Greater computational power is needed for solving Computational Fluid Dynamics (CFD)
problems of interest in engineering design. Parallel architecture computers offer the promise
of providing orders of magnitude greater computational power. In this paper we quantify
that promise by considering an explicit CFD method and analyze the potential parallelism
for three different parallel computer architectures. The use of an explicit method gives
us a “best case” analysis from the point of view of parallelism, and allows us to uncover
potential problems in exploiting significant parallelism. The analysis is validated against
experiments on three representative parallel computers. The results allow us to predict
the performance of different parallel architectures. In particular, our results show that
distributed memory parallel processors offer greater potential speedup. We discuss the im-
port of our model for the development of parallel CFD algorithms and parallel computers.
We also discuss our experiences in converting our model code to run on the three different
parallel computers.

Computational Fluid Dynamics
on Parallel Processors

William D. Groppt and Edward B. Smith}

Research Report YALEU/DCS/RR-570
December 1987

This work supported in part by the Air Force Office of Scientific Research under
contract AFOSR-86-0098 and in part by United Technologies Research Center. Approved
for public release: distribution is unlimited.

tDepartment of Computer Science, Yale University, New Haven, CT, 06520.

1United Technologies Research Center, East Hartford, CT, 06108.

Nomenclature

|

—
N

SE LN TOFT IS gy e o
[\

Rgas

Il

Il

Il

l

I

Il

value of () after first step
specific heat

energy

group of terms defined by equation 2
total enthalpy

group of terms defined by equation 3
radial index

axial index

time index

pressure

upstream pressure

heat source term

radial distance

radial distance to —r edge of cell
radial distance to +r edge of cell
average radial distance across cell
pipe radius

real gas constant

time

temperature

constant temperature for Poiseuille flow
velocity vector

radial velocity

axial velocity

azimuthal velocity

centerline velocity

axial distance

thermal conductivity

radial step size

time step size

axial step size

bulk viscosity

viscosity

gradient

density

Introduction

Computational Fluid Dynamics (CFD) problems are among the most demanding scientific
computing problems in terms of the computational resources they require. Currently,
CFD problems are extensively solved on vector supercomputers, primarily Cray and Cyber.
While current supercomputers have adequate computational power to solve CFD problems
which are three dimensional or unsteady or viscous, extending CFD to problems which are
three dimensional and unsteady and viscous requires vastly more computational power.

One example of a computationally intensive CFD problem is modeling the air flow
through an airplane’s gas turbine engine. The flow through a gas turbine engine is three
dimensional, unsteady and viscous. Further the geometry is extremely complex including
several turbine stages, several compressor stages and a combustor. Gas turbine engineers
must design the entire engine and would simulate the flow through the entire engine if the
capability were available. As an example of the computational intensity of CFD calcula-
tions, Rai recently took over 100 hours on a Cray X-MP to run a 3-dimensional viscous
unsteady model for the air flow past two stator blades and a single rotor blade of an axial
flow gas turbine [Rai 87]. Although this run time is far too excessive for the use of such
a code in engineering design, only part of the gas turbine was modeled. As the Cray is
on of the fastest machines in the world and near the physical limits on the speed of a
uni-processor, no existing computer is fast enough for these calculations.

To speed needed calculations up several orders of magnitude faster supercomputers are
needed in gas turbine engine design. Computer processors, however, are reaching their
physical speed limits. Processor designs appear to be within a single order of magnitude of
their speed limits due to physical limitations such as the speed of light and gate switching
limits. Therefore needed throughput cannot be achieved with single processor computers.

Parallel processor computers offer the possibility of achieving the throughput needed
in CFD. Researchers are now investigating the effectiveness of using parallel computers
for the solution of CFD problems [Jame 87,John 87]. The need to understand and exploit
the architecture of parallel computers, however, makes it unclear whether we can design
parallel algorithms which will achieve the needed throughput for CFD problems.

To test the promise of parallel computers, we consider a model CFD problem and
apply it to representatives of several types of parallel computers. This model is based on
an explicit difference technique and thus has the greatest opportunities for parallelism (as
compared to implicit difference techniques). For each class of parallel computer, we develop
a time complexity model and validate it against our model problem. These complexity
estimates are analytical estimates of the computer time needed to solve a CFD problem.
The complexity estimates are expressed in terms of basic machine and problem parameters,
such as floating point and communication speeds and number of grid points. From these
estimates, we can estimate the performance of CFD codes on supercomputers utilizing
significant parallelism.

Finally, we discuss our experiences in using parallel computers for solving CFD prob-
lems.

1 Architectures

A number of different types of parallel architecture computers are available today. These
run from very fine grain machines such as vector processors and very long instruction
word machines to large numbers of almost independent processors. In this paper, we
will consider three architectures which represent an important part of the spectrum of
possible parallel computers. These are multiple vector processors, tightly coupled MIMD"
and loosely coupled MIMD.

Multiple vector processors comnsist of several vector computers operating in parallel.
Exchanges of information and synchronization between the processors is facilitated by
special high-speed hardware. Examples are the Cray X-MP, Cray 2, ETA 10, and the
Alliant FX/8, that last of which was used in this study.

Tightly and loosely coupled MIMD computers work on essentially independent data in
parallel, with differing kinds of access to each other’s data.

Tightly coupled MIMD computers are collections of independent processors which are
closely connected, usually by shared memory. A parallel program running on this type
of machine consists of independent threads of control which may access each other’s data
and can tightly control each other’s operation by manipulating this shared data.

The advantage of the tightly coupled MIMD approach is that there is no single thread
of control, and hence no a-priors serial execution. There have been a number of machines
of this type built by recent startup companies, such as the Encore Multimax 120, used in
this study and the Sequent Balance series.

Loosely coupled MIMD machines are collections of independent processors which com-
municate through some reliable mechanism, but which don’t directly share any data. In-
stead, all interprocessor sharing of data is done by I/O operations, typically the sending
and receiving of message packets. This provides a measure of programming safety and re-
producibility of results often absent in shared memory (tightly coupled MIMD) machines,
since all modifications to “shared” data structures is handled explicitly by the programmer,
rather than implicitly through a shared memory access. However, most systems currently
on the market have a high overhead associated with interprocessor communication.

Example machines of this type include the various hypercubes from Intel, NCUBE, and
others, and some research machines, such as the LCAP system of IBM. The systems them-
selves vary from a few, fast processors (LCAP) to many slow processors (Intel Hypercube).
The Intel Hypercube was used in this study.

2 Finite Difference Algorithms

Finite difference algorithms used in Computational Fluid Dynamics for time accurate cal-
culations can be divided into two major types: explicit and implicit.

With ezplicit finite difference algorithms the value of a variable at the new time is
determined from the values of the variables at the old time directly (that is explicitly)
without dependence on the values at the new time. Practically speaking this means that
the values of the variables can be determined without solving a system of equations. The
time step size that can be taken is limited by a time step on the order of the Courant-
Freidrichs-Lewy (CFL) criterion (the smallest value of the time for a particle traveling at
the local fluid velocity to cross a finite difference grid interval). In many applications the
CFL time step is much smaller (often orders of magnitude smaller) than the time step
required for accurate calculation of the time variation of the variables.

The model problem studied here uses MacCormack’s algorithm [MacC 69] which was
chosen for its simplicity and wide familiarity to the CFD community. Major features of
MacCormack’s algorithm are:

e An explicit difference scheme which is second order accurate in space and first order
accurate in time.

e A two step scheme in which the present time values are used to calculate the inter-
mediate values in the first step, and the present time and intermediate values are
used to calculate the values at the new time.

Implicit finite difference algorithms differ from explicit finite difference algorithms in
that the determination of the values of the variables at the new time depends (implicitly)
on the values of the variables at the new time. The advantage of a well-chosen implicit
scheme is that numerical stability can be achieved with a time step size much greater than
given by the explicit CFL limit [Jame 83|.

The price to be paid by most implicit schemes is that the solution of a system of
equations is required at each step. Except for the solution of a tightly banded linear
system it is often faster to solve the linear system iteratively.

We left implicit schemes for later study in order to address the basic question of whether
parallel architecture computers were applicable to solving CFD problems. We intend to
study implicit schemes and linear solution techniques in future work. The use of sparse ma-
trix methods in CFD problems is an area of current research on serial computers [Wigt 85]
as well as on parallel computers.

3 Model Problem

Descriptions of the physical model problem, its geometry, its mathematical formulation,
and the numerical solution method follow.

The physical model problem we consider is unsteady compressible viscous flow through
an insulated duct. We further assume the flow to be axisymmetric with swirl. A time
dependent model problem was chosen for this study since time marching schemes are
generally used in CFD for both steady and unsteady problems. A two dimensional problem
was chosen both to provide a start at physically reasonable models for combustor flow
and to introduce the complexities of multi-dimensional problems. For the model problem
studied here the fluid velocities and pressure are known so that the temperature can be
obtained by integrating in time the energy equation which is linear in temperature. The
density was obtained from the perfect gas law.

The case studied was obtained from the model problem by assuming Poiseuille flow
(parabolic velocity profile and linear pressure gradient) and treating the residual terms as
a heat source. Poiseuille flow is an exact solution for steady, incompressible, isothermal,
viscous pipe flow. We wished to retain the compressible effects in case they affected the
parallelization of the code. Poiseuille flow does not exactly satisfy the compressible flow
equations. There are residual terms which are collectively treated as a heat source. Thus
the solution to the case studied was steady Poiseuille flow and, in particular, constant
temperature. This facilitated debugging.

The geometry of the model problem is a rectangular domain with a tensor product
mesh. The left side is the inflow and the right side is the outflow. The top is the insulated
wall, and the bottom is the centerline of the cylinder.

The mathematical formulation of the energy equation in cylindrical coordinates is given
by equations 1 through 6.

dpe _l_arF 0H

ot r Or + 0z @ (1)
where
oT 2
F = pvhy— a + (5”’ - n:) (V- d)v,
ov, Jvg Vs dv, Ov,
—”(2”'3 +"(—a__7)+”(a 81’)) (2
and
oT 2
H = pv,hy — a$+ (5/1,—) (V- d)v,
dv, v, Ov, Ovy
[I,(szg— v'(8r+3) ’Uaa) (3)
where

p

hr = e+ =
p
v = (vra Vg, vz)
. 10rv, Ov,
Vv = T e)

Q@ is the heat source term. In the case studied @ was set equal to the right hand side of
equation 1 evaluated for Poiseuille flow

v = (0,0,Vo(1—r*/R?)

4uVyz
P = po— MRO- (5)

Density is determined from the equation of state (perfect gas law)
p= pRgasT’ (6)

and T is the unknown to be solved for. To simplify debugging the solution T = Tp (T a
constant) was used.

The numerical solution method for the above partial differential equations is by Mac-
Cormack’s explicit algorithm [MacC 69]. The finite difference form of these equations using
MacCormack’s algorithm is given by equations 7 and 8.

In the first step of MacCormack’s two step difference scheme the derivatives of F and H
are calculated using backward differences with central differences for the terms involving
second derivatives.

1 " 1
(pe)ij = (pe)z— }%T%'Aru (:;E? — iy |—1])

z(Azjﬁ' Azj_1) (H — 5) ()

In the second step of MacCormack’s scheme the derivatives of F and H are calculated
using forward differences with central differences for the terms involving second derivatives.
n
1 [(s +Toey = Rl (A — 5Ty)
(pe)n+1 2 N Ati‘ -H—n+1 En+1 (8)
- 1(Az; + Azj_q) (1T g)

In CFD studies of duct flow typical grid sizes are order of 50 to 100 (radial) by 100 to
1000 (axial), and the CFL limited time steps generally number in the tens of thousands.
In this study we used matrices from 50 X 50 to 250 x 250 in size and took from 10 to 50
time steps. The matrix sizes were chosen to test effects of memory size and the number of
time steps was chosen large enough to get accurate timings.

The boundary conditions are specified inflow and axially smooth outflow with insulated
cylinder walls. The geometry was chosen to keep the code simple for transporting from
one parallel machine to another.

4 Time Complexity Model

In order to understand the potential of parallel programming for CFD problems, we need
to develop models which will allow us to predict the performance of a parallel computer.
Time complexity models are constructed for each of the three classes of parallel computers
used in this study. Since the time complexity model is an analytic expression for the
computer time needed to solve a problem, based on fundamental parameters of the model
problem and the computer, we can use the complexity estimates to predict the performance
of new parallel computers and suggest which architectures offer the most potential for CFD
problems.

In this section we will first give some basic definitions, then explain superlinear speedup.
Then we will give time complexity estimates for simple stencils and apply and extend these
estimates to our model problem.

We will denote the time complexity by T'(p,n), where p is the number of processors
and the problem is on an n X n mesh. Another useful measure is the speedup, s, defined
by s(p,n) = T(1,n)/T(p,n). In a perfectly parallel algorithm with perfect hardware and
software, T'(p,n) = T(1,n)/p. Algorithms, hardware, and software are not, however,
perfect and this section is concerned with modeling the “imperfections.” We therefore
define the computational efficiency as T'(1,n)/(pT (p,n)). A perfect parallel computer and
algorithm has a computational efficiency of 1.

The nature of these imperfections depends on the type of parallel computer. However,
they are related to the access to memory. In a loosely-coupled MIMD parallel processor,
it is the interprocessor communication time, which can be thought of as access to remote
memory, which is important. In a tightly-coupled MIMD parallel processor, it is the access
to shared memory, and the establishment of critical regions (access control to memory)
which is important. In a multiple vector parallel processor, it is the access to shared
memory again and cache contention among the processors which is important. In addition,
various “non-paralle]” operations may reduce the possible speedup.

4.1 Superlinear speedup

As an example of how memory access can affect the time complexity on parallel computers,
we discuss a commonly misunderstood phenomena called superlinear speedup. Superlin-
ear speedup is a speedup higher than the speedup of a “perfect” parallel computer and
algorithm—that is, a computational efficiency greater than 1. This effect is real, and it is
caused by “non-linear” features in the description of the parallel computer.

In particular, it is evident if the process of breaking the program into a number of
parallel pieces produces smaller pieces which can use the hardware more effectively.

An example is a machine where each processor has a memory cache of size C : let the

time to run a problem of size m on p processors be
m
Tu(p) = Py + g(m, p)

where Ip if m/ o
_)Jm/p um/p>
m =
9(m,p) { 0 otherwise.
The g represents the time to fill the cache from memory if the cache can not hold the entire

problem (i.e., T),(1) = 2m) then, as p — oo,

Ta()
PTm(p) %

twice the “perfect” speedup.
Now, if instead we insist that m be “large enough”, ie., m > pC, then we leave the
regime where the problem fits in the cache, and the speed up is linear:

Ta(l) _
2Tm(p) .

as both p and m go to infinity.

This effect is important in modern parallel computers because the relevant “cache size”
has become very large. For example, in a tightly-coupled MIMD shared memory machine
like the BBN Butterfly, the cost for accessing non-local memory is roughly three times that
of local memory. Thus the entire local memory (several megabytes) can be considered the
“cache” for the purposes of this argument. This effect can generate anomalous results for
small problems.

4.2 Time complexity estimates for simple stencils

In order to motivate our choice of complexity model, we first develop a model for finite
difference schemes with 5 and 9 point stencils for the three parallel architectures used in this
study. Using these results, we can construct a model which predicts the time complexity
of our model problem. We also discuss some global operations which are present in our
model algorithm, and how they are handled on different computer architectures.

We first establish some basic ideas concerning two main classes of parallel programming
styles: message passing and shared memory. We first describe these two approaches and
then discuss the similarities in terms of both expressiveness and of efficiency.

In a message passing computer, memory access for data on different processors is via
inter-processor communication which is handled by explicitly sending a message from one
processor to another. There are two major parameters of interest. These are the message
startup time «, and the transfer rate r. To make o and r independent of particular
hardware implementations, a and r have been nondimensionalized by dividing by the

floating point speed in flops/sec. Thus « is in ops/startup and r is in ops/word. We will
denote the floating point computation rate by f flops/sec.

For the tightly coupled computers, memory access is from shared memory to processor
and the three parameters of interest are the memory access time, the speed of a floating
point operation and the number of simultaneous memory references. The programming
constructs used with shared memory machines include barriers and critical regions. A
barrier is a synchronization point which all processors must reach before any of them can
proceed. A critical region allows only one process to access and modify data at a time. In
a parallel program, barriers may be used, for example, to wait for all processors to reach
the end of a time step. A critical region may be used to provide a unique do-loop index
to each parallel processor. These are discussed in more detail in, e.g., [Andr 85].

Message passing computers such as the Intel Hypercube and shared memory machines
such as the Encore Multimax are often considered two completely different types of parallel
computer. In fact, when viewed in the right way, they are very similar. What distinguishes
them is the relative cost of referencing remote or shared information. The following table
shows the correspondence between the costs of interprocessor communication for the two
types of machines.

Message Passing Shared Memory

I/O startup time Cache miss overhead and time
to establish critical regions
and barriers

Transfer rate Memory transfer rate

Each of these machines have different strengths. The shared memory machines have faster
access to shared information, but pay a penalty in terms of higher overheads in the forms
of barriers and critical regions. In general, these barriers and critical regions are intrinsic
to the multiprocess computation and are therefore unavoidable. Message passing machines
have simpler access control but at a higher cost in sharing data. Barriers and critical regions
are sometimes used with message passing computers; however, the style of programming
normally used with message passing makes them less important.

Consider the cost of computing a step of an explicit PDE on an n X n (in 2-d) and an
nxnXxn (in 3-d) grid. This step will usually consist of an estimate of the time step size to
use, based on CFL estimates, followed by the application of a local stencil. The estimate of
- the time step requires global information (the solution everywhere); the application of the
stencil just local or neighbor information. We describe first the local communication and
then the global communication. Since these effects are most noticable in the context of
message passing, we describe them in those terms. However, similar considerations apply
to shared memory.

1-d 2-d

Figure 1: Two different decompositions of a 2-d domain. Each outlined area is given to a
different processor.

The first step in any parallel program is the division of work among the processors.
Divide this grid among the processors by slicing the problem domain by planes in 1, 2,
or all 3 cartesian directions. Call the resulting decomposition 1-d, 2-d, or 3-d slices. An
example of 1-d and 2-d slices for a 2-d domain is shown in Figure 1.

In each case, it is the length of the boundary of the slice which determines the com-

munication cost. For example, in 2-d where the domain is sliced in one direction, the
boundaries between processors are n mesh-points long, so that the effort for one step is

n?
— +2(a+rn).
p

(All times are expressed in nondimensional units of floating point operations.) The “2”
comes from sending the left internal boundary to the left neighbor and the right internal
boundary to the right neighbor. While in principle these operations could go on simul-
taneously, in practice they require essentially exclusive use of the processor and memory
bus. For slices in two directions, there are now either 4 neighbors (for a 5-point stencil) or
8 neighbors (for a 9-point stencil), and the cost becomes

n? n
—+4 (a+r~——> +4(cz+7).
p P

Here a; to denotes the cost of a two hop link and is only present in the 9-point case.

Similar analysis can be carried out for other cases; they are summarized in Table 1.
From these formulas it is clear that once the problem is large enough (n large), the

communication costs become negligible. However, in practice the problems are neither

enormous nor the constants the same size. Thus, the communication terms, though asymp-

10

slicing | dim Time Estimate
1-d | 2d = +2(a+rn)
n? n
2-d 2-d 7+4(¢:+T'\75)+4(a2+7’)
1d | 3d % +2(a+ rn?)
2-d | 3-d 2 +4(at+rZ) +4(az+rn)
3-d | 3d 1‘p—+6(a—|—r%/"—p—2)+12 (az—i—r%)—{-S(as—l—r)

Table 1: Times for various decompositions of the domain, for both 2 and 3-d domains. a,
is the cost for a two-hop link and a3 the cost for a three hop link. The terms containing
them are not present for 5 or 7 point stencils.

totically negligible, can be of dominant importance. For example, take

p =64

n =256

f =1 useconds/mesh-point
fa = 3 milliseconds

fr =1 pseconds/word.

(Recall that o and r are expressed in terms of the floating point computation rate f).
This represents a fast node (over 1 megaflop) with moderate communication speeds and
has at at least 2 megabytes of memory. An existing machine with similar parameters is the
Intel VX hypercube. In this case, in 3-d with 1-d slicing and a 5-point stencil and using
the time estimates in Table 1, the communication time is roughly 0.12 seconds and the
computation time is roughly 0.24 seconds. The communication is taking one third of the
total time. Further, this is assuming that the message requires only one startup, despite
its large size (n? words). If we also require all messages to be less than 16384 bytes, this
adds another 0.1 seconds of startup time, making communication almost half of the total
time.

The analysis so far has been adequate for centered single step schemes such as Lax-
Wendroff or leapfrog. However, many schemes use combinations of one-sided stencils. The
MacCormick scheme used in our model problem is one such scheme. In this case, we
simply consider each access separately. Specifically, sharing information at a boundary
with another processor takes time

a+rn. (9)

One problem with considering each access separately is that there may be synchroniza-
tion delays caused by different processors finishing at different times. We will ignore these
effects for now; however, they are likely to become more important in large scale MIMD
parallelism.

11

A certain amount of global communication is necessary in these algorithms as well. For
example, the choice of time step size requires the global value of the maximum velocity. In
addition, the values of interest in the computation include integrals along the boundary,
which may need to be computed across processors. These operations fall into the general
category of reductions: taking data from many places and combining it to produce a single
result.

Reductions are often done using a fast distribution algorithm such as those in [Saad 85],
with the operation (maximum or sum) inserted into the distribution. For example, a tree-
based distribution algorithm such as those described in [Saad 85] is fast on both shared
memory and hypercube/message passing computers. In this case, the time to reduce p
items is

(a+r+ f)logp
assuming simultaneous send/receives. One potential problem here is possible round-off
error; to avoid that, we reduce upward using the tree to a single node, then distribute that
single value downward to all nodes, again using the tree. The time is then

(2(a+71)+ f)logp. (10)

When using a small number of processors and a shared-memory or complete intercon-
nect, it is often easier for a single processor to compute the reduction, then make that
value available to all processors. In this case, the time is pf plus the time to establish
two barriers, one before the reduction to insure that the data is ready, and one after it to
insure that the result is ready.

4.3 Time complexity estimates for the model problem

Our model problem is more complicated than a simple 5-point explicit scheme because it
is multistep and each step is not centered. However, we can break it down into

o floating point work
e local data exchanges

e global data exchanges.

This form is suitable to a program where the parallelism is expressed explicitly. In our
particular implementation, we can write the total computation time per step as

n2 n « » [{3 s ” [13 s ”

T = Fy— + F,— + 8“global reduce” + 6 (“send in y” + “send in x”) (11)

p Py
where F} is the floating point time per mesh point for operations on the whole grid, F,
is the floating point time per mesh point for operations along one boundary, the grid is
n X n, p is the number of processors, and p, is the number of processors in the y direction.

12

Using equations 9 and 10 as the communication model, equation 11 becomes

2
T=F1£-+F2£+8(a+r)logp+6(a+rﬁ)+6(a+rf—). (12)
p y z Dy
The memory access terms this equation are the direct communication terms involving o
and r.

For this local communication model to be applicable, it must be possible to map a grid
onto the parallel processor in such a way as to make adjacent slices adjacent in the parallel
processor. We will assume that any 2 or 3-d grid of interest can be efficiently embedded in
the parallel processor. Such embeddings are easy on hypercubes; alternatively, everything
we say here applies equally well to a mesh connected processor of the correct dimension.

For a shared memory machine with sufficient memory bandwidth, the figures are sim-
ilar, except the global reduction is done differently, and the overhead of data sharing is
slightly different. In this case, the results are

2

T = Fl%— + ngﬁ + 16“barriers for reduce” + 6 “barriers for data”. (13)
v

Here, the “barriers” are synchronization points in the code. Depending on the implemen-
tation, these can be order p or log p. Further, it is possible to reduce the number of these
by using barriers with values [Eise 87].

On a tightly coupled multiple vector processor such as the Alliant FX/8 the work es-
timates are slightly different. In these machines, “close coupling” of the processors allows
the rapid transfer of information from one processor to another, and extremely fast syn-
chronization. On the negative side, since there is no explicit parallelism, the programmer
may be dependent on the Fortran compiler to generate parallel code and it is possible for
there to be substantial amounts of non-parallel code generated. Further, any shared mem-
ory machine suffers from a potential bottleneck in memory access; depending on cache
or register utilization and the exact pattern of operations chosen by the compiler, the
performance may exhibit anything from superlinear speedup to a plateau in performance.

We can model this bottleneck in shared resources such as memory as follows. Let the
computation consist of two parts: one which is arbitrarily parallel, and one which uses the
shared resource. For example, consider a machine with p processors in which p floating
point operations may be done in parallel. However, only k processors may use the shared
memory at any time. Then the time to do a computation has the form

a b
= 14
) =3 inp, 9
For k = 1, this is the well-known Amdahl’s law. The speedup predicted for such a machine
as p gets large (p > k) is

a+b a+b)kp
s(p) = g+ b - (ak+b * (15)
3 min(p,k) p

13

Effect of o resource bottlenecK
T l T | T

60 _
i 051//_
'251//

40 | /]
§- /////;gb ,////’//8/////
I 3 -

//////// %———”_",4,,

20 |- % a—" -

% 2‘__—___‘_
ST
L 2 _
/Z/
. 1 , | ! |
05 20 a0 60

Processors

Figure 2: Graph of equation 15 for a = 8 and b = 1, for various values of k (k is labeled
on the lines). The ratio a/b = 8 is similar to the ratios we observed in our experiments.

As p — oo, the speedup tends to (a + b)k/b or

s - (1 + 5;—) k. (16)
Figure 2 shows the behavior of s for different values of k. Note the approach to the
asymptotic value of s, which for the example values of a and b is 9k.

This “bottleneck” effect is present in both multiple vector processors and in tightly-
coupled shared memory computers. Jordan [Jord 87] discusses these effects in more detail.

We have not considered all possible effects. One important effect is load balancing.
On distributed memory machines, the current approach is to divide the problem statically
among the processors. This is a large grain division of work. If the computational work is
not equally divided among the processors, there will be additional costs caused by some
processors going idle while others continue to work. However, this effect diminishes as the
size of the problem relative to the number of processors increases.

14

5 Experimental Results

In this section we show the results of computing our model problem on several different
types of architectures.

We ran our model problem on three different parallel computers. An Intel iPSC Hy-
percube, an Encore Multimax 120, and an Alliant FX/8. The Intel Hypercube is a loosely
coupled MIMD, the Encore is a tightly coupled MIMD, and the Alliant is a multiple vector
processor. Each of these represents a different class of parallel computer.

Figures 3, 4, and 5 show the results of our experiments. We have computed fits to
these experiments using the models developed in Section 4. These fits were obtained by a
non-linear least-squares fit to the timing data, after scaling the timing data by n?/p.

5.1 Intel iPSC Hypercube

The Intel iPSC Hypercube is an example of a loosely coupled MIMD computer. The pro-
cessors are connected in a hypercube architecture, and communicate by sending messages
over a dedicated ethernet link (one per processor-pair). Each processor has 0.5 megabytes
of memory, and on our machine, there is an additional 4.0 megabytes of memory on an
attached board.

Figure 3 presents the results of these experiments. Each computation represents 10
time steps over the grid. A fit to the data using equation 12 gives

2

T = 0.066% + 0.014113 +0.861 log p + 0.0302(n, + n,) + 0.868, (17)
Yy

where n, = n/p, and n, = n/p,.

In Figure 3, we see the effects of the uneven distribution of work among the processors
in the stepped increase in the speedup figures. Each processor has some fixed number of
“slices”, each of which has roughly n/p, X n/p, mesh points. If p, or p, do not divide n,
then some processors have [n/p,] X [n/p,]| and some have |n/p,]| X |n/p,|. The relative
difference is approximately (assuming both p, and p, don’t divide n)

P, Py
n n

As the number of processors approaches n, the difference can be very large. The points in

p where there are jumps in the speedup for the 1-d decomposition are just those values of

p which divide n, as can be seen in Figure 3. Note that the hypercube interconnections are

not of major importance; a 2-d mesh interconnection would give almost the same results.

5.2 Encore Multimax

The Encore Multimax is an example of a shared memory MIMD computer. There are
two processors per board, along with a cache memory. These boards are connected to

15

Decomposition of domain for n=75
T T T T r T

F1t for 1-d slices 1n y -

Fit for 1-d slices 1n x

Fit for 2-d slices

10 20 30
Processors

0 - 1-d slices 1n x

o - 1-d slices Iny

+ - 2-d slices

Fit for 1-d decomposition (1n x)
T T T T T T

Fit for n = 100 -

Fit for n = 75

Processors
+ - n =

©o-n= 175
o -n = 100

Fit for 1-d decomposition (in y)
T T T T T T

Fit for n

Fit for n

Fit for n

= 100 ~
= 75
= 50

0 10 20 30
Processors
+-n= 50
o-n= 175
o-n =100

F1t for 2-d decompositlion
T T T T

Fit for n = 100 —

Fit for n = 75
Fit for n = 50

1
) 10 20 30
Processors
+-n=
o-n= 75
o-n =100

Figure 3: Speed up figures for the Intel iPSC hypercube.
function of decomposition at a fixed problem size, and as a function of problem size for
fixed decomposition. The same fit parameters were used in all graphs, and are drawn as

curves.

16

The graphs show. fits as a

a very fast bus, on which the shared memory resides. The computer runs Unix™ and
provides a time-sharing environment. One problem when doing timing measurements in
a multi-user environment is that any parallel job is competing for processors with other
users, mailer daemons, etc. Timings are thus somewhat erratic. Further, they don’t reflect
synchronization problems well, since idle processes won’t use CPU time, and “real time”
measurements are even more inaccurate on a time-sharing system. Thus, our results shown
in Figure 4 are at best approximate. However, they do match our speedup estimate very
well with parameters in equation 18, which is a combination of equation 13 and equation 14.

n? 2 n
T = 0.059— -+ 0.0080 +0.08— + 0.29p. (18)

n
P min(p, 10) Py
These parameters give a very good fit to our experimental data as shown in Figure 4.
Note that since the onset of the “bottleneck” term is so high, this may be due more to
the availability of processors than to limitations in the hardware. In fact, the Encore bus
is very fast relative to the speed of the processors, and we do not expect to see a significant
degradation for the number of processors available.

5.3 Alliant FX/8

The Alliant FX/8 is an example of a multiple vector processor computer. It has up to eight
“computational elements”, each of which is a vector processor. These processors share two
high-speed caches, which in turn have a high speed channel to memory. It is possible for
the processors to exceed speed of the cache.

Computations were done for 51 time steps and mesh sizes of n = 50, 100, 150, 200, and
250 on an eight processor Alliant FX/8. Figure 5 shows the speedups observed for various
problem sizes compared to a fit against Equation 14. The fit used is

n? n?
T = 0.00645— + 0.00085 ———,
P min(p, k)

where k = 2.45. The fit is insensitive to k£ in the range 2 < k < 3.

The apparent super-linear speedup for two processors shown by the curves in Figure 5
is an artifact of the curve fit, caused by the rapid turn-down in speedup at three processors.

The data in Figure 5 show a dropoff below linear speedup as the number of processors
increases. This dropoff is due in part to a memory bottleneck. The memory bottleneck
occurs when many processors require the same data from memory. In the Alliant FX/8 each
of the four quadrants of the fast cache memory can be accessed by any two computational
elements (processors) via a crossbar interconnect. When more than two computational
elements try to access the same data there is “cache contention” which is a form of memory
bottleneck. In addition cache and main memory are updated via hardware to maintain
memory system consistency. Thus if more cache memories were added there would be

17

Speedup on Encore Multimax

15 —
- ————t= Fit for p~l O .

- ———2 Fit for p,=2 O Zg .
- ——— F1t for p,=4 + /}L :

10

o

> — -

©

15

[

e L |

w
5 1

1 i 1 1 I 1 1 1 1 |]] 1 1 ’ 1
Og 5 10 15
Processors
Figure 4: Speedup figures for the Encore

Multimax. The fit uses T = 589.5/p + 79.5/ min(p,10) + 8.22/p, + .29p. The problem
size is n = 100. The line labels are the values of p, used for that curve. The solid line
represents a perfect speedup. Note the sharper deviation from perfect speedup at roughly
10 processors.

18

Speedup on Alliant FX/8
T l T I T

' I

Speedup

| ! | L |
0 2 4 6 8

Processors

Figure 5: Results for the Alliant FX/8. The fit uses
T = 0.00645n2/p + 0.00085n2/ min(p, 2.45). The speedup is almost independent of the
problem size. The solid line represents a perfect speedup; note the deviation from this line
by both the experimental results and the theory at around three processors.

19

a memory bottleneck as cache and main memories are updated to maintain consistency.
Another part is due to some of the program running in serial (using only a single processor);
this is due in part to the Fortran compiler on the Alliant, in a deliberate trade-off between
ease of use and maximum parallelism.

Memory bottleneck will occur in any shared memory parallel computer. Since memory
bottleneck will cause a falloff in the speedup curve below linear speedup, it is a very
significant limitation on shared memory parallel computers for massive parallelism.

5.4 Summary of experimental results

The agreement between the experiments and the complexity estimates is very good. The
complexity estimates capture the important contributions to the computation time. Thus
we can use the complexity results to predict performance for differing values of the param-
eters, including the number of processors.

In the case of a distributed memory parallel computer, such as the Intel Hypercube,
the time estimate for the computation has the form shown in equation 12. For simplicity,
we will consider the case p, = p, = /p. Then the estimate can be simplified to

n? n n
T=F—+F,—+8(a+r)logp+ 12 (a+r——) .
Because of the log p term there is a value of p beyond which adding additional processors
actually slows the computation down. The maximum speed up is achieved when dT /dp =
0, and is at

LF, +6r+\/(AF, + 6r)? + 32F; (o + 1)
16(c + 1))
From this we can see that the the optimal number of processors depends on n. It can be
shown that, as n — oo and with this optimal p, the speedup tends to
An?
logn’

Vp=n

Thus, the speedup for the distributed memory parallel computer (e.g., Intel Hypercube)
increases without bound as the problem size and number of processors grow.

For a shared memory parallel computer, such as the Alliant FX/8 or Encore Multimax,
the time estimate for the computation has the form shown in equation 14. (Note that
the shape of the Encore and Alliant results are very similar; the terms corresponding to
equation 14 in both cases are the dominant terms.) The predicted speedup is independent
of the problem size, as we observed experimentally. The parameters determined by our
experiments give a maximum possible speedup of roughly 20 for the Alliant and roughly
80 for the Encore. Of course, the number of processors available on both the Alliant and
the Encore were picked to match the available memory bandwidths. Other technologies

20

Machine fi f2 ¢1 c2 c3
(a.) 0.066 0.014 0.861 | 0.868 | 0.0302
(b) 0.00066 | 0.00014 | 0.861 0.868 | 0.0302
(c) 0.0132 | 0.0028 | 0.215 | 0.217 | 0.0302
(d) 0.0033 | 0.0007 | 0.215 | 0.217 | 0.0302
(e) 0.00066 | 0.00014 | 0.215 | 0.217 | 0.0302
(f) 0.00132 | 0.00028 | 0.0172 | 0.0176 | 0.00755

Table 2: Parameters for some possible distributed memory parallel processors.

and designs would allow larger limits. The limits themselves are, however, intrinsic in
any shared resource design. Thus, because of the bottlenecks in the shared memory, even
with an infinite number of processors, the maximum speedup of a shared memory parallel
computer is limited.

Comparing these results, we see that the distributed memory computers offer more
potential speedup than shared memory computers as the number of available processors
increases.

6 Predictions and Observations

As an example of the predictive use of our complexity estimates, we can estimate the
performance of a distributed memory parallel processor, starting with our results for the
Intel Hypercube. The relevant formula is equation 17, written as

n? n

T = fi— + fo— + c1logp + cs(nz + ny) + ca.

p Py
Terms f; and f, depend only on the floating point speed. ¢; and ¢, depend on the com-
munication startup times, and ¢s on the communication transfer rate (¢; also depends on
floating point speed and transfer rate; however, startup times will usually dominate c,).

Table 2 shows possible parameters for some distributed memory hypercubes. All of

these estimates are drawn from machines which are either available today or planned
for the near future. Machine (a) is the Intel hypercube used in our tests. Machine (b)
represents a machine with 4 megaflop vector boards. Machine (c) is a more balanced
machine, with both floating point and communication startup times reduced through a
faster processor (such as the Intel 80386). Machine (d) is (c), but with four times as fast
floating point. This might come from using a non-vector/pipelined fast floating point chip.
Machine (e) is (c), using the vector boards from (b). Finally, Machine (f) uses high speed
combined communications and computation hardware, such as in the INMOS Transputer
chips.

21

a b c d e f
P n T S T S T S T S T S| T S

32 250137 30 |9.1 45|30 28 |10 20 (53 7.8{34 25
64 250 73 57 |86 48| 16 50 [6.6 31 4 10 | 1.9 44
128 250 41 101 |86 48|96 86 |4.7 44 |34 12 |1.1 74
32 500527 31|16 11 {110 30 {32 25 |12 14 | 12 28
64 500 268 61 |12 13 | 57 58 |18 45 |79 21 (6.2 53
128 500139 11911 15| 30 109|111 176 |57 30 (34 97
256 500 75 22110 16 | 17 196 | 7 117 |45 37 (19 171

Table 3: Predicted times and speedups for various distributed memory parallel processors.
Times are in the column T and speedups are in the column S.

In Table 3 we show the predicted performance of a number of possible distributed
memory parallel computers described in Table 2.

The relatively poor showing of machines (b) and (e) is due to the large communication
terms, and suggests changes to both the algorithm (to reduce data exchanges) and the
hardware (to make communication speeds comparable to floating point speeds). The
figures for Machine (f) show that if communication speeds (particularly startups, the “o”
term) are increased, very respectable speedups can be obtained, even for large number of
processors. Similar calculations can be performed for proposed shared memory machines.

It is also interesting to compare the amount of programming work needed to run our
experiments. In no case was much effort required to modify the original serial code to run
on any of the parallel machines. The easiest to run was the Alliant, since the Fortran com-
piler on the Alliant automatically makes reasonably good use of the parallelism. Neither
the Encore nor the Intel machines have such compilers, and each required a small amount
of special coding. In addition, the Alliant required some special coding to improve the
performance. The overall efforts were similar.

7 Conclusions

We have shown that significant parallelism is available at least for explicit methods for
CFD. Our complexity estimates, validated by our experiments, show speedups limited
only by the problem size for distributed memory architectures. For shared memory archi-
tectures, bottlenecks at the shared resource constrain the available speedups.

In actual practice, our results show that the communications costs associated with
distributed memory parallel computers can seriously degrade the performance of these
systems. Commercial shared memory computers such as the Alliant FX/8 have achieved
a better balance of system components, at the (recognized) cost of limited parallelism.
Since only massive parallelism has the promise of orders of magnitude increases in speed,

22

we hope that our results and ones like them will stimulate both algorithm and hardware
designers to overcome these practical problems.

In this paper we have considered shared memory and distributed memory parallel
computers. In reality, actual computers are rarely so easily categorized. For example,
a computer presenting the programmer with a shared memory model but implemented
in hardware with several levels of distributed memory (a hierarchical memory) offers an
intermediate form of parallel computer. The significance of our results is that, for signifi-
cant parallelism, use of any shared resource that presents a bottleneck must be extremely
limited. The success of the distributed memory code shows that explicit CFD codes can
be easily written in such a form which avoids these bottlenecks.

Acknowledgements

The authors wish to thank James D. Wilson of AFOSR, Michael J. Werle and Joseph
R. Caspar of UTRC, and Martin H. Schultz of Yale University, for their comments and
suggestions.

References

[Andr 85| André, F., D. Herman, and J.-P. Verjus, Synchronization of Parallel Programs,
The MIT Press, Cambridge, 1985.

[Eise 87] Eisenstat, S., private communication, 1987.

[Jame 83] Jameson, A.: Transonic Flow Calculations. Department of Mechanical and
Acerospace Engineering, MAE Report 1651, Princeton University, July 1983.

[Jame 87] Jameson, A.: Successes and Challenges in Computational Aerodynamics. ATAA
paper 87-1184, presented at AIAA 8th Computational Fluid Dynamics Conference,
Honolulu, Hawaii, June 9-11, 1987.

[John 87] Johnson, G. M.: Parallel Processing in Fluid Dynamics. ISC Technical Report
87003, Institute for Scientific Computing, Fort Collins, Colorado, paper presented at
ASME Fluids Engineering Conference, Cincinnati, Ohio, June 14-18, 1987.

[Jord 87] Jordan, H. F.: Interpreting Parallel Processor Performance Measurements. Siam
Journal on Scientific and Statistical Computing, Volume 8, No. 2, pages s220-s226.

[MacC 69] MacCormack, R. W.: The Effect of Viscosity in Hypervelocity Impact Crater-
ing. ATAA Paper No. 69-354, presented at AIAA Hypervelocity Impact Conference,
Cincinnati, Ohio, April 30-May 2, 1969.

23

[Rai 87] Rai, M. M.: Unsteady Three-Dimensional Navier-Stokes Simulations of Turbine
Rotor-Stator Interaction. ATAA paper 87-2058, presented at 23rd. Joint ATAA/ASME
Propulsion Conference, San Diego, California, June 29-July 2, 1987.

[Saad 85] Saad, Y. and M. H. Schultz: Topological Properties of Hypercubes. Yale Uni-
versity Department of Computer Science Research Report Yale/DCS/RR-389, June,
1985.

[Wigt 85] Wigton, L. B., N. J. Yu and D. P. Young: GMRES Acceleration of Computa-
tional Fluid Dynamics Codes: ATAA paper 85-1494, presented at ATAA 7th Compu-
tational Fluid Dynamics Conference, Cincinnati, Ohio, July 15-17, 1985.

24

