Neural Net Applications

Willard L. Miranker
April 2009
TR-1416

Table of Contents

Filtering Spam Using Keywords and Features From Historical Data
Kwabena Agyei Antwi-Boasiako

Self Organizing Maps for Mesh Size Reduction
Steven Canfield

Artificial Neural Networks for Polyphonic Pitch Detection
Nathaniel Granor

Simultaneous Q-learning in Iterated Prisoner’s Dilemma
Minh-Tam, Le, Frederick Shic

VLSI Design of Analog Neural Networks for Pattern Recognition
Dzmitry Maliuk

Using Neural Networks to Estimate Volatility of Financial Returns
Wedzerai V. Munyengwa

Neural Networks Playing Tic Tac Toe Trained by Backpropagation
Zachary Murez

Hopfield Network for Clustering
Huan Wang

Self-Organized Online Network Traffic Forecasting using
Neural Networks
Ye Wang

13

19

25

29

33

39

Filtering Spam Using Keywords and Features from Historical Data

Kwabena Agyei Antwi-Boasiako

Abstract-A spam filter that uses an artificial neural network to
classify email based on keywords is described. The algorithm
and the parameters it uses are altered in order to optimize its
performance. The filter is then tested on real data from two
email accounts. The results of this project show that even
though the spam filter relies on only a few characteristics of
received messages for classification, it compares favorably
with other methodologies currently in use on the market. The
broader theme of identifying a document that is similar to
another document is discussed.

Index terms: email, historical data, neural network, spam filter

I INTRODUCTION

The internet and email have become indispensable
tools in our lives, mainly because of how convenient it is to
relay messages that can be delivered almost instantaneously.
Our dependency on this powerful email tool has afforded
some the opportunity to profit from the exploitation of its
vulnerabilities. In this project, spam is defined as
unsolicited email that is sent from another user on the
internet who often obtains the recipient's address illegally
while keywords are words that appear in spam but do not
typically appear in regular mail.

The experiment is broken into two parts. In the
first part, the back-propagation algorithm [2] is used to train
an artificial neural network to recognize keywords that are
frequently used in spam emails to a particular email
account. The aim of this classification is to investigate the
correlation or similarity between words that appear
frequently in spam. In the second part, the self organizing
map algorithm [2] is used to classify email into two sets—
“spam” and “regular,” based on three characteristics: the
length of the message, the fraction of words that are
classified as “spam,” and the fraction that are classified as
“not spam.” Finally, the two methods are compared and
projections are made for how to optimize the filtering
process. :

The results showed that even with very little
information about a given email account and its history,
using artificial neural networks makes the process of
filtering spam very efficient.

II. MATERIALS AND METHODS

All coding and simulations were done in C and
Matlab.

A) Approach 1 (Training two-layer feed-forward
network using the back-propagation algorithm)

Input to the neural net is generated from vectors
containing the ASCII representation of strings that have
been classified as either “spam” or “regular”[1]. The
procedure used to generate keywords is outlined below:

Procedure:

1. Given an email account, randomly select a sample
of messages that the user has classified as
“regular” and “spam” respectively.

2. For each of the messages, generate all the strings it
is made up of.

3. Generate the keywords for both “regular” and
“spam”, delete every word in the spam list that is
also in the regular list.

4. Convert the characters of each string to its ASCII
representation.

5. Generate input to the network by forming a
random sample of words that have been classified
as “spam” and “regular” respectively.

The desired output is defined as follows: output 1 if the
word is “regular” and output 0 if it is “spam.” The results of
the simulation using the back-propagation algorithm are
shown in Fig. 1 and Fig. 2.

The plot in Fig. 1 shows the correlation between
words that appear frequently in spam. The regression factor
is 0.56423, which shows that the correlation is not very
strong. Fig. 2 on the other hand shows the performance of
the trained neural network in classifying a set of inputs. The
Class “regular” represents “regular” email while the Class
“spam” represents “spam” email. The statistics in the
confusion matrix [3] show a 74.1% accuracy in classifying
email. It also shows that 3 “regular” emails (11.1% of total
input) were incorrectly classified as “spam” while 4 “spam”
email (14.8% of total input) were incorrectly classified as
“regular.”

B) Approach 2 (Classifying email into two classes
based on 3 characteristics)

This approach also relies on the “dictionary” of

Test: R=056423

2 Data e

Qutput~=0.39"Target+0.35

]

- 05 1
Target

Fig. 1 Plot showing clusters of words on a dataset of 27
inputs

words generated as in Approach 1 except that the words are
not converted to their ASCII equivalents. In this approach
three characteristics of email are singled out:

i) The length of the message

ii) The fraction of the words it contains that are
classified as spam

iii) The fraction of words it contains that are classified
as regular

76.5%
23.5%

regular

70.0%
30.0%

spam

Output Class

63.6%

81.3%

18.8% 36.4%
regular spam
Target Class

Fig.2 Map (confusion matrix) showing how neural
network performed on test data of 27 inputs

Every message is represented by a vector with
three components in the order listed above

M= [Xla X2, X3] Ta

where M is the message,

X, is the length of M,

X, is the fraction of words in M classified as spam,
X3 is the fraction of words in M classified as regular.

The inputs to the net are generated by randomly selecting
messages from the user's email account and extracting these
3 features. The self organising map algorithm [2] is used to
classify every message based on its representative vector.
The outputs are shown in Fig. 3.

Fig. 3 shows the confusion matrix for 20 inputs.
“regular” emails is classified as Class “regular” while
“spam” email is classified as Class “spam”. The results
show that all 10 “regular” emails were correctly classified
while 1 out of 10 “spam” emails was incorrectly classified.
This gave the neural network an overall accuracy of 95%.

L. RESULTS
Fig. 1 and Fig. 2 show that the results of using
Approach 1 are satisfactory given that the ASCII

representation, which is basically a set of numbers (0 to 127
in this case), was used to represent strings. The

regular

spam |

Output Class

Target Class

Fig.3 Map (confusion matrix) showing the distribution
of 20 emails from inbox A

challenge in using this approach is that even though
some words might look similar to the human reader, their
ASCII representations will be totally different. For example,

“ROLEX” and “r.o.l.e.x” have ASCII representations *“82
79 76 69 88” and “114 46 111 46 108 46 101 46 1207
respectively. These make it difficult to classify messages
based on keywords that have been slightly modified.

Output Class

regular

spam
Target Class

Fig.4 Map (confusion matrix) showing distribution of 50
emails from inbox B

In spite of this, the weights showed a considerable
amount of “closeness” which suggested a method that uses
clustering of data to classify messages, hence the use of
Approach 2. Observation of the results of Approach 2
confirms our guess about our data in Approach 1. The self
organising map algorithm classifies the messages to a high
degree of accuracy even employing only three somewhat
crude parameters. Out of 20 messages (10 regular, 10 spam)
that were tested, all the regular mails were correctly

Approach 1 Approach 2
No. of inputs 27 20
% regular correctly 81.3 100
classified)
% regular misclassified 18.8 0
% spam correctly 63.6 90
classified)
% spam misclassified 36.4 10
Overall performance
(% correctly classified) 741 %

classified and only one spam message was misclassified
(Fig. 3). Approach 2 was tested on emails from another
email account and the results (see Fig. 4) were consistent
with the one obtained in Fig. 3.

Iv. CONCLUSION -

The results show that neural networks are an
effective tool for filtering spam based on the user's history.
We can fine-tune even more message parameters in the
user's email account, for example, it might be instructive to
utilize other parameters such as the N most frequent words,
the N least frequent words and so on. Also, to address the
issue of false negatives (regular mail being classified as
spam), it might be helpful to have access to the user's
contacts list so that regular correspondents that the user
certifies as genuine will have their messages always
classified as “regular” even when the neural network
suspects it is “spam.” Augmenting the neural network with
these parameters presents a very promising attack on the
problem of filtering spam.

V. DISCUSSION

Even though the results obtained by using
Approach 1 were less accurate than those obtained using
Approach 2 (see Table 1), the weights exhibited an
interesting property. There was a considerable amount of
clustering even though the idea of “spam” and “regular”
messages being similar to one another was not exploited. In
recent times, the problem of finding a document similar to
another document [4] has become a subject of interest
mainly because of how web searches are made. More often
than not, we tend to think of documents as being similar if
they have the same author or they address the same subject.

Table 1 Comparison of the performance of the two
approaches

This is not very different from thinking about these features
as keywords with which we can generate parameters of
every document and compare them based on only a few
components using the power of neural networks.

VL REFERENCES

[1] Clark, J., Koprinska, 1., Poon, J. A neural network based
approach to automated email classification. Proceedings,

IEEE/WIC international conference on Web Intelligence,
2003.

[2]Haykin, Simon, Neural Networks, A Comprehensive
foundation, Prentice Hall, Inc, 1999.

[3] http://en.wikipedia.org/wiki/Confusion_matrix

December 2008

[4] Saragoglu, R., Tiitiincii, K., Allahverdi, N. A fuzzy
clustering approach for finding similar documents using a
novel similarity measure. Expert Systems with
Applications, Volume 33, Issue 3, October 2007, Pages 600-
605.

Self Organizing Maps for Mesh Size Reduction

Steven Canfield

Abstract—In computer graphics, height maps are
frequently used to represent three dimensional terrain.
They are a compact representation of terrain data and
can be easily edited by artists or an automated process.
Unfortunately, naive height maps suffer from a number
of problems, notably a poor mapping of triangle density
to scene complexity. This paper explores adapting self
organizing maps to provide a high quality mesh from
height map data, and concludes that the self organizing
map algorithm works well for this task when initialized
with good starting data.

Index Terms — Self Organizing Map, Triangle Mesh,
Height Map

I. INTRODUCTION

In computer graphics, a mesh is a set of vertices,
edges, and faces (Akenine-Moller, [1]). Each verfex has
a position (z,y, z) in 3D space, and an edge is simply a
connection between two vertices. A face is a collection
of edges, most frequently a triangle with three vertices
and three edges.

A height map is used to render landscapes or simple
surfaces. Given source data of height values, a vertex is
placed at every integer x,y with the z coordinate being
the height at that point. The vertices are then connected
to create faces to render the surface. Often, the source
data is given in an image file where white represents the
highest point and black represents the lowest point.

The self organizing map algorithm is frequently used
to reduce the dimension of data, for clustering or viewing
purposes. The task for this paper is to begin with some
large amount of three dimensional data and reduce the
size of the data while remaining in three dimensions.
This paper introduces self organizing maps in Section
II, height Maps in Section III, and the modifications to
SOM in Section IV. Results are presented in Section V
and Discussion in section VI.

II. SELF ORGANIZING MAPS
A. Capabilities of self organizing map algorithm
The self organizing map algorithm is frequently used
to analyze or display multidimensional data. This is

Yale University

accomplished by building a small dimensional (1,2, or
3) representation of the higher dimensional input. This
representation preserves important topological features
of the input data. Self organizing maps can also be used
to approximate input data, which is the application we
focus on here. For example, a SOM algorithm can take
a two dimensional set of points and approximate it with
fewer points (Haykin, [2]).

B. Algorithm description

The Kohonen algorithm for self organizing maps has
four steps (Kohonen, [3]).

1. Select an input vector z at random.

2. Find the neuron y that is nearest (Euclidean distance) to x.

3. Calculate the neighborhood N(y).

4. Update the weights of each neuron in N(y) by n(z —y),

where 7 is an arbitrary learning rate.

III. HEIGHT MAPS

A height map is a two dimensional array M where
Mlz,y] € [0,1] is the height at (x,y). Most frequently,
triangles are used to connect each (x,y) point to form the
surface of the rendered height map, as shown in Figure
1.

(xy)

Fig. 1. Triangle faces that contain (X,y)

Traditionally this array is loaded from an image file
where one of the color channels is interpreted as the
height. Figure 2 shows an example height map stored as
an image file.

This is a compact representation since only the height
value must be stored (the x and y coordinates are implicit
in the order of the data). Unfortunately, since the points
are evenly spaced on a grid, height maps suffer from a
few shortcomings.

Fig. 2. Computer generated height map

A. Height Map Problems

The salient limitation of a standard height map process
is that it does a poor job of distributing vertices, since
it distributes them evenly over complex and simple
areas of the map. For example, if one region of the
map has a constant slope, it can be represented with
a very small number of triangles. In contrast, if the
slope changes rapidly, as many triangles as needed to
accurately represent the terrain should be used.

A secondary problem relates to texture mapping. A
texture is a bitmap image to be overlaid across a mesh;
it defines the color of each point on the mesh. In
most texturing models, a texture coordinate pair (s,t) is
assigned for each vertex. When a face containing the
vertex is rendered, the texture is interpolated across the
face. This means that if there are more pixels on screen
than between the given texture coordinates, some colors
from the texture will have to be repeated or interpolated.
Thus, to texture a height map, we want to generate a set
of texture coordinates to be used at each vertex so that
the texture is spread across the height map. Minimizing
the size of the largest face will ensure that the texture is
displayed as well as possible.

Figure 3 shows both of these problems in action.

Fig. 3. Poor vertex distribution and texture mapping

IV. SELF ORGANIZING Mesh

The self organizing mesh algorithm takes as input a
matrix of height values and returns a list of (z,y, 2)

tuples for use as a mesh. This representation is three
times larger than the input since it must now explicitly
store the full tuple. Each node in the network has a
weight vector of size 3 representing the (z,y,z) co-
ordinates for the point. Weight vectors are initialized
with the given (z,y,0) in contrast to the generic SOM
algorithm. Finally, there are additional constraints on the
map algorithm. Where in the original self organizing map
algorithm, each node could move freely, in our algorithm
the nodes are confined in the sense that they must stay
within the grid. So if we move an element west, we must
not move it further than the x coordinate of its neighbor
nodes or we would break the mesh. This is important
because generating the mesh from a set of x, y, z points
is extremely difficult, but keeping our simple mesh from
the beginning of the process is simple.

An addition to the self organizing map algorithm
called the “conscience” algorithm is also employed here.
In the “conscience” algorithm, a winning neuron is
penalized in future rounds to allow other winners. The
penalty decays with each round which allows that neuron
to eventually win again.

The pseudocode for the self organizing mesh algo-
rithm (without conscience) is shown below.

A. Algorithm

function SOM(H)
for x in 0 to H.width
for y in 0 to H.height
rx = random(—0.5, 0.5)
ry = random(—0.5, 0.5)
M. append (x+rx ,y+ry ,0)

numlter = 0
while (numIter < MAX_ITERATIONS)
numlter++
height = H[Rx][Ry]
node = closestPoint (Rx,Ry, height)
neighborhood = getNeighborhood (node, numlter)
for each node in neighborhood
move (Rx,Ry,height)
end
end

V. RESULTS AND METHODOLOGY

We used two principal data sets for testing. The first is
a simple test with two main features, a round hill on the
left and a taller ridge on the right. The second data set
is one generated using terrain generation software and
is representative of real world three dimensional maps.
Figure V shows both image input files.

The self organizing map algorithm works well at gen-
erating smaller meshes, and shows gains in improving
the quality of a mesh. The output still has some of the
problems of a naive height map but they are reduced. For
all of these tests a 256 x 256 vertex input was reduced
to a 128 x 128 vertex mesh.

(a) Simple (b) Complex

Fig. 4. Image files for SIMPLE (a) and COMPLEX (b)

The simplest image in the data set is SIMPLE, which
can be seen in Figure 4(a). There are two features in
this mesh, a low mass on the left and a longer, higher
mesh on the right. The result of the SOM algorithm (with
5000 iterations) on SIMPLE can be seen in Figure 5(a).
The flat terrain is somewhat improved, as can be seen in
a close up of the lower left corner in Figure 5(b). The
sparseness of flat terrain has also allowed more vertices
in the very steep region, as can be seen in the side view
in Figure 5(c).

The more interesting image in the data set is COM-
"PLEX, which can be seen in Figure 4(b). Figure 6(a)
shows a rendering of COMPLEX at full resolution (that is,
using normal height mapping). Figure 6(b) is the output
from the SOM at 2000 iterations, since the COMPLEX
data set had much better results with fewer iterations
than the SIMPLE set.

Finally, we utilized the “conscience” addition to the
SOM algorithm to generate Figure 7.

VI. DISCUSSION

There are a number of limitations to the SOM algo-
rithm when used for mesh size reduction. The first is the
number of iterations required, especially as the size of
input increases. Although in theory this algorithm would
be part of an automated process, a human would have
to inspect the results since the algorithm may produce
poor samples depending on the random choices made.
A second limitation of this algorithm is that there are
many parameters that must be adjusted to achieve good
results. For example, the algorithm’s user must tune
the neighborhood function, the decay of its inputs, the
number of iterations, and the strength of each movement.
The “conscience” algorithm performs better than the
standard algorithm so future research should begin there.

Future research into this method would begin with
developing a metric for quality of mesh representation.

(a) Simple: Output

- (b) Simple: Sparse Mesh in Flat Region

(c) Simple: More Detail in Steep Region

Fig. 5. Results for SIMPLE. Note the improvements in mesh quality
in (b) and (c), as well as the overall representation.

For example, one simple metric might be the area of the
largest polygon (which should be minimized). A second
area to explore would be to decrease the complexity of
the algorithm as given so that a closer representation
could be achieved. For example, we found good results

~with small (64 x 64 — 32 x 32) images and a very small

neighborhood function, but the running time would make
that strategy impractical. Finally, we would consider a
functional description of the landscape as the input to this
process. For example, consider defining the landscape as

(a) Complex Full-Scale Render

(b) Complex SOM Output

Fig. 6. Results for COMPLEX. The full resolution render is shown
in (a) and the SOM output is shown in (b)

Fig. 7. Simple output with conscience algorithm

the curve formed by z = logy*™®. Extrapolating from
the success of two dimensional maps at representing two
dimensional functions leads us to hope for good results
in three dimensions.

VII. BIBLIOGRAPHY

1. Akenine-Moller, T. et al, 2008. ”Real-Time Render-
ing 3rd Edition”, Natick, MA.

2. Haykin, S., 1999. "Neural Networks,” Self Organiz-
ing Maps, pp. 480-481, Upper Saddle River, New Jersey.

3. Kohonen, T., 1990. "The self—ofganizing map,”
Proceedings of the IEEE International Conference on
neural networks, pp. 1147-1156, San Francisco.

Artificial Neural Networks for Polyphonic Pitch Detection

Nathaniél Granor

Abstract— In this project, the application of an Artificial
Neural Network with Backwards Propagation Learning to the
problem of Polyphonic Pitch Detection in sampled audio is
analyzed. This procedure would be one possible step in a larger

signal processing application for the transcription of music from .

digital audio files. Backprop is found not to be a satisfactory
pattern matching algorithm for this problem.

Index Terms— polyphonic pitch detection, neural networks,
backwards propagation, constant Q

I. INTRODUCTION

USIC is a human abstraction of sound. We talk about
music in terms of distinct “notes,” which are related to
pitch or the frequency of a sound wave. But when music is
played on instruments (including the human voice), many
different frequencies of sound are actually generated. These
frequencies are the fundamental pitch and a theoretically
infinite sequence of overtone, which musicians call the
“overtone series” or “harmonic series”. Most musical
instruments generate an arithmetic sequence of overtones;
sound waves are produced at integer multiples of the
fundamental frequency. A “note” in a piece of music
indicates, by musical convention, which fundamental pitch
should be produced. The overtone series that is also produced
is determined by the acoustic properties of the instrument that
plays it. No two instruments can be assumed to produce the
exact same series of overtones. [1]

Most humans are able to pick out the fundamental
pitches in the sounds they are interpreting as music, regardless
of the set of instruments involved. Most of the time, the brain
is able to process data indicating which frequencies are
present and at what amplitudes, and detect which of the
frequencies represent musically relevant pitches and which are
artefacts of the acoustic properties of the instrument. [2]

But this process, and its derivatives, such as manual
transcription of music, is time-consuming and mentally taxing.
A well-trained musician would require multiple listenings to
transcribe all of the notes present in a piece of music. It is
desirable to create software capable of perceiving music from
sampled audio input (for example, to produce a transcript of a
musical performances). In practice, detection of pitch in
monophonic music (one note played at a time) is, relatively
trivial, since the fundamental pitch is most likely the
frequency resonating at the highest amplitude. Detection of
pitch in polyphonic music, however, is much more difficult,
particularly if, as is typically the case, the number of notes
present and the properties of the instruments producing them

are unknown.

A procedure for producing a musical transcript from a
digitized audio recording might be as follows: Break up the
recording into “frames”. A new frame begins each time a new
musical note is sounded or dissipates. Determine which
fundamental pitches are playing in each frame. Neither of
these steps is elementary. This project focuses on the second
step.

II. FOURIER ANALYSIS

Fourier Analysis is well suited to transforming a composite
waveform (for instance, the sum of all the sound waves
present) into its constituent parts (sound waves at each of the
frequencies present). A Fast Fourier transform is capable of
doing this job very efficiently.

It would be inefficient and undesirable if the Fourier
transform produced values for every possible frequency (i.e.
for every component in its infinite series of oscillatory
functions). We can instead produce a histogram by selecting a
finite number of points in time and the distance apart to space
them. The resulting output is a series of frequency bins or
bands and the net amplitude of frequencies in each band.

However, the musical abstraction of pitch from sound is
on a logarithmic scale. Low musical notes are separated by
significantly smaller differences of frequency than high notes.
The Fourier transform produces output in linearly spaced bins.
In the musical domain, this results in differing levels of
frequency resolution in different musical ranges.

III. CONSTANT Q TRANSFORM

Judith Brown, 1990 , describes an elegant modification to
the Fourier transform, called the Constant Q transform, that
uses geometrically spaced center-frequencies for the bins.
Like human ears, the Constant Q transform has increasing
time resolution towards higher frequencies, and trades time
resolution for frequency resolution to identify low-tone
frequencies. [3] Fig. 1, below, illustrates the differences in bin
assignment between a Fourier transform and the Constant Q
transform. Brown later published an efficient algorithm for
calculating the Constant Q transform [4] and it is Benjamin
Blankertz' Matlab implementation of this algorithm that we
use to perform our spectral analysis [5].

IV. DISTINCTION BETWEEN PITCH AND PITCH CLASS

In the musical domain, each separate note has a precise

pitch that belongs to one of 12 pitch classes. By convention,
Fig. 1: Comparison of Constant Q and Fast Fourier transformations from [8]

FFT

a) b}

the pitch known as “middle A” has a frequency of 440Hz. It's
pitch class is called “A”. The twelve pitch classes are arranged
serially and repeat. Each repetition (up or down) of the 12
pitch classes is called an octave. Two pitches an octave apart
have a 2:1 frequency ratio. So, the note precisely one octave
above “middle A” has a frequency of 880Hz. It is also placed
in the pitch class “A”.

For harmonic analysis applications (Identifying the
underlying chord, determining major or minor tonality, etc),
pitch class is more important than pitch. The focus of our
application is not pitch class, but rather pitch itself.

V. PATTERN MATCHING WITH ARTIFICIAL NEURAL
NETWORKS

Preprocessing each frame of sound using the Constant Q
Transform produces a data vector of n components, where n is
the number of bins specified. The number of bins corresponds
to the number of discrete notes allowed in our analysis. The
data contained in this vector do not indicate what the
fundamental pitches are (which musical notes were played).
Rather, the data indicates how much vibration is happening
within the frequency bands surrounding each musical note.
Because instruments typically produce overtones only at
integer multiples of the fundamental pitch, we may assume
that each frequency detected is either a fundamental frequency
of a note being played, or an integer multiple of such a
frequency. This restriction simplifies the problem sufficiently
that it may be possible to extract the original fundamental
pitches given the output of a Constant Q transformation. This
extraction requires some sort of pattern matching algorithm,
and an Artificial Neural Network will be used.

An Artificial Neural network is composed of model
neurons arranged in a finite number of interconnected layers.
Each neuron takes multiple inputs (supplied by other neurons)
and produces an output from a discriminating function acting
on the weighted sum of the inputs. In effect, each connection
between neurons (or between neurons and input) has a weight.
A neural network can be trained on a set of training data using
a learning rule. [6]

Our neural network will take n inputs (where n is the
number of bins in the Constant Q transform) and produce n
binary outputs, each of which indicates whether a particular
pitch is a fundamental pitch present in the current frame. The
internal structure of the network and the learning rule will be

10

the subject of our investigation.

BACKWARD PROPAGATION

We use supervised learning, where the neural network
first goes through a directed training phase. During training,
the network weights are initialized (perhaps randomly) and
then the network is trained on input/output pairs. The
network computes the difference between the expected output
and the output actually produced and updates its weights
based on that error using the Backprop algorithm. This
training step is repeated until the weights converge to stable
values.

Back-Propagation learning calculates a local gradient for
each neuron in the network, moving backwards layer-by-
layer. In this sense, the network goes through a forward and
backward pass for each training I/O pair: The input values are
presented and the neurons propagate their output values
forwards, layer-by-layer; Then, the error is calculated and the
local gradients are fed backwards, allowing each neuron to
calculate its new weight. [6]

VI. PRODUCTION OF TEST DATA

Paired input/output data are required to test the pattern
matching and to train the network. We are faced with a
dilemma: producing such test data would require manually
transcribing audio files, which is precisely the difficult and
time-consuming activity we wish to avoid. Lee and Slaney
proposed a clever workaround for this situation [7]. The MIDI
file format is a computer file type that encodes songs in terms
of their musical components. MIDI files consist of “events”
such as “NOTE ON” and “NOTE OFF” which specify what -
notes get played when. If we start with a MIDI file, we can

easily produce a matching digital audio file. Careful
manipulation of the original MIDI file can tell us where the
Fig. 2 illustrating training preprocess
frames are in the audio file and what notes are playing in
each frame. Figure 2, below, illustrates the training process.

The pitch and timing data from the MIDI file are separated.
The timing data are used to calculate the frames, while the
pitch data are used as the expected output.

MIDI files, however, contain only musical data. The
contents of our digital audio file will depend upon the MIDI
player that creates the audio file. MIDI players use a variety of
sound synthesis algorithms that crudely estimate real
instruments. Human voices are even more difficult to
synthesize, as the sound properties vary based on the changing
shape of the singer's mouth and throat. So our test data (and
training data) will probably be simpler than real audio data.
The resulting pattern-matching will probably work better for
our test data than for real audio samples.

Our training sets and sample data were taken from a
simplified problem space: we used only one MIDI instrument
(Grand Piano) in generating all of the audio data.

METHOD FOR EVAULATION

Using the same method which produced the training data,
we can produce test data. The nature of this data is that the
vast majority of values in each output vector should be zero.
Instead of taking a mean value of the error, we calculate the
proportion of false positives (occasions where the network
indicated a pitch is present and it shouldn't be) to total pitches
and the proportion of false negatives (occasions where the
network missed a pitch that was present) to total non-present
pitches.

MONOPHONIC TESTS

Monophonic pitch detection should be a simple case of
polyphonic pitch detection. So the first training set consists of
the 88 chromatic pitches played slowly in sequence.

We begin with a simple net with no hidden layers. The
network simply maps the 88 input values to the 88 output
values. The mnetwork converged quickly with high
performance on the training data. However, the trained
network performed poorly on the first test series (Andersen
Flute Etude Op 42, Num 12).

This result came as a surprise, since monophonic pitch
correction should be pretty straightforward. However, test 1
consisted of fast-moving notes and the training set consisted
of slow-moving notes. The onset of a musical note, called the
attack, contains a lot of extra noise that quickly dissipates.
This first test contains much more “attack noise” than the
training data, and this could account for the poor performance.

A second test was performed with a monophonic melody
comparable in speed to the training data (melody from “You'll
Never Walk Alone”). This test showed a slight improvement.

Another possible source of error is reverberation (echo)
in the digital audio files. Extraneous frequencies might be

bleeding in between frames. This is a more serious problem
for the training data than for the test data.

We add a hidden layer of 166 neurons (twice the size of the
input and output vectors) hoping to improve the result. This
number of neurons in the hidden layer was selected after
observing that a larger number of neurons led to sharp
increases in calculation time for the network with constant
efficiency in the performance of the network, while smaller
numbers of neurons had lower efficiency.

Repeating the same monophonic tests on this new network
delivered only slightly better performance. See table 1.

Single layer (88) Double layer (166,88)
% false | % false | % false | % false
negatives positives negatives positives
Training data 0 0 0 0
Test! (fast) 94.92 1.14 90.85 1.15
Test2 (slow) 50.63 0.95 50.63 4.79

Table 1 showing monophonic results in two different networks

We speculate that the simplicity of the monophonic pitch
detection problem might be clouding the results. In the more
complex polyphonic examples, there will be considerably
more noise in the spectral data and perhaps the additional
noise will help the network make significant determinations.

POLYPHONIC TESTS

We used several different training sets made up for
combinations of the following: major and minor chord triads
in each octave, chromatic scales, random cluster chords and
random well-spaced chords.

We tested the two monophonic songs as well as an
additional polyphonic song (“Imagine” by the Beatles). See
table 2.

Major/Minor triads (166,88

% false negatives % false positives
Training data 0 0
chromatics 7.35 6.31
Test3 (poly) 93.96 3.26
Triads and chromatics | Triads, chromatics, random
(166,88) chords (166,88)
% false | % false | % false | % false
negatives positives negatives positives
Training data 0 0 19.96 0.003
Testl (mono) 94.11 0.92 94.31 1.73
Test2 (mono) 39.24 7.41 39.24 7.33
Test3 (poly) 99.31 0.22 78.72 7.13

Table 2.Results using polyphonic training sets

VII. CONCLUSION

The marginal accuracy of the results generated suggests that
a feed-forward net with backpropagation is not an adequate
tool for the pattern matching component of polyphonic pitch
recognition.

1

That most of the network configurations tested converge
efficiently and perform flawlessly on their training sets
defends the idea that a neural net might be able to fulfill this
function. The results might benefit from the following
adjustments to the procedure: expanded training data sets, a
fancier preprocess that can better account for real effects like
reverb, and a small, fixed frame size.

Another logical extension would be to replace the Back-
Propagation network with another form of pattern matching
tool. A self-organizing map seems well suited to the task.
Further work is required to determine how the problem might
be restated in a domain suitable for a self-organized map.

REFERENCES

[1] R. Bain, “A Web-based Multimedia Approach to the Harmonic Series,”
Available online: http://www.music.sc.edu/fs/bain/atmi02/.

[2] “Psychoacoustics,” Wikipedia: the free encyclopedia. Available online:
http://en.wikipedia.org/wiki/Psychoacoustics. .

[3] J. C. Brown, “Calculation of a constant Q spectral transform,” J. Acoust.
Soc. Am., vol. 9,no. 1, pp. 425-434, January 1991.

[4] J. C. Brown and M. S. Puckette, J. 4Acoust. Soc. Am., vol. 92, no. 5: pp.
2698-2701, 1992..

[5] B Blankertz, “The ConstantQ Transform” Draft. Available online:
http://ida.first.fhg.de/publications/drafts/Bla_constQ.pdf.

[6] S. Haykin, Neural Networks, Second Edition. New Jersey, Princeton
Hall Press, 1999.

[71 K. Lee and M. Slaney, “Automatic Chord Recognition from Audio
Using an HMM with Superised Learning,” Proceedings of the 1st ACM
workshop on Audio and music computing multimedia, pp. 11-20, 2006.

[8] G. Cabral, J. P. Briot, F. Pachet, “Impact of Distance in Pitch Class
Profile Computation,” Sony Computer Science Lab, Paris. Available
online: http://gsd.ime.usp.br/sbcm/2005/papers/short-13848.html.

12

Simultaneous Q-learning in Iterated Prisoner’s Dilemma

Minh-Tam Le, Frederick Shic

Abstract—The performance of the Q-Learning
algorithm in the context of a multi-agent Iterated
Prisoner’s Dilemma [1] is assessed. The experiment
shows that as the agent’s memory size increases, the
state space of the learning task also increases
exponentially, thus preventing the agent to come up with
an optimal solution for the task. A new algorithm,
Simultaneous Q-learning is proposed as a variation to
the basic Q-Learning algorithm [2] to deal with more
complex state spaces. Instead of updating only the
current state in each step, the mnew algorithm
simultaneously updates the estimates of all states related
to the current state. Experimental results show that an
agent using Simultaneous Q-Learning learns more
effectively in complex state spaces than an agent using
Basic Q-learning.

Index Terms—Reinforcement learning, Q-Learning,
Iterated Prisoner’s Dilemma.

I.INTRODUCTION

R‘EINFORCEMENT LEARNING (RL) refers to a family of
earning algorithms which rely on the environment’s
feedbacks on committed actions to guide future actions. RL
is applicable where the learning agent is not supplied with a
dedicated set of training examples, but must instead explore
the environment by taking actions and receiving evaluations
from the environment. The agent’s goal is to learn to select
actions which maximize utility. The agent learns by taking
exploratory actions, receiving feedbacks and updating its
utility estimates. In RL’s learning process, in a particular
situation (state), the tendency to take an action which yields
favorable outcomes should be reinforced, while an action
~ which produces unfavorable results should be discouraged.

Q-learning [2] is an RL algorithm, which learns by
incrementally estimating the expected values of state-action
pairs. Many algorithms have been proposed for learning
sequential tasks in single-agent context using reinforcement
learning in general and Q-learning in particular [3-5]. Q-
learning has been applied particularly in robotics [6,7], and
game-playing and other multi-agent tasks [8,9].

Let Q(s,a) denotes the expected value of the discounted
sum of future gains after taking action a from state s and
subsequently undertaking an optimal policy. Assume that if
an agent takes an action a from a state s, it will arrive at a
next state s’, after receiving an immediate payoff r. The Q-
learning algorithm learns from this experience, and
correspondingly updates Q(5s,a):

4AQ(s,a)=a[r+ymax,Q(s',b)-Q(sa)] ()
where a is the learning rate and 0 <y < 1 is the discount
factor. The activity is carried out until the algorithm
converges to the optimum action-values. At the end of the
learning process, the optimal action from any state is the

Digital Object Identifier inserted by IEEE

one which corresponds to the highest Q-value.

The Q-learning algorithm is guaranteed to always
converge to the optimum, given that all actions are sampled
infinitely often from all states [10]. However, in practice,
the large size of the state space, combined with that of the
action set, renders exhaustive exploration of all state-action
pair unfeasible. Therefore, when its memory size increases,
the performance of the learning agent suffers as the state
space complexity increases. The challenge is thus for the
agent to generalize from a relatively limited number of
explored state-action pairs to induce the outcomes of many
other unknown, unexplored pairs [11]. Several solutions
have been proposed: generalization between similar states
using weighted Hamming distance and statistical clustering
[6], or using self-organizing maps (SOM) [5] to capture the
desired state-action mapping.

In this paper, we proposed a solution to deal with
complex state spaces in the Q-learning task, making use of a
neighborhood function (like that of SOM) to generalize
similar states. The proposed method doesn’t build an SOM,
and hence differs from the existing SOM-based methods.
The new approach is studied and tested in the context of the
Iterated Prisoner’s Dilemma problem.

IL.ITERATED PRISONER’S DILEMMA

The Prisoner’s Dilemma (PD), a problem of game theory,
refers to a social situation where each agent has two
possible actions: to cooperate or to defect. A payoff matrix
detailed in TABLE I describes a PD game if >R > P> S.

TABLEI
PAYOFF MATRIX FOR THE AGENT
' Opponent
Cooperate (C) Defect (D)
Cooperate (C) R S
Agent Defect (D) T P

In addition, if the game is repeatedly played, thus
considered an Iterated Prisoner’s Dilemma (IPD) game, the
inequality 2R > T + S > 2P must also hold [13]. These two
inequality constraints effectively form a situation in which it
is more beneficial for an individual agent to defect,
regardless of the opponent’s choice, although the sum of the
agents’ profits is maximized if both cooperate and
minimized if both defect, hence creating a dilemma.

In an IPD game, a stochastic agent chooses its action from
a distribution, which is a mapping from the entire history
(of the agent’s and its opponent’s moves) to the utility
values of the actions. It is also assumed that the two agents

_are not aware of how long the game lasts (in terms of

iterations.) Then the goal of a learning agent in an IPD game
is to maximize its discounted return

13

0.9

0.8

e B ASTCCE-1

0.7

~g—BasicQ-2
- BasicQ-3

0.6

0.5 - fRestny

BasicQ-4

Average cooperating probability

0.4

e Basic (-5

0 1000 2000 2000 4000 5000 6000 7000 3000 9000 10000

Trial number

Fig. 1. Basic Q-learning algorithm performance in IPD game with increasing memory size.

2 @
i=n

where 0 < y < 1 is the discount factor and 7; is the
immediate gain on the i* iteration. In effect, the discount
factor influences the agent’s consideration between the
long-term cooperative incentive and the immediate gains for
defection.

We are interested in training such an agent to play
optimally against an opponent who employs a fixed strategy
named Tit-For-Tat (TFT)' [1]. In his landmark study [14],
Axelrod found that the optimal ways to play against a TFT
opponent may differ, depending on the value of the discount
factor y. This result is summarized in TABLE IL

TABLE II
OPTIMAL STRATEGIES AGAINST TFT OPPONENT

y>2/3 Always cooperate
1/4<y<2/3 Alternate between cooperation and defection
y<1/4 Always defect

II1.PROBLEM WITH BASIC Q-LEARNING

Due to the cited computational limitations, the learning
algorithm will employ a fixed number L (L > 1) of previous
moves as the context to decide the next action. Thus, a
“state” is defined to be, instead of the entire history of the
game, a window of L previous moves. Each move may take
a value from the set {CC, CD, DC, DD}, giving a total of 4*
different states. For each state, two Q-values are to be stored
(for cooperating and defecting actions, correspondingly).
Moves further than L-move away are ignored by the agent.
The set of Q-values are therefore stored in a lookup table,
called Q-table.

In each trial, the Basic Q-learning algorithm, as
summarized in the Introduction section, identifies the state s
in the Q-table which matches its memory and the state’s
corresponding Q-values, and then computes the agent’s
probability of selecting either action C or D [1]. However,
after receiving its opponent’s move and getting the

! An agent using TFT initially cooperate on its first move and then
keeps repeating its opponent’s previous move (thus “punishing” the
opponent’s defection and “rewarding” cooperation on a one-on-one basis).

14

immediate payoff, the agent updates the Q-values of only
one state s. As the number of possible states grows
exponentially with L, a single-state-update on every turn
proves to be insufficient in “exploring all actions in all
states infinitely often” as dictated by the convergence
condition [10].

Fig. 1 plots the agent’s average cooperating probability in
each trial throughout the game. The algorithm was run with
learning rate ¢ = 0.2, discount factor y = 0.95, and the
payoff matrix parameters 7= 0.5, R=0.3, P=0.1,S=0.
The settings are taken from the work of [1]. According to ,
since y = 0.95 > 2/3, we expect the cooperating probability
of the agent to converge toward 1.0 at the end of the
learning process.

There is significant decline in steady-state cooperating
rate in Fig. 1 as the window size L is increased from 1 to 5,
with the BasicQ-5 line settles just about 0.77. With larger
values of L, the cooperating rate could drop to about 0.5,
which is just as good as a random player. This experiment
shows that the learning agent suffers from the increasingly
complex state space, which is the result of the agent’s
enlarging memory size (curse of dimensionality).

IV.SIMULTANEOUS Q-LEARNING

To deal with more complex state spaces, reaching the
same or comparable performance as it gives to a small,
simple state space, the agent must be able to reduce or
generalize the complex state spaces. Various attempts
[5,6,11] have been made to address this issue by proposing
different ways of generalization of the state space, thus
enabling the agent to simultaneously update multiple states
in each trial. In line with these ideas, we proposed a
weighted similarity measure to generalize the state space in
the IPD game, and use that similarity value in updating
other states which are similar to the current states.

Let a state S; be denoted by a sequence of moves /Sy, ..,
Si] where Sy is a 2-bit representation: Sz € {CC, CD, DC,
DD}, 1 < k < L. S;; denotes the most recent move between
the agent and its opponent, S;; the second most recent, etc.
Then the similarity between states S; and S; is defined as:

e Basic Q-1
——{fi— BasicQ-2

e BasicQ-3

BasicQ-4

i BasicQ-5

e SiMUIEANROUSQ-A-1

e SiMUltaneous Q-A-2

Average cooperating probability

0.2 ; . ; : .
AL O N O L LD
FHCTOL L
AT SO

Trial number

$
$
$

S O e Simultaneous Q-A-3
QQ
N SimultaneousQ-4-4

Simultaneous(-4-5

Fig. 2. Performance comparison between Basic Q-learning and Simultaneous Q-learning (A).

L
2 Tt_l(Sit®Sjt)
sim($,,8)=— ®

Z 71

=1
where x ® y = 0if x #y and I if x = y (with x, y € {CC,
CD, DC, DD}) and 0 <7 < 1 is the memory decay factor.

The parameter 7 underlies an a priori assumption that the

more recent past action is more important in deciding the
future action, which is reasonable in the context of an IPD
game. The states in the Q-table are updated, using:

AQ(s,a)=asim(ss,,,,,,) [r+ymax, Q(s',b)-Q(sa)] @

where Scurren: denotes the current state.

V.EXPERIMENTAL RESULTS
A.Basic Q-Learning vs. Simultaneous Q-Learning (A)

With parameter values replicated from [1] and 1= 0.2, we
carried out the experiments to compare the performance of
Basic Q-learning and the Simultaneous Q-learning (A)*
proposed in the previous section. Fig. 2 shows the
comparison between the cooperating-rate of the two
algorithms; as memory size increases from 1 to 5.

For the cases where window size L = 1, 2, 3, the proposed
Simultaneous Q-learning (A) cannot outperform the Basic
Q-learning algorithm. However, there are two noteworthy

points:

- - Except for the case where L = 1, all the curves of
cooperating rate performed by Simultaneous-
learning (A) initially descends below 0.5 before
jumping steeply upward, reaching their steady states.
Although their steady states remain below their
corresponding counterparts given by Basic Q-
learning, it seems that the Simultaneous algorithm
explores the defecting option to a greater extent
before converging toward cooperating.

- With L = 4 and L = 5, Simultaneous Q-learning (4)
clearly outperforms Basic Q-learning.

2 Since we are going to introduce some variation later on, for
clarification purpose, we hereby call the algorithm originally proposed in
the last section Simultaneous Q-learning (A)

B.Basic Q-Learning vs. Simultaneous Q-Learning (B)

Although the performance of Simultaneous Q-learning
(A) yields some interesting patterns, we were not satisfied
with its asymptotic performance. The fact that it drops far
below 0.5, “wasting time slowly exploring” alternative
options, suggests that Simultaneous Q-learning (A) over-
generalizes the states to a certain extent, i.e. it updates states
which should not be deemed as similar to the current
memory.

In an attempt to rectify this behavior, we introduce
Simultaneous Q-learning (B) which contains a slight
variation in the similarity measure computation in (2):

K-1

7715, ®S)

L
t—1
; 7

where K is the smallest index number such that Six # Si.

This modification, instead of including all memory bits
of the two states in similarity computation, breaks off the
computation immediately when the states’ memory bits start
to differ. The results of Basic Q-learning vs. Simultaneous
Q-learning (B) are given in Fig. 3, which shows that the
modified algorithm outperforms Basic Q-learning for every
window size L from 1 to 5. However, the difference is still
not very significant in the cases of L = 4, 5. Further
refinement of the similarity function is required.

sim(S;,S ;)= £l 5

C.Investigation on the effect of parameter t

We carried out one more experiment to investigate the
effect of the memory decaying factor t which is used in
computing the similarity measure in the state space. In this
experiment, we used the modified Simultaneous Q-learning
(B) algorithm, with t= 0.2 and 7 = 0.1. All other parameters
are identical. The result in Fig. 4 shows that the learner with
1= 0.2 consistently outperform its competitor with t = 0.01.

15

=)
-3 [nd
|
1
!
|

e Basic -1
—F—BasicQ-2

e BasicQ-3

BasicQ-4

e BASICO-5

=z SimultaneousQ-8-1

Average cooperating probability
=1
[=2]

0.4 .
O L LPLLLSLSL S LS s Simultaneous Q-B-2
\Q,LQ ,,)0 Ny %Q bQ ,\Q %0 QQ'$Q X
SimultaneousQ-8-2
Trial number SimultaneousQ-8-4

Fig. 3. Performance comparison between Basic Q-learning and Simultaneous Q-learning (B).

e SiMMUITANEOUSQ-B-1-(}.2
—F— Simultaneous(-B-2-0.2

~ Simultaneous(-B-3-0.2

——=— SimultaneousQ-B-4-0.2

e Simultaneous(-B-5-0.2

=
=

Average cooperating probability

g Simultaneous(-6-1-0.01
—em Simultaneous-B-2-0.01

~eeees SimultaneousQ-8-3-0,01

0.4 , — ‘
SN
s

Trial number

P LSS LSS S
O & & S O O L
P RS E S

Simultaneous(-8-4-0.01

o oo SiMMUTtaNEOUS(O-B-5-0.01

Fig. 4. Simultaneous Q-learning (B) with t= 0.2 and T = 0.01.

VI.CoNcLUsIoN

We have shown, in the context of multi-agent IPD, the
increasing size of the agent’s memory results in the
exponential growth of the state space and complicates the
learning task. We have also presented Simultaneous Q-
learning as a modification of the Basic Q-learning
algorithm. The proposed algorithm relies on a similarity
measure to determine neighborhoods of states, which enable
state generalization and thus improve the learning effort.
Simultaneous Q-learning is shown to perform better than
Basic Q-learning in learning the optimal strategy against a
TFT-agent in IPD. Simultaneous multiple state-action pair
updates allows more state-action pairs to be explored
during the limited time of the learning process, thus
enhancing the probability of convergence.

Future work will involve refining the similarity measure,
investigating the performance of Basic Q-learning and
Simultaneous Q-learning agents against each other in an
IPD game.

REFERENCES

[1] T. W. Sandholm and R. H. Crites, “Multiagent reinforcement
learning in the iterated Prisoner’s Dilemma” in BioSystems, vol.
37(1-2). Elsevier Science Ireland Ltd., 1996, pp. 147-166.

[2] C. Watkins, Learning from delayed rewards, Ph.D. dissertation,
King’s College, University of Cambridge, UK, 1989.

16

[31 R. S. Sutton, “Learning to predict by methods of temporal
differences,” in Machine Learning, vol. 3(1). Springer Netherlands,
Aug. 1988, pp. 9-44.

J. R. Millan, D. Posenato, and E. Dedieu, “Continuous-Action Q-

Learning,” in Machine Learning, vol. 49(2-3). Springer Netherlands,

Nov. 2002, pp. 247-265.

[5] A.J. Smith, Dynamic generalisation of continuous action spaces in

reinforcement learning: A neutrally inspired approach, Ph.D.

dissertation, Division of Informatics, Edinburgh University, UK,

2001.

S. Mahadevan and J. Connel, “Automatic programming of behavior-

based robots using reinforcement learning,” in Artificial Intelligence,

vol. 55(2-3). Elsevier Science B.V., Jun. 1992, pp. 311-365.

[7] A.-H. Tan, N. Lu and D. Xiao, “Integrating Temporal Difference

" Methods and Self-Organizing Neural Networks for Reinforcement
Learning with Delayed Evaluative Feedback,” IEEE Trans. on
Neural Networks, vol. 19(2), pp. 230-244, Feb. 2008.

[8] M. L. Littman, “Markov games as framework for multi-agent
reinforcement learning”, in Proc. of the Eleventh Int. Conf. on
Machine Learning, Rutgers University, New Brunswick, NI..
Morgan Kaufmann, Jul. 1994, pp. 157-163.

[9] L. Gambardella and M. Dorigo, “Ant-Q: A Reinforcement Learning
approach to the traveling salesman problem,” in Proc. of the Twelfth
Int. Conf. on Machine Learning, Tahoe City, California. Morgan
Kaufmann, Jul. 1995, pp. 252-260.

[10] C. Watkins and P. Dayan, “Q-Learning” in Machine Learning, vol.
8(3-4). Springer Netherlands, May 1992, pp. 279-292.

[11] C. F. Touzet, “Neural reinforcement learning for behavior synthesis”
in Robotics and Autonomous Systems, vol. 22(3-4). Elsevier Science
B.V., Dec. 1997, pp. 251-281.

[4]

(6]

[12] T. Kohonen, Self organisation and associative memory, 3rd ed.
Springer-Verlag New York, Inc., 1989.

[13] D. R. Hofstadter, “Metamagical Themas: Computer Tournaments of
the Prisoner’s Dilemma Suggest How Cooperation Evolves” in
Scientific American, vol. 248(5). Scientific American, Inc., May
1983, pp. 16-26.

[14] R. Axelrod, The Evolution of Cooperation. New York: Basic Books,
1984.

17

18

VLSI Design of Analog Neural Networks for Pattern Recognition

Dzmitry Maliuk

Abstract — Analog implementation of neural networks
offers advantages of small size, low power consumption
and high speed. In this paper the design of analog synapses
and neurons, the building blocks of any neural network, is
described. These blocks are then tested on two network
configurations, the 2-input perceptron and the discrete
Hopfield network. Simulation results are used to verify the
correct behavior of the analog circuits.

Index Terms - analog multiplier, analog neuron,
perceptron, discrete Hopfield neural network.

I. INTRODUCTION.

ANOLOG VLSI implementation of neural networks has

received considerable attention from many researchers [1-
3]. The major advantage is that analog implementation of
basic computational components, such as multipliers and
adders, in modern CMOS technologies is far more area
efficient than digital implementation. This allows fitting many
neurons on a single chip and achieving tremendous
computational power. In contrast to software implementations,
which sequentially emulate operation of neural networks,
analog neural networks (ANN) utilize the inherent parallelism
of neural models. Digital implementation of neural networks is
also attractive for their parallelism, high precision and
straightforward design, but they lack the compactness and
power efficiency of ANN.

" A simple McCulloch-Pitts neuron model is shown in Fig. 1.
It has two types of building blocks: neurons and synapses. A
synapse can be considered as a multiplier of an input signal
value by the stored weight value. A neuron sums the output
values of the connected synapses and compares this sum with

a threshold value. Efficient implementation of these basic

building blocks is essential for large single-chip networks. The
most compact implementation of a synapse reported in the
literature uses a single floating gate transistor [4]. This
approach holds a great potential, especially for small ultra-low
power networks. However, the technology is not now mature
enough for practical implementations in standard CMOS
processes, which would require high voltages and a long time
for accurate floating gate programming.

We present architecture of a McCulloch-Pitts neuron, which
can be implemented in standard CMOS technology. The
synapse is an analog multiplier, while the neuron consists of a
current to voltage converter and a high gain amplifier. In
addition, two example networks, a 2-input perceptron and a
discrete Hopfield's network, composed of the designed
building blocks, are demonstrated. The schematic of the
design has been implemented and simulated in Cadence
Analog Design Environment. The design is targeted for TSMC

0.18u technology, the simulation was carried out with the
corresponding transistor models.

Synapse

>

WN

Figure 1. McCulloch-Pitts neuron model

q|us mh
| Tout

VSS
Figure 2. Four-quadrant CMOS analog multiplier

II. ANN CIRCUITS.

A. The Synapse Circuit.

A four-quadrant CMOS analog multiplier [5] has been
chosen to perform the synapse operation. The schematic
diagram of this circuit is shown in Fig. 2. The inputs to the
circuit are two differential mode voltage signals V, and V,,
and the output is the current signal I, proportional to the
product of the inputs. The basic element is a Gilbert six-
transistor cell composed of three differential pairs (transistors
M1-M6). The differential current produced by this cell is

19

nonlinear except for a small range of input voltages around the
origin, where it can be approximated by

loyr = /2knkp /A4

Here, k, and k, are the transconductance coefficients of
nmos and pmos transistors respectively, V, and ¥, -
differential input voltages. The linearity requirement sets the

constraint on the maximum input voltage to be |[V| « ’Iss / K

where I;; is the biasing current set by MO. Therefore, the
dynamic range of the input voltages can be increased either by
having relatively large current I, or choosing a small k
which means that the input transistors are narrow and long.
The parameters of the circuit have been calculated based on
the specifications listed in Table 1. The input-output
characteristics for a number of weight values (W) are shown
in Fig. 3. For the purpose of simulation the output current is
converted into voltage. The slopes of the traces are
proportional to the weight values. In part a) of Fig. 3 the
differential input vl sweeps across a wide voltage range. For
large V, the circuit enters the saturation region and cannot be
used for multiplication. As a result, only a small range of input
voltages around the origin, where the characteristic is close to
linear, are of relevance. Such a small range from -100mV to
100mV is shown in part b) of Fig. 3. The same restrictions
apply to the differential weight input, the useful range of
which has been chosen to be the same as the range of V.

Table 1. Multiplier Specification

Parameters Range

Input Range +/- 100 mV
Output Range +/- 160 mV
Vaa /Vss 09V/-09V

B. The Neuron Circuit.

The function of a neuron is to add together the outputs of its
synapses and compare it with its threshold. Since the outputs
of individual neurons are currents, the summation operation is
implemented as current summation. The threshold current is
generated by a simple voltage to current converter, shown in
Fig. 4a, and added together with synapse currents. The
resultant current is then converted to a voltage by a high gain
amplifier (Fig 4b), which in effect outputs high voltage for the
positive input current and low voltage for the negative. It is
implemented by cascading a linear current to voltage
converter with two inverters.

20

W = 100mv]

200+

1004

¥mv)

—-100+

-200+

-300+

<500 250

o
V1 (E-3)

a)

2004

1004

¥ (m¥)
o

-1004

-2001

T T
-100 -50.0

[
vl (E-3)
b)
Figure 3. Characteristics of CMOS multiplier: a) large
signal; b) small signal.

T T

Vbi __# Vbias —C)
I I Vout

. o oR

a) b)

Figure 4. Neuron circuits: a) V->I converter; b) I->V threshold
converter.

III. TWO-INPUT ANALOG PERCEPTRON.

To test the designed analog blocks we have assembled a
simple neural network to perform a logical AND operation.
This ANN consists of one neuron and two synapses (Fig 5).
Such configuration is very easy to train, since we can directly
extract the values for the weight and threshold coefficients
from a separating line between two classes. The inputs must
first be normalized to fit into the allowable multiplier input
values range. Fig. 6 shows four normalized logical inputs as
well as some other inputs closer to the separating line to test
accuracy of the threshold. The sequence of input vectors as
they are applied to the network is shown by the arrows. The
simulation results are illustrated in Fig 7.

V->I—

)

Vlhres

Vi+
Vi-

W1+
W;-

Isum

Vou
[>V—=

Ibias

Vo+
V-

W+
W,-

X

Figure 5. Block diagram of the two-input
perceptron. -

decision boundary

valid input range

Figure 6. Sequence of input test vectors.

75TVIF
2 3
50 5
7
25
< 1
%o £
>
-25]
-504 _ 2
-75
1000{7VZ+ L
750.04 2 7
500.04 5 6
2500
E 1
>
-250.04
-500.04 3 4
-750.04
1000 s
2 5 7
504
25
<
£ 0
>
-25]
-509
1 3 4 6

200 300 400 500 600 700
time (ns)

0 100
624.95ns S0mV

Figure 7. Simulation results of the two-input perceptron.

IV. DISCRETE HOPFIELD NEURAL NETWOK.

A more complicated network built from the designed analog
blocks is shown in Fig. 8. This is a version of an analog
Hopfield network with McCulloch-Pitts neurons having two
distinct states. This circuit belongs to the class of mixed-signal
circuits, incorporating digital and analog devices on the same
chip. The network is fully interconnected, i.e. each neuron has
connections with all other neurons. The state of the circuit is
characterized by a state vector, which is the output of the four
registers. The dynamics of the circuit is controlled by the
clock signal, which updates the state vector and initiates
further neural processing. The rate of the clock is limited by
the longest path of the analog signal and depends on
implementation details. ’

The required operation of this network is achieved by
programming the weight coefficients of individual neurons,
which depend on a set of fundamental memories we desire to
store. The weight matrix of this network can be calculated by
the following formula [6]

1/, .,
w= (> gngh—mi
m=1

where §,,, are fundamental memories, N = 4, M is the number
of fundamental memories. For the purpose of demonstration

the set of fundamental memories was chosen to be §; =
[111-1" &=[-11-11]". The
corresponding weight matrix after normalization to conform to
the input voltage range requirements is

21

0 o 25 -25
(4] o 0 0
W= mb
25 0 0 —25
—25 0 =25 0
3-input REG 1X,
neuron b Q
L1
Wi Wiz Wiy
3-input REG X,
neuron D Q
o—
L1
Wi Wy Wy
3-input REG X3
neuron D Q
+—
L1
Wi Wi, Wiy
3-input REG X4
neuron D Q
o
T ax
W4l W42 W43

Figure 8. Discrete analog Hopfield network.

Fig. 9 demonstrates the results of simulation for the
given weight matrix for two initial states: Xy =

[F1-1 1 —-1]" and Xo=[-1—1 1 1]”. The
nodes from X1 to X4 represent the state vector. It is used to
evaluate the outputs of the neurons, which will update the state
vector on the next rising edge of the clock. In Fig. 9 the state
of each register during a clock cycle is denoted by the
corresponding number. It can be noted that in the first case the
network converges to one of its fundamental memories,
namely §; = [1 1 1 — 1]7.In the second case the output
keeps oscillating between two states and never converges to
any of the fundamental memories. This network has also been
simulated in MATLAB to verify the output sequence of the
analog version.

22

10004 XT

750.0
500.0
< 250.0
K3 o
>-250.0

-500.0-
-750.04 -1

-100!
10004 /X2

750.0
500.04
< 250.0

{mV,
k=

>-250.04
-500.0-
-750.04 -1

-100!

10004 X3 L—

900.0
800.0-
£700.04
<600.04
500,04
400.0
300.0

1000 X4 L

750.0
500.0

< 250.0
o

>-250.0:
-500.0
-750.04 -1

~100!

10004 7aK

750.03
500.04
< 250,01

>-250.01
~500.04
=750.0

-1000;
0

10004 70K

200 400 600
time (ns)

a)

800

750.0
500.0
£ 250.0

>-250.0
-500.0-
~750.04

-1000-
10004 /X3

900.0

800.04 1
£700.0
£600.0
>500.04

400.0-

300.04

200.0-

1000731
7500 1
500.0

< 250.0

>-250.0
-500.0-
-750.0-

-1

~100!

10004 7XZ

750.0
500.0
250.0

R

>-250.04

-500.0
-750.04 -1
-1000:

10004 XT

750.0
500.0
< 250.0

>-250.0
-500.0
-750.04 -1

-1

~1000-
0

Figure 9. Simulation results of the Hopfield neural
network for two initial conditions: a) Xo=[-1-11 -1]"

250 500
time {us)

b)

b) Xo=[-1-111]"

10

b

V. CONCLUSION.

We presented the design of analog synapses and neurons, as
well as two example neural networks built from these
components. The simulation results demonstrate feasibility of
the designed analog circuits as building blocks of larger neural
networks. In particular, the network configurations presented
can be extended to higher dimensions. However, it would
require more careful design to retain signal integrity, because
high fan-in or fan-out analog signals are more susceptible to
noise and distortion.

REFERENCES

1. M. Verleysen, P. Jespers, “An Analog VLSI
Implementation of Hopfield’s Neural Network”, IEEE
MICRO, vol. 9, no. 6, pp. 46-55, Dec 1989.

2. C.Y. Wu, JF. Lan, “CMOS Current-Mode Neural
Associative Memory Design with On-Chip Learning”,
IEEE Trans. On Neural Networks, vol.7, no.1, Jan. 1996.

3. J. Ghosh, P. Lacour, S. Jackson, “OTA-Based Neural
Network Architectures with On-Chip Tuning of
Synapses”, IEEE Trans. On Circ. and Syst. II, val. 41
no.1, pp. 49-58, Jan 1994.

4. P. Hasler, C. Diorio, B. Minch, C. Mead, “Single
Transistor Learning Synapses”, IEEE Trans. On Electron
Devices, vol. 43, no. 11, pp. 1972-1980, Nov. 1996.

5. J.N.Babanezhad, G. C. Temes, “A 20-V Four-Quadrant

CMOS Analog Multiplier”, IEEE Journal of Solid-State

Circuits, vol. sc-20, no. 6, pp. 1158-1168, Dec. 1985.
6. S. Haykin, “Neural Networks: A Comprehensive
Foundation”, 2™ edition, Prentice Hall, 1999.

23

24

Using Neural Networks to Estimate Volatility of Financial Returns

Wedzerai V Munyengwa

Abstract - Predicting the volatility of returns from financial instruments is a very difficult, but nonetheless rewarding, endeavor.
Various linear methods have been used to predict volatility using past values of some variable. In this paper I develop a Neural
Network Model that predicts both returns and volatility of the monthly returns on S&P500 stock index. We assume that the system
that generates volatility has some memory of the recent past and responds to news which is necessarily random. By analyzing the serial
correlations of volatility time series we confirm the memory assumption, i.e. future volatility depends on the its own historical values.
By analyzing the residuals (actual less estimated value) of stock returns estimated by our neural network, we also confirm that the
error is i.i.d (normally distributed) noise. The Neural Network model performs nearly the same as the GARCH model, but is a lot
simpler and easy to use.

Index Terms—Volatility, Neural Network

I. INTRODUCTION Most models used to price financial

instruments invariably assume a constant volatility of . . -

returns (log returns to be specific). However studies have S&P Historical Stock Prices

shown that volatility itself varies with time, and depends 2500

on random noise (reaction to news) its own past values 2000

[1]. GARCH models have been developed to incorporate

these findings [1]. Studies by behavioral economists have 1500 k

also shown that financial markets exhibit excess volatility, 1000 .
i.e. realized volatility significantly exceeds that which can 500 === Price
be explained by efficient market hypothesis [2]. They offer 0

explanations based on irrational behavior by investors,
and on feedback models [3]. This provides motivation to
use Neural Networks to estimate volatility, and financial

i

152
303
454
605
756
907
1058
1209
1360
1511

returns.

We will use S&P500 stock index data to train my neural Figure I: Historical values of the S&P500 equity index
network model, using the back propagation algorithm. We will
also develop a GARCH model to model the volatility time
series and compare its performance to that of the neural Series mydata$v
network. Fig 1 is a plot of the stock price time series of the -

S&P500 Composite index. Let p(t) be the stock price in
month t. Then we calculate log return for month t asr(t) =
logP(t) —log P(t —1), and the volatility aso(t) =
var(r(t),..r(t —12)). Figure 2 shows a plot of
autocorrelation of the volatility time series versus lag.
There is significant autocorrelation for high lag values
implying that the system generating this time series has
significant memory.

[+2+1 28

Pattial 4CF
04

0g 02
4

-

5

GARCH (0. 0) Mo | e e e

A Generalized Autoregressive Conditional Heteroskedasticity
(GARCH [p, q]) model is represented in equation 1, where

o (t)?is the conditional variance, u(t) = r(t) — E [r(£)] is the
residual of the log returns, and E[] is the expectation operator. Figure 2: Partial Autocorrelations

o(t)? =k + [T qu- D]+ [T, Bioet - (1)
k>0, aiZO, ﬁlzo
o(t)? = k+ ayu(t — 1)% + au(t — 2)% + azu(t—3)% +
p is the number of lags of residuals used, and q is the number Bio(t —1)? + Bra(t — 2)? + B3.0(t — 3)*
of lags of volatility. To keep things simple we assume that the @
volatility follows a GARCH (3, 3) process, i.e. p=3, and q=3.

25

Equation (2) models the volatilitye(t)?. u(t) is the residual
(which is the error in the estimation of r(t) by conditional
expectation E[r(t)].

that wu(t) follows normal distribution.
= 0, and var[r(t)] = o(t)®. Thus

u(t)?

e 20(? 3)

We assume
Then E[r(t)]

f(utlut—lr "'rul) =

1
J2ma(t)?

fn, s uq) = f(Unog, o, u) f(Up|Un-g, o u1) (4

Iterating formula (4) gives

g, o ug) = F) FQuglug) fuslug i) .. f(nlttny, ., %g) (5)

Taking natural logs of (5) gives the log likelihood function

L(w, ay, “zﬂarﬁliﬁzrﬁs) =
- (;—') log(2m) — (5) t1{log(af_1e-2))} + u}laf,, (6)

We then estimate the parameters w, &4, &3, &3, B1, B2, B3 that
maximize the log likelihood by using optimization methods
like Lagrange method.

Neural Network Model

I use a neural network model to estimate both returns and
conditional variance. I design a multilayer perceptron with
three inputs. Let x(t) = [r(t — 1), u(t — 1)%,0(t — 1)?]*" be
the input vector, and y(t) = [r(t), o(t)?] be the output
vector. The neural network is shown in fig 3. The
activation/transfer function is tanh for all neurons except for
the one that outputs r(t) (with linear transfer function) [4].

The MLP algorithm should be such that the log likelihood of
the data is maximized [S5]. After taking the natural logarithms
of both sides in equation (3), we get

log[P(u(®)lu(t - 1)..)] = — () log(2m) — (3) log(c(H)?) -
u(t)?/20(t)* Y

We can ignore the constant 1 log(2m) and view the problem
2

as one of minimizing the cost function C, instead of the usual
error function e(n).

€ =54(3)log(o(0?) + 2253 ®

Figure 3

26

Back-propagation weight updating algorithm

Assuming a linear transfer function for the neuron that outputs
r(t) and sigmoid transfer functions for all other neurons,
weights are changed according to the following delta formula.

Aw,(£) = ac
Mt = T w @
where C is given in equation 8.

Let y;(t) be the output from neuron i, w;;(t) the weight of the
connection from neuron i to neuron j, v;(t) the local signal of
neuron j, b; the bias to neuron j, @ is the transfer function for
neuron j, and d(t) the desired/realized return at time t.
Updating weights for connections to neuron that output r (t):

u(t) =d() —r)

r(t) = @j(Z Wji(t)Yi(t)] + by)
ac : 1 Ju(r)?
awi(t) 20(8)? dw;(t)
du(t)® ar()
awi®~ Oow®
= —2u()y;(t)

because @j is linear
Therefore

B0 =1 (=o57) [= T O

Updating weights for connections to neuron that outputa(t)*:

aw(©) = =1 (55) 1 = rOP =0 (0

o(®)? = m,([z w,.(t)yl(t)] +by)

_9 _ (_1_) _1_
ow; () \2 y (vj(t))

— [d(®) - r(®OF /07 (v;(®)) %”’(f)
6u’?ﬁc(t) - 207 (1,,]_(0) [‘Pi (v;(t))
~[d(®) - r(t)]z]%
9, (v/(®) = tanh([), wy@Oy(O] +b)
therefore —ag’£Z££;)) = y:(O)(1 — tanh?(v;(1))

g (”j(t)) 3)
w0 e 0]

2wy (© = =1 (202) 0007 - (0 = rCOPI[L - (0"

Updating weights for connections to the rest of the neurons:
We use the usual back propagation method of calculating
weights for connections to non-output neurons.

RESULTS
Below are plots of estimates of conditional variances using
MLP then GARCH.

i3]

Coonadiin ~al Watiarge
e

Qi

J‘*J&WWMJW\M‘VW*]“‘\LV}WMWM\MAMM

& A 1O 3500

[

1

Figure 4: Estimates of Conditional Volatility using MLP

2.0

Condtions Yarante GARCH
ilex)

iR el

a0y

T
flos] 1500

Figure 5: Estimates of Conditional Variance using GARCH

e B
Il 1

@
i

frazed wolathly

R

| 1

Rl
i

5

Y VRS o T WMQMM&W“L

J
& e

1

Figure 6: Actual Variance

As can be seen from the graphs, both methods did fit the data
satisfactorily. Neural Networks achieved that using many
parameters (weights in the MLP) but the GARCH model uses
only 7 parameters. This is not a big issue since the data set I
use is very large.

Figures 7 and 8 below plot the estimates of the residuals

u(t).

-

i

sandaed reuituats GARCH

standard residuais

Yeme

Figure 8: Standard Residuals using MLP

The Normal Q-Q plot of the residuals from the MLP
estimation in figure 9 below shows that the residuals estimates
follow normal distribution. This confirms what we assumed in
our model.

27

Normal Q-Q Plot

Sarmple Quanides

Tresretical Quantiles

Figure 9: Normal Q-Q Plot for residuals: MILP
Conclusion

Even though the MLP was outperformed by GARCH, it gave
satisfying results. The neural network was able to estimate the
volatility to almost the same extend as the GARCH model.
The Neural network is also not difficult to implement and we
can train it with large amounts of historical data.

REFERENCES

M. Casdagli, S. Eubank, J.D. Farmer, and J.
Gibson, “State Space Reconstruction in the

Presence of Noise.”” Physica D, vol. 51D, pp.

W.L. Buntine and AS. Weigend, “Bayesian Backpropagation.” Complex
Systems, vol. 5, 52-98, 1991 Clerk Maxwell, 4 Treatise on Electricity and
Magnetism 7, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp. 68-73.

REFERENCES

[1] Robert F. Engle. "Autoregressive Conditional Heteroscedasticity with
Estimates of Variance of United Kingdom Inflation", Econometrica
50:987-1008, 1982. (the paper which sparked the general interest in
ARCH models)

[2] Shiller, R. J. (1990) Market Volatility - pages 1-4, 71-76, 197- 214,
MIT Press, London
Schiller,R.J. (1981) Do Stock Prices Move Too Much To Be Justified
by Subsequent Changes in Dividends? The American Economic Review,
Volume 71, June, No.3 pages 421-435

[3] Shiller, R.J., 2005a. Irrational Exuberance, 2nd ed. (Princeton
University Press, Princeton, NJ).

[4] A. Weigend, and D. Nix “Error bars for non-linear regression,”
Advances in Neural Information Processing 7 (NIPS 94), pp489-496,
1994.

M. Casdagli, S. Eubank, J.D. Farmer, and J. Gibson, “State Space
Reconstruction in the presence of Noise.”” Physica D, vol. 51D, pp

[5] W.L. Buntine and AS. Weigend, “Bayesian Backpropagation.” Complex
Systems, vol. §, 52-98, 1991 Clerk Maxwell, A Treatise on Electricity
and Magnetism 7, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp. 68-73

28

Neural Networks Playing Tic Tac Toe
Trained by Backpropagation

Zachary Murez

Abstract—The use of feed forward neural networks (nets)
to play the simple game of tic tac toe was studied. There
have been many previous experiments using genetic
algorithms to train nets, but for this study,
backpropagation with sample moves was employed. The
nets were tested against random players and were
compared to players that use look up tables of the sample
moves the nets had been trained with. Playing ability, as
well as playing speed were analyzed.

Index Terms—Neural Networks, Tic Tac Toe, Artificial
Intelligence.

I. GAME

Tic Tac Toe is a simple game comprised of a nine

element playing board. The nine squares are
arranged in three rows of three columns. It is normally
played between two individuals, where player one is
known as “X” and player two as “O” on the board. The
rules are fairly limited; each player gets one move at a
time. With each move, the player fills one of the nine
squares with his (or her) respective marker (“X” or
“0”), which signifies that he (or she) has captured the
square. The objective is to capture three squares in a
row, column or diagonal.

II. HISTORY
There is a simple set of rules that allow optimal play,
whereby player 2 can always force a draw. However,
having a machine learn to play well requires a more
complicated algorithm. The first successful attempt at
this was Donald Michie’s Machine Educable Noughts
And Crosses Engine (MENACE), devised in 1960. This
used 300 matchboxes, each corresponding to a unique
board state. Each matchbox contained beads of 9
colors, representing the possible moves. The percentage
of beads in a matchbox represented the probability that
that move was a good one. A move was made by
selecting a bead at random from the box that
corresponded to the current board state. MENACE
started out with equal numbers of each color bead. It
played a game, and if it won, the beads were replaced; if
it lost, the beads were discarded. Thus, over time,
moves that led to losses became less likely and moves
that led to wins became more likely. MENACE
eventually converged to optimal play. Since MENACE,
there have been many successful implementations using
neural nets. Most are trained using a genetic algorithm.
In this case, a large set of neural nets was created with

the weights initialized to random values. The fitness of
each was measured by games won and lost. The fittest
survived, while the rest were eliminated. Then the
fittest reproduced, during which recombination and
mutation occurred. The process was repeated until
convergence, or a limit on iterations, was reached.

III. MOTIVATION
When a human is learning to play a game, he learns by
two processes. The first one is by playing and gaining
experience as to what leads to wins and losses, as
modeled by the genetic algorithm. The second way is
by being shown examples of good moves by a teacher.
The latter could be modeled by using backpropagation.
A human who learns by only one of the two methods
limits his capability. The same likely holds true for
neural nets, and thus the most powerful algorithm would
be one that uses both methods. Since it has already
been demonstrated that neural nets can be trained to
play tic tac toe by genetic algorithms, the goal was to
show that they could also be trained by
backpropagation. Future work would combine the two
methods by alternating between modes of learning. -

IV. STRUCTURE OF THE NET
Each square of the board was mapped to one of 9 inputs.
Each input was a (-1) denoting ”0”, 1 denoting “X”, or
0 denoting blank. A feed forward net with one hidden
layer containing ten neurons was fully connected to the
inputs and the 9 output neurons. Each output was then
mapped back to a square of the board. The use of this
structure was an arbitrary decision that was
experimented with later. The activation functions were
sigmoid functions (1/[1+e”x]). Thus, each output was
a number between 0 and 1. The move specified by the
net corresponded to the neuron with the largest output
that was unoccupied. For example, if output neuron one
had a value .8 and neuron two had a value .5, the move
was square one, unless square one was already
occupied. The net’s weights were initialized to 0. The
net was then trained. It was presented with a board
configuration, and it calculated the outputs. It was next
presented with the desired outputs, which were 0 for all
neurons, except the one that corresponded to the optimal
move, which had the value 1. Backpropagation was
finally used to update the weights. Training continued
for between 1000 and 20,000 iterations.

29

V. TEST 1: GENERALIZATION ON EXAMPLES
SHOWN TO PLAYER 2

1) Random vs. Random
As a benchmark, both players were tested making
random moves. This was achieved by selecting a
random square from those that were unoccupied.
2) Random vs. Partially Optimal
As another benchmark, player 1 played randomly and
player 2 played partially optimally. This was achieved
by searching through a subset of board configurations
with known optimal moves. Whenever player 2 saw a
board configuration which was in its lookup table, it
made the optimal move; otherwise it made a random
move.
3) Random vs. Neural net
The net was trained using the same subset of known
examples as the previous test.

VI. RESULTS 1
Players were tested on 1000 games. Of the 2000
possible board configurations for which it was player
2’s turn to act, 1000 of them were in the lookup table.
The neural net was trained in increments of 500
examples, and then tested until the desired 20,000
iterations were attained.

Results are displayed in Figures A and B below. Figure
A shows that random player 1 won the most against
random player 2. As training of the neural net
increased, player 1 won less and approached the amount
won against the partially optimal player. However,
player 1 won the least when playing against the partially
optimal player. Figure B shows that player 2 won the
least when playing random. The net won more as it was
trained more, but the partially optimal player won the
most. This indicates that although convergence
occurred, there was no generalization to cases that it had
not been shown. If it had, then after a certain number of
iterations, player 1 would have won less and player 2
would have won more than the partially optimal player.

30

VIL TEST 2: STRUCTURE OF THE NET
Lack of generalization indicated that there were too
many neurons, or not enough hidden layers. Thus
experimentation was done using different size nets. The
input layer and output layer remain the same. Player 1
was always a random player and player 2 was varied. In
each test the net was trained for 10000 iterations and
then played 1000 games.

VIIL. RESULTS 2
TABLE 1 HERE

Nets with two hidden layers performed slightly better
than those with one such layer. However, due to the
large variance in scores (because of the random player),
it was hard to tell which structure was actually best.
Interestingly, the performance did not decay with fewer
neurons until the hidden layer contained 2 neurons or
less. However, significant generalization still did not
occur.

IX. TEST 3: GENERALIZATION OF PLAY OF
PLAYER 1 FROM TRAINING AS PLAYER 2
Since the net did not generalize as player 2, it was tested
to see if it could be trained using examples where it is

player 2’s turn to act, and then played as player 1.
1) Random vs. Random
2) Neural Net vs. Random

, X.RESULTS 3
Players were tested on 1000 games.
The subset of known board configurations was 1000 of
approximately 2000 for which it was player 2’s turn to
act. The neural net was trained with 500 examples in
each iteration. Its structure was the original one (1
hidden layer with 10 hidden neurons). Results are
displayed in Figure C below. The neural net definitely
became a better player 1 as it was trained as player 2.
This shows that it had generalized.

XI. PERFORMANCE
Since the net did not play better than the semi-optimal
player, they were both tested for performance
* characteristics. The question was whether a neural net
could decide on a move faster than searching through a
table of known moves. This would be a big advantage
to a net, since they both play about the same.

XII. TEST 4: SPEED
10000 games were played and the duration of time
spent playing was recorded. The time required to train
the neural net was not included, since only playing
speed was being considered. The code was written in
Microsoft Visual FoxPro Version 9 (VFP). Thisis a
programming language known for its speed in database
lookups. One of the key features of VFP is its use of
Rushmore Optimization, which uses indexes to speed
up lookup time dramatically. On the other hand, it is
not very powerful at doing math computations as is
required for implementation of the neural net.
Nevertheless, some interesting results were obtained.

XIIL. RESULTS 4

TABLE 2 HERE

It was found that, as expected, random moves were by
far the fastest. Interestingly, however, the neural net
played much faster than searching through the
database, even with Rushmore Optimization.

XIV. CONCLUSIONS
The neural net generalized to situations as player 1 that
were similar to those shown to it as player 2. However,
it was not able to generalize to situations it was not
shown as player 2. Thus, optimal strategy was not
achieved. On the other hand, had it been trained using
all 2000 possible situations for player 2, it would have
been able to play optimally as both player 1 and player
2. Nevertheless, it was found that once a neural net
was trained, it could play much faster than searching
through the examples.

XV. FURTHER WORK
More experimentation could be done with the structure
of the neural net to improve generalization; however .
this is unlikely to lead to any new insight. A major
problem with this design is that the input is only a 9D
vector and does not contain any topological
information about the board being a grid. Designing
the neural net in a more mathematically efficient
language, such as Matlab, would most likely increase
playing speed. Combining this type of learning with

genetic learning would lead to more powerful learning.
The end goal would be to apply these strategies to a
more complicated game, such as checkers.

REFERENCES

[1] Wikipedia. “tic tac toe”

[2] Wikipedia. “Donald_Michie”

[3] Noughts and Crosses (Tic Tac Toe) using Artificial
Neural Networks. ‘
http://www.adit.co.uk/html/neural_networks.html

[4] S. Hayken, Neural Networks: A Comprehensive
Foundation.

[5] Training an artificial neural network to play tic-tac-
toe. Siegel.
http://homepages.cae.wisc.edu/~ece539/project/f01/sie

gel.pdf

Table 1: Structure Analysis

Player 2 Player 2 score
Random 285
Partially Optimal 610
1 hidden layer (10 neurons) 563
1 hidden layer (7 neurons) 562
1 hidden layer (4 neurons) 568
1 hidden layer (3 neurons) 572
1 hidden layer (2 neurons) 564
1 hidden layer (1 neurons) 380
2 hidden layers (5 neurons) (6 neurons) 543
2 hidden layers (4 neurons) (5 neurons) 591
2 hidden layers (5 neurons) (4 neurons) 556
2 hidden layers (4 neurons) (4 neurons) 587
2 hidden layers (3 neurons) (3 neurons) 530
2 hidden layers (3 neurons) (6 neurons) 596
2 hidden layers (6 neurons) (3 neurons) 563
2 hidden layers (2 neurons) (6 neurons) 587
2 hidden layers (6 neurons) (2 neurons) 593

Table 2: Performance

Players Time (seconds) Score
Random vs. Random 2.36 5791-2906
Random vs. Optimal without 39.94 2804-5934
Rushmore Optimization

Random vs. Optimal with 24.66 2763-5992
Rushmore Optimization

Random vs. Neural Net with 1 14.16 3123-5964

hidden layer (4 hidden neurons)

31

Figure A:

700
600
500
400
300
200
100

Wins

Player 1

20
Iterations

30 40

—— Random vs Neural Net
Random vs Random
—%— Random vs Partially Optimal

50

Figure B:

700
Wins 600
500

400

300

200

100

0

Player 2

20 30
Iterations

40

—a— Neural Net vs Random
-3¢ Random vs Random
—e— Partially Optimal vs Random

50

Figure C:

1000
900
800
700
Wins 600
500
400
300
200
100

Iterations

—e— Player 1 - Neural Net vs Random

—a— Player 2 - Neural Net vs Random
Player 1 - Random vs Random

—<— Player 2 - Random vs Random

32

Hopfield Network for Clustéring

Huan Wang

Abstract—A novel clustering method is presented, which uti-
lizes the Hopfield network as a way to optimize the clustering
objective. First we formulate the clustering problem as a discrete
quadratic optimization process. The interrelations among sample
points are represented as a graph, and the clustering problem
is interpreted as sub-matrix selection and rearrangement. Then
we regard the optimization of the clustering objective as energy
minimization, and we construct a Hopfield net with the same
energy function as the clustering objective. The energy function is
minimized using the Hopfield network. We prove that the optimal
solution for clustering is a local minimum of the energy function,
and analyze the relations between the convergence points of the
associate Hopfield network and the desired clustering solution.

Index Terms—Neural Network, Hopfield Net, Clustering, Im-
age Segmentation, K-means, Graph Construction, Energy Mini-
mization.

I. INTRODUCTION

The venerable machine learning technique of clustering has
been of active concern for decades. It is undergoing fast
development with the new demands in computer vision, image
processing, and machine learning. Fast, approximate algo-
rithms, such as those based on spectral graph theory[8][5][11],
manifold clustering[9][4], kernel k-means[10][3], have been
proposed.

K-means [10] is perhaps the most widely used clustering
algorithms. Its goal is to minimize the within-cluster dis-
tance. Instead of comparing samples pairwise, a representative
sample for each cluster, i.e., the cluster center, is produced
and the distance between samples and their cluster center, is
minimized.

One drawback of k-means is that it can not guarantee the
global optimality and the clustering results are thus subject
to change with different initializations. The past ten years
has seen the emergence of new clustering algorithms called
spectral clustering. It arose [8] for a normalized cut of image
pixels. Unlike the k-means algorithm that seeks a discrete but
local optimization, the normalized cut algorithm transfers the
problem to real values and a global optimum can be derived
from eigen-decomposition of the associated graph Laplacian.
The shortcoming of spectral clustering algorithms is that the
global optimality is given in real domain, which means that
the solution is still not globally optimal in discrete variable
space.

Another problem for the k-means algorithm is when sample
data are not favorably distributed, the clustering results can
be quite bad. An example is when the high dimensional
samples are distributed along a low dimensional manifold.
Generally traditional k-means algorithm will fail. To overcome
this limitation, the kernel k-means algorithm [3] was proposed.
Instead of clustering on the Euclidean space, the samples are
transformed to high dimensional feature space, and the k-
means is conducted in the transformed space. The connection

between the feature space and the original sample space is
built upon the consistency of the inner-product, i.e., the Gram
matrix. Essentially, the cluster centers can be derived from
the associated pairwise kernel matrix, and thus the original
sample vector is dispensable. By constructing different graphs,
the spectral clustering algorithms can also accommodate the
samples distributing over the manifold.

In this paper we build a Hopfield net for clustering. The
connection coefficients between neurons are designed so
that the energy function agrees with the proposed objective
for clustering. We also discuss the relations between the
proposed Hopfield net clustering algorithm, the k-means, and
the kernel k-means algorithms. Experiments are carried out
on both model examples and applications arising in image
segmentation.

II. HOPFIELD NET AND ENERGY MINIMIZATION

The Hopfield network updates the status of an associative
memory according to the thresholds of different memory units
and the interactions among them. The relationship between
memory units can characterized by a graph G with adjacency
matrix W. The graph is constructed so that its connections are
consistent with the interconnections among memory units and
the graph weights are set equal to the network coefficients.

The update rule of Hopfield net is:

Y = sgn(WY —b) (€8]

where Y = [y1, y2, ..., Yn] is the binary state vector with y; as
the status of memory unit i, b = [by, ba, ..., by]’ is the threshold
vector with b; representing the threshold for the memory unit
1. Both Y and b are n-by-1 column vectors, and the state
y; = +1. W is the n-by-n adjacency matrix. Construction
of W will be discussed in the following sections. All the
graphs are assumed to be undirected and for such graphs, W
is symmetric.

It can be shown that the iterative update procedure of
Hopfield net will ultimately converge to a local minimum of
the energy function:

E(Y)=-1/2YTWY + 7Y)

where the diagonal elements of W are zeros, i.e., the vertices
are not self-connected.

ITI. CLUSTERING AND BINARY QUADRATIC
OPTIMIZATION

Data clustering can be viewed as a mapping from the
data vector space to the sample labels. Since the labels are

33

34

0110000
11010000
11010000
0000111
0001011

[1110000]

s’ w s

Fig. 1. Using selector vector to select different sub-blocks of a matrix. The
matrix W is left multiplied and right multiplied with a selector vector s, and
the sum of the elements within the selected sub-block is calculated.

categorical, we may represent them using integers. For two-
way clustering, in particular, the labels can be expressed by
+1 and —1, which is consistent with the status of memory
units in the Hopfield net.

A. Cluster Association and the Adjacency Matrix

A large number of criteria have been proposed for cluster-
ing, such as graph cut minimization proposed by graph min-
cut algorithms, normalized graph cut minimization proposed
by normalized cut algorithms, information maximization pro-
posed by information-based algorithms. We adopt the associa-
tion maximization criterion as the clustering objective for our
algorithm.

The intra-cluster association is taken to be the sum of all
the intra-cluster weights (coefficients).

Asso(W) = Zwij 3)
1,5

B. Sub-matrix Selection by Matrix Multiplication

If we denote the labels of the two-way clusters as 41 and
—1, then the intra-cluster association defined in the previous
section can be calculated in matrix form as:

Asso(W)
=(e+Y)TW(e+Y)/d+(e-Y)TW(e-Y)/4
=(eTWe+YTWe+ TWY + YTWY +eTWe

—YTWe - "WY +YTWY)/4

=("We+YTWY)/2, “)

where Y is the cluster indicator vector with elements +1 and
—1, and e is a vector of ones.

(e +Y)/2 is the selector vector for the first cluster. It has
elements of 1 for those points within the corresponding cluster
and 0 for the other points. Similarly (e — Y)/2 is the selector
vector for the second cluster. Consequently, the terms (e +
Y)TW(e+Y)/4 and (e — Y)TW (e — Y)/4 are the intra-
cluster association of the corresponding clusters. Figure (1)

Fig. 2.

The desired solution is a local maximum of Association. (Not
the global maximum). From left to right, desired solution, initialization a,
initialization b. Either the initialization a or b will lead to a desired solution.

shows the way to use a selector vector s for a sub-block sum
of the matrix W.

Maximizing the association Asso(W) is equivalent
to maximizing YTWY, according to Equation (4). This
objective agrees with the the energy function minimization of
Hopfield net E(Y) (Eqation (2)).

IV. GRAPH CONSTRUCTION

Let G = (V, E) denote the graph with vertex set V and
edge set E constructed with the data. We shall restrict our
attention to undirected graphs. Edges E reflect the neighbor-
hood relations along the manifold data, which can be defined
in terms of k-nearest neighbors or an e-ball distance criterion.
Choices for those non-negative weights on the corresponding
edges come from the heat kernel [1] or the inverse of feature
distances [2], i.e.,

—llzs =z

wi; =e ¥ or wi; = ||z — ;7

where t € R is the parameter for the heat kernel. Another
approach is to solve a least-square problem to minimize the
reconstruction error to specify the weights w;;[6]:

w;; = argmin ||z; — Zwij:vj||2,
Wi -
J
s.t.ZwU = 1,’(1],']' > 0
J

V. UPDATE RULE AND SELECTION OF THE THRESHOLD

We select the objective of association maximization clus-
tering as the energy function, and construct a corresponding
Hopfield net with coefficient matrix W, equal to the graph
adjacency matrix W. If the threshold vector b is set to zero,
the energy function of the constructed Hopfield net will be
exactly the same as the clustering objective. Then following
the update rule of Hopfield net, we can reach a local minimum
of the Energy function E(Y):

Y(n+1) = sgn(WY(n)) %)

Figure (2) shows two initializations and the desired local
minimum.’

VI. RELATIONS TO K-MEANS ALGORITHM

For each cluster 7, denote the cluster center as c;, the
samples as z; and the sample labels as y!. Then the distance
between samples z; and their cluster center c; is

minyiyci Z E ||z — Cj”2 (6)

¢ yi€ej
Assume now we have the cluster centers ¢; derived from
the previous steps, then,

yi = argmin;|a: - cj|?, M

Equation (7) reaches its minimum when y! is derived using
the nearest neighbor method w.r.t. ;. It is not hard to see this
conclusion since if one sample is not assigned to its nearest
cluster, the objective |lz; — c;||* will be larger compared to
- the nearest neighbor assignment.

Next, if we are given the cluster labels yﬁ, the cluster centers
to be derived are:

cj = argming; Z llzi — c;ll% ®)
ylec;

which can be minimized when ¢; = Zyi ce; /i — ¢;)2/Sis
where S is the number of points in cluster i.

From equation (7) and (8), the objective }_ .. [[z:i —¢; |2
always declines. However, the K-means algéritﬁm can not
guarantee the global optimality[10].

The centers c; can be represented in matrix form as:

¢j = Pje/s;, ©)

where ®; = {z;|y; = j}, and s; is the number of point in
cluster j. Denote the sum of within cluster distance for cluster

j as:
dj = llz; — ol (10)
Yi=3j
=" |z — ®je/s;l?, (11)
y;=3
= ||®; — ®jee” /557 (12)
= [|®;(I —ee”/s;)| %, (13)

where I is the identity matrix. Note here I — eeT /s; is the
graph Laplacian L¥™°%" of the graph specified by the adja-
cency matrix Wkmean = eeT' /5. and L*¥™ea" is orthogonal
projection, i.e., LkmeanT [kmean — [kmean Then

d; = trace(®;L*™<"@T). (14)
According to the theory of the graph Laplacian [1],
trace(;LFmr®T) = ||ad, — 2|?/(2s5), (15)
uv

where xJ, is a sample of cluster j.
Thus the objective of the k-means algorithm can be formu-

lated as: .
d=3 d; (16)
J
=33l -)7/ 2sy), a7
j uv

as in matrix formulation:

argminyitrace(Y' T M™ ™YY = Asso(M™™™),

18

where Y = [y, ¢z .. y°] is the label matrix with y° =
[yS", ¥k, ..., y<%] being the sample labels of cluster cl; (o €
{0,1}), and M™"™ is the normalized distance matrix with
elements equal to the distance divided by its corresponding
Sj.

A similar analysis can be done for the kernel k-means. The
only difference is, instead of the normalized negative distance
matrix M™"™™, we will use the ‘kernel trick’ [7] to derive the
normalized distance matrix M ™°"™ in the transformed Hilbert
space.

From objective (17) we see that if we replace the graph
adjacency matrix W with —M"™°"™_ the only difference be-
tween the objectives of the k-means and the Hopfield net is
that the k-means has a normalization term s;. Unfortunately
the objective (17) is time variant, and after the normalization,
M™™™ js no longer symmetric, which means traditional
Hopfield net can not work for the k-means optimization. Still
we notice that there exists an exact correspondence between
the update rule of our proposed algorithm and the k-means.
Since y; € {+1, —1}, the update rule (5) essentially compares
for each sample two distances from sample to the two clusters,
i.e., the +1 cluster minus the —1 cluster. If the +1 cluster
distance is larger, after sign function, the sample will be
assigned as +1. Remember here we have a negative sign, the
sample will finally be assigned to the cluster with a smaller
distance.

The connection between the pairwise distance and the
distance to the cluster mean is

llzn =il = llzn = 3 @i/sil? = I S (@n — @) ?/53

yiEcy Yi€cy
= Z (@n = @u)(Tn — xv)/ng‘ 19
Yu,Yv ECj
Thus if we modify the graph W so that
wi=— Y (w—x;) (@ —ax)/s3, (20)

Yj,Yr€Cj

Then the two distances from each sample to the two cluster
centers compared in the update rule will be the same as the k-
means algorithm does. And the algorithm will perform exactly
in the same manner as the k-means method. Note at this time
the algorithm is not the traditional Hopfield net anymore, since
W is both asymmetric and time variant.

VII. CONVERGENCE ANALYSIS

In this section we will give an intuitive analysis for the
algorithmic convergence. As demonstrated in Figure (2), no
matter the initialization a or b, as long as it is not too far from
the desired local optimum, the state vector will move towards
the desired solution (Figure (3)). While when the initialization
is too far away, the iterative procedure will converge to the
global optimum with a trivial solution (Figure (4)).

35

36

Fig. 3. A successful initialization and the desired convergence. Since the
initialization is not far from the desired local optimum, minimizing the energy
function will ultimately push the neuron status to the desired solution.

Fig. 4.
solution. The minimization of the energy function in this case only produce
a vector of ones. Although it is the global optimum, the solution is not what .
we want.

When the initialization is not proper, it will converge to a trivial

VIII. EXPERIMENTS
A. Demonstration of the Convergence

In this sub-section we show the convergence process of the
two-way clustering problem on a model example. The samples
are generated from a 2 dimensional Gaussian mixtures with
mixture number equal 2. The standard deviation ¢ is set 0.5,
and for each mixture 150 samples are generated. Figure (6)
shows a successful convergence process. After 3 iterations the
process converges to the desired solution. Figure (7) shows a
convergence process to a trivial solution when the initialization
is not proper. A trick is to initialize as the k-means algorithm
does: we first select cluster centers randomly and get the initial
sample labels using the nearest neighbor method. From the
experiments we find this initialization is more stable compared
to the uniform random label generator.

B. Multi-way Clustering Results on Toy Examples

An extension of the two-way clustering problem stated
above is the multi-way clustering problem. This can be sim-
ply done by iteratively conducting the two-way bi-clustering
algorithm to the previously derived clusters. If an odd number
of clusters is desired, e.g., 3 clusters, we simply pick out the
cluster with a largest sample number to feed the next iteration,
and then the cluster with the second largest sample number,
and so on. The clustering results are demonstrated in Figure

).

C. Image Segmentation

In this sub-section we conduct data clustering on image
pixels, that is, image segmentation. The color images are first
converted to gray level images. Then the graph is constructed
following [8]. The Hopfield net is constructed so that the

@
6r
aF
2k
ol
2F
is
8 et
oy 0
@© o @ o
°
8 L . . . L : L
B -5 -4 -3 -z 0 2 3 4
(®

Fig. 5. Multi-way clustering on toy examples. (a) three-way clustering.
(b) four-way clustering. The samples are generated by the Gaussian mixture
model with mixture number of 3 and 4 correspondingly. The standard
deviation is set 0.5, and for each cluster 150 samples are generated.

Fig. 6. A successful clustering procedure. The iterative process converges
after 4 steps. Cluster labels are expressed using different colors.

coefficient matrix equal to the graph weight matrix W. Col-
ored images are first converted into gray-level images during
the preprocessing stage. Then they are feed to the clustering
algorithm to get the label of each pixel. The clustering results
are compared with those of the k-means algorithm in Figure
(8), from which we can see that both algorithms produce sound
clustering results which characterize the main structures in the

Fig. 8.

image. The segment edges produced by the Hopfiled net are
generally smoother when compared to the traditional k-means
algorithm.

IX. CONCLUSIONS AND FUTURE WORK

We present a method that using the Hopfield net as a tool
for clustering. The coefficients, i.e., the graph weights W,
between neurons are designed so that the energy function
agrees with the clustering objective, i.e., maximize the within
cluster weights or minimize the within cluster distance. Also,
we discuss the relations between our proposed algorithm, the
k-means and kernel k-means algorithms. We plan to build the

Image segmentation results. The first column is the original images, the second column is the clustering results derived by Hopfield Net, and the
third column is the k-means clustering results. Edges between the two segmentations are indicated by red lines. During the preprocessing stage, the RGB
color image is converted into gray-level image.

connections with the spectral clustering algorithms in future
work.

REFERENCES

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural Comput., 2003.

[2] C. Cortes and M. Mohri. On transductive regression. In NIPS. 2007.

[3] 1. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering
and normalized cuts. In KDD '04: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 551-556. ACM Press, 2004.

[4] R. Haralick and R. Harpaz. Linear manifold clustering in high dimen-
sional spaces by stochastic search. Pattern Recogn., 40(10):2672-2684,
2007.

37

23

45

Fig. 7.

Bad initialization and trivial solution. In this case the algorithm

produced a vector of ones, thus all the samples are labeled with the same

color.

[3]

[6]
7

[8]

[
[10]
[11]

38

A. Y. Ng, M. L. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing Systems
14, pages 849-856. MIT Press, 2001.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 2000.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888—
905, 2000.

R. Souvenir and R. Pless.
648-653, 2005.

A. B. Y. Linde and R. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, 1980.

S. X. Yu and J. Shi. Multiclass spectral clustering. In In International
Conference on Computer Vision, pages 313-319, 2003.

Manifold clustering. In /rn ICCV, pages

Self—Orgénized Online Network Traffic Forecasting
using Neural Networks

Ye Wang

Abstract—Self-organizing neural network system for online
forecasting (internet) network traffic is introduced. The foun-
dation of the system is that neural networks can identify
and quantify the deep relationship and complicated interaction
inside network traffic pattern. Based on this knowledge, neural
networks are then able to forecast future network traffic. A
Self Organizing Map and a multilayer feedforward predictor
are employed and integrated by the network traffic forecasting
system. Evaluation by system simulation has demonstrated the
forecasting accuracy (90-percentile error is less than 3.5% of
device bandwidth) brought by the self-organization of network
traffic and online study of the intrinsic relationship inside traffic.

Index Terms—Neural networks, Self-Organizing Map, Com-
puter networks, Traffic forecasting

I. INTRODUCTION

Accurate and efficient real-time network traffic forecasting
is of particular interest for internet design, operation and
application, e.g., topology plan, bandwidth provision, traffic
engineering, active traffic control, intrusion detection and re-
action, service differentiation, self-adaptive application design,
etc. However, due to self-similarity and long-range dependence
of internet traffic[1], [2], [3], [4], [5], it is inherently difficult
to have a simple rigorous algorithm that can accurately predict
future network traffic levels.

There are many proposed heuristics and techniques in the
field of network traffic forecasting (e.g., [6], [7], [8]), some of
which are based on neural networks (e.g., [9], [10], [11]). Each
contribution has its own insight and advantage in its particular
usage context. But generally, little has been considered in
previous works that the unpredictability of network traffic is
caused by both higher-layer internet user behavior and lower-
layer protocol dependencies.

Our novel approach integrates a self-organizing map and a
feedforward multilayer predictor to identify and quantify the
deep relationship among a substantial number of IP packets.
Based on that, our system forecasts network traffic level in the
near future, taking cognizance of the complicated interaction
inside the current traffic pattern.

We present the neural network system architecture and the
design rationale in Section II. After that, we detail the SOM
and the multilayer predictor in Section III and IV, respectively.
Evaluation is made in Section V, where we will also discuss
issues of implementing this system in real network devices.

II. SYSTEM OVERVIEW

The network traffic forecasting problem we address is: given
the latest history (e.g., 100ms, or one time slot) of incoming

packets (possibly header only) captured by a network device
(e.g., router, switch), what is the predicted traffic level (e.g.,
device bandwidth utilization) in the next time slot?

Studies[1], [2], [3], [4] have shown that internet traffic
is ”bursty” so that the network traffic level is a random
process with self-similarity and long-range dependence. This
is the reason why traditional prediction filtering (e.g., Kalman
Filter[12]), based on ergodicity and short-range dependence,
does not usually work well for network traffic forecasting.

In addition to the statistical-sharing design of the internet,
we argue that the unpredictability of network traffic is results
for two indirect reasons:

« higher-layer internet user behavior: internet user behavior
is highly unpredictable in terms of the traffic a user
generates on the network. Sometimes they exhibit very
similar behavior, such as flush crowd on www.cnn. com
during the presidential election event. Most of the time
they behave totally independently. For example, John is
watching youtube and Mike is sending worm-infected
emails. Moreover, one user can generate a great amount
of traffic, while most of the users are light-loaded.

« lower-layer protocol dependencies: Almost every popular
internet application runs on more than one protocol.
As an example, an email application may require DNS,
SMTP, POP3, IMAP, HTTP, and even FTP. Also, network
operators have to run many other protocols to support
applications. Such protocols include routing protocols
like IS-IS, IGRP, BGP, and management essentials such
as ICMP and SNMP. Complicated network traffic patterns
are caused by the interactions among these protocols.
Furthermore, even for a single protocol, the IP packets
generated can be inter-dependent, such as when a TCP
connection is used.

Even if these two reasons can be identified and quanti-
fied, designing simple rigorous algorithms to capture them
in network traffic measurement and forecasting is particularly
challenging because of the associated exponential complexity
(curse of dimensionality”).

For such reasons, neural network techniques can be helpful.
We build up a neural network system that self-organizes
the traffic identifying deep intrinsic relationships and then
forecasts the future network traffic, taking cognizance of the
complicated traffic interaction.

The system architecture is illustrated in Fig.1. It consists of

two major components:

« Traffic self-organization based on SOM: self-organize the

39

traffic
forecsating
storage

traffic level counter

for*class 1 J

Self

traffic 1evel counter]

Organizing

IP packet | packet header | *'
processing

Map,

for:class 2 Multilayer |traffic forecasting
AR —— -3

v+ |Feedforward
Predictor

traffic level counter]

Traffic Self-Organization

Fig. 1.

packets into adapted classes according to packet headers,
and count traffic level of each class; ,

o Traffic level forecasting based on feedforward multilayer
predictor: predict the traffic level of each class in the next
time slot, and sum up the total traffic level.

In the following two sections, we will present the detail
design of each component.

III. TRAFFIC SELF-ORGANIZATION

Network traffic self-organization is the first step for our
neural network system to learn the intrinsic relationship among
the network traffic.

A. Component Design

During each time slot, incoming packets are classified into
a fixed number of classes according to packet headers. The
classification is self-organized in the sense of that a class is
(re)identified by the density of similar packet headers. The
traffic level of each class is then counted.

The function of this component is not purely to classify
network traffic flows, but to self-adapt the classes according
to the current traffic pattern. Therefore, the self organizing
map (SOM)[13] algorithm is employed in this component.

SOM uses competitive learning to process the distribution
of the input data in a high-dimensional space and adapt each
neuron to map this distribution into a low-dimensional space.
We argue that SOM is good at learning the complicated
relationship among a great number of IP packets. Though the
higher-layer user behavior and lower-layer protocol dependen-
cies are complicated, they are eventually encoded in the packet
header, and so can be studied employing the SOM.

B. Traffic Self-Organization based on SOM

At time ¢, the current time slot 7% is a time range (¢t —
d,t), where § is taken to be 100ms. Each incoming packet
is classified by the SOM into a particular class 7. A counter,
following the SOM, counts the number of packets N} in each
class ¢ during time slot 7. N, as the current traffic level, is

40

forsclass C

Traffic Level Forecasting

System Architecture

used as the input of the next system component, traffic level
forecasting. -

The SOM employed in network traffic self-organization is
responsible for recognizing the network traffic pattern and
identifying the traffic classes based on the pattern.

The input to the map is a sequence of 5-dimensional vectors
z € [0,1]5, resulting from compression of the traffic infor-
mation extracted from a packet header. We select six fields
from the packet header: timestamp, source and destination IP
address, source and destination ports, and transport protocol.
Timestamp is used by the counters to align the timeslot, while
the other five fields are normalized and reconstructed as the
input x to the SOM.

o Source IP Address: Srcl P, 32-bit integer, the source of
the IP packet, z; = SrcIP/2%2;

o Destination IP Address: DstIP, 32-bit integer, the des-
tination of the packet, zo = DstIP/23%;

o Source Port: SrcPort, 16-bit integer, the source port of
the transport protocol, zg = SrcPort/2'¢;

« Destination Port: DstPort, 16-bit integer, the destination
port of the transport protocol, 4 = DstPort/2'5;

« Protocol: Protocol, TCP, UDP, ICMP, etc. We distinguish
TCP from other protocols. If Protocol = TCP then
z5 =1 else x5 = 0.

The selection of packet fields and the construction of input
z is an interesting topic but out of the scope of this paper. For
example, considering the pattern of packet payload may be
helpful for self organization. We use traditional flow-related
packet header fields in our system only to demonstrate our
basic idea: neural networks can help identify complicated
relationship inside network traffic.

The number of neurons, equal to the number of traffic
classes, is C' = 20. The output is i, the index of the winning
neuron, or the class of the packet. The structure, learning
algorithm, and parameters of the SOM are listed in Table 1.

TABLE I
SOM PARAMETERS

Number of Neurons 20

Topology random
Initial Weights

Distance Function

uniform

Euclidean distance

Learning Rule Kohonen algorithm

Learning Epochs 100

IV. TRAFFIC LEVEL FORECASTING

After self-organization, the next step is to study the rela-
tionship among the traffic classes and, most importantly, what
impact the relationships have on the future traffic level of each
class.

A. Component Design

The network traffic is self-organized prior to component
design. Given current traffic level of each class, we use a
multilayer feedforward neural network to predict the traffic
level of each class a time slot later.

The simplest neural network that can be used as a predictor
is the memoryless feedforward network[13]. As mentioned,
adaptive filters based on feedback do not fundamentally im-
prove the accuracy of network traffic forecasting. Therefore,
we employ a simple 2-layer feedforward neural network in
this component. We choose the efficient reduced memory
Levenberg-Marquardt algorithm[14] as the backpropagation
training rule of the predictor.

Different from the common offline training of multilayer
feedforward network, this predictor is trained adaptively in an
online manner. The predicted traffic level during the latest time
slot is stored in this component and will be used for training in
the next time slot. The underlying reason is that the network
traffic classes are self-(re)organized and thus the relationship
among the different classes of traffic is not fixed. Through
online adaptive learning, we envision the synaptic weights in
the predictor can always encode the complicated relationship
and interaction inside the latest network traffic pattern.

B. Multilayer Feedforward Predictor

The parameters of this neural network are listed in Table II.
The input of the predictor is a C(= 20)-dimensional vector
Ut = {U}}iz1..c, where Uf = N} /B is the normalized (U* €
[0,1]€) traffic level of class i during time slot T%. B is a
normalizing scalar, e.g., the device bandwidth. The output is
the predicted traffic level Y* = {Y;},—1..c, where Y} denotes
the future traffic level of class ¢ at time ¢t+4. The overall traffic
level u? can be denoted as the sum of each row of U?, and
the overall prediction y? is then the sum of each row of Y.

Note that U? as the real traffic level is also used as the
desired output D*=% = U?. At time t, D*~° and the stored
Y*=% are compared, and the error between the prediction and
the real traffic level is backpropagated in the neural network
so that online adaptive training is achieved.

TABLE II
MULTILAYER FEEDFORWARD PREDICTOR PARAMETERS

Number of Layers 2

Number of Neurons
Initial Weights
Learning Rule

20 per layer

random

Backpropagation with Reduced
Memory Levenberg-Marquardt

Learning Epochs 100

Traffic Self-Oragnization

traffic distribution across classes

e o e o 9

® 8 8 S B
T T

o

Q

)
T

o

0 5 10 15 20 25
traffic classes

Fig. 2. Traffic Self-Organization (18:00:00-18:00:01)

Traffic Self-Organization

0.16

traffic distribution across classes

0 5 - 10 15 20 25
traffic classes

Traffic Self-Organization (18:00:02-18:00:03)

V. EVALUATION

We evaluate the accuracy of the system, the impact of
each component, and the performance sensitivity to missing
data through simulation. The neural network system is im-
plemented based on MATLAB Neural Network Toolbox[15].
The network traffic data used in the simulation is the
CAIDA[16] packet trace captured during 18:00-19:00 on Jan
9, 2007 (UGT) on an OC12 link at the AMPATH Internet
Exchange[17].

A. Traffic Self-Organization

We extract two one-second-long packet traces (1. from
18:00:00 to 18:00:01, 3082 IP packets; 2. from 18:00:02 to

41

Network Traffic Forecasting
0.26 T T T T T T

T T
' real traffic level
— — - traffic level forecasting

normalized traffic level

0.12
0

100 200 300 400 500 600 700 800 900
time (milisecond)

Fig. 4. Traffic Level Forecasting (by our system)

18:00:03, 3825 packets) and use the traffic self-organization
component to classify the traffic continuously. The identified
classes and the traffic distribution across the classes for these
two different time range are plotted in Fig 2 and Fig 3.

The results of traffic self-organization has demonstrated
the intrinsic complexity and the non-uniform pattern of the
network traffic. It has also been observed that the traffic pattern
evolves quickly in time, and so the traffic classification can

vary.

B. Traffic Forecasting Accuracy

The traffic level forecasting of the same packet trace seg-
ment as in the previous subsection is demonstrated in Fig 4.

The predicted traffic level is observed to be close to the
real traffic level, though we see one interesting inconsistency
comparing the two curves: when the traffic level tends to
diminish, the prediction falls much faster and deeper than the
real traffic level. A hypothetical reason is that the system is
sensitive to bursty traffic. The traffic classes may have to be
reorganized when a burst gets offline, so it requires relearning
for the predictor. Fortunately, a network device is likely to be
more interested in peak traffic levels, so it might be tolerable
if the forecasting is less accurate only under light load.

To quantify the traffic forecasting accuracy, we define the
forecasting error to be ef = |u**? —y?| and plot the cumulative
distribution of e’ in Figure 5. We do not renormalize e! by
utt? since we are less concerned with the relative error under
low traffic level utt?. Essentially, e? is already normalized by
the network device bandwidth.

It is shown that the maximal forecasting error is about 0.06
(e € [0,1]). Over 90% of the time the traffic level forecasting
has no more than a 0.035 error. The average forecasting error
is 0.0134, and the median is 0.0087.

We also tested the performance of our system on traffic
traces in other time ranges, and the forecasting accuracy is
similar to the case presented.

42

CDF of Forecasting Error
T T T

-

o
©

o
©

o
3

=4
2
T

Cummulative Distribution
=3 o
> o
T

o
©
T

o
N

o

o

[0.01 0.02 0.03 0.04 0.05 0.06
forecasting error

Fig. 5. Traffic Level Forecasting Error

Network Traffic Forecasting Without Self Organization
0.25 T T T T T

real traffic level

— — - traffic level forecasting

normalized traffic level

0.1

0 200 400 600 800 1000

time (milisecond)

1200

Fig. 6. Traffic Level Forecasting Without Self-Organization

C. Impact of Traffic Self-Organization

One question to the proposed system is: if the traffic
is classified only according to the historical data, will the
forecasting still be accurate? To answer this question, we train
the system using the one-second packet trace (from 18:00:00
to 18:00:01), fix the neuron weights of the SOM, and test
the forecasting using another one-second (from 18:00:02 to
18:00:03) with the fixed-weight SOM.

The forecasting result is plotted in Fig 6, and the forecasting
error in Fig 7. Though the forecasting can sometimes match
the real traffic, we observe significant drop of the forecast-
ing accuracy. Compared with the previous results, the 90-
percentile forecasting error increases to over 0.08.

This is not surprising because the network traffic pattern
is always evolving. Without self-(re)organization, the impact
of traffic pattern changes would not be learned by the neural
network. Therefore, forecasting based on fixed traffic classifi-
cation is no working well.

CDF of Forecasting Error (Without Self Organization)

4
©
T

4
©

=}
~
T

=4
2

Cummulative Distribution
o o
> wn

o
w

o
N

o
o

o

0.02 0.04 0.06 0.08 0.1 0.12
forecasting error

=)

Fig. 7. Traffic Level Forecasting Error Without Self-Organization

Network Traffic Forecasting Without Online Training of the Predictor

0.8 T T T T T
real traffic level
4 ' 4 — — - traffic level forecasting
0.7t : ! M 4
T Y
W ¥ " . L4
o 10T M RGEY -
TR AL LR TR
[4 4 \ o e N v‘lh
2 v I P |1I’ H a4, Loy h
§ osf 7 A T
£ i ' h byt
¥ h
3 i W N
S 04f ' .
£
g
0.3f
o.zW\Wﬁ
0.1
0 200 400 600 800 1000 1200

time (milisecond)

Fig. 8. Traffic Level Forecasting Without Adaptive Training of the Predictor

D. Impact of Adaptive Online Training

Another issue we would like to evaluate is how adaptive
online training of the multilayer feedforward predictor help
the accuracy of forecasting. Similar as evaluating the SOM,
we train the system using the one-second packet trace (from
18:00:00 to 18:00:01), fix the neuron weights of the predictor,
and test the forecasting using the next one-second (from
18:00:02 to 18:00:03) with the weights-fixed predictor.

The forecasting result is plotted in Fig 8, and the forecasting
error in Fig 9. The traffic level forecasting is completely
different from the real traffic level, and the average forecasting
error reaches as high as 0.5. The results indicate that the self-
reorganization must be learned by the multilayer feedforward
network dynamically, or the predictor would not be able to do
meaningful forecasting.

E. Impact of Missing Data

Real network devices are not usually able to capture all
packets. The reasons can be underlying physical hardware
failure, internal software error, or most likely, bandwidth

CDF of Forecasting Error (Without Online Training of the Predictor)
T T T T T T T T

0.5

Cummulative Distribution

02 025 03 035 04 045 05 055 06 065
forecasting error

Fig. 9.
Predictor

Traffic Level Forecasting Error Without Adaptive Training of the

Network Traffic Forecasting With 50% Missing Data
0.3 T T T T T T

T T T
real traffic level
0.28} — — - traffic level forecasting

0.26

0.241

0.22

0.2

normalized traffic level

0.14

0.12

0.1 n "
0 200 400 600 800 1000 1200 1400 1600 1800 2000

time (milisecond)

Fig. 10. Traffic Level Forecasting With 50% Missing Data

overload. Therefore, only sampled packets can be used for
training neural networks.

We want to understand whether randomly missing data in
system training would increase forecasting error, so we train
the system using a two-second packet trace (from 18:00:00 to
18:00:02) but assuming 50% of the packets randomly dropped.
The forecasting accuracy with missing data is shown in Fig
10 and Fig 11. The error is almost twice as high as when the
system is trained with all data.

We also consider the case where missing data is caused
by data sampling. Across the two-second packet trace (from
18:00:00 to 18:00:02) every other packet is sampled. Thus
50% of the traffic data is still learned by the neural networks.
The traffic level forecasting accuracy is tested and the result
is similar as under random missing data.

The degraded forecasting accuracy has shown that missing
data in neural network system training due to packet drop or

‘sampling may lead to significant loss of important information

inside the traffic pattern. Therefore, the usefulness of our
system may rely on a real-time packet capture technique that

43

CDF of Forecasting Error

Cummulative Distribution
=)
o

0.06 0.08 0.1
forecasting error

0 0.02 0.04 0.12

Fig. 11. Traffic Level Forecasting Error With 50% Missing Data

TABLE III
SYSTEM COMPLEXITY

Number of Neurons 60

Number of Synopsis < 500
Training Time (for 100ms trace) < 100ms
Response Time (for 100ms trace) < lms

can guarantee minimal data loss.

F. System Complexity

To support high scalability and efficiency, real network
devices (routers, switches) usually employ simple -hardware
and software design. Thus, integration of neural networks into
real network device implementation requires low complexity
of the neural networks in terms of small memory space
consumption and short training time.

We investigate the complexity of the whole system, and list
the parameters in Table III. The training time consumption is
estimated by MATLAB simulation running on a commodity
computer. The numbers suggest that it should be feasible to
port the neural networks into online network devices.

VI. CONCLUSION

This paper builds a self-organized network traffic forecast-
ing system using neural networks. Through self-organizing
traffic into adapted classes and dynamically learning the deep
relationship and complicated interaction among traffic classes,
the system achieves accurate and efficient network traffic
forecasting.

ACKNOWLEDGMENT

The author would like to thank Prof. Willard Miranker and
Jaeoh Woo for the benefitial initial discussions and revision
suggestions.

REFERENCES

[1] K. Park and W. Willinger, Self-similar network traffic and performance
evaluation. John Wiley & Sons, 2002.

44

[2]

[3]

[4]

3]
(6]
7
(8]

]

[10]

[11]
[12]
[13]

[14]

[15]
[16]

[17]

M. Grossglauser and J.-C. Bolot, “On the relevance of long-range
dependence in network traffic,” IEEE/ACM Transactions on Networking,
vol. 7, pp. 629-640, 1999.

M. E. Crovella and A. Bestavros, “Self-similarity in World Wide
Web traffic: evidence and possiblecauses,” IEEE/ACM Transactions on
Networking, vol. S, pp. 835-846, 1997.

W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-
similarity nature of ethernet traffic (extended version),” IEEE/ACM
Transactions on Networking, vol. 2, pp. 1-15, 1994.

J. Beran, Statistics for long-memory processes, monographs on statistics
and applied probability. New York, NY: Chapman and Hall, 1994.
H. Feng and Y. Shu, “Study on network traffic prediction techniques,”
in WiCOM, 2005.

J. Tlow, “Forecasting network traffic using farima models with heavy
tailedinnovations,” in ICASSP, 2000.)

A. Sang and S. Li, “A predictability analysis of
network traffic’ in Proceedings of IEEE INFOCOM
00, Tel Aviv, Israel, Mar. 2000. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/RecentCon.htm?punumber=6725
A. Khotanzad and N. Sadek, “Multi-scale high-speed network traffic
prediction using combination of neural networks,” in Proceedings of
International Joint Conference on Neural Networks, 2003.

G. Cheng, J. Gong, and W. Ding, “Nonlinear-periodical network traffic
behavioral forecast based on seasonal neural network model,” in ICC-
CAS, 2004.

D. Park, “Prediction of network traffic using multiscale- bilinear recur-
rent neural network with adaptive learning,” in ICIC, 2008, pp. 525-532.
G. Welch and G. Bishop, “An introduction to the kalman filter,” Tech.
Rep. TR95-041, 1995.

S. Haykin, Neural Networks: A Comprehensive Foundation. Pearson
Education, Second Edition, 1999. ’

J. More, “The Levenberg-Marquadt algorithm: implementation and the-
ory,” in Proceedings of the Biennial Conference of Numerical Analysis,
1978.

H. Demuth and M. Beale, “MATLAB neural network toolbox: user’s
guide,” 1997.

“Caida cooporative association for Internet data analysis.”
http://www.caida.org/.

“Ampath International Exchange Point in Miami,”
http://www.ampath.fiu.edu/.

