
Yale University

Department of Computer Science

Lectures on Network Complexity

presented by Prof. Michael J. Fischer
at the University of Frankfurt

YALEU/DCS/TR-1104
June 1974

Revised April 1977, April 1996

This research was supported in part by the National Science Foundation under research
grant GJ-43634x to M.I.T.

Lectures on Network Complexity

presented by Prof. Michael J. Fischer
at the University of Frankfurt

Preface

These notes, often referred to as the “Frankfurt Lecture Notes”,
are perhaps my most widely circulated unpublished work. Resulting
from a series of lectures I gave at the University of Frankfurt in June
of 1974, they summarize some early work on what is now known as
circuit complexity. They circulated originally in the form of xeroxes
of my hand-written notes. Later, in April of 1977, I revised the notes
and had them typed up; copies of the typewritten version have also
circulated widely. Now, with the availability of the world-wide web, I
have decided to reissue them once again, this time in electronic form.

In going over the notes again, I have tried to preserve the original
style and to resist the temptation to make “improvements” to either the
content or its presentation. Nevertheless, I have fixed a few technical
errors and have added a few missing assumptions here and there. I have
also added a bibliography that was not present in the original. While
I make no claims to its completeness, I have tried to add citations for
the results referenced in the original notes, as well as giving references
to a few related subsequent works.

Even today, more that 20 years after the original lectures, readers
may still find some material here of interest:

• Section 1 presents counting arguments that establish upper and
lower bounds on the maximum circuit complexity of any n-
argument Boolean function over the full basis of 2-input gates.
These and closely related results appear in [4, 12, 23, 25]. The
particularly slick proof of Theorem 1.1 is due to Schnorr [20].

• Section 2 uses Turing time complexity T (n) to bound circuit com-
plexity for families of Boolean functions. Savage [18] showed that
the circuit complexity is at most O(T (n)2). Here I present a result
with Pippenger that reduces this bound to O(T (n)) for oblivious
Turing machines and to O(T (n) log T (n)) for unrestricted Turing

This research was supported in part by the National Science Foundation under re-

search grant GJ-43634x to M.I.T.

2

machines. These results subsequently appeared in [17] and were
extended in [21].

• Section 3 illustrates the use of Turing machines to construct a
small circuit for computing the transitive closure of a symmetric
Boolean matrix. The Turing machine construction relies on the
mail carrier algorithm that I developed with Paterson. These
same ideas underlie the “Fishspear” priority queue algorithm [7]
but have never been published in their simple form.

• Section 4 examines inversion complexity, the number of not-gates
needed to compute a set F of Boolean functions. Markov [13]
characterizes the exact minimal number of not-gates needed for
arbitrary F in terms of the number of times F violates mono-
tonicity along any monotone sequence of input vectors. Section 4
begins with a complete proof of his claims. I knew, as a curiosity,
of a circuit that negates its three inputs using only two not-gates.
Surprisingly, a circuit exists of size O(n2 log2 n) that negates its n
inputs using only ⌈log(n)+ 1⌉ not-gates. This result can be used
to convert an arbitrary circuit of size C into an equivalent one of
size 2C+O(n2 log2 n) that uses only ⌈log(n)+1⌉ not-gates. These
results appear in [5] and have been recently improved in [3, 26].
The question of how much the size increases as the number of
not-gates is reduced further to the exact inversion complexity of
F remains open.

Related Work Gilbert [9] considered inversion complexity as early
as 1954. He was motivated by relay contact networks in which devices
for performing negation are more expensive or less reliable than those
for performing the other logical operations. Early papers to synthesize
circuits with minimal numbers of negations include [5, 10, 15]. Gen-
eral references with a wealth of information relating combinational
complexity to other notions of finite function complexity include Sav-
age [19] and more recently Wegener [27]. Both contain extensive bib-
liographies. Paterson [16] presents a nice collection of recent research
papers on Boolean function complexity.

Michael J. Fischer

New Haven, Connecticut

April 1996

1 BOOLEAN NETWORKS 3

1 Boolean Networks

Let K = {0, 1}, f : Kn → K. We consider computations of f by networks
over a basis Ω of Boolean functions. A network η is a directed acyclic graph.
Each node v is labeled with an operation op(v) in Ω∪{x1, . . . , xn}. Let ρ(f)
be the rank (number of arguments) of f . Then the indegree of any node
v must equal ρ(op(v)). With each node is associated a function Kn → K
in the obvious way. Certain nodes are designated as output nodes, so the
network computes a set of functions F ⊆ KKn

. Denote KKn

by An.
Let L(η) =

∑

v∈η cost(op(v)). One may use various cost functions. For
definiteness, let cost(a) = 0 if ρ(a) ≤ 1 and cost(a) = 1 otherwise. Extend
L to functions and sets of functions:

L(F) = min{L(η) | η computes F}, F ⊆ An,

and L(f) = L({f}) for a single function f . Note that L depends on both
the basis Ω and the cost function “cost”. We sometimes write LΩ or LΩ,cost

to emphasize this dependence.

Theorem 1.1 For the basis Ω =
⋃2

i=0 Ai and any ε > 0,

|{a ∈ An | LΩ(a) ≤ (1− ε)2n

n }|
|An|

→ 0 as n→∞.

Proof: Let Nq = |{a ∈ An | LΩ(a) ≤ q}|. We want an upper bound on Nq.
Let β be a network over Ω which computes a ∈ An. Then there ex-

ists an equivalent network β′ (i.e., β′ also computes a) over A2 such that
L(β′) ≤ L(β), assuming only that L(β) ≥ 1. Thus it suffices to consider
only networks over A2.

The maps

σ: {1, . . . , q} → ({1, . . . , q} ∪ {x1, . . . , xn})2 ×A2

describe precisely the networks βσ over A2 of cost L(βσ) = q. There are
[(q + n)2 · 16]q such maps, and each network defines q functions in An by
varying the choice of output wire. However, the same function is described
many times.

Let Res(β, v) = function computed by node v of network β.

Claim 1 If L(f) ≤ q, then ∃σ such that βσ computes f , L(βσ) ≤ q, and
∀v, v′ ∈ βσ [v 6= v′ ⇒ Res(βσ, v) 6= Res(βσ, v′)]. Call such a network re-
duced.

1 BOOLEAN NETWORKS 4

Let π be a permutation of {1, . . . , q}. π can be extended to a permutation
on maps σ in a natural way. First, define πxi = xi, 1 ≤ i ≤ n. Now, let (πσ)
be the map such that (πσ)(πv) = (πw, πw′, a), where (w, w′, a) = σ(v).

Claim 2 Res(βπσ, πv) = Res(βσ, v).

Claim 3 If βσ is reduced, then πσ = σ =⇒ πv = v.

Pf. If πσ = σ, then by Claim 2, Res(βσ, πv) = Res(βσ, v). Since βσ is
reduced, πv = v.

For each reduced βσ, the q! maps π1σ, π2σ, . . . , πq!σ, are all distinct,
where the πi’s are all the permutations of {1, . . . , q}. Thus,

Nq ≤ q[(q + n)2 · 16]q

q!
<

c′q · (q + n)2q

qq

by Claim 1 and Stirling’s
formula

< (cq)q

for c a constant, assuming that q ≥ n.
Now set q = (1− ε)2n

n . Then

Nq ≤
[

c(1− ε)
2n

n

](1−ε)2n/n

≤ 2(1−ε)2n

for n ≥ c(1− ε). Thus,

Nq

|An|
≤ 2(1−ε)2n−2n

= 2−ε2n → 0 as n→∞.

Theorem 1.2 Maxa∈An
L(a) ≤ 2n

n + o
(

2n

n

)

, even taking Ω = {0, 1,⊕,∧}.
(x⊕ y means x 6≡ y.)

Proof: Let
L(m, t) = max{L(F) | F ⊆ Am & |F | = t}.

We first prove two lemmas.

Lemma 1.3 For any integer p ≥ 1,

L(m, t) ≤ 2m +

⌈

2m

p

⌉

2p +
t2m

p
.

1 BOOLEAN NETWORKS 5

Pf.

1. Compute all products xδ1
1 · · ·xδm

m , 0 ≤ δ1, . . . , δm ≤ 1. There are 2m

such products, and each can be computed using at most one ∧-gate
from previously computed products. (Do all of length ℓ before any of
length ℓ + 1.)

2. Partition the products of step 1 into q =
⌈

2m

p

⌉

classes C1, . . . , Cq each

with at most p elements. For each i, 1 ≤ i ≤ q, compute all the linear
combinations (sums) of terms in Ci. Call the result Bi. |Bi| ≤ 2p, and
each element in Bi may be computed using at most one ⊕-operation

from shorter ones. Thus, this step costs at most q2p =
⌈

2m

p

⌉

2p.

3. Each of the desired t functions can be expressed as a sum
⊕q

i=1 αigi,
where αi ∈ {0, 1} and gi ∈ Bi. Hence it can be computed given the
sets Bi using at most q−1 ⊕-operations, so the total cost for this step
is ≤ t(q − 1) ≤ t2m

p .

Lemma 1.4 For any integers p ≥ 1, 0 ≤ m ≤ n,

L(n, 1) ≤ 3 · 2n−m + 2m +

⌈

2m

p

⌉

2p +
2n

p
.

Pf. 1. Compute all products x
δm+1

m+1 · · ·xδn
n , 0 ≤ δm+1, . . . , δn ≤ 1 using at

most 2n−m ∧-operations. (Cf. Step 1 of proof of Lemma 1.3.)

2. Any function f(x1, . . . , xn) can be expressed as

f(x1, . . . , xn) =
⊕

0≤δm+1,...,δn≤1

βδm+1...δn
(x1, . . . , xm) · xδm+1

m+1 · · ·xδn
n .

Compute the t = 2n−m β’s using Lemma 1.3 for a cost of 2m +
⌈

2m

p

⌉

2p + 2n

p .

3. Compute f from the results of steps 1 and 2 using an additional 2n−m

∧-gates and 2n−m − 1 ⊕-gates.

To prove the theorem, it remains to choose p and m. Let m = ⌈√n ⌉,
p = n−m−⌈log n⌉. Assuming n ≥ 7, we have p ≥ 1 and 0 ≤ m ≤ n. Apply
Lemma 1.4 and examine the terms in turn:

3 · 2n−m ≤ 3 · 2n−√
n = o

(

2n

n

)

.

2 COMBINATIONAL COMPLEXITY 6

2m ≤ 2
√

n+1 = o

(

2n

n

)

.

⌈

2m

p

⌉

· 2p =

⌈

2m

n−m− ⌈log n⌉

⌉

· 2n−m−⌈log n⌉

≤ 2n−log n

n− ⌈√n ⌉ − ⌈log n⌉ + 2n−⌈√n ⌉−⌈log n⌉ = o

(

2n

n

)

.

2n

p
=

2n

n

(

1 +
n− p

p

)

=
2n

n

(

1 +
m + ⌈log n⌉

n−m− ⌈log n⌉

)

=
2n

n
+ o

(

2n

n

)

.

Summing, we get maxa∈An
L(a) = L(n, 1) ≤ 2n

n + o
(

2n

n

)

.

Note added in revision: According to Savage [19, p. 123], Shannon [23]
first proved Theorem 1.1 as well as a weaker version of Theorem 1.2. Savage
credits the stronger version presented here to Lupanov [12]. Our proof of
Theorem 1.1 is due to Schnorr [20].

2 Combinational Complexity

We extend the ideas of the previous section to give a complexity measure
on certain functions on binary sequences. The results in this section appear
in [17].

A function f : K∗ → K∗ is length respecting if |x| = |y| =⇒ |f(x)| =
|f(y)|. Let λf (n) = |f(0n)|. For a length-respecting function f , define the
combinational complexity

Cf (n) = L(Fn),

where

Fn = {g ∈ An | ∃i, 1 ≤ i ≤ λf (n),∀~x ∈ Kn g(~x) = ith symbol of f(~x)}.

Corollary 2.1 Cf (n) ≤ 2n

n +o
(

2n

n

)

for any function f (even non-recursive)

: K∗ → K.

Thus, there are arbitrarily large differences between Turing machine time
complexity and combinational complexity. However, we shall see that a
small Turing machine complexity implies a small combinational complexity.

By “Turing machine” we mean a multitape Turing machine with separate
input and output tapes, as illustrated in Figure 1. The input head is read-
only and moves only to the right, and the output tape is write-only and
likewise moves only to the right.

2 COMBINATIONAL COMPLEXITY 7

Finite state
 control

Output tape

Input tape

Work tapes

Figure 1: A multitape Turing machine.

Let M be a Turing machine, T : N → N . M computes f in time T
if for all x ∈ K∗, M(x) = f(x) and M on input x uses at most T (|x|)
computational steps.

A Turing machineM is oblivious if for fixed n, the positions of all heads
at each step s are the same for all x ∈ Kn. (This includes the input and
output heads.)

Theorem 2.2 Let M be an oblivious Turing machine which computes a
length-respecting function f in time T . Then Cf (n) = O(T (n)).

Proof: Encode instantaneous descriptions of the Turing machine by binary
sequences of length O(T (n)). Let σi, τi be id’s which occur at the ith step
of the computations on two length n inputs x, y. Since M is oblivious,
all head positions are the same, so the successor id’s differ only at a fixed
set of positions. Hence, there exists a network ηi of size independent of n
which computes the (i + 1)st id from the ith, as illustrated in Figure 2. A

ηi =state head khead 1

Figure 2: Simulating a step ofM.

network for f is obtained by composing η1◦. . .◦ηT (|x|) and setting the inputs
appropriately, as illustrated in Figure 3.

2 COMBINATIONAL COMPLEXITY 8

η1

η2

ηT (|x|)

...

...

...

...

...

...

0xq0

outputsstate

Figure 3: Simulating a full computation ofM.

Theorem 2.3 Let M be a multitape Turing machine that computes a
length-respecting function f in time T . Suppose in addition M has the
property that the steps at which inputs are read or outputs produced depend
only on the length n of the input. Then we can find a two tape oblivious
Turing machine M′ for f which runs in time O(T (n) log T (n)).

From Theorems 2.2 and 2.3 we immediately obtain a logical network of
size O(T (n) log T (n)) from a Turing machine which satisfies the restrictions
of Theorem 2.3. In fact, we can obtain such a network from any Turing
machine M which computes a length-respecting function.

Theorem 2.4 Let M be a multitape Turing machine that computes a
length-respecting function f and runs within time T (n) > n for all inputs of
length n. Then Cf (n) = O(T (n) log T (n)).

Proof: Let y be a string of the form x01t and m = |y|. We construct the
programM′ which does the following on input y:

1. It copies y onto work tape PI (pseudo-input), marking the end of x.

2. It behaves like M for exactly m steps, except that all input comes
from the work tape PI, and all output goes on the work tape PO
(pseudo-output).

2 COMBINATIONAL COMPLEXITY 9

3. It prints out the first m symbols of PO.

M′ computes some function g: K∗ → K∗ such that |x| = |g(x)| for all x
and hence g is length-respecting.1 Also, it is clear that M′ satisfies the
conditions of Theorem 2.3, and the running time of M′ is O(m). Now,
applying Theorems 2.2 and 2.3 to M′ gives a network Nm for g|Km of size
O(m log m).

We obtain our network for f |KN as follows. Let m = T (n) and construct
the network Nm. By construction, g has the property that f(x) is a prefix
of g(x01t) for all t such that |x01t| ≥ T (|x|). Hence, by setting the last
m− n inputs of Nm to the constants 01m−n−1 and ignoring all but the first
|f(0n)| outputs, we obtain a new network which computes f |Kn. Its size is
O(m log m) = O(T (n) log T (n)).

It remains to sketch the proof of Theorem 2.3.

Proof (sketch): Replace each tape of M by 2 pushdown stores. A push-
down store is a tape with a restricted set of operations:

• PUSH(a) means “shift right and print a”.

• POP means “print a blank and shift left”.

Thus, the head of a pushdown store always sits on the rightmost non-blank
square, which is commonly called the top of the store.

The master tape ofM′ has one channel for each pushdown store ofM.
Each channel is divided into three tracks. Lengthwise, we divide the channels
and tracks into segments. Segment i consists of squares 2i+1− 1 through 2i,
i ≥ 0, where we begin numbering the tape squares from 1. These definitions
are illustrated in Figure 4.

The portion of a track which lies within a given segment is called a block.
A given block is either completely full or completely empty (denoted by φ).
The contents of a simulated pushdown store is obtained by concatenating
together the full blocks of the corresponding channel in order, beginning
with the smallest numbered segments, and within a segment, the blocks
are taken in track order. For example, Channel 1 of Figure 4 encodes the
pushdown store: “abcdefghi”, where “a” is at the top of the store.

From now on, we restrict attention to a single channel, for all channels
are handled in parallel and in the same manner. We say that a segment
is clean (for a given channel) if the number of its filled blocks is 1 or 2;

1To make this strictly true, one has to worry about whatM′ does on inputs in 1∗. We

can assume it does the same thing on 1t as it does on 01t−1.

2 COMBINATIONAL COMPLEXITY 10

Track 1,1

Track 1,2

Track 1,3

Track 2,1

Track 2,2

3 2 1 0 Segment numbers

. . . 9 8 7 6 5 4 3 2 1

. . .

. . .

. . .

. . .

. . .

f g h i b c a

ø

ø
.

d e ø

øø

Channel 1

Channel 2

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

Figure 4: Master tape.

otherwise it is dirty and the number of filled blocks is 0 or 3. We assume
initially that the first track is entirely filled with blanks and the remaining
two tracks are empty; hence every segment is initially clean.

Claim Assume segments 0 through n are clean. Then Sim(n) will simulated
M for 2n steps, never move its head past the end of segment n, and upon
completion, leave segments 0 through n−1 clean. The number of filled blocks
in segment n is changed by at most ±1.

To Sim(n):

1. If n = 0, simulate one step ofM by updating the contents of square 1.

2. If n ≥ 1, do the following steps:

(a) Sim(n− 1);

(b) Clean(n− 1);

(c) Sim(n− 1);

(d) Clean(n− 1);

Clean(n−1) is a routine that makes segment n−1 clean by moving data
to or from segment n as necessary. In particular, if segment n − 1 is dirty
because it has no filled blocks, then a block from segment n is fetched, split
into two half-length blocks, and these two blocks are written in segment
n− 1. If segment n− 1 is dirty because it contains 3 filled blocks, then two

3 APPLICATION TO SYMMETRIC TRANSITIVE CLOSURE 11

of them are combined and copied into a hole in segment n. Since we wish
Clean to be oblivious, it must put its heads through the motions for both
copy operations even though on any given call, at most one of them will be
necessary.

To show that Sim works, it is necessary to check that the cleanliness
condition is preserved. A difficulty would arise if steps (2b) and (2d) each,
say, attempted to copy a block from segment n into segment n−1, for we are
only assuming that segment n initially contains at least one full block, so
step (2d) might then find segment n empty. However, the condition that the
number of filled blocks in the last segment changes by at most ±1 prevents
this situation from ever occurring. The details are left for the reader.

The toplevel routine is the following:

1. k = 0

2. IfM′ has halted, then stop.

3. Sim(k)

4. Clean(k)

5. k ← k + 1

6. Go to step 2.

Toplevel is oblivious, and it runs in time

⌈log T (n)⌉
∑

k=0

(time of Sim(k) + O(2k)) = O(T (n) log T (n))

since
time of Sim(k) ≤ 2 · (time of Sim(k − 1)) + O(2k),

and thus
time of Sim(k) = O(k2k).

This completes the proof of Theorem 2.3.

3 Application to Symmetric Transitive Closure

Let A = (ai,j), B = (bi,j) be matrices over K of dimension m× n and n× p

respectively. Define C = (ci,j) = A
(

∨
∧
)

B, where

ci,j =
n
∨

k=1

(ai,k ∧ bk,j)

3 APPLICATION TO SYMMETRIC TRANSITIVE CLOSURE 12

and C is of dimension m× p. C is sometimes called the Boolean product of
A and B.

Let M be an n× n Boolean matrix. The transitive closure M∗ of M is
∨

k≥0 Mk, where

M0 df
= I =













1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1













and Mk+1 = Mk
(

∨
∧
)

M .

If G is a directed graph with n nodes {1, . . . , n}, one can describe G by
the n × n Boolean matrix M , where Mi,j = 1 iff i →G j (i.e., there is an
edge from i to j in G). Then M∗ describes the transitive closure G∗ of G,
where i→G∗ j iff i = j or there is a path from i to j in G.

Fact (Fischer and Meyer [6], Munro [14]).
(

∨
∧
)

matrix product and transi-

tive closure can be done in essentially the same time, that is, a fast algorithm
for one implies the existence of a fast algorithm for the other, and both can
be done in time O(nlog2 7 · (log n)1+ε) for any ε > 0 using the fast matrix
product method of Strassen [24] and the fast integer arithmetic of Schönhage
and Strassen [22].

In case G is undirected, M becomes symmetric, and the above fact,
restricted to symmetric matrices, is not known to hold. In fact, symmetric
transitive closure is the same problem as finding the connected components
of a graph and can be done in time O(n2) by the algorithm below.

Note added in revision: The algorithm below is known in the folklore.
The remaining results in this section are due to Fischer, Paterson, and Pip-
penger [8] and have never been published.

Let

next(i) =

{

least j > i s.t. Mi,j = 1
0 if no such j

To compute M∗:

1. for i← 1 to n
2. [j ← next(i);
3. if j 6= 0 then Row j ← Row j ∨ Row i

3 APPLICATION TO SYMMETRIC TRANSITIVE CLOSURE 13

4. else [Mi,i ← 1;
5. for k ← 1 to i− 1
6. if Mi,k = 1 then Row k ← Row i]].

Only O(n) row operations are performed since the outer loop is executed
only n times, and each row is copied into at most once (in step 6). We leave
the (nontrivial) proof of correctness to the reader.

We bound from above the combinational complexity of this problem by
constructing a Turing machine and applying Theorem 2.4.

A naive implementation takes O(n3) steps. That is, if one represents M
“by rows” on a tape

row 1 row2 row n. . . .

a single row operation may take time O(n2) because of the time to position
the head(s).

We consider the mail carrier problem. The houses, numbered 1, . . . , n,
are visited in turn. At each house, the postman delivers all the letters
addressed to that house and then picks up some number of new letters to be
sent to houses further on down the route (i.e., with higher numbers). The
postman carries a fixed number of mailbags which he must use as pushdown
stacks. Thus, to get at a letter at the bottom of a bag, he must remove
the other letters one at a time and place them into other bags. We wish to
minimize the total number of times a letter is handled.

Theorem 3.1 The mail carrier problem can be solved so that each letter is
handled O(log n) times, where n is the number of houses.

Proof: Let L be a set of letters addressed to houses i, i + 1, . . . , i + n − 1.
“Deliver” visits the n houses i, i + 1, . . . , i + n − 1, delivers the mail in L
together with any new mail destined for them, and returns the new mail for
houses ≥ i + n.

To Deliver(L, i, n):

1. If n = 1, deliver L to house i and return { new letter }.
2. else[Partition L into

L1 = {x ∈ L | x < i + ⌊n/2⌋}
L2 = {x ∈ L | x ≥ i + ⌊n/2⌋}

3 APPLICATION TO SYMMETRIC TRANSITIVE CLOSURE 14

3. M ← Deliver(L1, i, ⌊n/2⌋)
4. Partition M into

M1 = {x ∈M | i + ⌊n/2⌋ ≤ x < i + n}
M2 = {x ∈M | x ≥ i + n}

5. N ← Deliver(L2 ∪M1, i + ⌊n/2⌋, ⌈n/2⌉)
6. Return N ∪M2.]

To count the number of times a letter is handled, consider the tree of
recursive calls on deliver shown in Figure 5. Each node is labeled with

1 2 3 4 5 6 7 8 9 10 11

(1,2)

(1,5)

(1,11)

(4,2)

(3,3)

(6,6)

(9,3)

(10,2)(7,2)

(6,3)

Houses

Figure 5: Mail carrier delivery tree.

the pair (i, n) giving the first house and number of houses visited by that
recursive call.

A letter from house r to house s is handled once at each call (node) on
the unique path through the tree from r to s. Since the depth of the tree is
at most ⌈log n⌉, this path has length ≤ 2⌈log n⌉.

In the application to symmetric transitive closure, each “letter” is a row
i of the matrix at stage i to be carried to row j and or ’ed into it (line 3 of the
algorithm). The correctness of the algorithm does not depend on row i being
delivered immediately—it is only necessary that all rows sent to row j be
delivered before row j itself is processed at stage j. It is also not necessary
to perform steps 5 and 6 of the transitive closure algorithm to determine the
connected components, for each component is described by row i (after Mi,i

has been set to 1) when next(i) is 0. After all the components have been

4 INVERSION COMPLEXITY 15

determined, then M∗ can be constructed by performing steps 5 and 6 on a
second pass, using “Deliver” from right to left. This yields:

Theorem 3.2 The transitive closure of an n×n symmetric Boolean matrix
may be computed on a Turing machine in time O(n2 log n).

Corollary 3.3 The combinational complexity of symmetric transitive clo-
sure is ≤ O(n2 log2 n).

4 Inversion Complexity

Let Ω = {∧,∨,¬}. Let I(F) be the minimum number of negations (¬) in
any network over Ω which computes the set of functions F . I(F) is called
the inversion complexity of F .

Let |F | = m and treat F as a function Kn → Km. Order Boolean
vectors by (x1, . . . , xr) ≤ (y1, . . . , yr) iff xi ≤ yi for all i, 1 ≤ i ≤ r.

A sequence of n-vectors C = (X1, . . . , Xk) such that Xi ≤ Xi+1, 1 ≤ i <
k, is called a chain of length k. For such a chain, define

altF (C) = #{ i | 1 ≤ i < k & F (Xi) 6≤ F (Xi+1) }.

Let A(F) = maxchains C altF (C).

Theorem 4.1 (Markov [13]) I(F) = ⌈log2(A(F) + 1)⌉.

Proof: We first show A(F) ≤ 2I(F) − 1 by induction on I(F).

Base: I(F) = 0. Then F is monotone, so A(F) = 0.

Induction: Suppose A(F ′) ≤ 2I(F ′) − 1 for all F ′ ∈ An such that I(F ′) <
I(F). In any network for F , there is a ¬-gate whose input does not depend
on the outputs of any other ¬-gates, so F may be decomposed as

F (x1, . . . , xn) = G(¬h(x1, . . . , xn), x1, . . . , xn)

where I(G) = I(F)− 1 and I(h) = 0.
Let C = (X1, . . . , Xk) be a chain. By monotonicity of h, there is an r,

0 ≤ r ≤ k such that h(Xi) = 0 for 1 ≤ i ≤ r and h(Xi) = 1 for r+1 ≤ i ≤ k.
Let

C0 = (X1, . . . , Xr)

C1 = (Xr+1, . . . , Xk).

4 INVERSION COMPLEXITY 16

Now let Gi(x1, . . . , xn) = G(¬i, x1, . . . , xn), i ∈ {0, 1}. Then I(Gi) ≤
I(G) = I(F) − 1, so by the induction hypothesis, altGi

(D) ≤ 2I(Gi) − 1 for
any chain D. In particular,

altF (C0) = altG0
(C0) ≤ 2I(G0) − 1 ≤ 2I(F)−1 − 1

and
altF (C1) = altG1

(C1) ≤ 2I(G1) − 1 ≤ 2I(F)−1 − 1.

It follows that

altF (C) ≤ altF (C0) + altF (C1) + 1 ≤ 2I(F) − 1.

Hence, I(F) ≥ ⌈log(A(F) + 1)⌉.
We now show I(F) ≤ LA(F) by induction on LA(F) = ⌈log2(A(F)+1)⌉.

Base: LA(F) = 0. Then A(F) = 0, so F is monotone and I(F) = 0.

Induction: Suppose I(F ′) ≤ LA(F ′) for all F ′ such that LA(F ′) < LA(F).
For a chain C = (X1, . . . , Xk), define first(C) = X1 and last(C) =

Xk. If last(C) = first(C ′), where C ′ = (X ′
1, . . . , X

′
ℓ), define C ◦ C ′ =

(X1, . . . , Xk, X
′
2, . . . , X

′
ℓ). Clearly altF (C ◦ C ′) = altF (C) + altF (C ′).

Let

S = {x ∈ Kn | for all chains C with first(C) = x, altF (C) < 2LA(F)−1}.

Let cS be the characteristic function of S, i.e., cS(x) = 1 if x ∈ S and
cS(x) = 0 if x 6∈ S. cS is monotone since if x ≤ y, then every chain C ′

with first(C ′) = y is a suffix of some chain C with first(C) = x, and hence
x ∈ S ⇒ y ∈ S.

Claim Let y ∈ Kn − S. Then for all chains C with last(C) = y

altF (C) < 2LA(F)−1.

Pf. Suppose there is a chain C with last(C) = y and altF (C) ≥ 2LA(F)−1.
Since y 6∈ S, there is a chain C ′ with first(C ′) = y and altF (C ′) ≥ 2LA(F)−1.
Then altF (C ◦ C ′) ≥ 2LA(F) ≥ 2log2(A(F)+1) > A(F), contradicting the
definition of A(F).

Now let
F0 = {f ∨ cS | f ∈ F},
F1 = {f ∧ cS | f ∈ F}.

4 INVERSION COMPLEXITY 17

Regarded as functions Kn → Km, F0(x) = F (x) when x ∈ Kn − S and
F0(x) = (1, . . . , 1) when x ∈ S. Similarly, F1(x) = (0, . . . , 0) when x ∈ Kn−
S and F1(x) = F (x) when x ∈ S. Hence it follows that A(Fi) ≤ 2LA(F)−1−1,
i ∈ {0, 1}, so

LA(Fi) = ⌈log2(A(Fi) + 1)⌉
≤ LA(F)− 1

< LA(F).

By the induction hypothesis, I(Fi) ≤ LA(Fi) ≤ LA(F)− 1.
Let G: Kn+1 → Km be defined by

G(y, x1, . . . , xn) = Fy(x1, . . . , xn).

Then
F (x1, . . . , xn) = G(cS(x1, . . . , xn), x1, . . . , xn).

Our proof is completed by showing I(G) ≤ max(I(F0), I(F1)) + 1.

We show by induction on q that, for all n, m, if F0 and F1 are arbitrary
functions in Kn → Km with I(Fi) ≤ q, i ∈ {0, 1}, then there exists a
function M in Kn+2 → Km such that

M(y,¬y, x1, . . . , xn) = Fy(x1, . . . , xn)

and I(M) ≤ q.

Base: q = 0 Then Fi are monotone, so a network for M is given in Figure 6.

Induction: As before, we may decompose Fi as

Fi(x1, . . . , xn) = F ′
i (¬hi(x1, . . . , xn), x1, . . . , xn),

where hi is monotone and I(F ′
i) = I(Fi)− 1 ≤ q− 1. By induction, there is

an M ′ such that

M ′(y,¬y, z, x1, . . . , xn) = F ′
y(z, x1, . . . , xn)

and I(M ′) ≤ q − 1. A network for M is given in Figure 7. Then I(M) ≤
1 + I(M ′) ≤ q.

Finally we note that

G(y, x1, . . . , xn) = M(y,¬y, x1, . . . , xn).

Then I(F) ≤ I(G) = 1 + I(M) ≤ max(I(F0), I(F1)) + 1 ≤ LA(F).

4 INVERSION COMPLEXITY 18

V

F0

F1

V

V

V

V

V

.

y

y'

x1

xn

. . .
. . .

Figure 6: Network for M in base case.

Corollary 4.2 (Markov [13])

1. maxF⊆An
I(F) = ⌈log2(n + 1)⌉

2. maxa∈An
I(a) = ⌊log2(n + 1)⌋.

Proof: Consider the negations of the inputs x1, . . . , xn:

Fn = {¬xi | 1 ≤ i ≤ n}.

For any maximal chain C, altF (C) = n, so by Theorem 4.1, I(Fn) =
⌈log2(n + 1)⌉. Clearly A(F) ≤ n for all F ⊆ An, so equality 1 follows.

To prove 2, let

s(x1, . . . , xn)
df
= ¬

n
⊕

i=1

xi =

{

1 if
∑n

i xi ≡ 0 (mod 2);

0 otherwise.

Every maximal chain C is of length n + 1, and

alts(C) =

⌊

n + 1

2

⌋

.

4 INVERSION COMPLEXITY 19

h0

h1

V

V

V

. . .

y

y'

x1

xn

. . .

M '
¬

. . .

. . .
Figure 7: Network for M in recursive construction.

By Theorem 4.1,

I(s) =

⌈

log2

(⌊

n + 1

2

⌋

+ 1

)⌉

= ⌊log2(n + 1)⌋.

Clearly A(a) ≤
⌊

n+1
2

⌋

for all a ∈ An, so equality 2 follows.

Theorem 4.1 says nothing about the size network that might be needed
to achieve the minimal numbers of negations. We now show that the number
of inverters may always be reduced to ⌈log2(n+1)⌉ with only a small increase
in the size of the network. In what follows, we assume ∧ and ∨ have equal
cost c.

Theorem 4.3 For all F ⊆ An, I(F) ≤ ⌈log2(n + 1)⌉. Moreover, there
is a single network β for F such that I(β) ≤ ⌈log2(n + 1)⌉ and L(β) ≤
2L(F) + O(n2 log2 n).

Note added in revision: Beals, Nishino and Tanaka [3, 26] note in pass-
ing that this bound can be improved to 2L(F) + O(n2 log n) by using the

4 INVERSION COMPLEXITY 20

sorting network of Ajtai, Komlós, and Szemerédi [1] instead of the Batcher
network [2] in the proof of Theorem 4.5. The bound of that theorem then
becomes O(n2 log n). Still better bounds appear in [3, 26].

To prove Theorem 4.3 we need some additional concepts.

Definition: Let F : Kn → Km, G: K2n → Km. G is a monotone cover of
F if G is monotone and for all x1, . . . , xn ∈ K,

F (x1, . . . , xn) = G(x1,¬x1, x2,¬x2, . . . , xn,¬xn).

Theorem 4.4 Let F : Kn → Km. Then there is a monotone cover G of F
with L(G) ≤ 2L(F).

Proof: By induction on the number of gates in a least cost network β for
F .

Base: If β has no gates, then F is monotone, so G is trivially constructed.

Induction: Assume β has s gates. By choosing an initial gate of β, F may
be decomposed in one of three ways:

1. F (x1, . . . , xn) = F ′(xi ∨ xj , x1, . . . , xn),

2. F (x1, . . . , xn) = F ′(xi ∧ xj , x1, . . . , xn),

3. F (x1, . . . , xn) = F ′(¬xi, x1, . . . , xn)

for some function F ′ of n + 1 variables. A least cost network for F ′ exists
with s − 1 gates, and L(F ′) = L(F) − c in cases 1 and 2, and L(F ′) =
L(F)− cost(¬) in case 3.

By the induction hypothesis, there is a monotone cover

G′(y, y′, x1, x
′
1, . . . , xn, x′

n)

for F ′ s.t. L(G′) ≤ 2L(F ′). Define G according to the case:

1. G(x1, x
′
1, . . . , xn, x′

n) = G′(xi ∨ xj , x
′
i ∧ x′

j , x1, x
′
1, . . . , xn, x′

n),

2. G(x1, x
′
1, . . . , xn, x′

n) = G′(xi ∧ xj , x
′
i ∨ x′

j , x1, x
′
1, . . . , xn, x′

n),

3. G(x1, x
′
1, . . . , xn, x′

n) = G′(x′
i, xi, x1, x

′
1, . . . , xn, x′

n).

4 INVERSION COMPLEXITY 21

It follows easily using DeMorgan’s law that G is a monotone cover for F .
Also, in cases 1 and 2,

L(G) ≤ 2c + L(G′) ≤ 2c + 2L(F ′) = 2L(F).

and in case 3,
L(G) = L(G′) ≤ 2L(F ′) ≤ 2L(F).

Theorem 4.5 Let Fn = {¬xi | 1 ≤ i ≤ n}. Then I(Fn) ≤ ⌈log2(n + 1)⌉.
Moreover, there is a network βn for Fn achieving this bound with L(βn) =
O(n2 log2 n).

Proof: Let

τk
i (x1, . . . , xn) =



















1 if







n
∑

j=1

j 6=i

xj






≥ k;

0 otherwise

We use the fact that

¬xi = 1 ⇐⇒ xi = 0

⇐⇒ ∀k[τk
0 (~x)→ τk

i (~x)]

⇐⇒ ∀k[¬τk
0 (~x) ∨ τk

i (~x)].

Fact (Batcher [2]): For each i, {τk
i | 1 ≤ k ≤ n} can be be computed by a

monotone network of size O(n log2 n). (Ref: [11, pp. 220–235].)

Hence, {τk
i | 1 ≤ k ≤ n, 0 ≤ i ≤ n} can be computed by a network of

size O(n2 log2 n). It remains to compute T = {¬τk
0 | 1 ≤ k ≤ n}.

It suffices to find a network γn for the functions νk: K
n → K such that

νk(τ
1
0 (~x), . . . , τn

0 (~x)) = ¬τk
0 (~x),

that is, when the inputs are sorted, the network computes their comple-
ments.

Let n = 2r − 1. We define γn inductively on r.

r = 1: γn is the network: ¬x1 ν1

r > 1: γn is given in Figure 8. To see that it works we consider separately
the two cases x2r−1 = 0 and x2r−1 = 1 and note that by our assumption
that the inputs are sorted, x2r−1 = 0 implies that xk = 0 for all k > 2r−1,
and x2r−1 = 1 implies xk = 1 for all k < 2r−1. The details are left to the
reader.

REFERENCES 22

V

V

. . .

. . .

ν2r-1V

x1

x2r-1-1

x2r-1

x2r-1+1

x2r-1

ν1

V

ν2r-1-1

V

ν2r-1

ν2r-1+1V

¬

V

V

γ2r-1-1

. . .
. . .

. . .

. . .
. . .

. . .

. . .

Figure 8: Recursive construction of γ2r−1.

Theorem 4.3 now follows by a direct application of Theorems 4.4 and 4.5.

Open problem: For F with I(F) < ⌈log2(n+1)⌉, how much must the size
of the network increase in order to achieve the minimal number of negations?

Acknowledgement

I would like to thank Albert Meyer, Mike Paterson, and Nick Pippenger for
their many contributions to the work reported here. I am grateful to M.I.T.,
the University of Toronto, and the University of Frankfurt for providing me
with a supportive environment in which to carry out the research that led
to these notes, and to the University of Washington and Yale University for
support in revising them and making them available to the community. I am
especially grateful to Claus Schnorr for his encouragement and enthusiasm,
and for making my visit to the University of Frankfurt in 1974 possible.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, pages 1–9, Boston, Massachusetts, April 1983.

REFERENCES 23

[2] Kenneth E. Batcher. Sorting networks and their applications. In Proc.
AFIPS Spring Joint Computer Conf., volume 32, pages 307–314, Mont-
vale, N. J., 1968. AFIPS Press.

[3] Robert Beals, Tetsuro Nishino, and Keisuke Tanaka. More on the
complexity of negation-limited circuits. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing, pages 585–
595, Las Vegas, Nevada, May-June 1995.

[4] Andrzej Ehrenfeucht. Practical decidability. Journal of Computer and
System Sciences, 11(3):392–396, December 1975.

[5] Michael J. Fischer. The complexity of negation-limited networks—a
brief survey. In H. Brakhage, editor, Automata Theory and Formal
Languages, 2nd GI Conference, volume 33 of Lecture Notes in Computer
Science, pages 71–82. Springer-Verlag, 1975.

[6] Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication
and transitive closure. In Proc. 12th IEEE Symposium on Switching and
Automata Theory, pages 129–131, October 1971.

[7] Michael J. Fischer and Michael S. Paterson. Fishspear: A priority queue
algorithm. Journal of the ACM, 41(1):3–30, January 1994.

[8] Michael J. Fischer, Michael S. Paterson, and Nicholas Pippenger. An
efficient message-forwarding algorithm using sequential storage. Un-
published, August 1982.

[9] E. N. Gilbert. Lattice theoretic properties of frontal switching functions.
J. Mathematics and Physics, 33:57–67, 1954.

[10] I. Ibaraki and S. Muroga. Synthesis of networks with a minimum num-
ber of negative gates. IEEE Transactions on Computers, C-20:49–58,
January 1971.

[11] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Com-
puter Programming. Addison-Wesley, Reading, Mass., 1973.

[12] O. B. Lupanov. A method of circuit synthesis. Izvestia v.u.z. Ra-
diofizike, 1:120–140, 1958.

[13] A. A. Markov. On the inversion complexity of a system of functions.
Journal of the ACM, 5(4):331–334, October 1958. Translated by Morris
D. Friedman.

REFERENCES 24

[14] Ian Munro. Efficient determination of the transitive closure of a directed
graph. Information Processing Letters, 1:56–58, 1971.

[15] K. Nakamura, N. Tokura, and T. Kasami. Minimal negative gate net-
works. IEEE Transactions on Computers, C-21(1):5–11, January 1972.

[16] Michael S. Paterson, editor. Boolean Function Complexity, volume 169
of Lecture Note Series, Cambridge, 1992. London Mathematical Society,
Cambridge University Press.

[17] Nicholas Pippenger and Michael J. Fischer. Relations among complex-
ity measures. Journal of the ACM, 26(2):361–381, April 1979.

[18] John E. Savage. Computational work and time on finite machines.
Journal of the ACM, 19(4):660–674, October 1972.

[19] John E. Savage. The Complexity of Computing. John Wiley & Sons,
New York, 1976.

[20] Claus P. Schnorr. Personal communication, 1974.

[21] Claus P. Schnorr. The network complexity and the Turing machine
complexity of finite functions. Acta Informatica, 7(1):95–107, 1976.

[22] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:281–292, 1971.

[23] Claude E. Shannon. The synthesis of two-terminal switching circuits.
Bell System Technical Journal, 28:59–98, 1949.

[24] Volker Strassen. Gaussian elimination is not optimal. Numerische
Mathematik, 13:354–356, 1969.

[25] Volker Strassen. Berechungen in partiellen Algebren endlichen Typs.
Computing, 11:181–196, 1973.

[26] Keisuke Tanaka and Tetsuro Nishino. On the complexity of negation-
limited Boolean networks (preliminary version). In Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, pages
38–47, Montréal, Québec, Canada, May 1994.

[27] Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner
Series in Computer Science. B. G. Teubner and John Wiley & Sons,
Stuttgart; Chichester; New York, 1987.

