof. Any row ¢ in S = {(rVM)AM' |0 < r < 2"} is such that if M/ (the i:th
bit of M"’s binary representation) is zero, then g; is zero. If M! and M; are one, then ¢; is
one. M and M’ thus fixes the values of certain bits in the binary representation of all rows
in 5. Consider now the fluent route from the row ¢ = qgogy -+ -gn—1 to ¢’ = ghq}---q,_;.
By the bitwise routing in the second routing phase [15,16] this path will look as follows as
expressed in the bitwise representations of row coordinates:

16

9041 * * *qn-1
%% Gn-1
9091 * * * Yn—-1

909 - 41 G-

%% In-1
It is immediately clear that if ¢; = ¢} for some 0 < 7 < 2", then all rows on the path
between them will have the same value for that bit. Hence, if both ¢ and ¢’ are in S, then
all the bits fixed in them by M and M’ will be fixed for all rows in the path between them
as well and the path will be wholly in S. Thus, S is closed under fluent routing. |

Theorem 2 characterizes a class of subgraphs that can host fluent computations without
interfering with the rest of the network. Since the number of rows in the subgraph is halved
every time a bit is fixed, subgraphs of this form can be used to partition the machine into
pieces with (n + 1)2¢ nodes each for any 0 < ¢ < n. Different partitions can host either
fluent or e-routed computations. Besides giving the capability to run fluent and e-routed
computations side by side this also makes it possible for several users to share the machine
by using one partition each.

4.3 Processor fragmentation

A well-known problem that can occur in time-sharing systems is memory fragmentation.
If memory is assigned to, and released from, different tasks in an uncontrolled fashion,
a situation can occur where the free memory is scattered in small pieces throughout the
memory space. Thus, a process that requires a certain amount of contiguous memory may
not find it even though the total amount of memory needed is free. It is clear that a
similar situation can arise in the fluent machine with respect to free processors when a task
using a fixed communication pattern is to be allocated. Since such a task requires that
the participating processors are configured in a certain way it may very well happen that
there is no place in the machine where the task fits even though the total number of needed
processors is available. In analogy with the term for the corresponding memory problem
we will call this processor fragmentation.

Note that processor fragmentation is not a problem when only fluent routing is used.
Since fluent memory is arbitrarily distributed throughout the whole network the relative
position of processors is irrelevant and free processors can simply be kept in a pool and
assigned when needed.

A possible remedy is to adopt a processor assignment strategy similar to the one used to
alleviate the corresponding memory problem: namely to use some sort of paging. Processors
can be assigned and released in predefined chunks rather than in the exact amount required
for each task. It should be noted, however, that the processor fragmentation problem
is potentially harder to cope with than the corresponding memory problem. A memory
is essentially a linear space where tasks need contiguous segments. Processors may on

17

the other hand, depending on the embedded computation structure, need to be assigned
in a bewildering number of possible patterns. Still it seems that a paging strategy that
preserves locality within pages is likely to be successful since computation structures often
are embedded just so locality can be utilized. A possibility is also to provide a number
of standard structures in which processors can be allocated, like for instance paths, cycles,
binary trees and sub-butterfly networks.

4.4 Interfacing pipelined computations with fluent data structures

Explicit routing can be used to implement computations that use local point-to-point com-
munication in the butterfly network of a fluent machine with NV processors. Such commu-
nication takes O(1) time instead of the O(log N) expected time to access a fluent variable.
Typically, a computation that uses local communication is pipelined. Examples are systolic
computations of various kinds and pipelined computations on binary trees. For a pipelined
computation throughput is important. Consider the execution of m identical tasks on a
k-stage pipeline. Assume that each stage, including inter-stage communication, takes time
s, and that a new task cannot be initiated until d time units after the initialization of the
previous one. The total time to execute the m tasks is then dm + sk. Typically m is much
larger than k. This means that d is an important parameter since the time essentially will
be O(dm).

Consider now a pipeline whose indata are stored in fluent variables. This means that
at some stage fluent requests must be issued to transmit the data to the processor at the
entry of the pipeline. The first solution that comes to mind is to let the processor at the
entry of the pipeline issue a fluent read every time a new task is initiated and wait for the
read to become completed. This is, however, not a good idea since this will cause d to
be O(flog V), where f is the time for a fluent cycle, so the whole computation will take
O((flog N)m + sk) time.

The processor does not, however, necessarily have to wait for the read to be completed.
Because fluent messages are kept sorted all the time replies will arrive in the same order
as the requests were sent out [16]. If a local buffering mechanism is provided the processor
can issue several reads without waiting for completion. The processor can then read from
the buffer when data is available. If the buffer is placed in the processor’s local memory the
reads from it will take O(1) time. Thus, if sufficiently many reads are issued to keep the
buffer non-empty all the time, the time from the first read is issued to the computation is
completed will be O(max(f,s)m + flog N + sk).

The buffer could simply be implemented as a queue in local memory. The switch should
be able to insert items in the queue and test if it is full. The processor should be able to
perform a variety of operations on the queue: inserting and taking out elements, test if it is
full/empty, delete the first/last element and possibly others. The technique for having two
processes manipulating a queue concurrently is well known and will cause no problems to
implement.

This type of buffer could also be used to interface different pipelines to each other: if the
path between them is known one pipeline could issue e-routed writes to the input buffer of
the other pipeline. If the writes are sent via the same path they will arrive to the destination
in the same order as they were sent according to proposition 3.

18

The introduction of buffers calls for a new family of requests whose destinations are
buffers instead of simple memory locations. The reason is that the switch upon arrival of
a request must be able to determine whether just to write the contents into the specified
address in the local memory or to invoke the queue insertion mechanisms. Fluent read-to-
buffer and e-routed write-to-buffer (or e-routed read-to-buffer, for that sake) are explained
above and pose no special problems. Absolute-addressed fluent write-to-buffer, on the
contrary, may be somewhat problematic to use.

The reason is that it is a little complicated to guarantee that fluent writes-to-buffer
will arrive in the intended order. If the fluent writes w; are supposed to arrive in the order
W1, W, . . . then they must be issued in fluent time-slices ¢(w;) such that {(wy) < #(w2) <
To make sure that this is true is not trivial; there are indeed cases where the time slice for
the write can be determined in advance and the code can be laid out accordingly. However,
generally this is not true and one will have to resort to potentially costly synchronization
between fluent processors through semaphores or something equivalent. We can also note
that it is not advisable to issue fluent writes to the same buffer in the same fluent time
slice: these writes can not be combined as ordinary writes or multiprefix requests are unless
potentially very long messages are accepted. Therefore, they will cause severe congestion
close to the destination. The fluent routing mechanism must also be altered in this case to
handle several requests going to the same address in the same cycle without being combined.

Still fluent writes to buffers are of interest. The reason is that buffers possibly can
be set up in advance, before a pipeline starts to execute. Fluent writes to such buffers
can then be used to pre-fill the buffer so the pipeline when it starts can begin to execute
immediately without having to wait for the results of the first reads to come back. This
will lower the execution time for the pipeline to O(max(f, s)m + sk) when applicable. (Or
even to O(sm + sk) if the buffer is big enough and writes to it began so well in advance
that the pipeline will never empty it and have to wait for more coming in the next fluent
cycle.) This technique of pre-filling buffers must however be considered quite advanced and
be of use primarily as a tool for sophisticated performance optimization.

5 Conclusions

Fluent routing is an efficient and elegant way to implement a CRCW PRAM on a network
of processors. Still there are situations where performance demands require total control
over the communication and execution pattern. We have proposed a new type of explicitly
routed (e-routed) requests in the fluent machine that gives this control. This request type
can be implemented with moderate additions to the original hardware required for fluent
routing.

A simple analysis indicates that even though e-routed requests and fluent requests can
be transmitted in a mixed fashion, with both types of requests alternatingly being sent over
the same line, the best performance is achieved if the interference between the request types
is kept to a minimum. This can be accomplished by separating the types of communication
in either time or in space. The latter implies that the machine must be statically partitioned
in such a way that fluent requests never cross partition boundaries. We characterize such a
class of partitions.

19

It should be noted that explicit routing is not the only possible way to send messages
between two given processors. It is rather a “most simplistic” approach where the routing
path is explicitly given for every message and it is up to the programmer (compiler, run-
time system, ...) to choose the paths so that performance is not degraded. It is, although
general, primarily intended to implement local or near-local communication when a good
embedding of the computation structure is known. Other routing strategies may for instance
be adaptive, that is: they react to the precence of other messages and will try to re-route
messages around points of congestion in the network. The possible performance gain is,
however, bought for the loss of the total control over the routing that explicit routing gives.
We do believe that there are cases where total control over the communication is crucial to
achieve maximum performance. Adaptive routing will also require additional administrative
overhead. If congestion or “hot spots” (heavily accessed memory locations) is an issue then
we recommend that pure or absolut-addressed fluent routing is used.

There are also non-adaptive routing schemes that are not explicit. An example is the
routing in the Connection Machine [5], or fluent routing itself for that matter. Both have in
common that the actual path is uniquely given by the source and destination addresses. If a
routing scheme has this property, then there will be embeddings of computation structures
where the routing requirements conflict with the paths given by the source and destination
addresses. Complete freedom to experiment with different embeddings is possible only if full
freedom is given to specify the message paths. We still have a very incomplete knowledge of
how embeddings should be done in a butterfly network. Therefore it seems wrong to limit
the possibilities at this stage, especially since the Fluent Machine is a research project and
thus likely to be a testbed for different parallel strategies.

We want to mention, finally, that “smart” (but non-adaptive) routing strategies very
well can be built on top of the explicit routing. Nothing prevents a program to calculate
message paths at execution time. If we add the possibility to have several queues for every
input line, then for instance deadlock-free wormhole routing strategies, according to Dally
and Seitz [3], can be implemented on top of the pipelined explicit routing scheme proposed
in section 3.4.

No matter what the processor-to-processor communication primitives will finally be,
developing compiler techniques for the fluent machine will be a very interesting chal-
lenge. Compiling to the Fluent Abstract Machine without explicit routing is probably
easier than compiling to other parallel architectures since communication then simply takes
place through global, shared variables. The really interesting issue is to investigate compiler
techniques that use local communication when adequate: how to determine if a program
segment should be compiled into an embedded computation structure using processor-to-
processor routing or if the fluent model should be used, how to rearrange computations
to minimize message interference, how to decide what mechanism should be used to inter-
face embedded computation structures with fluent data. This is a potentially rich field for
research.

20

6 Acknowledgements

I would like to thank Sandeep Bhatt, Lennart Johnsson, Michael Littman and Abhiram
Ranade for suggestions and interesting discussions. My thanks also to Eileen Connolly for
her editorial efforts. The generous support by the Office of Naval Research under contract
No. N00014-86-K-0564 is gratefully acknowledged.

References

[1] S. N. Bhatt, F. R. K. Chung, J.-W. Hong, and F. T. Leighton. Optimal simulations by
butterfly networks. In 20th ACM Symposium on Theory of Computing, pages 192-204,
May 1988.

[2] M. C. Chen, Y-I. Choo, and J. Li. Compiling Parallel Programs by Optimizing Perfor-
mance. Research Report YALEU/DCS/TR-633, Dept. Comput. Sci., Yale University,
June 1988.

[3] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor inter-
connection networks. IEEE Trans. Comput., C-36(5):547-553, May 1987.

[4] J. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis, Dept. Comput.
Sci., Yale University, 1985. Also published in the ACM Dissertation Award Series by
MIT Press.

[5] W. D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[6] S.-T. Huang and S. K. Tripathi. Self-routing technique in perfect-shuffle networks using
control tags. IEEE Trans. Comput., 37(2):251-256, February 1988.

[7] P. Hudak, J-M. Delosme, and I. C. F. Ipsen. ParLance: A Para-Functional
Programming Environment for Parallel and Distributed Computing. Research Re-
port YALEU/DCS/RR-524, Dept. Comput. Sci., Yale University, March 1987.

[8] J. Li, M. C. Chen, and M. F. Young. Design of Systolic Algorithms for Large Scale
Multiprocessors. Technical Report YALEU/DCS/TR-513, Dept. Comput. Sci., Yale
University, February 1987.

[9] B. Lisper. Synthesis of Synchronous Systems by Static Scheduling in Space-time. PhD
thesis, NADA, KTH, Stockholm, February 1987. TRITA-NA-8701.

[10] B. Lisper. Time-Optimal Synthesis of Systolic Arrays with Pipelined Cells. Research
Report YALEU/DCS/RR-560, Dept. Comput. Sci., Yale University, September 1987.

[11] C. Metcalf. Fluent routing considerations. April 1988. Unpublished manuscript.

[12] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers.
CACM, 29(12):1184-1201, December 1986.

21

[13] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. The IBM research parallel proces-
sor prototype (RP3): introduction and architecture. In Proc. of the 1985 International
Conference on Parallel Processing, pages 764—771, 1985.

[14] P. Quinton and P. Gachet. Automatic Design of Systolic Chips. Research Report RR
450, INRIA, Rennes, October 1985.

[15] A.Ranade. How to emulate shared memory. In Proc. IEEFE Symposium on Foundations
of Computer Science, pages 185-194, October 1987. Also available as Technical Report
YALEU/DCS/TR-578, Dept. Comput. Sci., Yale University.

[16] A. Ranade, S. Bhatt, and L. Johnsson. The Fluent Abstract Machine. Technical
Report YALEU/DCS/TR-573, Dept. Comput. Sci., Yale University, January 1988.

22

