On the Solvability of a Word Problem
for Restricted Semigroups
Lawrence Snyder
Research Report #102
Department of Computer Science

Yale University
New Haven, Connecticut 06520

This research was supported by the Office of Naval Research
under Grant N00014-75-C-0752.

ON THE SOLVABILITY OF A WORD PROBLEM FOR RESTRICTED SEMIGROUPS

. Lawrence Snyder
Department of Computer Science
Yale University
10 Hillhouse Ave, New Haven CT 06520

ABSTRACT: A class of semigroups called l-re-
stricted semigroups is defined in which there
is at most one relation per generator and at
most one occurrence of the generator symbol in
any word equivalent to it. The word problem
for l-restricted semigroups is shown to be de-
cidable.)

Since Post's [1] original work on the sub-
ject, semigroup word problems have been a source
of interesting computational problems. With the
general problem having an undecidable word prob-
lem, interest has shifted to the complexity of
word problems for restricted semigroups [2],[3].
In this latter paper, Strong, Maggiolo-Schnetti
and Rosen [3] abstracted an optimization problem
in terms of a word problem for restricted semi-
groups and conjectured its decidability. 1In
this report a partial answer is given in the
affirmative.

Let A be an alphabet. A restricted semi-
group presentation S = (A,P) where P is a finite
set ‘

P < {<a,w> | ae€ A, w e A*}
such that for all <a,w>, <a',w'> ¢ P, a=a' im-
plies w=w'. The pairs <a,w> are customarily
written as a = w and the symbol a is called a
generator. Thus a restricted semigroup has at
most one equivalence per generator and no other
relations. For semigroup S = (A,P) and words
a,BeA*, a derives B in S written

a ==> 8

provided there exists <a,w> ¢ P such that either
a=uav and B=uwv or a=uwv and Bf=uav for some
u,veA*, Since a =§> B implies B -§> a, deriv-

ability induces an equivalence relation on the
set of words; accordingly a =3 B is customarily

written as a § B by abuse of notation and the
semigroup name S is elided where no confusion

can result.

The (uniform) word problem for restricted
semigroups is to decide for any S = (A,P) and
words u,veA* whether or not u = v. This problem
- is-still open. 1In [3] this word problem is re-
cast in what is more familiar terminology:

Lemma [3]: .The word problem for restricted
semigroups is equivalent to the intersection
problem for a pair of context-free grammars
which differ only in start symbol and are re-
stricted to have one production per non-terminal
(except that each non-terminal has an additional
rule of the form B -+ b, where b is a terminal
distinct from all terminals corresponding to
other non-terminals).

The systems of present interest are a sub-

class of restricted semigroups. A I-restricted
gemigroup S = (A,P) is a restricted semigroup
such that <a,w> € P and aZcaB implies

a,8 € (A-{a})*. That is, any word equivalent to
a generator contains at most one occurrence of
that generator. In terms of the context-free
formulation mentioned above, a l-restricted
semigroup corresponds to a context-free grammar
in which no word derivable from a non-terminal
contains more than one occurrence of that non-
terminal. Thus, "pumping" is permitted but in a
limited way.

In order to exhibit the objects just de-
fined as well as to motivate parts of the subse-
quent development, consider the l-restricted
semigroup

S = ({a,b,c,d,e}, {<a,cddddde>,
<b,ddddde>,
<d,cdcc>,
<e,ce>})

which corresponds to the context-free grammars
G, = ({a,b,c,d,e},T,a,P)
Gb = ({a,b,c,d,e},T,b,P)

where

P = {a » cddddde,
b -+ ddddde,
d + cdee,
e -+ ce}

and the terminal productions have been deleted.

We ask the word problem: Is a = b? The answer

is, yes, as can be shown by exhibiting a word in
L(Ga)nL(Gb). In particular, consider the two

derivations in "parallel':

a => cddddde => cdedccde => cde?dedde => ...

b => ddddde => cdccdddde => cdc?dcdc?d?e => ...
=> cdc?dctdc8dclbdcd2e
=> cdc?dctdcBdelbdcde 8]

The objective of the remainder of the paper
is to prove:

Theorem: The word problem for l-restricted semi-
groups is decidable.

In the interest of economy, the proof is only
sketched. The general logic of the argument is
to construct a word in L(GA)nL(GB) or show that

none can exist. The construction involves car-
rying out a '"parallel derivation" so that at

each step a word .in L(GA)nL(GB) must include the

symbols being generated. If at some point the
derivation cannot be extended L(GA)nL(GB) = ¢.

A key tool in the construction is a special der-
ivation dag, which will now be developed.

e

In the subsequent discussion the grammars

GA and GB are assumed to be given and is abbre-
viated GAB Moreover, without loss of genéral-

ity it may be assumed that there are no produc-
tions of the form C + € (where € is the empty
word), and no productions of the form C + C
since equivalent problems can be formulated
without these productions. Call a sequence of
letters Cl""’cn a cycle if there are produc-

tions

Ci -> °1°1+181 1<i<n
and
Cn - anclen'

Cycles have several properties:
(i) The rotation of a cycle is a cycle,
i.e., Cl,...,C is a cycle if and

only if

€& mod n)+1°****®(kn mod n)+1
is a cycle Osk<n.

(i1) 1Two cycles that are not rotations of
one another are disjoint, i.e.,
Cl,...,Cn,Ci,...,C; cycles implies
for no 1 and j does Ci-Cj.
Cycles persist, that is,
AP>...=>QC13'>...'>T for C

(111)
1 in cycle
Cl,...,Cn, then for some j, r=u'CjB'.
This last fact is extremely crucial in the proof.
A cycle Cl,...,Cn‘is trivial if n=1. We
now state a useful simplification:
Lemma:

l—restricted‘G'AB containing only trivial cycles
such that A=B in G

= {1
AB if and only if A=B in G AB'

The proof relies on the previously ennumerated
facts and is constructive. It is complicated

only by the fact that cycles can be entered at
various points, thus care must be used in "col-
lapsing" cycles. In the sequel GAB is assumed

1 is called

For any l-restricted G,, there exists a

AB

to have only trivial cycles, and C
the cycle letter.

A derivation dag for Gyn
acyclic graph D = (V,E) with vertex set V = the
alphabet for G, and the edge set E defined by

AB
E= {<ClDi>]C > Dl""’Dn is a production A

C:D}

Evidently D is a dag since a graph cycle in D

implies a letter cycle in GAB —-- but these are

“at most trivial and the second condition avoids
introducing loops.

is an oriented

Notice that the dag may have multiple
sources, but generally only a subset of these
will be of interest (e.g., A and B initial}y).

Let (Cl,...,Cn) be used to denote the subdag
reachable from vertices C,,...,C_.
1 n

A reduced derivation dag is a derivation dag
containing only cyclic letters plus the sources
and sinks of D formed by adding for every pair
of edges <C,D> <D,F> such that D is noncyclic
a new edge <C,F> and then deleting the vertex
D from V and <C,D>, <D,F> from E. The reduced
dag D(A,B) will guide the derivation (if poss-
ible) of a word in L(A)NL(B). Before arguing
that no information has been "lost" in forming
the reduced derivation dag, it is necessary to
describe its role.

Notation: TFor a cyclic letter C with pro-

duction C + Dl"'DkCDk+l"'D and a reduced der-

ivation dag D, L(C) (resp. R(C)) is the set of
source vertices of the subdag D(Dl""’ k)

(resp. D(Dk+1""?Dn))'
Next, the procedure for testing emptiness
of L(A)AL(B) in G is described. The procedure

involves a parallel derivation" as exhibited
in the example. At each step the two sentential
forms will be

uoclalcz...c a, (1)
80c181C2'°°C B (2)
where (1) is the sentential form in the deri-
vation of A and (2) is the corresponding sen-
tential form in the derivation of B. The Ci

will be cycle letters known to match and are
called complimentary letters. The terms first
C% and second Ci will refer to occurrences in

their respective forms. The argument will pro-
ceed by showing how to form n+l subproblems
each involving oy and Bi which can be solved

independently of one another.

- A key lemma for limiting the matching prob-
lem that will arise shortly is:

Lemma: Given the two forms
0ClaIC2 2...C a € L(G) (3)
BOCIBICZBZ...CnBn € L(GB) (%)

if there exists a t ¢ L(GA)nL(GB) derivative of
both (3) and (4), there exists a t' ¢ L(GA)n
L(GB) derivative of (3) and (4) that requires

pumping of at most one letter of each comple-
mentary letter pair.

Basic step: In forming the initial sen-
tential forms (1) and (2), there are two cases:
(a) both A and B are noncyclic letters and (b)
one of them is cyclic. By persistence of cyclic
letters, both A and B cyclic implies L(A)nL(B)
= ¢. In case (a), (1) (resp. (2)) is simply
the sentential form formed from the direct
descendants of A (resp.'B), in (A,B).

kLet

aoclulczaz...cnan (5)
BODIBIDZBZ"'DmBm ' (6)
be the two words thus constructed where the Ci
and Di are all occurrences of source nodes in

D(A,B) when A and B are removed. If w ¢ L({A)n
L(B) then the Ci and Dj of (5) and (6) must be

in the derivation for w since this is the first
step of the derivation. Since there can be no

more copies of the source vertices introduced,

w € L(A)nL(B) iff m=n and CisDi.

* For the case (b), assume A cyclic and form
descendant word for B: :

«)
BODIBIDZ"'BkABk+l mBm
where Dl"'Dk (resp. D
(resp. R(A)).
If A can be pumped to form -
coclulcz...akAak+1...Cnun
so that m=n and C =D, we continue. If not,

source nodes cannot be otherwise introduced and
L(A)NL(B) = ¢.

In either case, the C

k+l"°Dm) sources in L(A)

1 must be in any word

derived by persiétence of cyclic letters. The
“1’81 contain cyclic as well as noncyclic words

introduced by the transformation from cycles to
trivial cycles as well as the operation of re-
ducing the dag. However, a moments reflection
indicates that any letters introduced by these
two operations cannot be misleading.

Subproblem formationm:
The problem is to match X,Y in the context
of D(Cl,...,C) where)
n
X = aoclalcz...cnun
T = 8101810y Cfy:

The goal is to break this problem into simpler
subproblems; however, because of the interde-
pendencies illustrated in the example, this can-
not be done directly.

The general procedure is to proceed from
left to right through the two sentential forms
trying to match corresponding sequences aiCi+l

(0<i<n). Match, here, does not
mean uissi; but that those letters that can only
be introduced by C

against Bici+l

, namely L(C match as

_ i+l i+;)’
a subsequence. (Denote this match by ai=Bi|
L(Cyyy

L(Ci+1)".)

) and read "g,

1 matches 8y relative to

There are two steps. Step 1 is used when
a certain number of cycles of one of the Ci+1

complementary pair is dictated by the necessity
of matching a;=8, | L(Ci+l)' Under some cir-

cumstances (e.g., L(Ci+1) = ¢) no constraints

are immediately imposed. If so, Step 2 post-
pones resolution and labels C ., a "filler" --

a form that can be pumped arbitrarily to achieve
a match. (The variable d of the example would
be a "filler" if all words of the example were
rever ed.) When an explicit number of pumps is
discovered, the pending fillers are converted to
subproblems by a procedure called "cascading."
(Both "filler" and "cascade" are explained more
fully after step 2.) Finally, it should be
emphasized that the matching required in the
following steps is a finite process by virtue
of the earlier lemma on pumping only one letter
of a complementary pair.

Step 1{ Given aici+1°i+1"'cnan

Bici+lBi+1

Case 1: (L(Ci)] ¢,ai =_§1 l L(ci+l))' Con-
strained -- since C

...C B
n n.

can't be cycle without
17 Y = Bi in
D(L(Ci+1)) is the new subproblem. Delete
and Bic

i+l

ruining the equality. X = a

“ici+1 1+1 and return to step l.

Case 2: (L(C)) = $,a, = B, | L(C,,,)). Con-
strained -- force ai=ei[L(Ci+l) if possible.
If not possible, then the intersection is empty.

If t cycles of (say) the first C1+1 force

’
) and Cypy > YCipyY's
) is the subproblem.

equality relative to L(C

t i+l
then X = @y ,Y‘Bi in D(Ci+l
Remove aiCi+1 and Bici+1 and replace a3 by

' .

LA TFSE return to step 1.
Case 3: (L(Ci+l) = ¢). Constrained -- ay and
Bi must match exactly since cycling C can't
help.

otherwise verify match, delete a

i+l

1f ay 2z Bi the intersection is empty,
i and Bi and
go to step 2, k=i.

Termination: (i=n) Proceed as in case 3

except halt instead of going to step 2.

Step 2: Given Ckak...CiaiCi_,_l...Cnan
C.B8

30 "Cisigiﬂ‘ : 'Cnen

where C,...C, , are fillers.

Case 1: (L(Ci+1) = ¢). Constrained -~ cycle

C, to force ai=Bi[R(Ci). If not possible --

i
intersection is empty. If possible with t

cycles of (say) the first Ci and Ci *'YCiY'.
the subproblem is X=Y'tui,Y=Bi, D(R(Ci))i

Replace a, , with ai_lyt'and‘cascade. Delete
v

i-1

everything to the left of C and return to
step 2, k=i+l.

Cage 2: (L(Cﬁ-l) 2 ¢ A L(Ci+1
strained -- cycle C1 and/or C1+1 until they
match with respect to both L(ci+l) and R(Ci),

if possible. If not, the intersection is empty.
If so, and (say) the first Ci and (say) the sec-

i+l

) = R(Ci). Con~

ond Ci+ are cycled t and u times, respectively,

1

] ' -
and ci - Yciy and Ci+1 - 6Ci+16 the new prob

= 't - u
}ems are X=y ai,Y Bii in D(R(Ci)UL(Ci+1))'
Repiace ai_l,by a;_qY and cascade. Replace
14 - .
Bi+l by § Bi+l? delete Ci+1 and everything to
the left and go to step 1.

Case 3: (L(Ci+1) 2 ¢ A L(Ci+l) - R(Ci)). If Ci

is a filler, increment i and return to step 2.
;f Ci is not a filler, proceed as in case 2.

Termination: (i=n) Treat as case 1.
A filler is a cycle letter Ci in a form

. Ci2:Cih

€1831Cin1
that can force a match given that Ci+1 has

cycled teN times. To test if Ci is a filler

1]
141 ~ §C34y87s cycle

i and Ci+1 so that ay and

Bi do not overlap, then test the two resulting
.words. If |y'| = |8] or u+|y'| = |§], them
to be a filler the two words bounded by Ci and

6141 must match. If |y | = |6]+u then the words

bounded by Ci and Ci+1 must match once in every

given C, » Yuiy' and C

i
(opposite pairs) of C

vsu cycles of ci+l in order to be a filler. In

all other cases, Ci is not a filler. For the
case where v>1, dialate Ci+1 by v cycles ~— then

any number of C cycles can be matched.

i+l

To cascade
c t
Cer++Cy1%31Y
CereCiaafim

where the Ck"'ci-l are fillers, force a match

by cycling Ci-l the appropriate number of times.
Thus,tif C&-l > sci-lé" find u such that .
ui_lyu = G-Bi_l | R(Ci-l) and make X = ey 1Y
Y=29 Bi—l in D(R(ci—l)) a subproblem. Then
cascade the remainder of the forms.

Finally, note that all of the created sub-
problems can be solved independently. If they

are all solved successfully, a word in L(A)nL(B)
is found. Otherwise, none can exist.

References:

[1] E. L. Post.)
"Recursive unsolvability of a problem of
Thue."
JSL, 1947.

[2] E. Cordoza, R. Lipton, and A. ﬁéyer

"Exponential Space.Complete Problems for
Petri Nets and Communative Semigroups.'
8th STOC, 1976.)

[3] H. Strong, A. Maggiolo~Schnettini, and
B. Rosen.
"Recursion Structure Simplification."
SIAM COMP, 1975.

